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Abstract

This paper is concerned with the estimation of the volume fraction and the

anisotropy of a two-component composite from measured bulk properties. An

algorithm that takes into account that measurements have errors is developed.

This algorithm is used to study data from experimental measurements with an

unknown microstructure. The dependence on the microstructure is quanti�ed

in terms of a measure in the representation formula introduced by D. Bergman.

We use composites with known microstructures to illustrate the dependence

on the underlying measure and show how errors in the measurements a�ect

the estimations of the structural parameters.

1 Introduction

In two previous papers [7, 8], we discussed the possibility of bounding structural
parameters, such as the volume fraction and the anisotropy of a two-component
composite, from measurements of bulk properties. In practice, we have to take into
account that measurements have errors.

The geometry of the microstructure can be described by a particular positive
measure on the interval [0, 1]. The determination of this measure from measurements
of bulk properties is by some authors called inverse homogenization. Various inverse
algorithms for recovering the measure of composites from experimental data have
been developed [3, 5, 6]. When the measure is recovered the volume fraction and the
anisotropy of the material are given by the �rst two moments of the measure.

Instead of seeking the measure, the measured bulk properties can be used to
bound the structural parameters. In other words, restrictions on the moments of
the measure are derived directly. The advantage with this approach is that it can
be used even if we have limited information from measurements (few or inaccurate
measurements). Inverse bounds for the volume fraction were �rst derived in [12, 13].
The authors use Milton's and Bergman's bounds in an inverse way to bound the
volume fraction from experimental data. Explicit formulas for bounds on the volume
fraction can in the case of measurements of lossy materials be found in reference [4, 8].
These inverse bounds cannot be used directly, when there are uncertainties in the
measurements.

Here we develop a numerical method based on the inverse bounds in reference [8]
to derive bounds, not only on the structural parameters but also on the values of
the components in the composite. These bounds are derived from measurements
of the complex permittivity at di�erent frequencies or at di�erent volume fractions.
Error estimates are assumed to be available for the components and for the e�ective
permittivity of the composite. We use measured bulk properties from two experi-
ments. One experiment was in the optical region and in the second experiment a
microwave source was used.

In many cases partial information about the microstructure is available. For
example, in the random case, the composite is usually known to be approximately
isotropic. This knowledge can be used to derive tighter bounds on the volume frac-
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tion. If the volume fraction is approximately known, the bounds on the anisotropy
parameter become tighter.

Before proceeding to this problem, we discuss properties of the underlying mea-
sure (the spectral density function) that characterize the microstructure. Moreover,
we show that the tightness of the bounds on the structural parameters is sensitive
to the microstructure. Numerical experiments with known microstructures are used
to illustrate this dependence on the spectral density function and show how errors
in the measurements a�ect the tightness of the bounds.

2 Representation of the e�ective permittivity

The materials in this paper are assumed to be d-dimensional and to consist of two
homogeneous and isotropic phases. The two-component material is locally modeled
by the scalar relative permittivity

ε(ε1, ε2) = ε1χ1(x) + ε2χ2(x), (2.1)

where the components are isotropic with constant permittivity ε1 and ε2. We use
complex valued permittivities and assume that the imaginary parts are greater or
equal to zero. The volume fraction of phase εi is denoted fi and the total volume
f1 + f2 is assumed to be one. Write the complex permittivity of a material on the
form

ε(ω) = εr(ω) + εi(ω)i, (2.2)

where εr(ω) and εi(ω) are the real and imaginary parts, respectively, and ω is the
angular frequency of the applied �eld.

We de�ne an e�ective permittivity εe when the wavelength of the applied �eld
is much longer than the characteristic length of the microstructure. The Herglotz
property state that Im{εe} > 0 when Im{ε1} > 0 and Im{ε2} > 0 [2], that is, the
composite dissipates energy when both components dissipate energy. Moreover, the
e�ective permittivity has the homogeneity property εe(cε1, cε2) = cεe(ε1, ε2) for all
complex numbers c. The scaled e�ective permittivity

εe(ε1, ε2)

