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ABSTRACT 
In this paper we present some experiments on the MySQL 

database server. The objective of the experiments was to 

investigate the high load dynamics for varying relation sizes and 

requests. We show that the dynamics for SELECT (read) requests 

can be modeled as a modified M/M/1 system, whereas, the 

dynamics for UPDATE (write) are completely different. Our 

results can be used for designing control and optimization 

algorithms for database servers. 

1. INTRODUCTION 
Resource management of computing systems has gained much 

attention in the last years, since poorly managed resources can 

degrade the performance of a computer system severely. 

Enterprise e-services are often networked, implemented as large 

server clusters that communicate across IP-networks. The systems 

are subjected to external load disturbances, as traffic surges and 

changes in user behavior. The experience is that enterprise servers 

are often the bottlenecks, whereas the network backbone is often 

underutilized. Therefore, the server systems must provide 

performance guarantees in the face of external load. The 

guarantees must satisfy the service-level agreements (on delay, 

QoS etc) that the system operator has set up with its clients. Also, 

the system must provide graceful degradation during overload.  

Therefore, the challenge is how to control server performance 

while providing guarantees on convergence and disturbance 

rejection. The solution is based on dynamic control schemes, 

which monitors the systems, and provides actions when needed. 

Several types of resource–management mechanisms have been 

proposed and evaluated in the literature. In larger computer 

systems, load balancing is performed in order to distribute the 

need for resources uniformly over a number of resource units 

(Computers, CPUs, memory, etc.), thus avoiding that some units 

are overloaded while others are idle [5][6]. During overload 

periods, when more resources are requested than are available, 

admission control mechanisms reduce the amount of work by 

blocking some of the requests [2][7][8][14]. For Internet 

applications, virtualized server systems can be used to divide 

physical resources into a number of separated platforms where 

different web applications are allowed to operate without affecting 

one another. Dynamic resource allocation between the virtualized 

platforms serves as a new and easier way to perform resource 

optimization on web server systems [3][11][12][13]. In the last 

years, the field of power and energy management has become 

important. Large software systems have high energy consumption, 

and therefore, dynamic resource optimization of these systems 

may considerably lower the Operating Expenditures (OPEX) for 

the network operators [1][4][9][10].   
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Figure 1 Multi-tier Enterprise system 

However, all these optimization techniques require accurate 

performance models of the involved computing systems. The 

operation region is mainly high traffic load scenarios, which 

means that the computing systems have non-linear dynamics that 

needs to be characterized accurately. In a previous work [13], we 

have shown that web servers with dynamic content can be 

modeled as single server systems with processor sharing. 

However, some recent experiments on databases have shown that 

the high load dynamics of database servers are completely 

different than for web servers. Since database servers are 

important components in future Internet systems, as cloud 

computing and data centers, we have performed a number of 

experiments in order to capture and model the high load dynamics 

of databases. To our knowledge, this is the first paper that 

proposes performance models for database servers. 

2. SYSTEM EXAMPLES 
In this section we present two examples of computing systems 

commonly used in Internet and telecommunication networks, 

which use database servers.      

2.1 Multi-tier Enterprise systems 
Enterprise system, also called e-Business systems, as internet 

banks and web shops, are often implemented as distributed server 

clusters in several tiers, see Figure 1. The Web tier provides the 

web interface to the users, accepting service requests. The 

Application tier processes the requests, which may include 

requests to the Database tier, providing customer and service 

information. The performance challenge for the system operator is 

to optimize the system resources to avoid situations where parts of 

the system are overloaded when other parts are underutilized.  
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Figure 2 A Telecom service management system 

   

2.2 Telecom Service management systems 
In telecommunication service oriented architectures, as mobile 

networks, data transfer is separated from control signaling. 

Therefore, all services, either user services as telephony, or 

administrative services as location updates or billing, are handled 

by a service management system with its own networks and 

protocols. The service management systems have a complex 

architecture, usually implemented as large distributed server 

systems, with application servers processing service requests from 

the telecom networks, and databases storing subscriber and 

service data. The nodes can be owned by different network 

operators, limiting the available information of traffic loads and 

service progress. All signaling is performed across IP networks. 

