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Abstract

In this paper we demonstrate that the combination of statistical signal process-
ing, electromagnetic theory and antenna theory yields simple and very useful
tools for analyzing fundamental physical limitations associated with polariza-
tion and/or DOA estimation using arbitrary multiport antennas. By using
spherical vector modes as a generic model for the scattering, we show how
the corresponding Cramer-Rao lower bounds can be calculated for any real
antenna system. The spherical vector modes and their associated equivalent
circuits and Q factor approximations are used together with the broadband
Fano theory as a general framework for analyzing electrically small multiport
antennas. Finally, we employ a principal parameter analysis based on the SVD
of the Fisher information matrix to evaluate the performance of an ideal mul-
timode antenna processor with respect to its ability to estimate the state of
polarization of a partially polarized plane wave coming from a given direction.

1 Introduction

The Direction of Arrival (DOA) estimation using antenna arrays has been the topic
for research in array and statistical signal processing over several decades and com-
prises now well developed modern techniques such as maximum likelihood and sub-
space methods, see e.g. [19,27,31] and the references therein. Recently, there has
been an increased interest in incorporating properties of electromagnetic wave propa-
gation with the statistical signal estimation techniques used for sensor array process-
ing and there are several papers dealing with direction finding and polarization esti-
mation using electromagnetic vector sensors and diversely polarized antenna arrays,
tripole arrays, etc., see e.g. [11-14, 20, 21, 28, 32-35].

The classical theory of radiation () uses spherical vector modes and equivalent
circuits to analyze the properties of a hypothetical antenna inside a sphere, see e.g.
2,3,6,7,9,10,22,29]. An antenna with a high Q factor has electromagnetic fields
with large amounts of stored energy around it, and hence, typically low bandwidth
and high losses [9]. From a radiation point of view, the high-order vector modes
give the high-resolution aspects of the radiation pattern. As is well known, any
attempt to accomplish supergain will result in high currents and near fields, thereby
setting a practical limit to the gain available from an antenna of a given size, see
also [17]. The classical theory of broadband matching shows how much power that
can be transmitted between a transmission line and a given load [5], i.e. the antenna.
Hence, by considering an antenna of a given size and bandwidth, together with the
Q factors which are computable for each vector mode [3], the broadband Fano-
theory [5] can be used to estimate the maximum useful multipole order, and to
calculate an upper bound for the transmission coefficient of any particular vector
mode, see also [8,25, 26].

In this paper we show how the Cramer-Rao lower bounds for DOA and/or polar-
ization estimation can be derived for arbitrary multiport antennas by using spherical
vector modes as a generic model for the scattering. In particular, by using the clas-
sical theory of radiation ) together with the broadband Fano theory, we evaluate



the performance of an ideal multimode antenna processor with respect to its ability
to estimate the state of polarization of a partially polarized plane wave coming from
a given direction.

2 Signal Model for Receiving Antennas

2.1 Spherical Vector Waves, Radiation (Q and Broadband
Fano Theory

Assume that all sources are contained inside a sphere of radius 7 = a, and let k = w/c
denote the wave number, w = 27 f the angular frequency, ¢! the time-convention,
and ¢ and 7 the speed of light and the wave impedance of free space, respectively.
The transmitted electric and magnetic fields, E(r) and H(r), can then be expanded
in outgoing spherical vector waves w,, (kr) for r > a as 1,15, 24|
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where f.,,; are the expansion coefficients or multipole moments and 7 denotes the
complementary index. Here 7 = 1 (7 = 2) corresponds to a transversal electric (TE)
wave and 7 = 2 (7 = 1) corresponds to a transversal magnetic (TM) wave. The
other indices are [ = 1,2,...,00 and m = —[...,[ where [ denotes the order of that
mode. It can be shown that in the far field when r — oo, the electric field is given
by
e—ikzr .
E(r) = = F(r) (2.3)

where F'(7) is the far field amplitude given by

= Z Z Z +2_Tf~rmlA‘rml(7A‘) (2'4)

and where A,.,;(7) are the spherical vector harmonics [1,15, 24]. Furthermore, it can
also be shown that the total power P, transmitted by the antenna can be expressed
in terms of the expansion coefficients as

P, 2%2 Z Z Z | frmil?. (2.5)

=1 m=—1 =1

For further details about the spherical vector mode representation we refer to the
appendix and [1, 15, 24].