ε2
= εe(

ε1
ε2
, 1) (2.3)

is analytic in ε1/ε2 ∈ C\] −∞, 0] [2, 10]. From the homogeneity property and the
Herglotz property Bergman [2] derived a representation of the e�ective permittivity.
In general, the e�ective permittivity εe has the integral representation [10]

εe(ε1, ε2) = ε2 − ε2G(s), (2.4)

where

G(s) =

∫ 1

0

dm(y)

s− y
, s =

ε2
ε2 − ε1

. (2.5)
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The positive (Borel) measure m in the integral representation contains all micro
structural information. Let sr and si denote the real and the imaginary parts of the
parameter s, and separate the real and imaginary parts of the integrand

G(s) =

∫ 1

0

grs(y) dm(y)− i

∫ 1

0

gis(y) dm(y), (2.6)

where

grs(y) =
sr − y

(sr − y)2 + (si)2
, gis(y) =

si

(sr − y)2 + (si)2
. (2.7)

When si � 1, the function gis(y) approximate the Dirac function πδ(y − sr), in the
sense that for any test function ϕ ∈ D(R), (gis, ϕ)→ πϕ(sr), when si → 0.

Let E denote a measurable set in [0, 1] and �x yn ∈ [0, 1]. The unit mass
concentrated at yn is de�ned as myn(E) = 1 if yn ∈ E and myn(E) = 0 if yn /∈ E.
Let m be on the form

m(E) =

∫
E

f(y) dµ(y) +
∑
n

βnmyn(E) (2.8)

where µ denotes the Lebesque measure and f is non-negative and integrable over
[0, 1]. For any test function ϕ, we have

− 1

π
lim
δ→0+

∫ ∞
−∞

ImG(x+ iδ)ϕ(x) dµ(x) =

∫ 1

0

f(x)ϕ(x) dµ(x) +
∑
n

βnϕ(yn). (2.9)

For example, the e�ective permittivity for a laminate material is, for �elds paralell
to the interfaces, the arithmetic mean εe = ε2 − f1ε2/s. The integral (2.5) then
becomes G(s) = f1/s which gives

− 1

π

∫ ∞
−∞

ImG(x+ iδ)ϕ(x) dµ(x) =

∫ ∞
−∞

f1
1

π

δ

x2 + δ2
ϕ(x) dµ(x)→ f1ϕ(0), δ → 0+.

(2.10)
We identify a mass f1 concentrated at y = 0, which we denote m(E) = f1m0(E).

When the spectral density function f is continuous and no point masses are
present, the formula (2.9) is reduced to Stieltjes inversion formula [1]

f(x) = − 1

π
lim
δ→0+

ImG(x+ δi), x ∈ [0, 1]. (2.11)

For example, the two-dimensional checkerboard structure has the exact e�ective
permittivity [15, p. 49]

εe =
√
ε1ε2. (2.12)

From Stieltjes inversion formula follows that the spectral density function f for the
checkerboard is

f(y) =
1

π

√
(1− y)/y. (2.13)

Accurate calculations of the spectral density function f can be obtained if accurate
measurements of εe are available for 0 ≤ sr ≤ 1 and si � 1. In many cases these
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measurements are not available and can even be impossible to perform, depending
on the dispersion curves for the materials in the composite.

Assume real-valued materials with ε2 ≥ ε1. From the relation ε1 ≤ εe ≤ ε2 follows

0 ≤ G(s) ≤ 1

s
≤ 1. (2.14)

Let s = 1 + δ, δ > 0. From the inequality above we have

1 ≥ G(1 + δ) =

∫ 1

0

1

1− y + δ
dm(y) ≥ m{1}

δ
, (2.15)

which implies that the measure m does not have a point mass in y = 1, since δ > 0
is arbitrary. The moments of the measure

cn+1 = (−1)n
∫ 1

0

yn dm(y), (2.16)

then vanish in the limit n→∞. The absolute value of the moments c1, c2, . . . form
a non-increasing sequence |c1| ≥ |c2| . . . . The convergence rate of the moments cn
to zero depend strongly on the support of the measure. If m has no support close
to y = 1, the convergence is exponential.

Let s = −1/z in the representation (2.5). The integral representation of G is
then transformed to

Ĝ(z) = −1

z
G(−1

z
) =

∫ 1

0

dm(y)

1 + zy
, (2.17)

which is the standard form of a Stieltjes integral representation [1, p. 229].

