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“The best thing for being sad," replied Merlin, beginning to puff and blow, "is to 

learn something. That's the only thing that never fails. You may grow old and 

trembling in your anatomies, you may lie awake at night listening to the disorder of 

your veins, you may miss your only love, you may see the world about you 

devastated by evil lunatics, or know your honour trampled in the sewers of baser 

minds. There is only one thing for it then — to learn. Learn why the world wags and 

what wags it. That is the only thing which the mind can never exhaust, never 

alienate, never be tortured by, never fear or distrust, and never dream of regretting. 

Learning is the only thing for you. Look what a lot of things there are to learn.” 

 

― T.H. White, The Once and Future King 
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Introduction 

Dyslipidemia is a pathologic, chronic deviation from normal blood lipid levels and 

is a heterogeneous disease with many subclasses,1 caused by the complex interplay 

of a plethora of genetic and environmental factors.2 Dyslipidemia is on the causal 

pathway to a range of cardiovascular diseases (CVDs), including atherosclerosis, 

myocardial infarction (MI), coronary artery disease (CAD) and stroke 3-5 and is often 

associated with comorbidities such as obesity, type 2 diabetes, high blood pressure 

and non-alcoholic fatty liver disease.6-11 CVDs – a group of diseases considered 

rarities 100 years ago – have increased to epidemic proportions and are now the 

leading causes of death worldwide.12, 13 According to the World Health Organization 

(WHO), in 2012, approximately 30% of global deaths were attributable to CVDs 

and their comorbidities.14 As the global prevalence of CVDs is increasing, these 

diseases continue to consume huge portions of national healthcare budgets.14 As 

dyslipidemia is one of the leading causes of CVDs, huge efforts have been 

undertaken to study the environmental and genetic background of lipid levels and 

lifestyle interventions and pharmacological therapies to normalize lipid levels are in 

the frontline of research and development. 

Blood lipid levels are heritable and notably modifiable phenotypes that vary 

considerably among people in general. Their levels are difficult to categorize as 

“beneficial” or “adverse for health”. Just as obesity is defined based on arbitrary 

body mass index (BMI) categories 15 and diabetes is defined based on arbitrary 

fasting/post-challenge glucose concentrations 16, dyslipidemias are also defined by 

arbitrary cut-offs in lipid levels.17, 18 The four most studied blood lipids traits are 

triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density 

lipoprotein cholesterol (HDL-C) and total cholesterol (TC) concentrations. Apart 

from these traits, a number of other lipid phenotypes have important biological 

functions. The most common dyslipidemias are hyperlipidemias – chronic 

elevations in blood lipid levels. The two most prevalent subtypes are 

hypertriglyceridemia (defined by high TG concentrations) and 

hypercholesterolemia (defined by high LDL-C or TC), diseases which can be further 

stratified into more defined subclasses based on etiology and phenotype.1 Other 

dyslipidemias, such as hypocholesterolemia are characterized by lower-than-normal 

blood lipid concentrations.19 For instance, hypoalphalipoproteinemia is a deficiency 

with low HDL-C levels often resulting in premature CAD.20 

There are thousands of published observational studies on the etiology of 

dyslipidemias, many of which have examined genetic, environmental, and 

behavioral risk factors such as diet and physical activity. Many published reports 

explore the effects of lifestyle interventions and medications on dyslipidemia and 

their interactions with genetic predisposition to dyslipidemia. The following section 
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will provide an overview of this literature and highlight research questions that are 

addressed later in this thesis. Specifically, I will 

 

i. define the most important lipid traits and their role in lipid metabolism;  

ii. overview how various lifestyles and pharmacological interventions relate to 

dyslipidemias; 

iii. overview the main genetic discoveries in lipid research and summarize what 

is known about prospective genetic associations and gene × environment 

interactions in lipid traits;  

iv. give a brief overview on how known genetic loci relate to lipid metabolism. 

The good, the bad and the ugly – trait definitions 

Lipids are heterogeneous in size, function and chemical properties. The most studied 

lipid traits in genetic epidemiologic studies are TG, LDL-C, HDL-C and TC, as they 

are easier and cheaper to measure with standard laboratory equipment than other 

more refined lipid phenotypes.  

To briefly define these phenotypes, TG is a glycerol ester of three fatty acids.21 TG’s 

most important role is energy storage. Lipids contain approximately double the 

energy (9.3 calories/g) as carbohydrates or proteins (4.1 calories/g) – large volumes 

of TG are stored in white adipose tissue waiting to be hydrolyzed and converted to 

energy.21 Cholesterols are steroid alcohols and are very important membrane lipids; 

among other functions, they control membrane structure and fluidity. Cholesterols 

are also constituents of bile, hormones and vitamin D.21, 22 External cholesterol from 

food sources is absorbed by the intestines in the form of free cholesterol. Internal 

cholesterol is synthesized mostly in the liver and enterocytes through the 

mevalonate pathway.23, 24 LDL and HDL are lipoproteins that transport hydrophobic 

TG and cholesterol in the blood, which is a hydrophilic, aqueous fluid.21 

Lipoproteins are complex multi-molecular structures assembled from lipids and 

proteins, as their name lipoprotein indicates. They are structured as an amphipathic 

layer of lipids, which harbors cholesterol and proteins (termed apolipoproteins) and 

an inner, hydrophobic core where TG and cholesterol-esters are stored during 

transport.21, 25 There is an inverse correlation between lipoprotein density and size. 

HDL has the highest density and the lowest size among lipoproteins, while LDL has 

a lower density and bigger size.21 Each lipoprotein subclass can be characterized by 

size, density and a unique set of apolipoproteins in their membranes. When we study 

HDL-C and LDL-C, we study the amount of cholesterol carried by HDL and LDL, 

respectively. In the laboratory, lipoprotein classes are first separated from blood and 

then from each other; cholesterol is extracted and subsequently measured from each 
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lipoprotein class separately. In layman’s terms, LDL-C is often termed “bad 

cholesterol” and HDL-C is often termed “good cholesterol” based on LDL’s and 

HDL’s biological functions 26 – LDL carries cholesterol to the periphery (adipose- 

and muscle tissue and the endothelium) and considered an atherogenic lipoprotein 

subclass,21 while HDL carries cholesterol back from the periphery (termed reverse 

cholesterol transport) and is therefore considered atheroprotective lipoproteins.27, 28 

Other lipoproteins such as chylomicrons, intermediate-density lipoprotein (IDL), 

very low-density lipoprotein (VLDL) and other refined subclasses of each 

lipoprotein classes have been identified based on size, density and biological 

function. The lipoprotein fractions mentioned above can be further categorized into 

small, medium and large HDL, LDL and VLDL subfractions. 

 

Figure 1. The endogenous and exogenous lipoprotein pathways. 
HDL – high-density lipoprotein; LDL – low-density lipoprotein; TAG – triglycerides (triacylglycerol); 
VLDL – very-low-density lipoprotein. Ref: University of Washington, UW Courses Web Server: 
https://courses.washington.edu/conj/bess/cholesterol/liver.html (accessed: 15 March 2016) 
A detailed figure of the endogenous and exogenous lipoprotein pathways can be found in Figure 1 of 
Lusis AJ et al. A treasure trove for lipoprotein biology. Nature Genetics. 2008;40:129-130. 

To adequately understand lipoprotein metabolism, one needs to consider the 

exogenous and endogenous lipoprotein pathways (Figure 1).29 In brief, the 

exogenous pathway involves chylomicrons carrying TGs (which were absorbed by 

the intestines) to the adipose tissue for storage, to the muscle tissue in need of energy 

or to the liver for further use (e.g. the creation of VLDL particles). The chylomicrons 

finish their journey at the liver where their constituents are reused.21, 25 The 

https://courses.washington.edu/conj/bess/cholesterol/liver.html
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endogenous pathway starts at the liver with the assembly of VLDL particles. VLDL 

particles are similar in constitution and physiological role to chylomicrons, as they 

are large, very low in density and carry mostly TGs. VLDL particles are released 

from the liver and carry out similar functions in the endogenous pathway as the 

chylomicrons do in the exogenous pathway. As they release more and more TG in 

the periphery, they decrease in size, increase in density and become VLDL remnants 

or IDL particles. IDL is an intermediary lipoprotein between VLDL and LDL. As 

IDL restructures and recruits a unique set of apolipoproteins, it becomes an IDL-

remnant or LDL, which carries less TG and more cholesterol than the particles 

mentioned above. LDL is subsequently degraded in the liver and its components are 

reused there.21, 25 

HDL is centrally involved in both the exogenous and endogenous pathways. It is 

produced by the liver and its main function is reverse cholesterol transport from the 

periphery, most importantly, from the endothelium.27, 28 HDL is also responsible for 

converting lipoproteins into their mature forms (e.g. HDL converts VLDL to IDL 

and subsequently, LDL).21 

Atherosclerosis is a complex phenotype directly leading to a range of clinical 

outcomes, such as CAD and stroke.5, 30, 31 While it is a chronic inflammatory state 

of the arterial wall with multiple factors contributing 32, one of the most important 

predictors of atherosclerosis is the imbalance in lipoprotein functions.25 In brief, the 

majority of serum cholesterol is carried by LDL particles.21 Although LDL 

transports a large fraction of its content to muscle- and adipose tissue, some of the 

