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Hankel-type Model Reduction Based on Frequency Response Matching

Aivar Sootla
Department of Automatic Control,

Lund University, Lund, Sweden, Box 118 SE 221 00

Email: aivar@control.lth.se

Abstract— In this paper, a stability preserving model re-
duction algorithm for single-input single-output linear time
invariant systems is presented. It performs a data fitting in the
frequency domain using semidefinite programming methods.
Computing the frequency response of a model can be done
efficiently even for large scale models making this approach
applicable to those. The relaxation used to obtain a semidefinite
program is similar to one used in Hankel model reduction.
Therefore accuracy of approximation is also similar to Hankel
model reduction one. The approach can be easily extended to
frequency-weighted and parameter dependent model reduction
problems.

I. INTRODUCTION

Model order reduction has received considerable attention

is the past and there exists a number of established techniques

to obtain low-order approximations. Most of the existing

methods fall into two categories: singular value decompo-

sition (SVD)-based and Krylov-based methods. Due to high

computational cost for large scale systems, the SVD-based

methods, which incorporate balanced truncation and Hankel

model reduction, are mostly used for approximation of low

and medium scale models. Balanced truncation ([1]) pro-

poses a simple, yet a very powerful algorithm with a stability

guarantee for the reduced model and the approximation error

bounds. Hankel model reduction ([2]) is much more compli-

cated than the latter, on the other hand it solves a suboptimal

problem with the error bounds tighter than the balanced

truncation ones. Both methods rely on solutions to Lyapunov

equations to calculate the approximation, which makes them

numerically heavy. The Krylov-based methods ([3], [4]) rely

on moment matching techniques and therefore provide much

cheaper solutions, however, there exist issues with stability of

the approximation. These issues were solved in Krylov/SVD-

based methods ([5]) for an extra computational cost.

All the described methods calculate the approximation

from state-space representations of the full models. Instead,

one can use the frequency domain data i.e., the frequency

response samples, to obtain an approximation. Computing

the frequency response for particular applications (e.g. mod-

eling of electro-magnetic structures) can be even cheaper,

than inverting the state-space matrix A, as shown in [6], [7],

[8]. The approximation from the frequency data is related

to the celebrated Nevanlinna-Pick interpolation problem, an

extension of which to Hardy spaces can be found in [9], [10]

with a recent progress in [11], [12]. In [13] another approach

was developed to obtain an approximation. It is based on

frequency data fitting and a convex relaxation, which is

similar to one used in Hankel reduction. In this paper, a

generalization of [13] is proposed, which has smaller lower

and upper error bounds than the predecessor. The proposed

method, as well as [13], can be regarded as an extension of

Hankel model reduction to large scale model approximation.

The semidefinite optimization approach is valuable due to

simplicity of possible extensions, e.g. frequency-weighted

and parameter-dependent model reduction. A multi-input-

multi-output extension can be achieved using methods sim-

ilar to [14], [15]

The first step towards the relaxation is a reformulation

of the original problem, which will be called a positive real

formulation. Basically a positive real constraint is introduced

instead of a stability one. A similar approach was employed

in [16] as a convex parameterization of robustly stabilizing

controllers. In [17] a positive real condition on system

parameters was used to synthesise stabilizing controllers.

In [18] the latter framework was extended to account for

performance. The proposed method, as well, can be extended

to controller design problems and numerical simulations

show that it is less restrictive than [18] (see, Sec. V for

details).

The paper is organized as follows. In Sec. II the positive

real reformulation is presented. In Sec. III the proposed

Hankel-type relaxation or Optimization-based Hankel Model

Reduction (OHMR) method is described. Sec. IV a compu-

tationally tractable algorithm and implementation issues are

discussed. Finally, examples are found in Sec. V.

Notation

H∞ stands for the space of discrete-time stable transfer

functions. Operation ∼ denotes a complex conjugate on

the unit circle i.e., G∼(eω) = GT (e−ω), where  is a

complex identity. G(ω) stands for the frequency response

of G(eω) to ω ∈ [0, π]. The infinity norm is computed

as ‖G‖∞ = sup
ω

|G(ω)|, where G(ω) is a scalar-valued

function. The Hankel norm of a transfer function is denoted

as ‖ · ‖H (for the definition see, [19]).