3 Bounds on the e�ective permittivity

If partial information, such as the volume fraction, is available about the microstruc-
ture, this knowledge can be used to derive bounds on the e�ective permittivity [2,
14, 15]. We use the Stieltjes series expansion

εe = ε2 + ε2zĜ(z) = ε2F (z), F (z) =
∞∑
n=0

cnz
n, (3.1)

where z = −1/s = (ε1−ε2)/ε2 is the contrast and the coe�cients cn are given by the
moments of the measure (2.16). The function zĜ(z) is zero when z = 0, implying
c0 = 1. The constants cn depends on the microstructure but not on the values
of the two phases. If the microstructure is the same, the single series (3.1) gives
the e�ective permittivity, independent of the value of the phases. The zero-order
moment c1 is the volume fraction f1 of the phase ε1 and c2 depends on the anisotropy
in the material. In the case of a d-dimensional statistically isotropic composite, the
second moment is −c1(1− c1)/d [2, 10].

There are many di�erent methods that gives bounds on the e�ective properties
of the material. In [8] Padé approximations of the Stieltjes series (3.1) were used to
derive Milton's and Bergman's well known bounds [2, 14, 15].
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The εp,q Padé approximant to εe is de�ned by the equation

εe(z)Q(z)− P (z) = O(zp+q+1) (3.2)

where P and Q are polynomials of degree at most p and q, respectively [1]. This
equation gives us an approximation of the e�ective permittivity by the rational
function

εp,q =
P (z)

Q(z)
=

a0 + ...+ apz
p

1 + b1z + ...bqzq
. (3.3)

The sequence of Padé approximations εM,M and εM+1,M of the series (3.1) converge,
when M → ∞, uniformly to εe/ε2 in any closed �nite region of the complex plane
cut along the negative real axis from −1 to −∞ [1].

In practice, the volume fraction c1 is in some cases measured and the composite
is in the random case usually assumed to be isotropic. This gives us at most two
coe�cients in the series expansion, but the rest of the coe�cients cn are in most
cases unknown.

The convergence rate of the Padé approximations depends strongly on the value
on the contrast z and on the measure m. For |zy| < 1 the function (1 + zy)−1 has
a power expansion in zy. The integral Ĝ then has the power expansion

Ĝ(z) =
∞∑
n=0

(−z)n
∫ 1

0

yn dm(y) =
∞∑
n=0

cn+1z
n, (3.4)

where (2.16) is used in the last step. The Stieltjes series (3.1) de�ning the e�ective
permittivity is then convergent. The condition |zy| < 1 is satis�ed when |z| < 1 but
also for 0 ≤ y < 1

|z| = |s|. That is, the series in the representation (3.4) converges if

the support of the measure m is in [0, |s|].
In [8] the author derived inverse bounds on the volume fraction and showed that

the distance between the bounds rapidly tends to zero for a low contrast material.
If very accurate measurements are available for a low contrast material, they give
us accurate estimations of the structural parameters, but if the errors in the mea-
surements are not negligible we can get almost anything. Measurements at a low
contrast material contain very little information.

The conclusion is, that in most cases data that gives rapid convergence for all
measures are not available. The convergence of the series (3.1) and the Padé ap-
proximations then depends strongly on the support and the total mass c1 of the
measure. The bounds on the structural parameters cn are obtained by inverting the
bounds on the e�ective permittivity. The tightness of the bounds on the structural
parameters is then dependent on the measure that characterizes the microstructure.

4 Bounds using complex valued measurements

In reference [8] a method to derive bounds on any of the structural parameters cn is
presented. Here we use the bounds on the volume fraction c1 and on the anisotropy
parameter c2.
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Composite εr1 εi1 εr2 εi2
A 3.00 0 2.42 2.89
B -38.4 2.79 2.98 0

Table 1: Complex permittivity for the two components in two di�erent composites.
Composite A is a mix of two dielectrics and composite B is a mix of a metal and a
dielectric.

