
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Performance measurements and modeling of database servers

Kihl, Maria; Cedersjö, Gustav; Robertsson, Anders; Aspernäs, Bertil

2011

Link to publication

Citation for published version (APA):
Kihl, M., Cedersjö, G., Robertsson, A., & Aspernäs, B. (2011). Performance measurements and modeling of
database servers. Paper presented at Sixth International Workshop on Feedback Control Implementation and
Design in Computing Systems and Networks (FeBID 2011), Karlsruhe, Germany.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/0dc5fe66-0bb5-4bf4-9336-49f91a215008

Performance measurements and modeling
of database servers

Maria Kihl, Gustav Cedersjö
Dept. of Electrical and Information

Technology
Lund University, Sweden

+46 46 222 9010

maria.kihl@eit.lth.se

Anders Robertsson
Dept. of Automatic Control

Lund University, Sweden

andersro@control.lth.se

Bertil Aspernäs
Ericsson AB

Karlskrona, Sweden

bertil.aspernas@ericsson.com

ABSTRACT
In this paper we present some experiments on the MySQL

database server. The objective of the experiments was to

investigate the high load dynamics for varying relation sizes and

requests. We show that the dynamics for SELECT (read) requests

can be modeled as a modified M/M/1 system, whereas, the

dynamics for UPDATE (write) are completely different. Our

results can be used for designing control and optimization

algorithms for database servers.

1. INTRODUCTION
Resource management of computing systems has gained much

attention in the last years, since poorly managed resources can

degrade the performance of a computer system severely.

Enterprise e-services are often networked, implemented as large

server clusters that communicate across IP-networks. The systems

are subjected to external load disturbances, as traffic surges and

changes in user behavior. The experience is that enterprise servers

are often the bottlenecks, whereas the network backbone is often

underutilized. Therefore, the server systems must provide

performance guarantees in the face of external load. The

guarantees must satisfy the service-level agreements (on delay,

QoS etc) that the system operator has set up with its clients. Also,

the system must provide graceful degradation during overload.

Therefore, the challenge is how to control server performance

while providing guarantees on convergence and disturbance

rejection. The solution is based on dynamic control schemes,

which monitors the systems, and provides actions when needed.

Several types of resource–management mechanisms have been

proposed and evaluated in the literature. In larger computer

systems, load balancing is performed in order to distribute the

need for resources uniformly over a number of resource units

(Computers, CPUs, memory, etc.), thus avoiding that some units

are overloaded while others are idle [5][6]. During overload

periods, when more resources are requested than are available,

admission control mechanisms reduce the amount of work by

blocking some of the requests [2][7][8][14]. For Internet

applications, virtualized server systems can be used to divide

physical resources into a number of separated platforms where

different web applications are allowed to operate without affecting

one another. Dynamic resource allocation between the virtualized

platforms serves as a new and easier way to perform resource

optimization on web server systems [3][11][12][13]. In the last

years, the field of power and energy management has become

important. Large software systems have high energy consumption,

and therefore, dynamic resource optimization of these systems

may considerably lower the Operating Expenditures (OPEX) for

the network operators [1][4][9][10].

Users

Request

Reply

Enterprise system

Web tier Application tier Database tier

Figure 1 Multi-tier Enterprise system

However, all these optimization techniques require accurate

performance models of the involved computing systems. The

operation region is mainly high traffic load scenarios, which

means that the computing systems have non-linear dynamics that

needs to be characterized accurately. In a previous work [13], we

have shown that web servers with dynamic content can be

modeled as single server systems with processor sharing.

However, some recent experiments on databases have shown that

the high load dynamics of database servers are completely

different than for web servers. Since database servers are

important components in future Internet systems, as cloud

computing and data centers, we have performed a number of

experiments in order to capture and model the high load dynamics

of databases. To our knowledge, this is the first paper that

proposes performance models for database servers.

