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Abstract: In this paper, the problem of calibrating a paper machine dryer

section model to measurement data is treated. The model, which is dynamic,

nonlinear and of large scale, is implemented in Modelica and Dymola. The

purpose of the model is to evaluate, in simulation, new control structures before

application to the plant. This approach requires a well calibrated model in

order for simulation results to be valid also on the real plant. In this paper,

the problem is addressed by parameter optimization. A custom application

integrating code generated by Dymola and packages for numerical optimization

has been developed. Results are satisfactory, in that the mismatch between the

calibrated model response and measured data is small.

Keywords: Parameter optimization, Large scale optimization

1. INTRODUCTION

Detailed modeling of large scale plants has re-

ceived increased industrial interest in recent

years. This is due mainly to the availability

of languages and tools enabling development of

large, hierarchical and modular models. Using

this methodology, the user is relieved from the

burden of managing potentially cumbersome

programming API:s for e.g. numerical simula-

tion codes, and may instead focus on embedding

expert knowledge using better suited abstrac-

tions.

There are several benefits of developing de-

tailed models of large scale industrial plants.

1 The authors acknowledge the kind assistance from Ola

Slätteke who provided a Modelica library for modeling of

paper machine dryer sections, upon which the model used

in this work is based.

Typically, operation of industrial processes are

costly, and it is therefore usually difficult to

motivate extensive experiments, e.g. to evalu-

ate control performance. Modeling is therefore

attractive, since it enables a wide range of ap-

plications, including simulation, control design

and evaluation, bottle-neck analysis and opera-

tor training, which may not be possible to im-

plement on the real plant.

It is desirable that the behavior of the model

is similar to that of the real plant, in order for

results obtained from the model to be applicable

on the plant. It is usually necessary to modify

the original model to obtain a better match

with measurement data. A common method to

minimize the plant-model mis-match is to select

one or more parameters of the model, and then

tune these until a satisfactory model response

is obtained. This procedure of tuning parame-



ters while leaving the structure of the model

unchanged is referred to as gray-box identifica-

tion, see (Bohlin and Isaksson, 2003). Parame-
ter tuning may in simple cases be done by hand,

but more complex problems requires structured

methods for finding the parameter set which

yields the best result. One such method is pa-

rameter optimization, which, in addition to se-

lection of parameters to optimize also includes

definition of a performance criterion to mini-

mize.

In this paper, preliminary results concerning

parameter optimization of a paper machine

dryer section model is reported. The model de-

scribes the dryer section of PM7 located at

Husum, Sweden and is implemented in Model-

ica, see (Modelica Association, 2005). The struc-
ture of the model is typical for a high-fidelity

model built from first principles in that it is

non-linear and contains a large number of dy-

namic states, algebraic variables and parame-

ters.

2. MODELING OF THE DRYER SECTION

The dryer section consists of a large number

of steam heated cast iron cylinders that are

used to dry the paper. The wet paper is pressed

against the cylinder surfaces with aid from

dryer fabrics. The moisture in the paper is con-

trolled by changing the steam pressures in the

cylinders. Around the dryer section there is a

hood where the air in- and outflow is controlled.

As the paper is dried, water evaporates from the

sheet and the air supply is used to remove the

moisture.

In the dryer section, many of the paper’s final

properties such as web strength, shrinkage and

curl/twist are set. One of the most important
quality parameter for paper is the moisture con-

tent. In the dryer section the water content in

the paper web is reduced from 50-65% when en-

tering the dryer section from the press section to

the final 3-10%. The dryer section consumes 2/3
of the energy needed to run a paper machine.

The PM7 paper machine is a multi-cylinder ma-

chine producing copy paper at the M-real mill in

Husum, Sweden. The PM7 drying cylinders are

divided into six groups, consisting of one, two,

two, three, ten and twelve cylinders respectively.

The dryer section of the machine is divided into

a pre-dryer and an after dryer section with the

surface sizing in the middle. The objective of the

after-dryer section is only to dry the mixture

added by the surface sizing and it cannot take

care of moisture problems from the pre-dryer

section.

In order for a model to be useful, it be should

accurate enough for the particular application.

E.g., linear models are commonly used to de-

scribe the behavior of the plant in the close

vicinity of a particular operating point. Typi-

cally, the moisture controller of a paper ma-

chine is based on several linear models to

take some of the non-linearities of the plant

into account. A different approach is taken in

(Slätteke, 2006), where a paper machine drying
section is developed using first principles for the

sub-components of the plant. Connection of the

sub-components then yields a model which cap-

tures the full nonlinear behavior of the drying

section. This bottom-up method yields a model

which describes in detail the dynamic behavior

of the plant, which makes it well suited for

simulation studies and control evaluation.