The ε1,1 Padé approximant to the series (3.1) gives an upper bound that in the
isotropic case corresponds to the upper Hashin-Shtrikman bound [15, p. 574]. The
ε1,1 Padé approximant can be inverted giving a bound on c1, [8]. Explicitly, the
volume fraction is bounded from below by [4, 8]

cL1 = zi
(εie − εi2)2 + (εre − εr2)2

|z|2(εieεr2 − εreεi2)
. (4.1)

In the same way, the generalization of the lower Hashin-Shtrikman bound [15, p.
574] can be inverted. Explicitly, the volume fraction is bounded from above by [4, 8]

cU1 = 1− zi (ε
i
e − εi1)2 + (εre − εr1)2

|z|2(εreεi1 − εieεr1)
. (4.2)

If the volume fraction c1 is known we derive bounds on the anisotropy parameter
c2. The ε2,1 Padé approximant to the series (3.1) gives an upper bound that in the
isotropic case corresponds to the upper Beran bound [15, p. 574]. The ε2,1 Padé
approximant can be inverted giving a bound on c2, [8]. Explicit formulas for c

L
2 (c1)

and cU2 (c1) is presented in the Appendix.
The formulas (4.1) and (4.2) give bounds on the volume fraction c1, but it is also

possible to use cL2 (c1) and c
U
2 (c1) to bound the volume fraction in the following way.

Let c1 ∈ (0, 1) and calculate cL2 (ε1, ε2, εe) and c
U
2 (ε1, ε2, εe) for a �x volume fraction c1.

The bounds on c2 are required to satisfy the general constraint −c1(1− c1) ≤ c2 ≤ 0
[2], which restricts the possible values on the volume fraction c1.

Example As a �rst illustration, we use the data of composite A in Table 1 and
the checkerboard structure (2.12). The e�ective permittivity is in this case εe =
3.05+1.42i. The formulas (4.1) and (4.2) imply that the volume fraction is bounded
by 0.474 ≤ c1 ≤ 0.526. Using the method above, the bounds cL2 (c1) and cU2 (c1)
provides the same bounds on c1. Moreover, the anisotropy parameter c2 is estimated
by −0.139 ≤ c2 ≤ −0.110. The exact values are c1 = 0.5 and c2 = −0.125.

In the case of inaccurate measurements below, the method that uses the bounds
on c2 actually gives the tightest bounds on the volume fraction. Below we use the
bounds on c2 and present calculations using data from measurements.
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Figure 1: Behavior of the integrand in the integral representation (2.7) for the
data presented in Table 1. In both �gures, the solid line is the real part and the
dashed line is the imaginary part of the integrand. The left graph corresponds to
composite B and the right graph corresponds to composite A. The value on the
s-parameter for the left graf is s = 0.072 + 0.005i and the value on s for the right
graph is s = 0.8− i. Note the di�erence in scale in the two graphs.

5 Structural bounds from measurements

Suppose that error estimates are available for the permittivity of the two components
and for the permittivity of the composite. We use uniformly distributed errors
and generate independent random numbers for the real and imaginary parts of the
measured values. Sweep the volume fraction in the range 0 < c1 < 1 and require
that the anisotropy parameter c2 for a �xed value on c1 satisfy

−c1(1− c1) ≤ cL2 (ε1, ε2, εe) ≤ cU2 (ε1, ε2, εe) ≤ 0, (5.1)

where cL2 and cU2 , given in the Appendix, depend on the complex random numbers
ε1, ε2 and εe. This requirement gives restrictions on the possible volume fractions c1
and on the anisotropy parameter c2. Moreover, we get restrictions on the possible
values on the permittivity of the two components and on the e�ective permittivity
of the composite. We present results when the volume fraction is increased from
zero to one with a small step, but we have also used random numbers with the same
result. Several sets of random numbers of εr1, ε

i
1, ε

r
2, ε

i
2, ε

r
e and ε

i
e are generated for

each �xed number of c1.