2. SYSTEM EXAMPLES
In this section we present two examples of computing systems

commonly used in Internet and telecommunication networks,

which use database servers.

2.1 Multi-tier Enterprise systems
Enterprise system, also called e-Business systems, as internet

banks and web shops, are often implemented as distributed server

clusters in several tiers, see Figure 1. The Web tier provides the

web interface to the users, accepting service requests. The

Application tier processes the requests, which may include

requests to the Database tier, providing customer and service

information. The performance challenge for the system operator is

to optimize the system resources to avoid situations where parts of

the system are overloaded when other parts are underutilized.

Mobile operator

Request

Reply

Database nodes (DNs)

Other traffic

Management System

(MAS)

Request

Reply

Figure 2 A Telecom service management system

2.2 Telecom Service management systems
In telecommunication service oriented architectures, as mobile

networks, data transfer is separated from control signaling.

Therefore, all services, either user services as telephony, or

administrative services as location updates or billing, are handled

by a service management system with its own networks and

protocols. The service management systems have a complex

architecture, usually implemented as large distributed server

systems, with application servers processing service requests from

the telecom networks, and databases storing subscriber and

service data. The nodes can be owned by different network

operators, limiting the available information of traffic loads and

service progress. All signaling is performed across IP networks.

3. Performance models
A software system is basically a network of queues, as examples,

the CPU ready queue, Semaphore queues, socket queues, and I/O

device queues, which stores requests in waiting of service in the

processors. Therefore, queuing models can be used when

describing the dynamic behavior of server systems

[18][19][20][21]. Also, control theory offers a range of structures,

tools and analysis methods for adjusting systems to the given

environment, which might change over time. Therefore, control

theory is very useful when designing performance control

schemes for computing systems [22].

However, when combining queuing models with control system

design, it is important that the models capture the important

dynamics from a control theory point of view. Most service

performance metrics such as response time, service rate and

processing delay depend on queue state dynamics. For the

objective of performance control, simple models, based on the

assumption of a single-server queue, are often preferred. The

model should only capture the dominating load dynamics of the

system, since a well-designed control system can handle many

model errors [23]. However, neglecting some hidden buffer

dynamics may cause control instability [24].

l

m

Figure 3 M/M/1 model

3.1 M/M/1 model approximation
The classical M/M/1 model, where a single-server queue

processes requests that arrive according to a Poisson process with

exponential distributed service times, see Figure 3, has been

shown to accurately capture the response time dynamics of a web

server system [13].

In a more general form, a system can be assumed to have M/M/1

dynamics, when the average response time, T, for an arrival rate,

land a service rate, m can be derived as

lm

l



1

)(0TT (1)

where T0 is the response time when there is only one request in

the system. T0 may include other delays than the processing delay,

for example, protocol handling delays. This model captures the

dominating dynamics for the response times. However, it assumes

that the capacity is CPU bounded, which means that it only works

for CPU intensive applications. Further, the model is valid also for

processor sharing systems, as the Apache web server, due to

dynamics of time-shared systems [25].

3.2 M/M/1 model with load dependency
In [26] it is proposed that computing systems show load

dependencies in the service time, since each request waiting for

service will add load in, for example, the operation system and

memory. Therefore, the service time for a request will be

dependent on the number of concurrent requests in the system.

Each new incoming request causes an additional multiplicative

increase, p, in the remaining service time duration on all requests

in progress. p (10  p) is denoted as the load dependency

parameter of the server. At service completion, the request leaving

the system will unstress the system, resulting in a corresponding

percentage decrease in the remaining service time duration on all

remaining requests in progress. Assuming that there are n

concurrent requests in the system, the average service time for

each request is given by

1)1( n

n pxx (2)

where x is the average service time if there is only one request in

the system.