cholesterol reaches the arterial endothelium. Lipid accumulation in the endothelium 

attracts macrophages and as macrophages accumulate in the endothelium to take up 

lipoproteins they become “foam-cells”.5 These structures become more and more 

extensive and turn into fibrous lesions, which trigger smooth muscle migration to 

the site. The lesions, together with the mass of smooth muscle tissue in the 

endothelium results in a fibrous cap. This can occlude the arteries and eventually 

rupture and create a thrombus which can subsequently obstruct the blood flow 

causing MI or stroke.4 CAD is almost always a result of occluded blood vessels in 

the heart.13, 33, 34 According to certain estimations, atherosclerosis causes 

approximately 50% of all deaths worldwide.5  

Blood lipid levels and environmental susceptibility 

The National Cholesterol Education Program suggests an increase in physical 

activity, nutritional and weight loss interventions to people with dyslipidemia based 

on results from observational and clinical trial studies.18 Combined intensive 

lifestyle interventions proved to be successful in improving lipid and lipoprotein 

subfraction levels 35, 36 and other markers related to CVD.37 There is moderate to 

reasonably strong evidence that physical activity interventions (e.g. aerobic exercise 
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training), some dietary interventions (e.g. the DASH diet) and lower intakes of 

saturated and trans-fats improve blood lipid profiles.38 Although often assumed, 

there is little evidence that reducing dietary cholesterol intake lowers circulating 

blood lipid levels.38 Smoking has a notable adverse effect on lipoprotein profiles, 

especially on HDL-C levels.39 Blood lipid levels are also susceptible to 

pharmacologic interventions; for example, lipid-lowering agents, such as statins, 

fibrates, ezetimibe, and niacin are widely prescribed to people with dyslipidemia.40 

In regards to primary prevention of coronary heart disease (CHD), apart from lipid-

lowering medications, currently only lifestyle advice on smoking cessation, healthy 

diet and exercise is given.41, 42 Some diets influence lipid levels, which subsequently 

exert CHD risk 43, but exactly how much diet contributes to dyslipidemia and CHD 

is debated – further studies are warranted to explore their relationships. 

A brief history of lipid genetics 

Blood lipid levels have a strong environmental underpinning. However, family and 

twin studies estimate that ~40-70% of the phenotypic variance in lipid traits may be 

explained by genetic factors.44-46  

For decades, linkage studies (family-based genetic studies) have been extremely 

successful in identifying regions associated with single-gene Mendelian disorders. 

This method is based on the co-segregation of the disease-causing alleles with pre-

selected micro-satellite marker alleles.47, 48 Linkage analysis is a hypothesis 

generating approach, identifying multiple regions of the genome for further study. 

Linkage analysis, however, proved to be much less successful in the detection of 

causal variants in non-Mendelian diseases or traits with complex, polygenic 

etiologies due to the low penetrance of genes contributing to these diseases.49 

Subsequent candidate gene studies drew prior assumptions from linkage studies, 

animal studies or positional cloning for a given disease or trait. 

The GWAS Era 

Genome-wide association studies (GWAS) emerged from huge efforts invested in 

mapping the human genome in the 1990s and early 2000s 50, 51 and the large-scale 

sequencing efforts that followed, such as the International HapMap Project 52, 53 and 

the 1000 Genomes Project.54, 55 Through the Human Genome Project, it was 

revealed that the entire human genome contains approximately 3 billion basepairs, 

20,000-22,000 genes and these genes only occupy around 1-2% of the whole 

genome. Therefore, the remaining 98-99% of the DNA is considered non-coding. 

The shear length of the coding regions alone is 30 million basepairs (calculated as 

1% of the 3 billion basepairs), and genotyping individuals for all these basepairs 

would be a prohibitively time-consuming and costly procedure. However, due to 
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recombination at certain spots in the genome at meiosis, larger regions of the 

genome are inherited together and therefore, markers in these regions are dependent 

on one another, which can be exploited to reduce the amount of the genome that 

needs to be mapped to define common variation. These regions are called haplotype 

blocks and the phenomenon when multiple basepairs are inherited together is termed 

linkage disequilibrium (LD).56, 57 Thus, genotyping a few carefully selected  genetic 

markers can facilitate the accurate imputation of all common markers in the given 

haplotype block. To do so requires a reference panel; such panels are publically 

available (such as HapMap and 1000 Genomes) and are often used for the 

imputation of common markers. In the late 1990s, Kruglyak postulated that at least 

500,000 common variants (with minor allele frequency (MAF) > 5%) will be 

required to be genotyped to provide sufficient coverage for imputation in order to 

map all of the coding regions.58 Although met with criticism (many were hoping for 

a much smaller number and 500,000 seemed overly pessimistic), his predictions 

were correct: current GWAS chips typically use >500,000 markers (e.g. Illumina 

HumanHap550 BeadChip or the Human1M BeadChip, which use ~550,000 and ~1 

million markers, respectively). The first GWAS was published in 2005 59 and the 

approach quickly became extremely popular. In contrast to candidate gene studies, 

GWAS were designed to scan the entire coding region of the genome in a so-called 

hypothesis-free manner. As with this approach, millions of markers are tested in 

statistical models for disease traits, test statistics need to be corrected for multiple 

testing. Assuming ~1 million independent markers, only results with P<5×10-8 

(0.05/1,000,000) are usually considered statistically significant.60 Since 2005, 

GWAS has been highly successful in identifying novel genetic loci associated with 

disease and other phenotypes.49 By 2011, more than 1,200 GWAS have examined 

hundreds of thousands of participants and identified thousands of SNP-disease 

associations. Many of these SNPs later proved to be clinically relevant.61, 62 

Common variants associated with lipids 

Many GWAS have been undertaken in relation to lipids, some with comparatively 

low sample sizes. Although early GWAS by Saxena et al 63, Kooner et al 64, 

Kathiresan et al 65-67, Sandhu et al 68, Willer et al 69 and Heid et al 70 implicated a 

number of loci for individual lipid traits, the first comprehensive lipid-GWAS was 

published in 2008 by Aulchenko et al.71 This study identified 22 loci in relation to 

TC, TG, LDL-C or HDL-C. A major breakthrough in lipid locus discovery came 

with a paper in 2010, from Teslovich et al (as part of the Global Lipids Genetics 

Consortium (GLGC)), within which 95 loci for the four core lipid traits were 

reported following a large-scale meta-analysis of GWAS data from 46 cohorts with 

a total sample size of >100,000 individuals.72 In general, it became clear that by 

increasing sample size, many new genetic associations were detectable and many 

loci that had not met the conservative genome-wide significance threshold (5×10-

8<P<5×10-7) in earlier studies60 were replicated in this large meta-analysis.72 The 

successes of the many GWAS consortia focused on cardiometabolic traits motivated 
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the design of a targeted genotyping array from Illumina named the 

CardioMetaboChip (in short, the MetaboChip array).73 The MetaboChip is a custom 

array containing ~220,000 common variants and was designed for studies that 

would later a) follow-up on previous findings through fine-mapping of GWAS-

established regions, b) seek replication of sub-significant GWAS loci, c) study 

disease pathways and facilitate other consortium-specific research questions. Over 

the following years, additional GWAS and MetaboChip data had accrued, 

prompting the formation of a new GLGC meta-analysis. The emerging results were 

reported in two papers by Willer et al and Do et al in which 62 novel variants for 

lipids were reported, extending the total number of established common lipid loci 

to 157 (Figure 2).74, 75 Subsequent GWAS have discovered a few additional ethnic-

specific variants; e.g. a novel variant in ABCA6 was discovered in the Dutch 

population following a population-specific imputation of local GWAS studies.76 Lu 

et al identified three Chinese-specific variants with genome-wide significance in 

already established lipid loci.77 

Other lipid traits have been studied as well; in 2009, Chasman et al identified 43 

loci in relation to lipoprotein subfractions.78 Lemaitre et al discovered a number of 

loci, FADS1/FADS2, ELOVL2 and GCKR in relation to circulating n-3 fatty acids 

in a GWAS study of ~9,000 adults of European ancestry.79 In a subsequent study, 

Lemaitre et al studied circulating very long-chain saturated fatty acid concentrations 

and discovered two associated loci, SPTLC3 and CERS4.80 Moreover, Mozaffarian 

et al identified rs174548 at FADS1/FADS2 in relation to cis/trans-18:2, a circulating 

trans-fatty acid biomarker.81 
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Figure 2. Dyslipidemia-associated loci by the Global Lipids Genetics Consortium. 
HDL – high-density lipoprotein; LDL – low-density lipoprotein. Ref: Willer CJ et al. Discovery and 
refinement of loci associated with lipid levels. Nature Genetics. 2013;45:1274-1283. 

As GWAS sample size increased, the more statistically powered these studies 

became to identify genetic loci with smaller and smaller effect sizes. These 

discoveries illustrate the complex, multifactorial nature of lipid traits, but also raise 

the question of whether common genetic variants with very small effect sizes are 

clinically relevant. 