5.1 Numerical examples

The checkerboard structure and a laminate material are used to illustrate the method.
We also use an arti�cial measure to show the dependence of the bounds on the mi-
crostructure. We use the values on the two components presented in Table 1 and
assume that the errors in all measurements are ±1%. The volume fraction is in-
creased from zero to one with the step 10−3 or smaller. At each volume fraction c1,
104 random sets of εr1, ε

i
1, ε

r
2, ε

i
2, ε

r
e and ε

i
e were generated.
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5.1.1 The checkerboard

The checkerboard structure (2.12) corresponds exactly to Bruggemans formula [17,
p. 463] at the percolation threshold c1 = 0.5. Using the spectral density function
for the checkerboard (2.13), the moments of the measure (2.16) are calculated to

c1 =
1

2
, c2 = −

1

8
, c3 =

1

16
, · · · cn+1 =

(
1/2
n+ 1

)
. (5.2)

Hence, the moments cn converge very slowly to zero.
Using the values of the complex permittivity of composite A in Table 1 gives the

bounds 0.46 ≤ c1 ≤ 0.54 on the volume fraction and the bounds −0.15 ≤ c2 ≤ −0.10
on the anisotropy parameter. The arithmetic mean of the frequency distribution of
volume fractions is cmean

1 = 0.5000. In the previous section we used the same values
on ε1, ε2 and εe, but assumed exact values. The bounds are of course tighter when we
have exact values, but we will see below that the value of the contrast z = (ε1−ε2)/ε2
and the measure m also strongly in�uence the size of the bounds.

The e�ective permittivity of composite B, in Table 1, is εe = 0.388 + 10.7i.
The values of ε1, ε2 and εe of composite B imply the bounds 0.018 ≤ c1 ≤ 0.99
on the volume fraction and the bounds −0.246 ≤ c2 ≤ −0.001 on the anisotropy
parameter. The arithmetic mean of the frequency distribution of volume fractions
is cmean

1 = 0.5000. Notice that the measurements of composite B implies small
restrictions on the possible volume fractions and the possible values on the anisotropy
parameter c2. As mentioned above, the exact values are c1 = 0.5 and c2 = −0.125.

The values of the phases in the two composites give very di�erent behavior of
the integrands grs(y) and g

i
s(y) in the integral representation (2.7). Figure 1 shows

that the integrands test the measure m very di�erently, which results in di�erent
sizes on the bounds on c1 and on c2.

The values on the components in composite B gives s = 0.072 + 0.005i. In
principle, with this small value on the imaginary part of the parameter s the function
gis(y) in (2.7) is a good approximation of the Dirac function πδ(y − 0.072). This
implies, that the spectral density function f at y = 0.072 is approximately

f(0.072) ≈ − 1

π
Im

{
1− εe

ε2

}
. (5.3)

Using exact values on ε1, ε2, and εe we obtain f(0.072) ≈ 1.143, which is close to
the exact value f(0.072) = 1.1428 that is given by (2.13). If the uncertainty in
the measurements is 1%, the approximate value on f(0.072) belongs to the intervall
[1.138, 1.148]. In many cases the uncertainty is much larger, with the uncertainty
5% the value of f(0.072) is estimated to [1.118, 1.169]. This shows that in many
cases, it is di�cult to determine the spectral density function pointwise with high
accuracy.
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5.1.2 The laminate material

The laminate material has, for the �elds parallel to the interfaces, the e�ective
permittivity

εe = ε2(1 + c1z), (5.4)

where we use c1 = 0.5. In this case, only the zero-order moment c1 is nonzero.
The measurements of composite A in Table 1 give the e�ective permittivity εe =
2.71+1.45i. The bounds on the volume fraction are calculated to 0.490 ≤ c1 ≤ 0.507
and the bounds on the anisotropy parameter are calculated to −0.01 ≤ c2 ≤ 0. The
e�ective permittivity for composite B, in Table 1, is εe = −17.71 + 1.40i. From
the measurements of composite B we obtain the bounds 0.493 ≤ c1 ≤ 0.578 and
−0.07 ≤ c2 ≤ 0. The exact values are c1 = 0.5 and c2 = 0. Notice that, in
this case, the measurements of composite B implies tight bounds on the volume
fraction c1. The bounds on c2 are much tighter for the laminate material than for
the checkerboard structure.

5.1.3 An arti�cial measure

We choose a spectral density function that has the �rst and second moment in com-
mon with the checkerboard structure. A piecewise constant function with support
in [0, 1/2] is

f(y) =

{
1, 0 ≤ y ≤ 1

2

0, 1
2
< y ≤ 1.