Next, we assume that the antenna(array) can be represented by a multiport
model where a finite number of modes (multipoles) M is employed, see Fig. 1. Here,
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Figure 1: Multiport model of an arbitrary antenna inserted inside a sphere of radius
r = a. The depicted series RCL resonance circuit is a Q factor approximation of the
exact equivalent circuit of order [.

zi and z; denote the incident and reflected voltages at the antenna waveguide

connections for 2 = 1,..., N where N is the number of antenna ports. These voltages
|z |

27,

are normalized so that the power delivered to a particular antenna port is
% where Z, is the impedance of the
propagating wave guide mode. Each antenna port is assumed to be connected to a
lossless matching network as depicted in Fig. 1. In the left end of Fig. 1, we let the
equivalent voltage ff represent the propagated wave amplitude where f, denotes
the expansion coeflicients for the spherical vector waves as in (2.1) and (2.5). Here,
the multi-index o = (7,m, 1) is chosen to simplify the notation.

On transmission from the input terminals with incident voltage waves z7, the

transmitted wave field f, is given by

and the corresponding reflected power is

[f_;:] — Sx* Zﬁg (2.6)

where S = [S,;] is the properly scaled transmission matrix which maps the vector of
incident voltages x™ = [z;7] to propagated multipoles f,. The reflected voltages are
given by x~ = I'x"™ where T is the reflection matrix. Conservation of total power
yields the relationship

rr+sfs<iI (2.7)

where equality holds for lossless antennas. Hence, we have for the singular values of
these scattering matrices o(S) < 1 and o(T") < 1.

Now, considering one single incident wave z;, the antenna reciprocity theorem [4]
yields

of = —i—"2F (k) - E, (2.8)
where Ej is the complex vector amplitude of an incoming plane wave Eoe*ikko""
from direction kg and z; the corresponding received signal. Further, F'(7) is the far
field amplitude corresponding to the transmitted signal z;. Hence, by using (2.4)

i



the received vector signal is obtained from the reciprocity theorem (2.8) as

Zg 2m
~ =4/ —=2—TAE 2.
=y [T (29)

where T = ST = [S,,], A is an M x 2 matrix where each row corresponds to the
spherical components of the spherical vector harmonics il“_TAa(I;:O), and E is an
2 x 1 vector containing the corresponding signal components of the electric field E.
Observe that o(T) < 1.

Observe that the signal model given in (2.9) is in principle valid for any multiport
antenna system. Given that we can calculate the farfield F() from the incident
voltage waves x~, the scattering matrix T = S% is obtained by calculating the
multipoles f, =i""72 [ A% () - F(#)dQ by integrating over the unit sphere and
by exploiting the orthonormality of the spherical vector harmonics.

As was originally described by Chu [2|, an arbitrary antenna inside a sphere
of radius » = a can be modeled using a coupling network connecting independent
equivalent circuits representing each spherical mode, see Fig. 1. The propagated
power for each mode is represented by the power loss over the terminating resistance
n and the wave impedance as seen by the spherical mode at radius a is equal to the
input impedance of the equivalent circuit for all frequencies.

In theory, the equivalent circuits for the multipoles can be used to derive a Fano
limit for any TE or TM mode. However, instead of using the analytic expressions of
the impedance it is common to use the Q factor to get an estimate of the bandwidth
2,3,6,7,9,10,22,29]. At and around the resonance frequency, wy, the antenna is
modeled as a series RCL circuit as depicted in Fig. 1, and the impedance of the
antenna is only matched to the feeding network at the resonance frequency. By
considering an antenna of a given electrical size ka, fractional bandwidth B, and the
Q factors which are computable for each mode order [ 3], the Fano-theory [5] can
be used to calculate the following upper bound for the transmission coefficient ¢; for
a particular mode, cf. e.g. 5,8, 25, 26]

2 1-B2/4

< V1i—c @ 7 (2.10)

For all practical purposes the maximum useful order /., is finite and can be
coarsely estimated from (2.10) as follows. Suppose e.g. that we are only interested in
the modes (7,m, 1) contributing to the far field with power P;,,; < e. The maximum
useful order [, then satisfies

1

P = s Tm2<t2[)in< 2.11
= gl < PP < (2.11)

where P, is the (appropriately scaled) input power.