Indeed, as of today, almost 200 genetic loci are discovered in relation to lipid traits 

with an available sample size of ~200,000, but only a very small fraction of the 

postulated phenotypic trait variance (~10% of the genetic variance, ~5% of total 

trait variance) is explained by GWAS-established loci.74 This is not unique for blood 

lipid traits, as loci discovered for other traits like BMI, for example, explain less 

than 5% of the BMI variance in the biggest GWAS study published to date.82 
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Rare variants associated with lipids 

The question I encountered the most throughout my PhD studies was “Where is the 

missing heritability?” for common complex traits.83 As rare genetic disorders are 

usually caused by highly penetrant rare variants (MAF<1%), another frequently 

heard question has been whether common disease would be caused by common or 

rare variants.84 As the first waves of GWAS since 2005 and on have identified novel 

loci after novel loci, the scientific community leaned towards the common disease 

– common variant hypothesis, but as GWAS-identified variants were unable to 

account for the expected phenotypic variance explained by genetics, new 

approaches started to emerge to study the common disease – rare variant 

hypothesis.85 These approaches involve whole-exome and whole-genome 

sequencing and new, array-based methods, such as the Exome Chip, which is a 

custom array designed to study rare variation in the exonic regions of genes.86  

A whole-exome sequencing study by Albrechtsen et al identified a low-frequency 

(MAF=0.035) missense variant (a SNP causing the substitution of an amino acid in 

the translated protein) at CD300LG (R82C) for fasting HDL-C. In a subsequent 

meta-analysis of the discovery and replication cohorts in the same study, three SNPs 

were associated with lower levels of HDL-C, including the non-synonymous 

polymorphism at CD300LG discovered earlier.87 Lange et al conducted an exome 

sequencing study in ~3,000 white and black adults, including ~800 individuals with 

extreme LDL-C concentrations. One SNP, rs1160983 at TOMM40 was significantly 

associated with LDL-C.88 Futema et al exome sequenced patients with familial 

hypercholesterolemia in pursuit of rare variants without any novel penetrant variant 

being discovered.89 Peloso et al studied >50,000 white and black adults with Exome 

Chip data available. Four low-frequency variants, ANGPTL8 rs145464906, 

PAFAH1B2 rs186808413, COL18A1 rs114139997 and PCSK7 rs142953140, with 

large effect estimates associated with either HDL-C or TG were discovered (e.g. 

ANGPTL8 rs145464906 and PCSK7 rs142953140 were associated with 15% and 

30% decrease in TG levels, respectively). None of these SNPs was associated with 

CHD in any of the additional ethnicities studied.90 Using the Exome Chop in 

>12,000 Chinese adults, Tang et al successfully identified three Chinese-specific 

rare variants at CETP, PCSK9 and LDLR (established lipid loci) for the four main 

lipid traits. The authors also reported two missense variants at PNPLA3 and 

PKD1L3 that influence both LDL-C and TG.91 Timpson et al discovered a novel 

rare variant at APOC3 for circulating plasma TG and VLDL concentrations through 

whole-genome sequencing of >3,200 individuals.92 A study by the UK10K 

Consortium identified novel alleles at APOB associated with TG, ADIPOQ for 

adiponectin and LDLR and RGAG1 for LDL-C concentrations by whole-genome 

and whole-exome sequencing >10,000 UK adults.93 Johansen et al demonstrated 

that both GWAS-identified and non-GWAS-identified genetic loci are enriched in 

rare hyperlipidemia-associated variants and the consideration of these variants 

increase the explained phenotypic variance for hyperlipidemia.94, 95 
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Rationale for prospective trait genetics 

As outlined above, a large number of cross-sectional genetic association studies 

have been undertaken to study the genetic component of dyslipidemias. However, 

only few genetic studies have been carried out in prospective studies or clinical trials 

in relation to lipids.  

As suggested by Kurbasic et al 96, some loci might demonstrate age-dependent 

effects (Figure 3) and these loci might not be detectable in cross-sectional GWAS 

meta-analyses owing to the age heterogeneity of the cohorts. Genetic effects might 

differ by age due to a number of factors including changes in genetic penetrance 

(the proportion of individuals that carry a certain genetic variation that also express 

a given phenotype might change with age), age-related changes in gene expression 

and interactions with cumulative environmental or lifestyle factors (e.g. 

environmental pollutants or nutritional intakes).97 This hypothesis is supported by 

Dumitrescu et al, who demonstrated significant heterogeneity in the association 

between variants at the FADS1 locus and LDL-C in white males aged less vs. more 

than 50 years, with a significant association observed in older, but not younger 

participants.98 A twin-study by Middelberg et al and earlier related studies from the 

same research group also conclude that different loci may affect various lipid traits 

at different ages and these studies also suggests that cross-sectional genetic 

association studies might underestimate heritability for lipid traits.99-102 
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Figure 3. Constant and time-dependent genetic effects. 
Time-varying genetic effects may be undetectable in a cross-sectional analysis. The locus shown in 
Panel A does not demonstrate time-dependent genetic effects (its effect is constant with age). For the 
locus presented in Panel B, cross-sectional studies in younger adults (age between 30 and 40) would 
conclude that  the AA genotype is protective, even though the same genotype is associated with higher 
risk in the elderly (age around 70). Ref: Kurbasic A et al. Gene-lifestyle interactions in complex 
diseases: Design and description of the GLACIER and VIKING studies. Current Nutrition Reports. 
2014;3:400-411. 

Genetic associations for lipid changes 

Lutsey et al studied the 95 GLGC-established lipid loci 72 in the prospective ARIC 

Study. In their study, a TG-specific genetic risk score (GRS) associated with 

increase in TG over a 9-yr follow-up period, but the TC-, HDL-C- and LDL-C-

related GRSs were not correlated with respective trait changes.97 Lu et al examined 

243 genomic loci in cholesterol metabolism-related pathways in a prospective study 

with an 11-yr follow-up. In this study, a TC GRS was created from 23 TC-associated 

variants. This GRS was associated with change in TC levels from baseline to follow-

up.103 Constanza et al examined 20 SNPs in 13 lipid-associated loci in cross-

sectional and longitudinal settings in ~2,000 Swiss adults with a 6-yr follow-up. 

While their hypothesis was that both the cross-sectional and the prospective 

analyses would yield similar findings, they observed only moderate consistency 

between cross-sectional and longitudinal findings. This result suggests different 

underlying biological mechanisms for lipid levels and lipid level changes for some 

lipid loci.104 Huang et al studied >3,000 black and white adults from the CARDIA 
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Study over a 20-yr follow-up period. Although they report baseline LDL-C 

differences by PCSK9 genotype, this study did not demonstrate evidence for 

longitudinal genetic associations.105 Webster et al studied three candidate loci, 

APOA5, LPL and GCK, for lipid level changes in >2,500 white adults over an 

average follow-up of 17-yrs. Although the authors did not observe striking 

differences between baseline (cross-sectional) and prospective genetic associations, 

few associations tended to change with increasing age.106 Lu et al examined changes 

in lipid traits in their latest GWAS in a Chinese population. All of their strong 

findings in relation to lipid changes also show cross-sectional associations for 

baseline lipid traits.77 

Although statistical methods improve, sample sizes grow, lipid assays become more 

detailed and accurate, and more genetic studies are published on cardiometabolic 

traits than ever before, the whereabouts of the “missing heritability” remains 

unclear. One plausible explanation is that early family and twin studies might have 

overestimated the heritable basis of common diseases.107 On the other hand, as 

mentioned above, some prospective studies suggest the opposite is true and state 

that cross-sectional studies, in fact, underestimate heritability.101 GWAS-identified 

variants (P<5×10-8) explain less than 10% of the genetic variance for lipid levels. 

However, in a study by Yang et al in 2010, 50 GWAS-established variants explained 

only 5% of the phenotypic variance in height, but using 250,000 common variants 

explained 45%.108 This observation shows that multiple yet undetected genetic loci 

are in fact associated with complex traits and can partially account for the 

unexplained trait variance. Fine-mapping established loci has also yielded 

significant findings, shedding further light on biological function and adding to the 

explained phenotypic variance.109, 110 

Gene x environment interactions 

Another phenomenon contributing to the missing heritability could be that certain 

genetic effects can also be modified by other genetic variants or environmental 

factors.107 These are termed gene × gene and gene × environment/lifestyle 

interactions, respectively. Gene × environment interactions could be interpreted as 

a given genetic variant’s effect differing across an environmental exposure or 

similarly, a given environmental or lifestyle exposure exerting a different effect in 

individuals with genotypic differences.111 This concept is shown in Figure 4; in this 

hypothetical scenario, among carriers of the aa genotype the environmental 

exposure demonstrate no associations with the outcome trait, whereas among the 

carriers of the AA genotype, environment has a strong association with the outcome 

trait. To look at the same example from another perspective, among those who are 

less exposed to an environmental exposure (Environmental exposure = 1 or 2), the 

aa genotype is associated with increased levels of the outcome trait compared to the 

other two genotypes (Aa and AA). Among those who are more exposed to an 

environmental exposure (Environmental exposure = 4 or 5), the same aa carriers 
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have lower levels of the outcome trait than carriers of the other two genotypes (Aa 

and AA). 

Examples exist in the literature where gene × environment interactions explain 

comparable phenotypic variance for common disease as genetic factors alone. 