3. Performance models  
A software system is basically a network of queues, as examples, 

the CPU ready queue, Semaphore queues, socket queues, and I/O 

device queues, which stores requests in waiting of service in the 

processors. Therefore, queuing models can be used when 

describing the dynamic behavior of server systems 

[18][19][20][21]. Also, control theory offers a range of structures, 

tools and analysis methods for adjusting systems to the given 

environment, which might change over time. Therefore, control 

theory is very useful when designing performance control 

schemes for computing systems [22].  

However, when combining queuing models with control system 

design, it is important that the models capture the important 

dynamics from a control theory point of view. Most service 

performance metrics such as response time, service rate and 

processing delay depend on queue state dynamics. For the 

objective of performance control, simple models, based on the 

assumption of a single-server queue, are often preferred. The 

model should only capture the dominating load dynamics of the 

system, since a well-designed control system can handle many 

model errors [23]. However, neglecting some hidden buffer 

dynamics may cause control instability [24]. 
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Figure 3  M/M/1 model 

 

3.1 M/M/1 model approximation 
The classical M/M/1 model, where a single-server queue 

processes requests that arrive according to a Poisson process with 

exponential distributed service times, see Figure 3, has been 

shown to accurately capture the response time dynamics of a web 

server system [13].  

In a more general form, a system can be assumed to have M/M/1 

dynamics, when the average response time, T, for an arrival rate, 

land a service rate, m can be derived as 
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where T0 is the response time when there is only one request in 

the system. T0 may include other delays than the processing delay, 

for example, protocol handling delays. This model captures the 

dominating dynamics for the response times. However, it assumes 

that the capacity is CPU bounded, which means that it only works 

for CPU intensive applications. Further, the model is valid also for 

processor sharing systems, as the Apache web server, due to 

dynamics of time-shared systems [25]. 

3.2 M/M/1 model with load dependency 
In [26] it is proposed that computing systems show load 

dependencies in the service time, since each request waiting for 

service will add load in, for example, the operation system and 

memory. Therefore, the service time for a request will be 

dependent on the number of concurrent requests in the system. 

Each new incoming request causes an additional multiplicative 

increase, p, in the remaining service time duration on all requests 

in progress. p ( 10  p ) is denoted as the load dependency 

parameter of the server. At service completion, the request leaving 

the system will unstress the system, resulting in a corresponding 

percentage decrease in the remaining service time duration on all 

remaining requests in progress. Assuming that there are n 

concurrent requests in the system, the average service time for 

each request is given by 

 
1)1(  n

n pxx  (2) 

where x  is the average service time if there is only one request in 

the system. 

 

4. Testbed 
We have performed a set of experiments in order to develop 

performance models for database servers. The experiments were 

performed in our testbed, consisting of three computers acting as 

two traffic generators and one MySQL database server. An 

illustration of the testbed is shown in Figure 4. The computers 

used in the experiments are ordinary desktop computers with 

some open source server software installed. The computer 

hardware is a DELL OptiPlex GX270. It is equipped with a 2.0 

GHz Intel Celeron processor, 256MB main memory, a single 

hard-drive and a Gigabit Ethernet network interface. The 

computers are connected with a Fast Ethernet switch. The Linux 

distribution Ubuntu 8.04 LTS Server Edition is running on the 

computers. One computer has a MySQL Server 5.1 installed. 
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Figure 4 Experimental testbed 

4.1 Traffic generators 
Since the traffic generator is the primary measurement instrument 

in the lab, it is important that it generates the desired traffic and 

measures the response times accurately. To build a high load 

traffic generator with quality, there are some real challenges: The 

measurements of the response times must be accurate, the traffic 

generator cannot become overloaded itself, and the traffic must be 

generated with the desirable arrival distribution. 