By optimal Hankel model reduction (HMR) in this paper is

assumed the following algorithm. First, compute the Hankel

approximation of G. Denote it as GH = pH/qH , where pH

and qH are polynomials. Then subject the approximation to

a further optimization:

γH = min
p

‖G − p/qH‖∞ (1)
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The QCO method from [13] forms the following algo-

rithm. Solve the relaxed problem,

γ2 = min
γ>0,a,b

γ (2)

subject to |G(ω)a(ω) − b(ω)| ≤ γa(ω) ∀ω ∈ [0, π]

where b =
k∑

i=−k

bie
iω, a = 1 +

k∑
i=1

ai(e
iω + e−iω) and γ2

is a sub-optimal approximation level. Then given a, solve a

spectral factorization problem a = qq∼, where q has only

stable zeros and poles. Finally using the computed q solve,

min
p

‖G(ω) − p(ω)/q(ω)‖∞ (3)

II. PRELIMINARIES

The main focus of this paper is reduction of discrete time

models in the frequency domain. However, the algorithms

can be easily extended to the continuous time case. It is

assumed that the full model G is an asymptotically stable,

rational, scalar transfer function. Now the model reduction

problem can be easily formulated as a minimization one:

min
p,q

‖G − p/q‖
∞

where p =
∑k

i=0
piz

−i, q =
∑k

i=0
qiz

−i, q is a minimum

phase transfer function and p/q is a sought-for approxima-

tion. It is also assumed that the order of G is bigger than k.
The constraints on p and q will be enforced on the unit circle

{z||z| = 1} , therefore often z will be substituted by eω with

a slight abuse of notation for p and q. Minimizing the H∞

norm can be rewritten as a minimization of approximation

level γ with a norm constraint enforced for all ω in [0, π] :

γ4 = min
p,q

γ (4)

subject to |G(ω)q(ω) − p(ω)| ≤ γ|q(ω)| ∀ω ∈ [0, π]

q is minimum phase

The minimum phase condition here is equivalent to stability

of the reduced model p/q, which has the order less or equal

to k. This problem is known to be non-convex and some

successful (quasi-)convex relaxations have been proposed

(e.g., [13]).

Another way to obtain a convex problem is using a

restriction on decision variables as in [20]. Instead of the

minimum phase constraint on q, consider a positive real

one i.e., Re (q) is positive for all ω. This constraint is

convex and can be expressed as a semidefinite one, unlike

the minimum phase condition. Now the only obstacle in

obtaining a quasi-convex program is the right-hand side of

the norm constraint |G(ω)q(ω) − p(ω)| ≤ γ|q(ω)|. If q
would be positive then the minimization would correspond

to a second order cone program, which is convex. In [20]

it was proposed to substitute |q| with Re (q), since it has

been already parameterized as a positive pseudo-polynomial.

Finally the norm constraint is reformulated as:

|G(ω)q(ω) − p(ω)| ≤ γRe (q(ω))

In [20] it was shown that the positive real constraint on the

denominator q may be very restrictive. In fact, as long as the

full system has poles near the unit circle (which is often the

case) the approximation will be too conservative. To address

the restrictiveness introduce a new frequency dependent

variable ϕ(ω) (not equal to zero almost everywhere) into the

minimization. This program will be referred to as a positive

real formulation:

γ5 = min
γ>0,p,q,ϕ

γ subject to (5)

|G(ω)q(ω)ϕ∼(ω) − p(ω)ϕ∼(ω)| < γRe (q(ω)ϕ∼(ω)) ∀ω

q is minimum phase

Surprisingly it is equivalent to the original formulation of

the problem (4),

Lemma 2.1: The following statements are fulfilled:

a) Problems (4) and (5) are equivalent i.e., optimal values

γ4 and γ5 are equal.

b) An optimal ϕ is such that ϕ, ϕ−1 ∈ H∞, moreover, it

is a polynomial in z−1 of the same order as q.
Proof: The program (5) is obtained by restriction of

the general model reduction problem and it may be easily

shown that from the constraints in (5) the constraints in (4)

follow for any ϕ. Therefore we have γ4 ≥ γ5.
To prove the converse, assume p∗/q∗ is an optimal so-

lution to the model reduction problem (4) with the optimal

approximation level γ∗ = γ4. If we choose ϕ∗ = q∗, it is

easy to verify that p∗, q∗, γ∗, ϕ∗ satisfy the constraints of (5).