Using this density function, the moments of the measure (2.16) are calculated to

c1 =
1

2
, c2 = −

1

8
, c3 =

1

24
, · · · cn+1 = (−1)n

(
1
2

)n+1

n+ 1
. (5.5)

Hence, the moments cn converge exponentially to zero.
Using the spectral function (5.5) and the values of the components in composite

A, the e�ective permittivity (2.4) is calculated to εe = 3.033 + 1.367i. The bounds
on the volume fraction is in this case 0.48 ≤ c1 ≤ 0.55 and the bounds on the
anisotropy parameter becomes −0.138 ≤ c2 ≤ −0.095.

The values of the components in composite B and the spectral function (5.5)
give us the e�ective permittivity εe = 8.274 + 9.108i. From the measurements of
composite B, we obtain the bounds 0.019 ≤ c1 ≤ 0.97 and −0.248 ≤ c2 ≤ −0.001.
The bounds on the structural parameters c1 and c2 are close to the bounds using the
checkerboard structure. Once again the bounds are not tight when the measurements
of composite B are used.

The values of the components in composite B are taken from a real experiment.
In the next section we use data from a measurement of the optical properties of a
thin �lm. Composite B in Table 1 corresponds to the measurements at 900 nm in
Figure 2.



10

λ n1 k1 n2 k2 ne ke
300 1.53± 0.02 1.89± 0.01 1.805± 0.005 0 1.70± 0.01 0.44± 0.01
500 1.04± 0.02 1.83± 0.01 1.745± 0.005 0 1.70± 0.01 0.52± 0.01
700 0.13± 0.02 4.10± 0.01 1.731± 0.005 0 1.62± 0.01 0.74± 0.01
900 0.18± 0.02 5.66± 0.03 1.725± 0.005 0 1.84± 0.01 0.79± 0.01

Table 2: Complex refraction index for gold [11], magnesium oxid [16] and for the
gold-magnesium oxid composite [9].

5.2 Experimental measurements

We give two examples, where the �rst is taken from a thin �lm experiment and
in the second experiment a three-dimensional material was measured at microwave
frequencies.

5.2.1 Optical source

The optical properties of materials are closely related to their permittivity. The
complex index of refraction N = n+ ik is

N2 = εµ, (5.6)

where µ is the magnetic permeability of the material. In the case of non-magnetic
materials, µ = 1, we have

εr = n2 − k2, εi = 2nk, (5.7)

where εr and εi are the real and imaginary parts, respectively.
The optical properties of nano-sized gold particles in a magnesium oxide matrix

were measured in reference [9]. The gold grains in the composite have a distribution
of sizes, with a maximum size of 7 nm. The measured e�ective refractive index
and the refractive index of the two components are presented in Table 2. Using
a di�erent approach, the same set of data has previously been studied [12]. In
the previous study, no error bars were assigned to the components, but large error
bars were assigned to the e�ective refractive index. We take into account errors
in the measurements of the components and assume that the absolute errors in
the measurements of the e�ective refractive index are less than 0.01. The authors
in [12] estimated the volume fraction of gold to 0.28. The volume fraction of gold
was measured to 0.25, with no error estimates provided [9].

The algorithm described above is used for the data in Table 2. The number of
random trials is chosen such that the frequency distribution of c1 is well described.
The volume fraction is increased from zero to one in steps of 10−3. Using typically
5000 random sets, at each volume fraction, the number of points in the frequency
distribution is 50 000−130 000. It turned out that the measurement at 300 nm gives
the tightest bounds on the volume fraction. Figure 3 shows a histogram of the set of
estimated volume fractions, where the frequency distribution is described by 134 000
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Figure 2: Behavior of the integrand in the integral representation (2.7) for the data
presented in Table 2. In all �gures, the solid line is the real part and the dashed line
is the imaginary part of the integrand. The value on the s-parameter for the four
wavelengths 300, 500, 700 and 900 nm are s = 0.197 + 0.365i, s = 0.379 + 0.202i,
s = 0.161 + 0.011i, and s = 0.072 + 0.005i, respectively. Observe the di�erent scale
in the lower right �gure.

points. Using the approximate probability density function, the volume fraction is
determined to belong to the interval

0.18 ≤ c1 ≤ 0.32 (5.8)

with the probability 95%. Using the measurement at 300 nm the anisotropy param-
eter is bounded by −0.091 ≤ c2 ≤ −0.022. The measurement on 500 nm gives the
bounds −0.15 ≤ c2 ≤ −0.047. The intersection of the bounds on c2 is

−0.091 ≤ c2 ≤ −0.047. (5.9)

The measurements on 700 nm and on 900 nm gives no further restrictions on the
structural parameters c1 and c2.