Zheng et al reported genome-wide interaction studies where the interactions 

between environmental factors, such as carbohydrate and polyunsaturated fat intake 

and all the genetic loci on their array explained >20% of phenotypic variance in 

various quantitative glycemic traits and type 2 diabetes.112, 113 

  

 

Figure 4. The concept of gene × environment interactions 
Gene × environment interactions can be defined as the genetic effect on a trait that differ in magnitude  
across environmental exposures or environmental effects on traits that differ in magnitude across 
genotypes of a given genetic locus. Ref: Franks PW. Gene x environment interactions in type 2 
diabetes. Curr Diab Rep. 2011;11:552-561. 

Examples of gene x environment interactions in lipids 

Justesen et al discovered an interaction between the TG-specific GRS and 

anthropometric traits, BMI and waist circumference on fasting TG levels in a meta-

analysis of two Danish cohorts. In their study, the TG-specific GRS was more 

strongly associated with TG concentrations in metabolically unhealthy participants 

compared with metabolically healthy, normal weight participants. In addition to 

this, an interaction between the HDL-C-specific GRS and physical activity was 
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observed in relation to HDL-C levels. The GRS in this case exerted a smaller effect 

in more physically active participants than in those who reported being inactive.114 

Loria-Kohen et al report an interaction between the PPARA rs135549 SNP and milk 

consumption in relation to the reduction of TC/HDL-C and LDL-C/HDL-C ratios 

in an intervention study of 161 adults. Among skimmed milk drinkers, an improved 

lipid profile was apparent in the TT genotype carriers after the intervention, but no 

association was observed in the other genotypes.115 In a project studying lipid levels 

in an Inuit population, Rudkowska et al found interactions between 11 GWAS-

established SNPs and total fat / saturated fat intake on at least one plasma lipid 

biomarker. Genetic effects were generally less pronounced when self-reported 

intakes of total and saturated dietary fats were high.116 Stojkovic et al identified a 

suggestive interaction between a missense mutation at PNPLA3 with adiposity. At 

this locus, the G allele only associated with lower TG concentrations in overweight 

individuals.117 Lu et al observed interactions between the rs174546 variant at the 

FADS1/FADS2 gene cluster and polyunsaturated fat intake on non-HDL-C and 

HDL-C concentrations. The genotype only showed associations with non-HDL-C 

in those with high intakes of n-3 fatty acids and only showed associations with HDL-

C in those with high intakes of n-6 fatty acids.118 Takkunen et al also identified 

interactions between FADS1/FADS2 genetic variants and polyunsaturated fatty acid 

intake on various circulating long chain fatty acids, although none of the interaction 

statistics survived correction for multiple testing.119 Xu et al examined >700 

overweight or obese adults in a diet intervention trial and found that dietary fat 

intake modified the effect of the LIPC rs2070895 variant on changes in TC, LDL-

C and HDL-C. In individuals assigned to the low-fat diet, the A allele of the variant 

was associated with decreased TC and LDL-C levels, while the same allele was 

associated with increased levels of these traits in the high-fat diet group.120 In a study 

by Smith et al, physical inactivity (measured by the time spent watching television 

or using a computer) modified the association of the LIPG variant rs6507931 on 

HDL-C levels; in sedentary C allele carriers HDL-related traits were higher and 

LDL-related traits were lower compared to TT homozygotes.121 Abellán et al 

reported an interaction between rs4148102 at the ABCG1 locus and polyunsaturated 

fat intake on LDL-C concentrations in two Spanish cohorts. In their study, LDL-C 

concentrations appeared to be elevated only in participants carrying the AA 

genotype consuming a high level of dietary fat.122 Several studies examining 

PCSK9, LIPG and PPARD (established lipid loci) reported on gene × alcohol intake 

interactions in serum lipid levels.123-125 Junyent et al identified multiple interactions 

between SNPs at the ABCG5/ABCG8 gene complex and smoking habits on HDL-C 

levels in >800 Puerto Ricans.126 

Corella et al identified an interaction between the rs13702 variant at LPL and 

monounsaturated and polyunsaturated fat intake on baseline TG levels in the 

PREDIMED clinical trial. After three years, the same variant was associated with a 

greater decrease in TG, but only in those who consumed the Mediterranean diet high 

in unsaturated fats.127 In another clinical trial, the Diabetes Prevention Program 

(DPP), Pollin et al examined the associations of a global (non-trait-specific) lipid 
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GRS on blood lipid and lipoprotein subfraction concentrations and interaction 

effects across treatment arms. The GRS was associated with higher LDL-C and 

small LDL particle concentrations in the lifestyle intervention arm, but not in the 

placebo control arm, which suggests that those with high genetic burden respond to 

lifestyle interventions less than those with a lower genetic burden to higher lipid 

levels.36 

Sex-heterogeneity in gene × environment interactions 

In studies where sex modifies genetic effects, sex is the “environmental” component 

in the gene × environment interaction model. The study by Justesen et al mentioned 

above displayed strong sex heterogeneity; the interaction reported was only 

apparent in women and not men.114 In another study by Brondani et al, the 

rs1746661 SNP at FNDC5 was associated with higher levels of TC, LDL-C and 

lower levels of HDL-C in women but not men with type 2 diabetes.128 Taylor et al 

examined 49 GWAS-established lipid SNPs and observed statistically significant 

sex heterogeneity in two SNPs, rs28927680 and rs3135506 at the 

APOA1/APOC3/APOA4/APOA5/BUD13 gene complex for TG (larger effect 

estimates in males), rs7679 at PLTP for HDL-C (larger effect estimates in females) 

and rs12654264 at HMGCR for LDL-C (larger effect estimates in males).129 Five of 

17 loci previously demonstrating sex heterogeneity in large-scale meta-analyses 71, 

72, 130 also replicated in this study. 

Gene × lipid-lowering medication interactions in lipids 

Examples where genetic variations modify responses to lipid-lowering medications 

have also been described. Barber et al identified variants at APOE, CLMN and 

PCSK9 that are associated with LDL-C response to various statin therapies in a 

combined GWAS of >4,000 individuals.131 Thompson et al identified SNPs at 

APOE, PCSK9 and HMGCR that associated with LDL-C response to atorvastatin 

therapy in the TNT trial.132 Deshmukh et al conducted a GWAS on LDL-C response 

to a 10-mg atorvastatin therapy. The rs10455872 at LPA and rs445925 and 

rs4420638 at APOE strongly associated with LDL-C response to medication, 

indicating that these variants modulate the efficacy of statin therapy.133 Hu et al 

examined the genotypic factors that might influence response to niacin treatment in 

Chinese patients; DGAT2 rs3060 showed suggestive evidence for modulating LDL-

C response.134 A similar interaction was observed in an earlier study in relation to 

TG response to niacin therapy.135 

Genetic loci and their role in lipid metabolism 

The landmark GLGC publications by Teslovich et al and Willer et al report on the 

biological and clinical relevance of the loci identified in their papers.72, 74  



32 

Several loci that were robustly associated with lipid levels in GWAS have well-

known biological functions, but it is often unknown how specific SNPs at these loci 

impact lipid metabolism. In addition, several lead SNPs discovered by GWAS lie 

outside genes in noncoding regions or in intronic, non-expressed regions. This 

implies that many of the GWAS-identified variants influence gene regulation 

perhaps via epigenomic mechanisms. 

The most studied genetic loci 

An extensively researched locus is LPL, which codes for lipoprotein lipase and 

ANGPTL3 and ANGPTL4, which are lipoprotein lipase inhibitors. Lipoprotein 

lipase hydrolyzes TG in the chylomicrons and VLDL particles, and also mediates 

uptake of lipoproteins in endothelial, muscle and fat cells.136 LDLR encodes the LDL 

receptor and the protein product of LDLRAP1 interacts with the LDL receptor to 

remove cholesterol from the bloodstream by internalizing LDL particles.72 In the 

hepatic cells, lipoproteins are broken down and free cholesterol is released. Protein 

products of LRP1, LRP2 and LRP4 also mediate LDL uptake. SCARB1 codes for a 

specific HDL receptor, which mediates the selective uptake of HDL particles in the 

liver. This uptake is crucial for the reverse cholesterol transport. ABCA1 codes for 

a transmembrane protein called ATP-binding cassette transporter ABCA1. This 

transporter protein is a very important regulator of cellular cholesterol transport; it 

is responsible for transporting cholesterol to lipid-poor lipoproteins and thereby 

facilitating their transformation to nascent HDL.137 Other loci coding for ATP-

binding cassette proteins, such as ABCG5/8 and ABCA8, have been identified in 

GWAS for lipid levels.  