The process treated this work is presented in

detail in (Ekvall, 2004), and only a brief descrip-
tion is given here. In modeling of the PM7 dryer

section, the work by (Slätteke, 2006) is used.
Based in this work, Slätteke has developed a li-

brary containing common components of a dryer

section, such as steam heated cylinders, lumped

models for the paper web in contact with a

cylinder and in the free draw as well as control

system structures. The library enables rapid de-

velopment of dynamic models of paper machine

dryer sections. The library is implemented in

Modelica.

Using this library, a dryer section model for

PM7 has been developed. For simulation, the

software Dymola has been used. The final DAE

model has about 1750 variables, of which 250

are continuous time states, and 700 parameters.

The optimization software, described in Section

3, does not support all features of Modelica.

Most notably, state and time events are not

supported. This implies that no Modelica con-

structs that results in events in the simulation

model can be used. In addition, the software is

currently designed to calculate sensitivities for

state variables (as opposed to algebraic vari-
ables) only. Hence, all variables used in opti-
mization problems must be state variables in

order for sensitivity information to be obtained.

Accordingly, the original model was modified to

take these restrictions into account. In order to

force the desired variables to be state variables

the selectState modifier was used. The model

contained only one event generating sub-model;

a PID controller with a saturation function. In

this case, the saturation function was simply

replaced by a smooth approximation. The influ-

ence on the simulation result was neglectable.



3. SOFTWARE TOOLS

The dryer section model has been implemented,

as mentioned above, in Modelica and Dymola.

The parameter optimization problem, however,

was solved by integrating several software pack-

ages into a custom application which utilized

the C-code representing the model generated

by Dymola. The results were then fed back to

Dymola and verified on the original simulation

model.

The software packages used in the development

of the custom application are:

• a C programming interface to access rou-

tines generated by Dymola, dsblock. Using

this interface, custom applications can be

developed for e.g. simulation or like in this

case, optimization. The interface provides

basic routines for obtaining information

about model parameter and initial state

values, evaluation of the right side of the

resulting ODE (DAE) and the associated
Jacobian.

• a DAE-solver, DASPK 3.1 (Maly and Pet-
zold, 1996). This code solves DAE:s as well
as calculates sensitivities required for op-

timization. The code is written in Fortran

and was translated to C using f2c.

• an NLP-code, IPOPT (Wächter and Biegler,
2006). This code implements a primal-dual
interior point method and was used to solve

the NLP resulting from the parameter op-

timization problem.

• a package for managing the communica-

tion between the Dymola C interface and

DASPK, which has been developed in or-

der to enable convenient development of

optimization applications based on models

generated by Dymola. This package, in the

following referred to as ssDASPK, provides

e.g. simulation and sensitivity calculation

for use in custom applications.

These packages were compiled and linked with

the code representing the model generated by

Dymola, into an application which was used

to set up and solve the optimization problem.

The structure of the application is shown in

Figure 1.

4. PARAMETER OPTIMIZATION

Model parameter values can be determined in

several ways. Some parameters are available in

tables, and are not associated with uncertainty,

whereas others may be determined from experi-

ments. Mechanical systems may for example be

disassembled and its components can be mea-

sured and weighted. Yet some parameters may

Fig. 1. Software application structure.

be inherently hard to find accurate values for. In

the dryer section model, typically heat transfer

coefficients fall into this category.

When selecting parameters to optimize, param-

eters which are uncertain are attractive choices.

However, it should be kept in mind, that the

parameter optimization procedure does not nec-

essarily produce the physically correct parame-

ter values. Rather, the selected parameters are

used to compensate for all types of model-data

mismatch given a particular performance cri-

terion. This implies that the actual parameter

values obtained from optimization should not

be interpreted as the true physical values, but

rather those that achieves the best model-data

match. On the other hand, it is usually desir-

able to ensure that parameters have physically

feasible values.

4.1 Problem Definition

Setting up a parameter optimization problem

requires insight into which aspects of the model

are most important. In this case, both the dy-

namic and static model response is of impor-

tance. However, in a first step, only the static be-

havior has been considered. Specifically, cylin-

der and paper temperatures of the paper ma-

chine have been measured during stationary op-

eration conditions. The aim of the optimization

has been to improve the stationary response

of the model in the sense that the difference

between simulated temperatures and measured

temperatures, in stationarity, should be mini-

mized.