The electron micrograph image in [9] shows �laments linking the gold particles,
but the composite is most likely isotropic or close to isotropic. The thickness of the
�lm is 150 nm [9]. A relevant question in this context is; is this �lm two-dimensional?
Figure 3 shows c2 = −c1(1− c1)/d when d = 2 and d = 3, which corresponds to an
isotropic material in two and three dimensions. If we assume that the error in the
measured volume fraction c1 = 0.25 is less than 5%, the measurement at 300 nm
gives the lower bound clow2 = −0.074. From Figure 3, we conclude the material then
should be regarded as three-dimensional.

In reference [12] the authors assume that the material is two-dimensional and
isotropic. They estimated the volume fraction to 0.28 but did not established any
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Figure 3: Left: The frequency of volume fractions c1 lying in the speci�ed intervals
for the thin �lm. Right: The parameter c2 in the two-dimensional (dashed line) and
three-dimensional (solid line) isotropic case. The volume fraction is in the interval
(5.8). The lower bound on c2 (dashed-dotted line) and the upper bound on c2 (dotted
line) are taken from (5.9).

error estimates (only one set of values on the e�ective refractive index was found
within the error bars). A possible explanation for this is that the material should
be considered as three-dimensional.

The tightness of the bounds on the structural parameters depends on the un-
certainty in the measurements. Above, we assumed that the uncertainty in the
measurements of the e�ective refractive index is less than 0.01. If the uncertainty is
larger we obtain less tight estimates of the structural parameters. For example, if
the absolute error in all measurements are 0.05 the bounds on the volume fraction
become 0.16 ≤ c1 ≤ 0.34.

Tighter bounds on the volume fraction can be obtained from [8] if the material is
assumed to be isotropic. A problem with this assumption is that we actually do not
know that the material should be regarded as three-dimensional in the full range
300−900 nm. It is possible that the 150 nm thick �lm behaves as three-dimensional
for the shorter wavelengths and as two-dimensional for the longer wavelengths.

5.2.2 Microwave source

In the second example we use data from two composites, where the two samples
are composed by the same components, but the volume fractions di�er. In each
experiment the complex permittivity of an epoxy-aluminium oxide composite was
measured at 12 GHz (λ = 2.5 cm). The aluminum oxide is in the form of a �ne
powder. The particles are in the shape of �akes with a characteristic length not
larger than 5µm.

We assume that the real parts of ε1, ε2 and εe were measured with 5% uncertainty.
The imaginary parts are usually harder to measure and for that reason we use ±50%
times the measured value as the error bars. The measured values on epoxy and on
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Figure 4: The frequency of volume fractions c1 lying in the speci�ed intervals. Left:
First case, where the volume fraction was measured to c1 = 0.20. Right: Second
case, where the volume fraction was measured to c1 = 0.30.

aluminium oxide (Al2O3) with the used error estimations are

εr1 = 9.6± 0.48, εi1 = 0.08± 0.04, εr2 = 2.814± 0.14, εi2 = 0.032± 0.016 (5.10)

The e�ective permittivity of the �rst sample was measured to εre = 3.81± 0.19 and
εie = 0.017± 0.0085. The volume fraction c1 is increased from zero to one with the
step 10−3. Using 105 random sets, at each volume fraction, the number of points in
the frequency distribution is 16 000. The algorithm implies the bounds

0.13 ≤ c1 ≤ 0.40 (5.11)

on the volume fraction and the bounds −0.21 ≤ c2 ≤ −0.007 on the anisotropy
parameter. As before we use 95% probability in the calculations of the bounds.
Figure 4 shows the histogram of the frequency of c1. Moreover, we obtain the
restriction εi2 = 0.0194±0.0034 on the second phase and the restriction εie = 0.0224±
0.0031 on the e�ective permittivity. The volume fraction was measured to c1 = 0.20.