4. Testbed
We have performed a set of experiments in order to develop

performance models for database servers. The experiments were

performed in our testbed, consisting of three computers acting as

two traffic generators and one MySQL database server. An

illustration of the testbed is shown in Figure 4. The computers

used in the experiments are ordinary desktop computers with

some open source server software installed. The computer

hardware is a DELL OptiPlex GX270. It is equipped with a 2.0

GHz Intel Celeron processor, 256MB main memory, a single

hard-drive and a Gigabit Ethernet network interface. The

computers are connected with a Fast Ethernet switch. The Linux

distribution Ubuntu 8.04 LTS Server Edition is running on the

computers. One computer has a MySQL Server 5.1 installed.

Traffic generators

(Java)

G1

G2
Database server

(MySQL)

DB

Figure 4 Experimental testbed

4.1 Traffic generators
Since the traffic generator is the primary measurement instrument

in the lab, it is important that it generates the desired traffic and

measures the response times accurately. To build a high load

traffic generator with quality, there are some real challenges: The

measurements of the response times must be accurate, the traffic

generator cannot become overloaded itself, and the traffic must be

generated with the desirable arrival distribution.

4.1.1 Database experiments
The traffic generator in the database experiments was

implemented on the Java platform in the Scala Programming

Language and relies heavily on the concurrency primitives of

JSR-166 (in the package java.util.concurrent) and Java

Database Connectivity (JDBC). The generator has three main

types of concurrent activities. The first generates the requests, the

second processes the requests, and the third logs the response

times. These activities are represented by Java threads. A

QueryGenerator creates requests according to a Poisson

process, and a fixed number of Workers execute the requests on

the database server. Before the generation starts, all threads and

connections are set up. The query generator sends the requests

over a BlockingQueue to the workers. Each worker has

established a connection to the database and is waiting for a

request to arrive to the queue. As soon as a request arrives, a

worker takes it, starts a timer and sends the request over the

connection to the database server.

When the response is received, the timer is stopped and both start

and stop times are sent to TimeLogger where they are logged to

a file.

4.2 MySQL database server
In the experiments, we have used the default configuration of

MySQL that comes with the Ubuntu package, with the exception

that it is opened up for external connections and the maximum

number of concurrent connections increased to 500 connections.

MySQL has support for different database engines, but all

databases in the lab use the same engine, namely MyISAM, which

is also the default engine in MySQL.

The MySQL server contains one database with several relations.

All relations use the same schema, but with different number of

tuples. The basic structure of the relation is inspired by the

database benchmark developed by Bitton, DeWitt and Turbyfill

called the “Wisconsin Benchmark” [15]. The actual structure

comes from a newer version of this benchmark that is more

scalable with respect to relation size [16]. The maximum number

of tuples is limited to the number of unique values of a 32 bit

integer. The relation has 16 attributes, and each tuple occupies

200B. The largest possible relation would occupy 800GB. Three

different sizes were used in the experiments: one million, five

million and ten million tuples.

Two of the attributes in the relation, unique1 and unique2,

are unique integers from zero to the number of tuples. The

integers in unique2 are sequential, while unique1 are random,

and all other attributes are derived from either of them.

A Haskell program was developed to generate the data for the

relation from the specifications of the benchmark. Haskell is a

lazy functional programming language [17]. A linear feedback

shift register that generates a maximum length sequence was used

to generate the sequences for unique1 and unique2. The

program generates not just the sequences, but complete INSERT-

statements for the whole relation. This program was pipelined to

the “MySQL command-line tool” that sent the actual statements

to the server.

5. Experiments
Before the generation of traffic started, all connections to the

server were set up and all parts of the traffic generator were

initialized and ready to go. Requests were sent on the connections

as a Poisson process with a specified rate, and all response times

were logged in a file. Since the response times are measured by

the traffic generator, these times includes latency introduced by

the network and the computer with the traffic generator. This

experiment run for a specified amount of time, typically minutes.

All connections were then closed and the generator was stopped.