A reasonable cost function to minimize is then

J =
∑

i∈S

γ i(x
m
i − x

s
i )
2 (1)

where S are the indices of the temperature

states of interest, γ i are weights, xmi measured
temperatures (in stationarity) and xsi simulated
temperatures (in stationarity). During the opti-
mization all weights were set to 1.



Table 1. Optimization parameters

Parameter Nom. Min. Max.

α [W/(m2K)] 500 400 5000

KG [m/s] 0.06 0.02 0.1

α p0 [W/(m
2K)] 400 200 1000

α pK [W/(m
2K)] 1200 400 1600

Four parameters were selected for optimization:

• The heat transfer coefficient between steam

and condensate in a cylinder, α

• The mass transfer coefficient KG which is
used in the expression defining evaporation

of water from the paper surface

• The heat transfer coefficient between cylin-

der and paper is given by the expression

α p = α p0 + α pKu, where u is the moisture
of the paper, see (Wilhelmsson, 1995). α p0
and α pK were optimized.

Table 1 summarizes nominal, maximum and

minimum values for the parameters.

4.2 Solving the Problem

Traditionally, optimization problems incorpo-

rating constraints imposed by dynamic systems

have been addressed by dynamic programming,

(Bellman, 1957) or the maximum principle,

(Pontryagin et al., 1962). During the last two
decades, however, a new family of methods, re-

ferred to as direct methods have emerged. These

methods are based on discretization of the orig-

inal optimization formulation, transforming the

infinite dimensional problem into a finite di-

mensional one. The discretized problem is then

solved by means of algebraic non-linear pro-

gramming.

There are two main approaches to direct dis-

cretization. Simultaneous methods are based

on full discretization of the control and state

spaces, yielding very large NLP to solve, see

(Biegler et al., 2002) for an overview. There
exist, however, efficient solvers for this type

of problems. Sequential methods, on the other

hand, are based on discretization of the control

space only, resulting in a smaller number of pa-

rameters in the resulting NLP, see (Vassiliadis,
1993). Optimization of Dymola models has pre-
viously been considered in the work (Franke et
al., 2003), where the Simulink interface pro-
vided with Dymola was used to access the

model. The main difference between the ap-

proach used in (Franke et al., 2003) and this
work lies in the methods of accessing the model,

where the dsblock interface has the advantage

of offering evaluation of a symbolic Jacobian.

The algorithm used to solve the problem in this

work is in line with a sequential method. The

dynamics of the model is represented by a DAE

system of index 1, which is generated by Dymola

from the Modelica code. The DAE system can be

written on the form

ẋ = f (x, y, p)

0 = �(x, y, p)
(2)

where x represents the (dynamic) state, y are
the algebraic variables and p are the parame-
ters.

In order for a (gradient based) NLP algorithm
to have fast convergence, it is important to pro-

vide to the algorithm not only the cost function,

but also its gradient with respect to the op-

timization parameters. Calculation of high ac-

curacy gradients for dynamical systems gener-

ally involves calculation of the state sensitivities

with respect to parameters, �x/�p. This can be
done by integration of the sensitivity equations.

In this work, DASPK was used for this purpose.

The problem may now be written

min
p
J = min

p

∑

i∈S

γ i(x
m
i − x

s
i )
2

subject to

ẋ = f (x, y, p)

0 = �(x, y, p)

(3)

This formulation has the benefit of having few

optimization variables – only the parameters p
are optimized – but also involves integration

of the sensitivity equations up to steady state,

which is computationally expensive.

However, since only the stationary response of

the model is considered in this work, the dy-

namic constraint ẋ = f (x, y, p) can actually be
written 0 = f (x, y, p). This yields a purely al-
gebraic optimization problem, which eliminates

the need to integrate the sensitivity equations.

The optimization problem may now be written

min
p,x,y
J = min

p,x,y

∑

i∈S

γ i(x
m
i − x

s
i )
2

subject to

0 = f (x, y, p)

0 = �(x, y, p)

(4)

This problem is obviously algebraic, but has, on

the other hand, a larger number of optimization

variables including parameters, state variables

and algebraic variables.

Both methods were evaluated, and it was found

that the algebraic formulation rendered signif-

icantly shorter execution times. For the alge-

braic formulation, execution times ranged from

approx 0.5-3 min depending on problem set up.

The termination tolerance in IPOPT was set to

10−4. The dynamic formulation needs, however,

to be used if dynamic aspects of the model are

included in the performance index.
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Fig. 2. Stationary temperature profiles in the

case of four parameters. The x-axis shows

cylinder numbers.