Although any real multiport antenna may be analyzed using the signal model
in (2.9), it is particulary interesting to investigate the fundamental physical limi-
tations associated with a hypothetical ideal mode-coupled antenna for which there
is no coupling between the antenna input terminals and the transmission matrix T



contains the optimum transmission coefficients (2.10) on its main diagonal. Such
an idealized antenna, even though it is not physically realizable, will constitute an
important Benchmark for any real antenna system.

2.2 The Cramer-Rao Lower Bound for Polarization Estima-
tion

Now, considering an array of J similar antennas modeled as in (2.9) and positioned
at locations 7;, a complex baseband model [30] for the received signal is given by

x=VE+n (2.12)

|2,2
V=,/2"agTA (2.13)
n k

and where a is the J x 1 steering vector of complex phases e~ *%07i and ® denotes
the Kronecker product, cf. [30]. Further, the sensor noise n is modeled as zero
mean white complex Gaussian noise [23| with variance o2 and covariance matrix
021. We assume a narrowband signal model where k corresponds to the carrier

frequency wy and the fractional bandwidth B = ﬁ—;” is reasonable low. Here Aw

where

denotes the absolute bandwidth and 0’% = NowoB where Ny is the spectral density
of the noise process. We consider a situation where the received electric field is
partially polarized and the electric field E can be modeled as a zero mean complex
Gaussian random process with covariance matrix

H 1 So+S1 S2+ 183
R_s{EE}_é(Sg_iS3 50—31) (2.14)
where £ denotes the expectation operator and sg, s1, S2, $3 denotes the Stoke’s para-
meters [10]. We are interested in the estimation accuracy of the Stoke’s polarization
parameters' as well as the noise variance, which we write as a vector parameter
£ = [s0 51 52 s3 02]". For our complex Gaussian case, the Fisher information ma-
triz I(€) is given by [18]

oC oC
I(¢)],, =tr{C ' —C ' = 2.15
me, o {efe e (219
where C is the covariance matrix for the measurements, given by
C=¢&{xx"} = VRV" + 0L (2.16)

Now, it is readily verified that the expression (2.15) is invariant to an arbitrary phase
scaling €% of the elements z; of x in (2.12). Hence, with the ideal mode-coupled
antenna, the Cramer Rao lower bound for estimating £ is explicitely computable via
the expressions (2.13) through (2.16) with the phase scaling ¥ chosen such that

_2m 1-B2/4
the optimum ¢, in (2.10) are real, thatist, =\ 1—e @ B

'If we are interested also in the DOA parameters # and ¢, the model is straightforwardly
Q]T

extended with & = [9 ¢ So S1 S2 S3 O,



3 Array Processing for Polarization Estimation

We introduce the concept of a probing multimode array with the purpose of es-
timating the state of polarization when the direction of arrival ko is given. Let
w; = C;'a/a'C;'a be the weights of N independent Capon beamformers [30]
where a is the steering vector corresponding to the given (probing) direction I%O,
and C; = E{x;x!} where x; is the array input vector corresponding to a particular

antenna mode i in (2.12). Here, x; = V,E 4+ n; where V,; = ,/%%a@tiA where t;
and n; are the ith rows of T and n, respectively.
It is readily seen that the signal model for the processed signals y = {WZHXi}

becomes
Yy = V()E + n, (31)

where Vo = 4/ %%TA and n, = {W?ni}, and where the covariance matrix is given
by
C, = ViRV +02G (3.2)

where G is a diagonal matrix with diagonal entries wi'w;. Hence, it is assumed that

the processor is able to reject a limited number (less then J) of interferers coming
from discrete directions I%j, and the remaining noise is sensor noise colored by the
processor weights.

The Maximum Likelihood (ML) estimator for the situation above can be derived
by extending the results in e.g. |16, 30| which are given for the case when the noise
is white and G = 1. Tt is assumg\d here that the matrix V = V;, has dimension
n X m with n > m. Further, let R, be the sample covariance matrix based on K
independent measurements yy

K
N 1 .