Thus γ4 ≤ γ5.
We have constructed ϕ∗ = q∗ which is an optimal solution

to the program (5) . By noting that q∗, q
−1
∗

∈ H∞ the second

statement follows.

Remark 2.1: As a consequence of the statement b) in

Lemma 2.1 ϕ may be parameterized in (5) as ϕ =∑k

i=0
ϕiz

−i without loss of generality.

Two quasi-convex algorithms exploiting this formulation are

presented in the sequel. The first one is a relaxation presented

in details in the following section. The second one, is

choosing ϕ in advance (e.g. using an approximation of G of

the same order) and solving (5) with fixed ϕ. This approach

is referred to as a Positive Real Denominator (PRD) method

and discussed in details in Sec. IV.

III. OPTIMIZATION-BASED HANKEL-TYPE MODEL

REDUCTION (OHMR)

Consider the program (5) and a straightforward convex

relaxation of the structure i.e., introduce new variables a :,
qϕ∼ and b :, pϕ∼. This yields an algorithm:

γ6 = min
γ>0,a,b

γ (6)

subject to |G(ω)a(ω) − b(ω)| ≤ γRe (a(ω)) ∀ω

where a =
∑k

i=−k aie
iω and b =

∑k

i=−k bie
iω (by

definition of a, b, p, q and Remark 2.1) The non-convex

condition q is minimum-phase, which corresponds to a
has exactly k stable zeros, is very hard to parameterize in
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a convex manner in a and b. Remarkably this constraint

becomes redundant using the following statement,

Lemma 3.1: Consider a function a =
k∑

i=−k

aiz
i and a

closed encircling the origin contour ∂D. Assume, also that

a−k 6= 0. If Re (a(∂D)) > 0 then the pseudo-polynomial a
has exactly k zeros in D and no zeros on ∂D.

Proof: The function a(z) does not have zeros or poles

on the contour (since Re (a(∂D)) > 0) and it is analytic

in D, except for a set of isolated points. Thus by Cauchy’s

argument principle Nz −Np = No where Nz is the number

of zeros in D, Np is the number of poles in D and No is a

winding number of a(∂D) (number of times a(∂D) encircles

the origin). Since Re (a(∂D)) > 0 for all the frequencies ω,
the curve a(∂D) lies only in the right half plane and thus

No = 0. Since Np = k the result follows.

The condition a−k 6= 0 is not convex. It prevents the

situation, when the best approximation of order not bigger,

than k, has actually order less than k. However, such a

situation is highly unlikely since an extra degree of freedom

disappears and therefore the condition can be omitted.

After solving (6), the denominator q is obtained by solving

the equation:

a = qϕ∼ (7)

where ϕ, q have only stable zeroes. q can be computed by a

simple zero extraction, however, there are more numerically

robust ways to do it ([21]).

Now it is clear that the transfer function b/a has stable

and antistable parts both of order k. Since the optimization is

also performed over both, this approach may be regarded as a

suboptimal model reduction in Hankel norm i.e., suboptimal

Hankel approximation. Finally the stable approximation of

G is obtained by another minimization

min
p

‖G − p/q‖∞ (8)

The described algorithm still has an infinite number of con-

straints, since the conditions are enforced for all frequencies

ω ∈ [0, π]. However, it was assumed, that the function

G is rational, therefore it may be sufficient to impose the

constraints in the finite number of points ωi. A detailed

description of this approach may be found in Sec. IV.

A theoretical relaxation gap for the algorithm can be

calculated as well,

Theorem 3.1: Consider the model reduction problem

(6,7,8) with the full sampling (the constraints are enforced

for all frequencies ω). γ6, a, and b are obtained from (6),

q and p are obtained from (7) and (8) respectively. Let also

γ4 be the optimal approximation level from (4). Then the

following error bounds hold:

σk+1(G) ≤ γ6 ≤ γ4 ≤ ‖G − p/q‖∞ (9)

‖G − p/q‖∞ ≤ (k + 1)γ6 (10)

Proof: Inequalities in (9) are mostly trivial except

γ6 ≤ γ4, which is proved by construction. Indeed, recall that

(4) is general and (5) is positive real formulations of model

reduction Furthermore, γ4 = γ5 by Lemma 2.1. Since (6) is

a relaxation of (5) γ6 ≤ γ5 and the inequality follows.