Genetic variants at APOA1/APOC3/APOA4/APOA5/BUD13, APOB, and 

APOE/APOC1 have shown very strong associations with multiple lipids traits.72 

These loci code for various apolipoproteins strongly associated with certain 

lipoprotein subclasses. APOB encodes apolipoprotein B, the primary apolipoprotein 

of chylomicrons, VLDL, IDL and LDL.137 APOE encodes apolipoprotein E, which 

is found in chylomicrons and IDL and its main function is to transport cholesterol 

into the lymph system and the blood.137 APOC1 encodes apolipoprotein C1, which 

exchanges cholesterol between lipoproteins, removes cholesterol from tissues and 

is harbored mainly on HDL particles. APOA1 encodes apolipoprotein A1, which is 

the main apolipoprotein of HDL particles. This protein, in conjunction with the 

protein product of LCAT (also a known lipid locus) promotes fat and cholesterol 

removal from adipocytes, myocytes and the endothelial cells and facilitates their 

excretion in the liver.137 APOC3 encodes apolipoprotein C3, which is the constituent 

of VLDL particles. It inhibits endothelial and hepatic lipases (encoded by LIPG and 

LIPC, respectively – both GWAS-established loci for lipids) and hepatic uptake of 

fats, thereby increasing blood TG concentrations.137 APOA4 codes for 

apolipoprotein A4, which is expressed on chylomicrons. Its function is not yet 

known, but intestinal fat absorption increases apolipoprotein A4 levels. APOA5 

encodes apolipoprotein A5, which can be found on chylomicrons, VLDL and HDL 
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particles and is an important determinant of TG levels. Lipoprotein(a) is a separate, 

highly atherogenic lipoprotein class containing an apolipoprotein(a) molecule 

bound to an apolipoprotein B-100. The LPA locus affects lipoprotein(a) 

concentrations and is associated with lipid levels and CHD.137  

SORT1 encodes the sortilin 1 protein, which is responsible for the degradation of 

nascent VLDL in the liver, thereby regulating the level of their release in the 

bloodstream. VLDLR codes for the VLDL receptor, which is expressed in several 

tissues in the body, most importantly, in the brain, heart and skeletal muscle and 

adipose tissues. It is not expressed, however, in the liver. Its function is to facilitate 

TG uptake in these tissues from chylomicrons and VLDL particles.74 FTO is a 

known locus for obesity and type 2 diabetes, and in the second GLGC meta-analysis, 

variants at this locus were independently associated with HDL-C and TG.74, 82 

Lipid loci and CAD  

Some established lipid loci are highly relevant from a clinical perspective, as in 

addition to lipid levels, they also showed robust associations with CAD. In the 

second GLGC GWAS, 40 lipid loci reached nominal significance for CAD.74 These 

include IRS1, C6orf106, KLF14, NAT2, RBM5 and CMTM6, some of which were 

originally only associated with HDL-C concentrations. Although circulating blood 

lipid levels (TG, LDL-C and HDL-C) had been consistently associated with risk of 

CHD and atherosclerosis, the causal nature of these observations have been debated. 

Recent Mendelian Randomization studies suggest that LDL-C 138, TG 139, TG-rich 

lipoprotein and lipoprotein(a) concentrations 140 are causally related to CHD and 

MI. On the other hand, Mendelian Randomization studies and pharmacological 

evidence from recent clinical trials suggest that HDL-C and some other previously 

implicated factors such as C-reactive protein are not on the causal pathway to CHD. 
138, 141-145 Whilst it is possible that the loci mentioned above have pleiotropic effects 

on HDL-C and CAD (or related traits, such as type 2 diabetes or insulin resistance), 

it is possible that these loci affect CAD risk through their intermediate effects on 

HDL-C levels.  

Genetic loci and lipid lowering medications 

Dyslipidemias are usually treated with lipid-lowering medications. Statins are 

considered the frontline therapy in treating patients with high lipid levels.146 Other 

classes of lipid medications, such as fibrates, niacin 40 and ezetimibe 147 are also 

often used in dyslipidemia. Recently, beneficial effect of gastric bypass surgery on 

lipid levels were reported.148 

Some lipid medications, such as statins, ezetimibe, torcetrapib and PCSK9 

inhibitors mimic mutations in known lipid loci, HMGCR, NPC1L1, CETP and 

PCSK9, respectively.  
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HMGCR encodes the HMG-CoA reductase enzyme, which controls a rate-limiting 

step in the mevalonate pathway 21 (converting HMG-CoA to mevalonic acid). As 

internally produced cholesterols are downstream from this step in the mevalonate 

pathway, inhibiting the HMG-CoA reductase enzyme by statin drugs results in 

decreased cholesterol synthesis and therefore, lower concentrations of circulating 

cholesterol.149 Statins are the most prescribed lipid lowering agents as they have 

proven extremely effective in LDL-C lowering.150 

NPC1L1 encodes the Niemann-Pick C1-like protein 1, which is expressed in the 

liver and in the gastrointestinal tract. The inhibition of this protein by ezetimibe 

decreases cholesterol uptake in the intestinal cells and thereby lowers blood 

cholesterol concentrations.147 Recently, rare inactivating mutations have been found 

at the NPC1L1 locus. These mutations proved to be associated with reduced plasma 

LDL-C levels and CHD.151 

PCSK9 encodes the proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme, 

which binds to LDL receptors in the liver and degrades them before they are able to 

clear LDL particles from the circulating blood.152 PCSK9 inhibitors are a novel class 

of drugs currently undergoing large randomized clinical trials to prove efficacy and 

safety.152 PCSK9 inhibitors are extremely important, as their discovery was 

dependent on genetic discoveries; rare loss-of-function mutations at the PCSK9 

locus were detected and found to be associated with a decreased risk for CAD 153, 

These findings spurred subsequent interest for pharmacologic intervention on the 

protein product of the gene. 

The CETP locus has one of the strongest associations (both in terms of effect size 

and P value) for lipids ever discovered; it encodes the cholesteryl ester transfer 

protein (CETP), which facilitates cholesterol exchange between various 

lipoproteins. As high HDL-C levels are associated with a decreased risk for 

atherosclerosis, CHD and MI, novel drugs aiming to increase HDL-C levels by 

CETP inhibition have emerged. The drug torcetrapib was developed and tested in a 

large randomized clinical trial. The trial was stopped due to unexpected adverse 

cardiovascular outcomes (raise in blood pressure) in the torcetrapib arm.142, 154 

Currently, novel classes of CETP inhibitors (e.g. anaceptrapib 40) are undergoing 

clinical trials to discover whether increasing HDL-C is a futile strategy or not.155, 156  

The first commercially available gene therapy in the world also relates to genetic 

discoveries in relation to lipid levels. The Glybera® gene therapy aims to treat 

patients with a rare mutation in the LPL gene that causes extreme high levels of TG 

and abnormally large lipid droplets in the blood, resulting in myocardial infarctions 

early in young adulthood. This ground-breaking new therapeutic approach will 

comprise of ~20 intramuscular injections with an adenovirus vector carrying LPL.157  

As reviewed by Preiss et al and Rached et al, several new trials and clinical 

experiments of dyslipidemia drugs are currently underway 40, 156, some of which are 

inspired by genetic findings.  
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As more than 150 GWAS loci have been established so far, there are certainly many 

potential targets for pharmaceutical interventions. However, only a small fraction 

of these loci’s etiology is fully unraveled and understood. In order to develop new 

targets for intervention, functional characterization of established lipid loci is much 

needed. Furthermore, new genetic studies with more detailed and accurate genotype 

and phenotype information are warranted to discover additional variation in relation 

to dyslipidemia. 
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Aims 

Identifying causal environmental and genetic determinants and gene × environment 

interactions for lipids is important in the prevention and treatment of dyslipidemias 

and subsequently, atherosclerosis and CVD. This thesis focuses on genetic 

associations in prospective cohort studies and detecting gene × environment 

interactions in observational cohort studies and clinical trials. The goal of the papers 

presented here are primarily hypothesis generation; thus, further studies are needed 

to elucidate the mechanisms of these discoveries. 

The overarching aims of this thesis are to  

 

1. familiarize the reader with the concept of prospective trait genetics where 

the outcomes are trait changes, not cross-sectional measures of association 

2. explore the influence of gene × environment interactions on lipid levels in 

population-based studies and randomized controlled trials 

 
Paper I – this paper reports analyses of the 157 currently established lipid-

associated loci (both as single variants and aggregated into trait-specific genetic risk 

scores) in relation to 10-yr changes in fasting total cholesterol and triglyceride 

levels. 

Paper II – this paper extends Paper I by examining of a larger set of SNPs. 

Replication studies, in silico look-ups in international consortia and functional 

annotations were carried out to provide additional levels of evidence for our 

findings. 

Paper III – in this paper, a previously reported gene × environment interaction 

between a triglyceride-associated genetic risk score and BMI on blood triglyceride 

concentrations was explicitly tested and replicated in a cross-sectional setting. A 

meta-analysis of four cohort studies was conducted and protein-protein interaction 

analysis was carried out. 

Paper IV – in this paper, the analyses focused on assessing gene × treatment 

(intensive lifestyle intervention and metformin treatment) interactions for loci with 

established association signals for a range of lipids and lipoproteins within a 

randomized controlled trial (the Diabetes Prevention Program). 
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Materials and methods 

Study populations 

The analyses described herein were undertaken in several different study 

populations. We used the Gene-Lifestyle interactions And Complex traits Involved 

in Elevated disease Risk (GLACIER) Study as the discovery cohort for Papers I 

and II and as a replication cohort for Paper III. In Papers I-III we used the Malmö 

Diet and Cancer (MDC) Study for replication. In Paper II, in addition to the MDC 

Study, we also utilized the Prospective Investigation of the Vasculature in Uppsala 

Seniors (PIVUS), Uppsala Longitudinal Study of Adult Men (ULSAM), Medical 

Research Council (MRC) Ely studies for replication. In Paper III, we meta-

analyzed the results from the GLACIER and MDC studies with the Inter99 and 

Health2006 studies. We used the Diabetes Prevention Program (DPP) randomized 

controlled clinical trial (RCT) for Paper IV. Materials and Methods describes the 

GLACIER Study and the DPP RCT in detail, as these two studies were central to 

this PhD work. The section under the subheading Study populations / Other studies 

contains a brief description of all the other studies involved in Papers I-III. An 

overview of the studies involved in Papers I-IV is presented in Table 1. Project 

flowcharts for Papers I, II, III and IV are shown in Figures 5, 6, 7 and 8, 

respectively. For a more detailed description, clinical characteristics, genotyping 

information and statistical methods of these studies please see the manuscripts or 

the references included in the respective sections. 