By extending the derivation in [30] to include a general positively definite coloration
matrix G as above, the ML estimator for (R, 02) can be found as

1 N
62 = n_mtrG_lP‘L/Ry (3.4)
R = V' (ﬁy—&gc) (VH)H (3.5)
where
PL = 1-V(VIG'v)'vig! (3.6)
vt = (VIg'v) T vigT! (3.7)

are the orthogonal projector onto {R{V}}+ and the pseudoinverse of V, respec-
tively, where the weighted norm based on G~ is used.
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Figure 2: Optimum transmission coefficient |¢;|* as a function of electrical size ka
for the first 3 mode orders [ = 1, 2,3. Fractional bandwidth is B = 1,5,10 %.

4 Numerical examples

In Fig. 2 is shown the optimum transmission coefficients |¢;|* from (2.10) with Q
factors corresponding to the first 3 mode orders [ = 1,2, 3, cf. [3], as the electrical
size ka as well as the fractional bandwidth B is varied. The figure illustrates the
difficulty to match higher order modes, as well as the fact that all modes will ulti-
mately become useful (useless) as the electrical size increases (decreases), or as the
bandwidth decreases (increases).

Consider now a single, ideal tripole antenna with a = 1 and

3 cosfcos¢p —sing
A=4/—| cosfsing cos¢p (4.1)
8T
—sinf 0

corresponding to the three fundamental TM modes of lowest order [ = 1, or equiva-
lently, the three ideal electrical dipoles in the cartesian base vector directions &, y, 2.
In Fig. 3 is shown the Cramer-Rao bound for the polarization parameters sq,
s1, sy and s versus electrical size ka. The diagonal elements of I71(£) are based
on (2.15) with the optimum transmission coefficients ¢, calculated as in (2.10) with
B=5%and Q = i + @, cf. [3]. The Stoke’s parameters are parameterized as

s1 = Psgcos(2ar) cos(23)
S9 = Psgcos(2a) sin(23) (4.2)
s3 = Psgsin(2a)

where 0 < P < 1 is the degree of polarization. The signal-to-noise ratio is defined

as SNR = ;—37’(%)2 and was chosen to 50 dB. In this example we have chosen a
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Figure 3: Cramer-Rao bound for the polarization parameters sg, si, so and s3
versus electrical size ka. Circular polarization with s5 = 1, s1 = 0, s = 0 and
s3 = 1. The solid, dashed-dotted, dashed and dotted lines correspond to P = 0, 0.9,
0.99 and 1, respectively. SNR is 50 dB and B = 5%.

situation with circular polarization with sq = 1, s; = 0, so = 0 and s3 = 1. The
solid, dashed-dotted, dashed and dotted lines correspond to P =0, 0.9, 0.99 and 1,
respectively. The result in Fig. 3 is invariant to the directional parameters 6 and ¢
but depends strongly on polarization. In particular, only s; and s, can be efficiently
estimated in this example, and the performance improves drastically as the degree
of polarization P approaches unity.

Although the result above should be expected, it can be better understood by
performing a principal parameter analysis. We define the principal parameters 1 to

be the linear transformation
n—U'e (4.3)

where U are the left singular vectors from the Singular Value Decomposition (SVD)
of the Fisher information, I(¢) = UXVH. The principal parameters 7; are uncou-
pled, and their corresponding Cramer-Rao bounds are the reciprocal of the singular
values o; .

Fig. 4 a) shows the Cramer-Rao bounds o; ! for the principal parameters 7,
as well as —logdetI plotted as a function of the degree of polarization P. Fig. 4
b) shows the corresponding results for the original parameters &. The parameter
situation is the same as above, except now SNR is 30 dB and ka = 1.

Note that the performance results for the principal parameters in Fig. 4 a) are
invariant not only to the directional parameters 6 and ¢, but are also invariant
to the polarization parameters o and 3. In other words, the performance of the
principal parameters 7; depends only on the degree of polarization P, whereas the
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Figure 4: a) Cramer-Rao bound for the principal parameters 7y, 12, 13, 74, 15 versus
degree of polarization P. b) Cramer-Rao bound for the polarization parameters
S0, 81, 82, 53 and o2 versus degree of polarization P. Circular polarization with sy =
1,5, =0, s,=0and s3 =1. SNRis 30 dB, ka = 1 and B = 5%.

performance of the original parameters & depends also on the actual situation with
polarization parameters o and (.