Now, prove the upper bound (10). Note that ‖G−b/a‖∞ ≤
γ6, where a = qϕ∼ and ϕ∼ has only zeros outside the unit

circle. Since b/a has both antistable and stable modes, there

exist a unique decomposition,

b

a
=

z−kt

q
+

z−kr

ϕ∼

where t and r are polynomials in z of order k and k − 1
respectively. Now

∥∥G − z−kt/q − z−kr/ϕ∼

∥∥
∞

≤ γ6 im-

plies that
∥∥z−kr/ϕ∼

∥∥
H

≤ γ6 by the famous Adamian-Arov-

Krein theorem (see for example [19]). The same theorem also

states that there exist such a D that
∥∥z−kr/ϕ∼ + D

∥∥
∞

≤
kγ6. Now combining this bound with the triangle inequality

yields: ∥∥∥∥G −
z−kt + Dq

q

∥∥∥∥
∞

≤ (k + 1)γ6

Since the numerator p is obtained by means of optimiza-

tion the upper bound follows.

Note, if one fixes a to be a symmetric pseudo-polynomial,

then the proposed approach reduces to the QCO method from

[13]. Therefore the OHMR method would have a smaller

lower and upper bounds than the QCO one.

IV. IMPLEMENTATION

In order to obtain a tractable optimization problem the

constraints are imposed only on a finite frequency grid

{ωi}
N
i=1 ∈ [0, π]. The number of points should be at least

O(k2), where k is the order of approximation, to avoid

over-fit. This approach may create unstable approximations,

therefore the positivity constraint Re (a) > 0, which guar-

antees stability of the reduced models, is enforced for all

frequencies. It may be done efficiently using the KYP lemma,

e.g using the formulation from [22].

The algorithm is as follows: solve,

min
a,b,γ

γ subject to (11)

|G(ωi)a(ωi) − b(ωi)| ≤ γRe (a(ωi)) i = 1, . . . , N (12)

Re (a) > 0 ∀ ω ∈ [0, π] (13)

Also fix a0 = 1 for normalization. Given a, perform stable-

antistable factorization,

a = qϕ∼ (14)

where ϕ, q have only stable zeros and poles. Finally using

the obtained q solve,

min
p

max
i=1,...,N

|G(ωi) − p(ωi)/q(ωi)| (15)

Surely, the norm constraint (12) could also be enforced

for all frequencies using the same techniques as in the case

of (13). However, then the size of the norm constraint LMI

would be four times the order of the full model G, which

makes it computationally more expensive than HMR. Thus

there would be no advantages with respect to the latter and

therefore this approach is not considered.
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A. Positive Real Denominator (PRD) Method

Consider (5) and assume that ϕ is fixed, predefined and

parameterized according to Remark 2.1. Define p, q and ϕ :

p =

k∑

i=0

pie
−iω q = 1 +

k∑

i=1

qie
−iω ϕ =

k∑

i=0

ϕie
−iω

q0 is fixed to 1 for normalization. Given the described above

parameterization, the minimization is set up as,

min
p,q,γ

γ subject to Re (qϕ∼) > 0 ∀ω ∈ [0, π] (16)

|(G(ωi)q(ωi) − p(ωi))ϕ
∼(ωi)| ≤ γRe (q(ωi)ϕ

∼(ωi)) (17)

ωi ∈ [0, π] ∀i = 1, . . . , N (18)

Note, that the condition Re (qϕ∼) > 0 implies that q
is minimum phase as long as ϕ is. The choice of ϕ is

guided by a specific G. For example, ϕ may be chosen

as the denominator of any approximation of G of order k.
Therefore this approach can be seen as a local improvement

of any approximation method, where the neighbourhood of

improvement is specified by a choice of ϕ.

V. EXAMPLES

These examples are set to estimate the actual relaxation

gap in the Hankel-type approximation and a possible im-

provement by the PRD approach to any reduction procedure.

Some of the models in the considered examples are

continuous-time systems. Since the proposed approaches (as

well as the QCO method) deal with reduction of discrete-

time models, the systems should first be discretized. The

discretization is performed, while warping around a particu-

lar frequency ω0 in the process:

s = λ
z − 1

z + 1
, where λ =

ω0

tan(ω0Ts/2)

If the Nyquist sampling time is bigger than Ts, then no

dynamics are lost. Parameter ω0 is a tuning parameter for

numerical conditioning. For example, if the biggest resonant

peak occurs around a frequency ω0, then prewarping around

this frequency will create a better numerically conditioned

problem.