Table 1. Studies in Papers I-IV. 

 Paper I Paper II Paper III Paper IV 

Discovery phase GLACIER* GLACIER* Inter99 
Health2006 

DPP* 

Replication phase MDC MDC 
PIVUS 
ULSAM 
MRC Ely 

GLACIER* 
MDC 

- 

Meta-analysis GLACIER* 
MDC* 

GLACIER* 
MDC* 
PIVUS* 
ULSAM* 
MRC Ely* 

Inter99 
Health2006 
GLACIER 
MDC 

- 

*analysis performed primarily by Tibor V. Varga 
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Figure 5. Project flowchart of Paper I. 
Δ – trait change; GRS – genetic risk score; GWAS – genome-wide association study; SNP – single 
nucleotide polymorphism; TC – total cholesterol; TG – triglyceride, wGRS – weighted genetic risk 
score. 

 

Figure 6. Project flowchart of Paper II. 
CAD – coronary artery disease; Δ – trait change; DBP – diastolic blood pressure; SBP – systolic blood 
pressure; SNP – single nucleotide polymorphism; T2D – type 2 diabetes; TC – total cholesterol; TG – 
triglyceride. 



41 

 

Figure 7. Project flowchart of Paper III. 
BMI – body mass index; GRS – genetic risk score; TG – triglyceride; wGRS – weighted genetic risk 
score. 

 

Figure 8. Project flowchart of Paper IV. 
GWAS – genome-wide association study; GRS – genetic risk score; HDL – high-density lipoprotein; ILI 
– intensive lifestyle intervention; SNP – single nucleotide polymorphism; wGRS – weighted genetic risk 
score. 
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The following section provides an overview of each of the study cohorts. 

GLACIER 

The GLACIER Study is nested in the Västerbotten Health Survey (VHU, also 

known as the Västerbotten Intervention Programme (VIP)).158 As mortality from 

CVD in the northern Swedish county of Västerbotten was the highest in Sweden in 

the 1980s, VHU was launched as a community-based intervention in 1985. 

Participants, first from Norsjö, then from several cities in Västerbotten, were invited 

to their primary health care facility for a detailed health screening and lifestyle 

counselling in their 40th, 50th and 60th year of birth. At each visit, blood samples 

were drawn after an overnight fast; these samples are stored at the Umeå University 

Medical Biobank. A wide-range of biomarkers is available, including basic 

anthropometric measures, systolic and diastolic blood pressure, fasting and post-

challenge glucose levels, obtained by a 75g oral glucose tolerance test and fasting 

blood lipid levels. In addition to clinical characteristics , lifestyle was ascertained 

by detailed questionnaires, including an 86-item food frequency questionnaire 

(FFQ). Information about leisure-time and occupational physical activity, level of 

education and quality of life were also collected. 

The GLACIER Study is nested within this background population and data 

resource. GLACIER is comprised of ~19,000 adults, from which we use smaller 

subsamples in our studies as a result of analysis-specific inclusion and exclusion 

criteria, partly due driven by to insufficient genotype or phenotype information.96 

Currently, ~5,000 GLACIER participants have one follow-up visit (with an average 

follow-up period of ~10 years). A subset of the GLACIER Study (~6,000 

participants) is genotyped with the Illumina Cardio-MetaboChip custom array.73 All 

GLACIER participants gave informed consents and the study was approved by the 

Regional Ethical Review Board in Umeå. 

DPP 

The DPP is a multi-centered, multi-ethnic (White, African American, Hispanic, 

Asian and American Indian by self-report) RCT based in the USA.159, 160 The 

primary outcome of the trial is diabetes incidence confirmed by an oral glucose 

tolerance test (OGTT). A total of ~4,000 non-diabetic, overweight/obese 

participants at high risk of developing type 2 diabetes were recruited based on age, 

BMI and fasting and post-challenge glucose concentrations. Eligible study 

participants are characterized by: 

 age ≥ 25 years 

 BMI above ethnicity-specific thresholds (e.g. BMI ≥ 24 kg/m2 in Whites) 

 fasting plasma glucose < 7.0 mmol/l 
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 7.8 mmol/l ≤ 2-h post-load plasma glucose < 11.1 mmol/l. 

Participants were randomized into four arms: intensive lifestyle intervention (ILI), 

metformin, troglitazone and standard of care (placebo). In the ILI arm participants 

were recommended to conduct moderate-intensity physical activity for 150 

minutes/week and to maintain a healthy diet to achieve a weight loss goal of 7% 

during the trial period. They were given intensive coaching in diet, physical activity 

and behavior modification.161 Participants in the metformin arm were prescribed 850 

mg metformin pills twice a day. Participants in the troglitazone arm were prescribed 

400 mg of troglitazone pills once a day. All arms, including the comparison arm 

received standard of care including written information and yearly short individual 

sessions on physical activity and diet. After two years of the initiation of the trial, 

the troglitazone arm was discontinued due to liver toxicity concerns.162 The 

remaining three arms comprise ~3,000 participants available for analyses. A wide 

range of biomarkers is available in the DPP including glycaemic traits and fasting 

blood lipid levels. The DPP is genotyped with the Illumina Cardio-MetaboChip 

custom array.73 All participants gave written informed consent and ethical approvals 

were issued at the respective DPP study centers (approved by their respective 

Institutional Review Boards). 

Other studies 

The MDC Study is a population-based prospective cohort study from the southern 

Swedish county of Skåne.163, 164 During 1991-1996, women born between 1923 and 

1945 and men born between 1923 and 1950 living in the city of Malmö were invited 

to participate. A total of ~3,000 participants with no history of coronary events had 

relevant follow-up data available for replication analyses in the prospective trait 

genetics projects. Basic anthropometric measures were collected by trained nurses 

and fasting blood was obtained. Lipid concentrations were measured by a DAX 48 

automatic analyzer (Bayer AB, Göteborg, Sweden). MDC study participants were 

genotyped using the Illumina HumanOmniExpress BeadChip v.1 and subsequently 

imputed using the 1000G (March 2012) reference sequences using IMPUTE2.54, 165 

Genotyping was performed at the Broad Institute, Cambridge, MA USA. All 

participants provided written informed consent and the study was approved by the 

Research Ethics Committee at Lund University. 

The PIVUS study includes ~2,000 randomly selected 70-year-olds living in Uppsala 

County, Sweden, who were invited for a baseline visit between 2001 and 2004.166 

A follow-up examination was performed at the age of 75 years. A total of 599 

participants had data available for replication analysis in our project. Blood samples 

were collected after an overnight fast. Participants were genotyped with the Illumina 

Cardio-Metabochip array.73 

The ULSAM study comprises ~1,000 50-year-old men living in Uppsala County, 

Sweden. Baseline data were collected between 1970 and 1974.167 Men were re-

examined at ages 71 and 77. A total of 471 participants had complete baseline and 
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follow-up data for our analyses. Blood samples were collected after an overnight 

fast. Participants were genotyped with the Illumina Cardio-Metabochip custom 

genotyping array.73 

The MRC Ely Study is a UK-based prospective cohort study focused on studying 

the etiology of type 2 diabetes.168 Baseline data was collected between 1990 and 

1992. Approximately 1,000 adults underwent a standard 75 g OGTT and detailed 

screening for related cardiovascular and metabolic risk factors. All participants were 

invited for identical screening measurements ~10 years later. A total of 755 

participants had data available for the analyses described in this thesis (Paper II). 

Blood samples were collected after an overnight fast. Participants were genotyped 

with the Illumina Cardio-Metabochip array.73 

The Inter99 and Health2006 studies served as a basis for the replication reported 

in Paper III. As we only used extracted baseline summary statistics and did not use 

raw data, we only provide a very brief description about these studies. Inter99 is a 

randomized nonpharmacological intervention study for the prevention of ischemic 

heart disease.114, 169 At baseline, 30–60 years old participants were examined at the 

Research Centre for Prevention and Health in Glostrup, Denmark. The Inter99 study 

was approved by The Copenhagen County Ethical Committee and the National 

Board of Health. Health2006 is a population-based study examining general health 

and several cardiovascular and other metabolic diseases in 18-74 years old Danish 

adults.114, 170 The Health2006 study was conducted at the Research Centre for 

Prevention and Health in Glostrup, Denmark. Both Inter99 and Health2006 

participants were genotyped with the Illumina Cardio-Metabochip array.73 

In Paper II, we conducted in silico look-ups for association summary statistics in 

publicly available datasets of international consortia. We looked-up effect estimates 

and P values in the Coronary ARtery DIsease Genome-wide Replication and Meta-

analysis (CARDIoGRAMplusC4D) Consortium171 (Nmax~190,000) for SNP-

coronary artery disease associations, the Global Lipids Genetics Consortium 

(GLGC)74 (Nmax~190,000) for SNP-lipid associations, the DIAbetes Genetics 

Replication And Meta-analysis  (DIAGRAM) Consortium172 (Nmax~90,000) for 

SNP-type 2 diabetes associations, and the International Consortium for Blood 

Pressure (ICBP)173 (Nmax~200,000) for SNP-blood pressure associations. 