The log file was saved with a filename that includes the arrival

rate. The same experiment was performed with different arrival

rates. The log files from the whole set of experiments were put in

a folder together with the traffic generator’s configuration used

during the experiments.

The basic structure was the same in all experiments. A computer

with a traffic generator that measures response times was

connected to a computer with a database server. The traffic

generator generated requests to the database server.

5.1 Experiment set E1: Relation size
The objective of the first set of experiments was to investigate the

performance behavior for different database sizes. The first set of

experiments was performed on the relation described above with

three different sizes. The request was a SELECT-query that

looked like this.

SELECT unique3 FROM wisc WHERE unique2=?;

The attribute unique2 was indexed and each id had a unique

value between zero and the number of tuples. The question mark

in the query was replaced with random numbers, uniformly

distributed over the range from zero to the number of tuples. The

number of tuples was set to 1x106, 5x106, and 1x107.

5.2 Experiment set E2: SELECT and

UPDATE
A database engine has to be able to handle several connections

concurrently trying to read and update the same tuple in a relation.

Usually, it is done by locking some part of the database for

exclusive access to one connection at the time. With MyISAM,

the database engine we use, the whole table that is targeted is

locked during UPDATEs. Writing requires exclusive access.

However, two connections concurrently reading a tuple do not

need any locking. This could result in different response times for

concurrent UPDATE and concurrent SELECT.

To find out if the request type affects the overload detection, a

new set of experiments was performed. The new experiments

compared response times from concurrent SELECTs with

response times from concurrent UPDATEs. First the set of

experiments with SELECT was performed. After that, the

experiments with UPDATE were performed.

6. Results
We measured response times of SQL-requests to a MySQL

database server. The requests were generated as a Poisson process

by a traffic generator. The traffic generator registered timestamps

for each request and response, from which the response times

were derived.

6.1 M/M/1 approximation
In some of the experiments, we were able to approximate the

response time dynamics with a modified M/M/1 model, according

to the analysis below.

Figure 5 Sequence diagram showing response time and

system time for the :th request

Let be the time in the system for the :th request. The system

time is the sum of the service time and the waiting time .

The response time is measured by the traffic generator and is

the sum of the system time and some latency . (See Figure 5)

We assume that the latency is independent of the load. The

average system time for an M/M/1 system is

 ̅
 ⁄

where ⁄ is the utilization, is the arrival rate to the

system, and ̅⁄ is the service rate [25]. Suppose the

response time measurements comes from an M/M/1 system, then

the average response time can be written as

 ̅ ̅ ̅

 ̅ (3)

The service rate is estimated from the response time

measurements where is small. By expanding ̅ an

estimated of the service time and the service rate is derived.

 ̅ ̅ ̅

 ̅

 ̅ ̅ ̅

 ̅ ̅ ̅

The service rate is estimated with ̂ ̅ ̅ ⁄ where ̅ is

the average response time from an experiment where is low, or

near zero. The estimated service rate ̂ is inserted in equation (3)

to get an estimation of the average response time.

 ̂

 ̂
 ̅

 ̅ ̅

 ̅

The only parameter that is unknown is the average latency ̅,
since is chosen for each experiment, and ̅ is calculated from

the response times of an experiment with low arrival rate. The

experiment is now performed for several different arrival rates.

Figure 6 Response times of SELECT-queries

For each experiment the average response time ̅ is calculated and

plotted versus the arrival rate of that experiment. The estimation

of the average response time for an M/M/1 system ̂ is also

plotted. The parameter ̅ in ̂ is estimated by fitting the curve ̂ to

the measured average response times.

6.2 Experiment E1
In experiment set E1 we measured response times with relations

of different sizes. We tested with 1x106, 5x106, and 1x107 tuples.

Figure 6 shows the response time of SELECT-queries to a relation

with 1x106 tuples and a relation with 5x106. It also shows curves

for M/M/1 queuing systems that behave approximately the same

under these circumstances. The curves for the M/M/1 systems

were plotted with ̅ s for the 1x106-tuple relation and

 ̅ s for the 5x106-tuple relation.