The Hankel model reduction is implemented by a

MATLABTM routine HANKELMR using the procedure (1)

afterwards. OHMR and QCO are implemented using a

cutting plane algorithm (for more details, see [23]) except

for Example 5 where the interior point solver SEDUMI [24]

and the parser YALMIP [25] were used. For the optimiza-

tion algorithms a uniform on the interval [0, π] frequency

grid is considered with denser regions around the peaks in

magnitude of the frequency response (if any exist).

Example 1: Reduction of an all-pass system. This toy

example was created to show a better numerical robustness

of the proposed Hankel-type approximation approach in

comparison with the QCO method.

First, two all-pass models are specified as:

Gi =

12∏

j=1

1 − zξ∼j
z − ξj

, where |ξj | = 0.96 ∀i, j

and the arguments for the complex conjugate poles are

chosen as:

G1 : arg (ξj) = ±[0.11, 0.13, 0.14, 3.1, 3.11, 3.14]

G2 : arg (ξj) = ±[0.11, 0.13, 0.14, 1.57, 1.57, 1.57]

The full models then are taken as Hi = GiG0, where G0

is a transfer function with poorly observable and poorly

controllable dynamics and H∞ norm around 1. Basically G0

should be reduced in the approximation procedure. The order

of G0 is set to 300, where the poles were chosen randomly

and the zeros are the slightly perturbed poles. This does

not affect the approximation, since the impact of G0 on the

magnitude and phase of the full models Hi is negligible. The

models are available at request. The approximation errors are

presented in Table I.

TABLE I

APPROXIMATION ERRORS IN EXAMPLE 1

Models H1 H2

Number of points in the grid 300 300
σ13(Hi) 1.6 · 10−3 1.2 · 10−3

HMR 1.6 · 10−3 1.2 · 10−3

QCO 7.4 · 10−2 8.5 · 10−2

OHMR 5.1 · 10−3 1.9 · 10−3

PRD as HMR improvement 1.6 · 10−3 1.2 · 10−3

PRD as QCO improvement 1.6 · 10−3 1.2 · 10−3

PRD as OHMR improvement 1.6 · 10−3 1.2 · 10−3

Example 2: Deformable Mirror Modeling. The following

model was studied in [26] and obtained by means of a

finite element modeling approach that resulted in a system

of second-order differential equations:

Iẍ + αΛẋ + Λ2x = Bu y = BT x (19)

where matrices Λ, B and scalar α are known and the state-

space model has 2000 states.

TABLE II

APPROXIMATION ERRORS IN PERCENT IN EXAMPLE 2

Reduction order k 8 16
Number of points in the grid 400 800
σk+1(G) 1.07% 0.17%
HMR 2.07% 0.28%
QCO 1.93% 0.35%
OHMR 1.93% 0.26%
PRD with a structure 2.18% 0.47%

For the reduction purposes we examine a one input one

output model, i.e. B is a single column. The frequency

responses of the full model and its 8-th order approximations

are shown in Fig. 1. The H∞ norms of the approximation

errors for orders 8 and 16 are also presented in Table II.

Hankel model reduction in this examples showed worse

performance both in accuracy and computational speed. It

is most likely that the accuracy was affected by the high

order of the full model. Note also, that in Fig. 1 8-th order

OHMR approximation (thick black line) follows the phase

of the full model (thick gray line) much better than the HMR

approximation with the corresponding order (dashed blue

line).
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Fig. 1. Deformable mirror modeling frequency responses. Black solid line -
OHMR approximation of order 8, red dash-dotted line - PRD approximation
with a structure of order 8, blue dashed line - HMR approximation of order
8, thick gray line - the full model G.

By PRD with a structure is assumed the algorithm with

two zeros of approximation fixed at ω = π. This was

implemented, since any system with a structure as (19) would

have such zeros in any discrete-time realization.

Example 3: Transmission Line Modeling. This example

was described in [27] and the references within. A transmis-

sion line is a 2-input-2-output model, which is described by

the following system of differential equations:

Eẋ = Ax + Bu y = Cx

where matrix E is positive semidefinite, however, badly

conditioned. The order of the original model is 398. Here

only the (1, 1)-entry of the transfer function was reduced.

The H∞ norm of the approximation errors are given in

Table III. The badly conditioned E matrix affects the Hankel

approximation providing much worse results for the order 8.