Study-specific materials and methods 

Clinical characteristics 

In GLACIER (Paper I-III), capillary blood was drawn following an overnight fast. 

Approximately 5% of the study participants reported a shorter than ideal fasting 

period (<8 hours) before the blood draw, and information on fasting status was 

missing in a ~15% of the cohort; therefore, analyses were adjusted with three 
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dummy variables indicating fasting status (0/1 – fasting status unknown/known; 0/1 

– fasted less than 4 hours; 0/1 – fasted between 4-8 hours), with participants fasted 

8 hours (~80% of the the study participants) as reference. Serum lipid 

concentrations were measured from fresh capillary plasma using a Reflotron bench-

top analyzer (Roche Diagnostics Scandinavia AB). Due to the sensitivity of the 

analyzer, all TG values below 0.8 mmol/l were set to missing. HDL-C was measured 

after precipitation of the other lipoproteins with sodium phosphowolframate-

magnesium chloride. LDL-C concentrations were calculated with the Friedewald 

equation.174 Approximately 1% of GLACIER participants reported using lipid-

lowering medications (no information available on the specific type), which we 

controlled for in analyses using constants. At the time of the examinations the most 

common type of lipid lowering drugs in Västerbotten was HMG-CoA reductase 

inhibitors, also known as statins, used by ~96% of lipid lowering medication 

users.175 Consequently, to correct blood lipid levels we used the statin constants 

proposed by Wu et al: 176 HDL-C: -0.059 mmol/l; LDL-C: +1.279 mmol/l, TC: 

+1.336 mmol/l, TG: +0.207 mmol/l. Using simulations and real-data validation, 

Tobin et al 177 reported that correction with constants among medication-users yields 

less biased estimates and is more powerful than adjusting with a binary variable or 

to exclude participants on medication. In cross-sectional analyses, TG values were 

transformed to the natural log scale prior to analyses to approximate a normal 

distribution in each cohort. BMI was calculated as weight (kg) / height (m2). 

In the DPP (Paper IV), fasting (>12 hours) venous blood was drawn. Measurements 

of TG, TC and HDL-C were made using enzymatic methods standardized to the 

Centers for Disease Control and Prevention reference methods.178 HDL-C 

concentrations were obtained by precipitation of apolipoprotein B-containing 

lipoproteins by dextran sulfate Mg2+ treatment.179 LDL-C concentrations were 

calculated with the Friedewald equation.174 Where TG levels exceeded 4.5 mmol/l, 

lipoprotein fractions were separated using ultracentrifugation.180 Nuclear magnetic 

resonance (NMR) spectroscopy (LipoScience Inc., Raleigh, NC) was used to 

quantify IDL-C and ApoB concentrations, VLDL particle numbers (total and small, 

medium and large subfractions), LDL particle numbers (total and small and large 

subfractions) and HDL particle numbers (total and small, medium and large 

subfractions) and their total particle sizes.181 We conducted two parallel sets of 

analysis; first, traits were analyzed in their native distributions. Second, we inverse 

normalized all traits (mean=0, SD=1) and repeated the analyses to facilitate 

comparisons of effect estimates between traits. Individuals using lipid medications 

were excluded. Semiannual fasting plasma glucose measurements and annual 75g 

OGTT were performed. In our study we used baseline and 1-yr fasting and post-

challenge glucose levels and incident type 2 diabetes status. 

Lifestyle exposures 

In Papers I and III, various lifestyle information was used. These were obtained 

using a validated questionnaire. In Paper I, alcohol intake was used as a percentage 
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of total energy intake and smoking was coded as 1, 2, 3 for current, former and never 

smokers, respectively. In Paper III, smoking was coded the same way as in Paper 

I. In Paper III, leisure time physical activity was coded as exercise performed with 

the following frequencies: 1 – never, 2 – sometimes, 3 - once per week, 4 - 2-3 times 

a week, 5 - more than 3 times a week; these categories were directly obtained from 

a single question related to leisure time physical activity in the FFQ. A diet variable 

was calculated by conducting principal component analysis (PCA). This method 

uses between food-intake correlation measures to identify underlying patterns in the 

data.182 Intake of eight macronutrients (carbohydrate, sugar, protein, saturated fat, 

total fat, fiber, monounsaturated fatty acid and polyunsaturated fatty acid) was used 

to calculate the diet principal components. The first component principal component 

was used in the analysis. 

Genotype data 

In GLACIER (Paper I-III), DNA was extracted from peripheral white blood cells 

and genomic DNA samples were diluted to 4 ng/μl.183, 184 Participants were 

genotyped by the Illlumina Cardio-MetaboChip array.73 In Paper I, we studied 

previously reported genome-wide significant (P<5×10-8) SNPs for TC, TG, HDL-C 

and LDL-C levels. Teslovich et al reported 95 genomic loci,72 and a later meta-

analysis by Willer et al reported an additional 62 loci for these four traits.74 We used 

highly correlated proxy SNPs (r2>0.8) for 18 variants. We were unable to find 

suitable proxies for two SNPs; these were excluded from the analysis. We conducted 

analyses with 162 SNPs in total - 75 SNPs for TC; 43 SNPs for TG, 73 SNPs for 

HDL-C and 58 SNPs for LDL-C (including SNPs with multiple associations, e.g. 

rs1532085 in LIPC associates with TC, TG and HDL-C). The average genotyping 

success rate was 99.9%. None of the SNPs deviated significantly from Hardy-

Weinberg equilibrium at a study-wise corrected type I error level (α=0.0001). For 

this study, we also created trait-specific genetic risk scores (GRS) to study the 

combined effects of the individual SNPs. For each participant, we first created 

unweighted GRSs by summing the number of risk alleles (trait elevating alleles for 

TC, TG and LDL-C and trait decreasing alleles for HDL-C; e.g. the risk allele for 

rs1532085 in LIPC is A for TC, but G for HDL-C. For a participant with the GG 

genotype, this SNP contributes a score of 0 to the TC GRS, but 2 to the HDL-C 

GRS. A heterozygous genotype of AG will contribute 1 risk allele to both GRSs). 

The theoretical minimum values for the unweighted GRSs is 0 for all traits, while 

the theoretical maximum values are 150, 86, 146 and 116 for the TC-, TG-, HDL-

C- and LDL-C-associated GRSs, respectively. In a subsequent step, we weighted 

the GRSs (wGRS) by multiplying effect allele counts with published effect sizes 

reported by Willer et al.74 To make results easier to compare, we transformed the 

scale of the wGRSs (maximum values depend on the reported effect sizes and 

number of SNPs) to the original scale of the unweighted GRS (same maximum 

values as mentioned above).185 The wGRSs are created as shown in Equation 1 –
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SNPs denote the allele count for a given SNP and ESs denote published effect sizes 

for each SNPs. 

 

Equation 1. 𝑤𝐺𝑅𝑆 = [(𝐸𝑆1 ∗ 𝑆𝑁𝑃1) + (𝐸𝑆2 ∗ 𝑆𝑁𝑃2) + ⋯ +  (𝐸𝑆𝑛 ∗ 𝑆𝑁𝑃𝑛)] ∗
(𝑛/ ∑ 𝐸𝑆1

𝑛  ) 

 

For each SNP, missing genotype information was imputed by assigning average 

genotype values to missing values in order to keep allele frequencies constant.186 

In Paper II we extended our analyses to a wider range of SNPs from the Illumina 

Cardio-MetaboChip array. We selected all the previously reported genome-wide 

significant SNPs (as in Paper I), Replication SNPs, ~5,000 of the most statistically 

significant, but sub-genome-wide significant SNPs (P<5×10-8), Fine-mapping SNPs 

around the genome-wide significant SNPs and Wildcard SNPs (put on the array for 

consortia-specific reasons, namely for deep sequencing efforts or from a particular 

pathway of interest) for the four lipid traits.73 In total, we extracted 43,690 SNPs 

from the array for the discovery phase of the project. Rare variants (MAF<1%; 

n=14,280 SNPs) and SNPs not in Hardy-Weinberg equilibrium (α=0.0001; n=23 

SNPs) were excluded. In total, 29,387 SNPs were analyzed in the discovery phase 

in GLACIER.  

In Paper III, we analyzed the 43 TG-related SNPs and the TG-related GRS and 

wGRS, which are described in detail in Paper I above. 