Figure 7 shows response times of SELECT-queries to relations

with 5x106 tuples and 1x107 tuples, where the response times to

the relation with 1x107 tuples is compared to an M/M/1 queuing

system plotted with ̅ . The difference when increasing

from 1x106 to 5x106 tuples is much larger than the difference

when increasing from 5x106 to 1x107 tuples.

6.3 Experiment E2
In experiment set E2 we measured response times of SELECTs

and UPDATEs to the same relation. Figure 8 shows response times

for those kinds of queries and a curve from an M/M/1 system. The

response time curve for SELECTs is quite similar to the curve

from the M/M/1 system.

The UPDATEs however, does not look like any M/M/1 system.

We have some preliminary results showing that UPDATE

requests behave as a load dependent server system, however,

more work is needed on this subject. Also, in a real system, the

requests will be a mix of SELECTs and UPDATEs. Further,

different database engines work differently, which means that it

will be necessary to investigate different types of database servers.

7. Conclusions
Database servers are vital components of the future Internet

services, as data centers, e-business systems, and cloud

computing. The accurate control and optimization of these

systems require good performance models capturing the dynamics

during high loads. In this paper, we present some preliminary

experiments on MySQL, showing that during some conditions, the

system can be modeled as a modified M/M/1 system. However,

more work is needed on the subject.

0 100 200 300 400 500 600
0

0.02

0.04

0.06

0.08

0.1

Arrival Rate (requests/s)

R
es

p
o

n
se

 T
im

e
(s

)

1106 tuples

5106 tuples

M/M/1

Traffic Generator Database Server

𝑟𝑖 𝑠𝑖 𝛿𝑖 𝑠𝑖 𝑥𝑖 𝑤𝑖

Figure 7 Response times of SELECT-queries

Figure 8 Response times of SELECT- and UPDATE-queries

8. ACKNOWLEDGMENTS
This work has been partly funded by the Lund Center for Control

of Complex Engineering Systems (LCCC) and the Swedish

Research Council grant VR 2010-5864. Maria Kihl is funded in

the VINNMER program at VINNOVA.

9. REFERENCES
[1] R. Bianchini and R. Rajamony, “Power and energy

management for server systems,” IEEE Computer, vol. 37,

no. 11, 2004.

[2] M. Kihl, A. Robertsson, M. Andersson, and B. Wittenmark,

“Control theoretic analysis of admission control mechanisms

for web server systems,” The World Wide Web Journal,

Springer, vol. 11, no. 1, 2008.

[3] M. Kjaer, M. Kihl, and A. Robertsson, “Resource Allocation

and Disturbance Rejection in Web Servers using SLAs and

Virtualized Servers”, IEEE Transaction on Network and

Service Management, Vol. 6, No. 4, 2009.

[4] H. Claussen, L.T.W Ho, F. Pivit, “Leveraging advances in

mobile broadband technology to improve environmental

sustainability”, Telecommunications Journal of Australia,

Vol. 59, No. 1, 2009.

[5] Y. Diao, C. Wu, J. Hellerstein, A. Storm, M. Surendra, S.

Lightstone, S. Parekh, C. Garcia-Arellano, M. Carroll, L.

Chu, and J. Colaco, “Comparative studies of load balancing

with control and optimization techniques," in Proc. American

Control Conference, 2005.

[6] Y. Fu, H. Wang, C. Lu, and R. Chandra, “Distributed

utilization control for real-time clusters with load balancing,"

in Proc. IEEE International Real–Time Systems Symposium,

2006.

[7] X. Chen, H. Chen, and P. Mohapatra, “Aces: an efficient

admission control scheme for QoS-aware web servers,"

Computer Communication, vol. 26, no. 14, 2003.