4.1.1 Database experiments 
The traffic generator in the database experiments was 

implemented on the Java platform in the Scala Programming 

Language and relies heavily on the concurrency primitives of 

JSR-166 (in the package java.util.concurrent) and Java 

Database Connectivity (JDBC). The generator has three main 

types of concurrent activities. The first generates the requests, the 

second processes the requests, and the third logs the response 

times. These activities are represented by Java threads. A 

QueryGenerator creates requests according to a Poisson 

process, and a fixed number of Workers execute the requests on 

the database server. Before the generation starts, all threads and 

connections are set up. The query generator sends the requests 

over a BlockingQueue to the workers. Each worker has 

established a connection to the database and is waiting for a 

request to arrive to the queue. As soon as a request arrives, a 

worker takes it, starts a timer and sends the request over the 

connection to the database server. 

When the response is received, the timer is stopped and both start 

and stop times are sent to TimeLogger where they are logged to 

a file. 

4.2 MySQL database server 
In the experiments, we have used the default configuration of 

MySQL that comes with the Ubuntu package, with the exception 

that it is opened up for external connections and the maximum 

number of concurrent connections increased to 500 connections. 

MySQL has support for different database engines, but all 

databases in the lab use the same engine, namely MyISAM, which 

is also the default engine in MySQL. 

The MySQL server contains one database with several relations. 

All relations use the same schema, but with different number of 

tuples. The basic structure of the relation is inspired by the 

database benchmark developed by Bitton, DeWitt and Turbyfill 

called the “Wisconsin Benchmark” [15]. The actual structure 

comes from a newer version of this benchmark that is more 

scalable with respect to relation size [16]. The maximum number 

of tuples is limited to the number of unique values of a 32 bit 

integer. The relation has 16 attributes, and each tuple occupies 

200B. The largest possible relation would occupy 800GB. Three 

different sizes were used in the experiments: one million, five 

million and ten million tuples. 

Two of the attributes in the relation, unique1 and unique2, 

are unique integers from zero to the number of tuples. The 

integers in unique2 are sequential, while unique1 are random, 

and all other attributes are derived from either of them. 

A Haskell program was developed to generate the data for the 

relation from the specifications of the benchmark. Haskell is a 

lazy functional programming language [17]. A linear feedback 

shift register that generates a maximum length sequence was used 

to generate the sequences for unique1 and unique2. The 

program generates not just the sequences, but complete INSERT-

statements for the whole relation. This program was pipelined to 

the “MySQL command-line tool” that sent the actual statements 

to the server. 

5. Experiments 
Before the generation of traffic started, all connections to the 

server were set up and all parts of the traffic generator were 

initialized and ready to go. Requests were sent on the connections 

as a Poisson process with a specified rate, and all response times 

were logged in a file. Since the response times are measured by 

the traffic generator, these times includes latency introduced by 

the network and the computer with the traffic generator. This 

experiment run for a specified amount of time, typically minutes. 

All connections were then closed and the generator was stopped. 

The log file was saved with a filename that includes the arrival 

rate. The same experiment was performed with different arrival 

rates. The log files from the whole set of experiments were put in 

a folder together with the traffic generator’s configuration used 

during the experiments. 

The basic structure was the same in all experiments. A computer 

with a traffic generator that measures response times was 

connected to a computer with a database server. The traffic 

generator generated requests to the database server. 

5.1 Experiment set E1: Relation size 
The objective of the first set of experiments was to investigate the 

performance behavior for different database sizes. The first set of 

experiments was performed on the relation described above with 

three different sizes. The request was a SELECT-query that 

looked like this. 

SELECT unique3 FROM wisc WHERE unique2=?; 

The attribute unique2 was indexed and each id had a unique 

value between zero and the number of tuples. The question mark 

in the query was replaced with random numbers, uniformly 

distributed over the range from zero to the number of tuples. The 

number of tuples was set to 1x106, 5x106, and 1x107.  

5.2 Experiment set E2: SELECT and 

UPDATE 
A database engine has to be able to handle several connections 

concurrently trying to read and update the same tuple in a relation. 

Usually, it is done by locking some part of the database for 

exclusive access to one connection at the time. With MyISAM, 

the database engine we use, the whole table that is targeted is 

locked during UPDATEs. Writing requires exclusive access. 

However, two connections concurrently reading a tuple do not 

need any locking. This could result in different response times for 

concurrent UPDATE and concurrent SELECT. 