5. RESULTS

Solving the problem (4) yields the optimal pa-
rameter values α = 703.14, KG = 0.037531,
α p0 = 955.52 and α pK = 843.72. The optimal
cost was 447.5, compared to the cost 4787 for the

nominal parameter values. The optimal tem-

perature profiles are shown in Figure 2. For

comparison, the nominal profiles are plotted. As

can be seen, there is a significantly improved

fit between simulated and measured responses.

It can be noted, however, that there is still a

temperature mismatch for some cylinders.

In order to further improve model fit to data,

the number of optimization parameters could

be increased. There are two main reasons why

additional parameters may achieve a better fit.

Firstly, the initial assumption that all cylinders

of the dryer section share the same parameter

set may not be true. This is because the cylin-

ders are operated under different conditions

(pressures, temperatures etc.). Secondly, addi-
tional optimization parameters may give im-

proved compensation for unmodelled phenom-

ena, such as e.g. varying air condition along the

dryer section.

In this case, the structure of the model offers a

natural way to introduce additional parameters.

The cylinders of the dryer section are organized

into steam groups, where all cylinders of a

group are operated at the same pressure. It

then seems reasonable to assume that cylinders

within a group share the same characteristics,

and could share the same parameter set. The

model consists of six steam groups, which yields

24 optimization parameters.

Now, the introduction of additional parameters

may lead to an over-parametrized model. This

may lead to a situation where the model is

fitted to a particular data set, including po-

tential measurement errors. In order to avoid
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Fig. 3. Optimal cost as a function of the num-

ber of parameters. (o) corresponds to the
cases with all parameters free and (x) cor-
responds to the cases where α pK has been

assumed fixed.
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Fig. 4. Parameter values in the case of addi-

tional parameter sets. The first bar within

each group corresponds to the parameter

value for the first steam group etc.

this situation, the marginal benefit of introduc-

ing additional parameters should be quantified

and analyzed. This has been done by assum-

ing that neighbouring steam groups may share

the same parameter set. For example, if we let

steam groups one and two, three and four and

finally five and six share parameter sets, three

parameter sets yielding twelve parameters are

obtained. Using this approach, there are 32

combinations, including the extreme cases with

four and 24 parameters.

In Figure 3 the optimal cost obtained in each

of the 32 cases is indicated by (o). As can
be seen, the marginal benefit from introducing

additional parameters is decreasing. It is also

interesting to investigate the optimal parameter

values for the steam groups. In the upper plot of

Figure 4, the parameter values for each steam

group in the case of 24 parameters are shown.

As can be seen, there are large parameter vari-

ations between the steam groups, and several

parameter values are equal to the bounds. Also,
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separate parameter sets for each cylinder

group.

it can be noted that the parameters α pK and α p0
seems to have an inverse relationship for some

steam groups, i.e. groups two, four, five and six.

This is due to the relationship α p = α p0 +α pK .

Clearly, this expression gives two degrees of

freedom for the single parameter α p, and when

additional parameter sets are introduced, this

leads to redundancy. In order to resolve this

problem, α pK was fixed to its nominal value

1200. The optimal costs for the resulting cases

are indicated by (x) in Figure 3. As can be
seen, little is lost in terms of lowest cost for

a particular number of free parameters. In the

lower plot of Figure 4, the optimal parameter

values corresponding to the case of 12 free pa-

rameters (four parameter sets) which yields the
lowest cost are shown. This choice is made since

it seems to be a reasonable trade-off between

cost and number of parameters. The parame-

ter variations between the steam groups are

now smaller, although some values are still at

the upper and lower bounds. The corresponding

temperature profiles are shown in Figure 5.

The improvement compared to the case of four

parameters is clearly visible.

The issue of trading decreased cost against

number of parameters deserves a more exten-

sive treatment than has been given in this pa-

per. However, this will further elaborated in

future work, where fitting of the dynamic re-

sponse of the model in combination with larger

data sets will be treated.

6. CONCLUSIONS AND FUTURE WORK

In this paper, a parameter optimization scheme,

applied to a paper machine dryer section has

been reported. A dryer section model has been

developed in Modelica. A custom application in-

tegrating software packages for simulation and

optimization has been developed to solve the pa-

rameter optimization problem. The results show

a good match between measured and simulated

values. Future work in the project includes in-

corporation of dynamic quantities in the objec-

tive function, taking also dynamic properties of

the model into account.
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