The e�ective permittivity of the second sample was measured to εre = 4.383±0.22
and εie = 0.065± 0.033. By using the new estimate on εi2 above in the algorithm, we
obtain the bounds

0.22 ≤ c1 ≤ 0.54, −0.23 ≤ c2 ≤ −0.007. (5.12)

The imaginary part of the e�ective permittivity is in this case restricted to εie =
0.0413±0.0088. The volume fraction was measured to c1 = 0.30. Using 2·104 random
sets, at each volume fraction, the number of points in the frequency distribution is
79 000. Figure 4 shows the histogram of the frequency distribution of c1.

This example shows that the algorithm provides restrictions on the measured
values if the error bars are chosen larger than necessary.



14

6 Discussion and conclusions

We have shown that the inverse bounds derived in [8] can be used to estimate the
volume fraction and the anisotropy of two-component composite materials.

The goal with this paper is to show that the inverse bounds can be used even if
we have uncertainties in the measurements. The number of random sets was chosen
such that the frequency distribution of volume fractions is very well described. This
means, we are using far more points than necessary to establish the bounds, but
we do not focus on the implementation of an e�cient code. The focus is on the
connection between the underlying measure and the estimation of the structural
parameters. The tightness of the bounds depends on the unknown measure, and
measurements at di�erent contrasts of the phases test the measure in di�erent ways.
The optimal contrast is probably not available from an experiment. The tightest
bounds are obtained if measurements are performed and bounds are calculated at
many contrasts, after which the intersection of the bounds is taken. The range of
the possible contrasts depends on the dispersion curves of the two materials and the
limitation that the homogenization theory is valid.

Moreover, the method also gives restrictions of the possible values on the per-
mittivities. This can be very useful when, for example, the permittivity of one of
the components is unknown.
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Appendix

A lower bound cL2 (c1) on the anisotropy parameter c2 is given by

cL2 = −ĉ2 − c1ĉ1, where ĉ2 = (T1 + T2 + T3 + T4)/N (7.1)

and

T1 = (εie)
2zi − 2εieε

i
1z

i + (εi1)
2zi + ĉ21(ε

i
e)

2(zi)3 − 2ĉ1ε
i
1(z

i)2εre, (7.2)

T2 = zi(εre)
2 + ĉ21(z

i)3(εre)
2 + 2ĉ1ε

i
e(z

i)2εr1 − 2ziεreε
r
1 + zi(εr1)

2, (7.3)

T3 = 2ĉ1(ε
i
e)

2zizr − 2ĉ1ε
i
eε

i
1z

izr + 2ĉ1z
i(εre)

2zr − 2ĉ1z
iεreε

r
1z

r, (7.4)

T4 = ĉ21(ε
i
e)

2zi(zr)2 + ĉ21z
i(εie)

2(zr)2 (7.5)

N = ((εie)
2zi − εieεi1zi + zi(εre)

2 − ziεreεr1 + εi1ε
r
ez

r − εieεr1zr)|z|2. (7.6)
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An upper bound cU2 (c1) on the anisotropy parameter c2 is

cU2 = (F1 + F2 + F3 + F4)/G, (7.7)

where

F1 = −(εie)2zi + 2εieε
i
2z

i − (εi2)
2zi − c21(εi2)2(zi)3 − 2c1ε

i
2(z

i)2εre, (7.8)

F2 = −zi(εre)2 + 2c1ε
i
e(z

i)2εr2 + 2ziεreε
r
2 − zi(εr2)2 − c21(zi)3(εr2)2, (7.9)

F3 = 2c1ε
i
eε

i
2z

izr − 2c1(ε
i
2)

2zizr + 2c1z
iεreε

r
2z

r − 2c1z
i(εr2)

2zr, (7.10)

F4 = −c21(εi2)2zi(zr)2 − c21zi(εr2)2(zr)2, (7.11)

and
G = (εieε

i
2z

i − (εi2)
2zi + ziεreε

r
2 − zi(εr2)2 + εi2ε

r
ez

i − εieεr2zr)|z|2.
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