TABLE III

APPROXIMATION ERRORS IN PERCENT IN EXAMPLE 3

Reduction order k 8 18
Number of points in the grid 700 700
σk+1(G) 10.83% 0.31%
HMR 15.71% 0.47%
QCO 11.81% 0.41%
OHMR 11.28% 0.41%

Example 4: Eady example. This is a model of the atmo-

spheric storm track taken from [27]. The system is described

by a set of partial-differential equations. A finite dimensional

approximation of order 598 is reduced as an example here.

The results of approximation in the frequency range of inter-

est to orders 3 and 9 see in Fig. 2. The HMR approximation

of order 9 is not depicted, since it coincides with OHMR

approximation of the same order.

Example 5: Controller Reduction. Consider the comple-

mentary sensitivity function T = GK(1 + GK)−1, where

10
−1
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0

M
a
g
n
it
u
d
e
 (

a
b
s
)

1 2 3

−90

−80

−70

P
h
a
s
e
 (

d
e
g
)

Frequency responses. Eady example

Frequency  (rad/sec)

Fig. 2. Frequency responses in Eady Example. Black solid line - reduced
with OHMR to order 9, red dashed line - reduced with OHMR to order 3,

blue dash-dotted line - reduced with HMR to order 3 and the black crosses
represent the original data.

K is a controller and G is a plant. A different closed-loop

function can be used, e.g. the gang of four or the sensitivity

function. In fact, as long as the closed loop is a rational

function of K of degree 1, the proposed approach can be

applied. The complementary sensitivity function is chosen

for simplicity.

The 152-nd order controller K was designed in [28] using

Youla parameterization. The controller K itself is stable and

so is the third order plant G = b/a, let also the reduced

controller K̂ = p/q, where p, q, b and a are the polynomials

in e−ω and

c(p, q) = p(ω)b(ω)

d(p, q) = q(ω)a(ω) + p(ω)b(ω)

To obtain a stabilizing controller solve:

γc = min
γ>0,p,q

γ subject to

|(T (ω)d(p, q) − c(p, q))ϕ∼(ω)| < γRe (d(p, q)ϕ∼(ω)) ∀ω

The obtained p and q yield a closed loop error bound:

‖T (G, K)− T (G, K̂)‖ ≤ γc

Note also, that the described approach to controller reduction

preserves the closed loop stability. Indeed, the function

d(p, q) is minimum-phase, b, a are the coprime factors of G
and p, q are the coprime factors of K̂. Therefore the closed-

loop system is internally stable in definitions of [19].

The performance of various methods for different or-

der reduction is presented in Fig. 3. For the frequency

weighted balanced truncation and OHMR algorithm the

weight is chosen as a minimum-phase spectral factor of

G(1 + KG)−1(G(1 + KG)−1)∼. Besides the frequency

weighted techniques, a described above one (PRD) is applied

as well as the method from [18]. Note, that [18] is based on

very similar ideas and also an auxiliary variable ϕ, which is

called a central polynomial, is introduced. Notably, in both

approaches ϕ has the same interpretation - closed loop poles

of the approximated closed loop. Therefore the same ϕ is
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Fig. 3. Performance of various methods in Example 5. Solid red line -
frequency weighted balanced truncation, dotted blue - frequency weighted
OHMR, dashed blue - PRD, dash-dotted red - method from [18], solid black
- lower error bound.

used for both methods. ϕ is computed as a denominator of

the closed loop transfer function T (G, Ko), where Ko is

obtained using the FW OHMR method.
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VI. CONCLUSION

In this paper, an approach to model reduction of linear time

invariant systems has been presented. The method requires

only the frequency response samples to obtain an approx-

imation and guarantees stability of one in H∞ sense. The

minimization is performed in a Hankel-type norm, therefore

the accuracy of the algorithm is expected to be close to

optimal Hankel one.
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[25] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in
MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004. [Online]. Available: http://control.ee.ethz.ch/ joloef/yalmip.php

[26] P. Giselsson, “Modeling and control of a 1.45 m deformable mirror,”
Department of Automatic Control, Lund University, Sweden, Master’s
Thesis LUTFD2/TFRT--5775--SE, Oct. 2006. [Online]. Available:
http://www.control.lth.se/publications/

[27] Y. Chahlaoui and P. V. Dooren, “A collection of benchmark examples
for model reduction of linear time invariant dynamical systems,”
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