[8] X. Liu, J. Heo, L. Sha, and X. Zhu, “Adaptive control of

multi–tiered web applications using queuing predictor," in

Proc. 10𝑡ℎ IEEE/IFIP Network Operation Management

Symposium, 2006.

[9] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu,

“Dynamic voltage scaling in multitier web servers with end-

to-end delay control," IEEE Transactions on Computers, vol.

56, no. 4, 2007.

[10] E. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient

server clusters," in Lecture Notes in Computer Science 2325.

Springer-Verlag Berlin Heidelberg, 2003..

[11] W. Xu, X. Zhu, S. Singhal, and Z.Wang, “Predictive control

for dynamic resource allocation in enterprise data centers," in

Proc. 10𝑡ℎ IEEE/IFIP Network Operation Mangement

Symposium, 2006.

[12] Z. Wang, X. Liu, A. Zhang, C. Stewart, X. Zhu, T. Kelly,

and S. Singhal, “AutoParam: automated control of

application-level performance in virtualized server

environments," in Proc. 2nd IEEE International Workshop

on Feedback Control Implementation and Design in

Computing Systems and Networks, 2007.

[13] J. Cao, M. Andersson, C. Nyberg and M. Kihl, “Web Server

Performance Modeling using an M/G/1/K*PS Queue”, Proc.

of the International Conference on Telecommunication, 2003

[14] V. Mathur and V. Apte, “A computational complexity-aware

model for performance analysis of software servers”, IEEE

12th Annual International Symposium on Modeling,

Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOT), 2004.

[15] D. Bitton, D.J. DeWitt, and C. Turbyfill. Benchmarking

database systems a systematic approach. In Proceedings of

the 9th International Conference on Very Large Data Bases,

1983.

[16] D.J. DeWitt. The Wisconsin benchmark: Past, present, and

future. The Benchmark Handbook for Database and

Transaction Processing Systems, 1, 1991.

[17] S. Marlow. Haskell 2010 Language Report, 2009.

[18] M. Kihl, A. Robertsson, and B. Wittenmark, “Performance

modelling and control of server systems using non-linear

control theory”, In Proc. of the 18th International Teletraffic

Congress, 2003.

[19] K-J. Åström and B. Wittenmark, Computer–Controlled

Systems. Upper Saddle River, NJ: Prentice Hall, 1997.

[20] L. Malrait, N. Marchand and S. Bouchenak, “Modeling and

Control of Server Systems: Application to Database

Systems”, European Control Conference, 2009.

[21] L. Malrait, S. Bouchenak and N. Marchand, “Fluid Modeling

and Control for Server System Performance and Availability,

IEEE International Conference on Dependable Systems and

Networks, 2009.

[22] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, “Control

engineering for computing systems," IEEE Control Syst.

Mag., vol. 25, no. 6, 2005.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Arrival Rate (requests/s)

R
es

p
o

n
se

 T
im

e
(s

)

5106 tuples

1107 tuples

M/M/1

0 100 200 300 400 500 600
0

0.02

0.04

0.06

0.08

0.1

Arrival Rate (requests/s)

R
es

p
o

n
se

 T
im

e
(s

)

SELECT

UPDATE

M/M/1

[23] V. Mathur and V. Apte, “A computational complexity-aware

model for performance analysis of software servers”, IEEE

12th Annual International Symposium on Modeling,

Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOT), 2004.

[24] X. Liu, J. Heo and L. Sha, “Modeling 3-tiered web

applications”, 13th IEEE International Symposium on

Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOT), 2005.

[25] L. Kleinrock, Queueing Systems, Volume I: Theory, Wiley

Interscience, New York, 1975.

[26] Curiel, M. & Puigjaner, R., “Using load dependent servers to

reduce the complexity of large client-server simulation

models”, Performance Engineering, LNCS 2047, Springer-

Verlag Berlin Heidelberg, 2001.