To find out if the request type affects the overload detection, a 

new set of experiments was performed. The new experiments 



compared response times from concurrent SELECTs with 

response times from concurrent UPDATEs. First the set of 

experiments with SELECT was performed. After that, the 

experiments with UPDATE were performed. 

6. Results 
We measured response times of SQL-requests to a MySQL 

database server. The requests were generated as a Poisson process 

by a traffic generator. The traffic generator registered timestamps 

for each request and response, from which the response times 

were derived. 

6.1 M/M/1 approximation 
In some of the experiments, we were able to approximate the 

response time dynamics with a modified M/M/1 model, according 

to the analysis below. 

 

Figure 5 Sequence diagram showing response time    and 

system time    for the  :th request 

Let    be the time in the system for the  :th request. The system 

time    is the sum of the service time    and the waiting time   . 

The response time    is measured by the traffic generator and is 

the sum of the system time    and some latency   . (See Figure 5) 

We assume that the latency    is independent of the load. The 

average system time for an M/M/1 system is  
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  ⁄

   
 

 

   
 

where     ⁄  is the utilization,   is the arrival rate to the 

system, and     ̅⁄  is the service rate [25]. Suppose the 

response time measurements comes from an M/M/1 system, then 

the average response time can be written as 

  ̅   ̅   ̅  
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The service rate   is estimated from the response time 

measurements where   is small. By expanding        ̅ an 

estimated of the service time and the service rate is derived. 
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The service rate   is estimated with  ̂     ̅   ̅ ⁄  where  ̅  is 

the average response time from an experiment where   is low, or 

near zero. The estimated service rate  ̂ is inserted in equation (3) 

to get an estimation of the average response time. 
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The only parameter that is unknown is the average latency  ̅, 
since   is chosen for each experiment, and  ̅  is calculated from 

the response times of an experiment with low arrival rate. The 

experiment is now performed for several different arrival rates.  

 

Figure 6 Response times of SELECT-queries 

For each experiment the average response time  ̅ is calculated and 

plotted versus the arrival rate   of that experiment. The estimation 

of the average response time for an M/M/1 system  ̂ is also 

plotted. The parameter  ̅ in  ̂ is estimated by fitting the curve  ̂ to 

the measured average response times. 

6.2 Experiment E1 
In experiment set E1 we measured response times with relations 

of different sizes. We tested with 1x106, 5x106, and 1x107 tuples. 

Figure 6 shows the response time of SELECT-queries to a relation 

with 1x106 tuples and a relation with 5x106. It also shows curves 

for M/M/1 queuing systems that behave approximately the same 

under these circumstances. The curves for the M/M/1 systems 

were plotted with  ̅        s for the 1x106-tuple relation and 

 ̅        s for the 5x106-tuple relation. 

Figure 7 shows response times of SELECT-queries to relations 

with 5x106 tuples and 1x107 tuples, where the response times to 

the relation with 1x107 tuples is compared to an M/M/1 queuing 

system plotted with  ̅        . The difference when increasing 

from 1x106 to 5x106 tuples is much larger than the difference 

when increasing from 5x106 to 1x107 tuples.  

6.3 Experiment E2 
In experiment set E2 we measured response times of SELECTs 

and UPDATEs to the same relation. Figure 8 shows response times 

for those kinds of queries and a curve from an M/M/1 system. The 

response time curve for SELECTs is quite similar to the curve 

from the M/M/1 system.  

The UPDATEs however, does not look like any M/M/1 system. 

We have some preliminary results showing that UPDATE 

requests behave as a load dependent server system, however, 

more work is needed on this subject. Also, in a real system, the 

requests will be a mix of SELECTs and UPDATEs. Further, 

different database engines work differently, which means that it 

will be necessary to investigate different types of database servers.  

7. Conclusions 
Database servers are vital components of the future Internet 

services, as data centers, e-business systems, and cloud 

computing. The accurate control and optimization of these 

systems require good performance models capturing the dynamics 

during high loads. In this paper, we present some preliminary 

experiments on MySQL, showing that during some conditions, the 

system can be modeled as a modified M/M/1 system. However, 

more work is needed on the subject.   
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Figure 7 Response times of SELECT-queries 

 

 

Figure 8 Response times of SELECT- and UPDATE-queries 
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