In this example situation with circular polarization, it is concluded that the
relevant parameters to measure are s; and s, whereas sy and s3 cannot be measured
as efficiently. By studying the left singular vectors in U which are plotted in Fig.
5 for P = 1, we can identify the principal parameters as linear combinations of
the original parameters. The “best” parameter 7, corresponds directly to the noise
parameter o2 which is thus a relevant parameter to measure. Further, 7o ~ s3 — sg
and 75 ~ s3 + so are “good” and “poor” parameters to estimate, respectively. It is
furthermore “appropriate” to estimate s; and s since (s, s2) belongs to the subspace
spanned by the singular vectors corresponding to the two principal parameters 73
and 7, sharing the same singular value (and hence the same Cramer-Rao bound).
It should also be noted that the SVD produces here a decomposition which has a
direct physical significance. Thus, 7y ~ s3 — s¢o and 15 ~ s3 + s correspond also
to the power in the left and right circularly polarized components, respectively, see
e.g. [24]. Hence, given that the wave is right circularly polarized (as in our example),
the (absolute) performance of estimating the power of a weak left circularly polarized
signal component is much better than for estimating the power of the dominating
right circularly polarized signal component.

In conclusion, the study shows that the estimation performance of the tripole
antenna as measured by the functional logdet I(§) is invariant to the directional
parameters 6 and ¢ as well as to the polarization parameters o and (3. However,
the functional log det I(€) depends strongly on the degree of polarization P, as well
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Projection onto the complex plane
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Figure 5: Visualization of the complex left singular vectors in U showing the linear
dependence between the original (sg, sy, s2,53,02) and principal (91, 72,3, 74, 75)
parameters. Circular polarization with so =1, sy =0, s =0, s3 =1 and P = 1.
SNR is 30 dB, ka = 1 and B = 5%.

as on the electrical size ka of the antenna and the bandwidth B of the system. The
principal parameter analysis is a useful technique to investigate the significance of
different parameters.

5 Summary

Fundamental physical limitations associated with polarization and/or DOA estima-
tion using antennas or antenna arrays are analyzed. By using spherical vector modes
as a generic model for the scattering, we show how the corresponding Cramer-Rao
lower bounds can be calculated for any real antenna system. The spherical vec-
tor modes and their associated equivalent circuits and Q) factor approximations are
used together with the broadband Fano theory as a general framework for analyzing
electrically small multiport antennas. The concept of a probing multimode array is
introduced which is equivalent to one single multimode antenna without interferers
but with colored noise, and the explicit form of the corresponding ML estimator for
the state of polarization is given. A principal parameter analysis using the SVD
of the Fisher information matrix is employed to evaluate the performance of the
ideal multimode antenna processor with respect to its ability to estimate the state
of polarization of a partially polarized plane wave coming from a given direction.
Our study shows that the estimation performance of the ideal multimode antenna
is invariant to the directional parameters as well as to the polarization parameters
for a given degree of polarization. However, the estimation performance depends
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strongly on the degree of polarization, as well as on the electrical size of the antenna
and the bandwidth of the system.

Appendix A Spherical Vector Waves

The outgoing spherical vector waves are given by

Wi (k) = fil@’w)Almz(m
ot (k1) = 2V X i (k) = (A1)

krh® (kr)Y ) h® (ke

A3ml<li°)
where A, (7) are the spherical vector harmonics and hl(2) (x) the spherical Hankel
functions of the second kind, see [1,15,24]. The spherical vector harmonics A, (7)
are given by
1
A (T) = —=V X (rY,u(7
) = =V X (Vo)
A2ml(/’A’) =7 X Alml('f‘)
A3ml (ff') = ,’%le(,’%)

where Y, () are the scalar spherical harmonics given by

Yu(6,6) = (—=1)™/ 22; L/ x - :Z; ipgﬂ(cose)eim (A3)

and where PJ"(x) are the associated Legendre functions |1]. For negative m-indices,

the scalar waves satisfies the symmetry Y_,,;(7) = (—=1)"Y},(7), and hence

Ay a(7) = (1) AL (7). (A4)

(A.2)
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