In the DPP (Paper IV), DNA was extracted from peripheral white blood cells. We 

selected previously reported genome-wide significant SNPs for TC (71/75 SNPs 

available), TG (37/43 SNPs available), HDL-C (68/73 SNPs available), LDL-C 

(54/58 SNPs available) at 157 genomic loci74 and 91 lipoprotein subfraction 

associated SNPs at 43 genomic loci78 from recent GWAS meta-analyses. All 

together, we used 234 SNPs in our analyses – these were extracted from the Illumina 

Cardio-MetaboChip genotyping array.73 During quality control (QC) procedures, 

participants with failed genotyping, gender inconsistency, or cryptic familial 

relatedness were excluded. During QC, Hardy-Weinberg equilibrium (α=10-7) was 

assessed in each ethnic group separately. Where the index SNP was not available, 

we used a highly correlated proxy (r2>0.8 in the respective HapMap population). 

The genotyping success rate for the 234 SNPs was 99.6%. 

Statistical methods 

Statistical analyses were undertaken predominantly using STATA (version 12.1 and 

subsequently 13.1, StataCorp LP, TX, USA) and PLINK (version 1.07).187, 188 The 

GRSs for Papers I and III were created using SAS (version 9.3, SAS Institute Inc., 

NC, USA).189 Analysis for Paper III was done using R (version 3.2.2, The R 
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Foundation for Statistical Computing).190 We used a range of tools for meta-analysis 

(reported below). 

Regression models 

In the section below, I include equations to facilitate a better understanding of the 

regression models used. In these equations, the dependent variable is on the left side 

of the equal sign (=), while the independent variables are on the right side of the 

equal sign. 

In Paper I, we conducted cross-sectional analyses investigating the GRSs’ main 

effects on baseline lipid traits. In these models we used generalized linear models 

(GLM) by fitting the lipid measures as dependent variables and the GRSs as 

independent variables. In these models, we adjusted for age, age2, sex, fasting 

variables as explained above, and population substructure using the first four 

genomic principal components (PC) (Equation 2).  

 

Equation 2. 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑙𝑖𝑝𝑖𝑑 = 𝛼 +  𝛽𝐺𝑅𝑆 + 𝛽𝑎𝑔𝑒 +  𝛽𝑎𝑔𝑒2 +  𝛽𝑠𝑒𝑥 +

 𝛽𝑓𝑎𝑠𝑡𝑖𝑛𝑔 + 𝛽𝑃𝐶1−4 +  𝜀 

 

The main focus of Papers I and II, were the longitudinal models using prospective 

data. In these models we fitted the follow-up lipid measures as dependent variables 

and the SNPs/GRSs (these genetic components are denoted as G in Equation 3) as 

independent variables. We adjusted these models for age, age2, follow-up age, sex, 

fasting time the first four PCs and the traits’ respective baseline value (Equation 3). 

We included both age and follow-up age to account for inter-individual follow-up 

time differences. 

 

Equation 3. 𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑢𝑝 𝑙𝑖𝑝𝑖𝑑 = 𝛼 +  𝛽𝐺 + 𝛽𝑎𝑔𝑒 +  𝛽𝑎𝑔𝑒2 +

𝛽𝑓𝑜𝑙𝑙𝑜𝑤−𝑢𝑝 𝑎𝑔𝑒 +  𝛽𝑠𝑒𝑥 + 𝛽𝑓𝑎𝑠𝑡𝑖𝑛𝑔 + 𝛽𝑃𝐶1−4 + 𝛽𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑙𝑖𝑝𝑖𝑑 +  𝜀 

 

In Papers I and II, we conducted meta-analyses to obtain summary effect estimates 

for the longitudinal models undertaken in the separate studies. As follow-up times 

varied between studies, we created a synchronized outcome for the meta-analysis, 

which we termed average annual lipid change (AALC). We computed this variable 

by substracting the baseline level from the follow-up level for each trait and dividing 

the delta by the follow-up period (in years). (Equation 4). 

 

Equation 4. 𝐴𝐴𝐿𝐶 =  
(𝑓𝑜𝑙𝑙𝑜𝑤−𝑢𝑝 𝑙𝑖𝑝𝑖𝑑)−(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑙𝑖𝑝𝑖𝑑)

𝑓𝑜𝑙𝑙𝑜𝑤−𝑢𝑝 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑦𝑟)
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The analyses in GLACIER and all replication analyses were repeated using AALC 

as the outcome in the GLMs (Equation 5) and summary statistics from these models 

were subsequently meta-analyzed. Note that only thing that differs between 

Equation 4 and Equation 5 is the definition of the dependent variable. 

 

Equation 5. 𝐴𝐴𝐿𝐶 = 𝛼 +  𝛽𝐺 + 𝛽𝑎𝑔𝑒 +  𝛽𝑎𝑔𝑒2 + 𝛽𝑓𝑜𝑙𝑙𝑜𝑤−𝑢𝑝 𝑎𝑔𝑒 + 𝛽𝑠𝑒𝑥 +

 𝛽𝑓𝑎𝑠𝑡𝑖𝑛𝑔 + 𝛽𝑃𝐶1−4 + 𝛽𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑙𝑖𝑝𝑖𝑑 +  𝜀 

 

In Paper III, we used similar GLMs as in the cross-sectional models (Equation 2). 

In these models we fitted TG as the dependent variable and the wGRS as the 

independent variable. We adjusted the model for age, age2, sex, fasting time, BMI 

and the first four PCs (Equation 6).  

 

Equation 6. 𝑇𝐺 = 𝛼 +  𝛽𝑤𝐺𝑅𝑆 + 𝛽𝑎𝑔𝑒 + 𝛽𝑎𝑔𝑒2 +  𝛽𝑠𝑒𝑥  +  𝛽𝑓𝑎𝑠𝑡𝑖𝑛𝑔 +  𝛽𝐵𝑀𝐼 +

 𝛽𝑃𝐶1−4 +  𝜀 

 

Models were repeated by including a BMI × wGRS interaction term (Equation 7). 

 

Equation 7. 𝑇𝐺 = 𝛼 +  𝛽𝐵𝑀𝐼×𝑤𝐺𝑅𝑆 + 𝛽𝑤𝐺𝑅𝑆 + 𝛽𝑎𝑔𝑒 +  𝛽𝑎𝑔𝑒2 +  𝛽𝑠𝑒𝑥 +

 𝛽𝑓𝑎𝑠𝑡𝑖𝑛𝑔 + 𝛽𝐵𝑀𝐼 + 𝛽𝑃𝐶1−4 +  𝜀 

 

In additional models, we adjusted the interaction model for lifestyle factors 

including education level, leisure time physical activity, smoking, and total energy 

intake (Equation 8).  

 

Equation 8. 𝑇𝐺 = 𝛼 +  𝛽𝐵𝑀𝐼×𝑤𝐺𝑅𝑆 + 𝛽𝑤𝐺𝑅𝑆 + 𝛽𝑎𝑔𝑒 +  𝛽𝑎𝑔𝑒2 +  𝛽𝑠𝑒𝑥 +

 𝛽𝑓𝑎𝑠𝑡𝑖𝑛𝑔 + 𝛽𝐵𝑀𝐼 + 𝛽𝑃𝐶1−4 + 𝛽𝑙𝑖𝑓𝑒𝑠𝑡𝑦𝑙𝑒 +  𝜀 

 

To test whether these lifestyle factors interact with BMI, we also tested lifestyle × 

wGRS interactions (Equation 9). 

 

Equation 9. 𝑇𝐺 = 𝛼 +  𝛽𝐵𝑀𝐼×𝑤𝐺𝑅𝑆 + 𝛽𝑤𝐺𝑅𝑆 + 𝛽𝑎𝑔𝑒 +  𝛽𝑎𝑔𝑒2 +  𝛽𝑠𝑒𝑥 +

 𝛽𝑓𝑎𝑠𝑡𝑖𝑛𝑔 + 𝛽𝐵𝑀𝐼 + 𝛽𝑃𝐶1−4 + 𝛽𝑙𝑖𝑓𝑒𝑠𝑡𝑦𝑙𝑒 +  𝛽𝑙𝑖𝑓𝑒𝑠𝑡𝑦𝑙𝑒×𝑤𝐺𝑅𝑆 +  𝜀 
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We further tested three-way interactions between the wGRS, BMI and sex 

(Equation 10). 

 

Equation 10. 𝑇𝐺 = 𝛼 + 𝛽𝐵𝑀𝐼×𝑤𝐺𝑅𝑆×𝑠𝑒𝑥 + 𝛽𝑤𝐺𝑅𝑆 + 𝛽𝑎𝑔𝑒 +  𝛽𝑎𝑔𝑒2 +  𝛽𝑠𝑒𝑥 +

 𝛽𝑓𝑎𝑠𝑡𝑖𝑛𝑔 + 𝛽𝐵𝑀𝐼 + 𝛽𝑃𝐶1−4 +  𝜀 

 

In Paper IV, we began by conducting cross-sectional analyses using baseline data. 

We assessed individual SNPs and trait-specific GRSs (these genetic components are 

denoted as G in Equation 11 and 12) in relation to their respective baseline traits. In 

these analyses we adjusted for age, age2, sex and the first four genomic PCs 

(Equation 11). 

 

Equation 11. 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑙𝑖𝑝𝑖𝑑 = 𝛼 +  𝛽𝐺 + 𝛽𝑎𝑔𝑒 +  𝛽𝑎𝑔𝑒2 +  𝛽𝑠𝑒𝑥 + 𝛽𝑃𝐶1−4 +

 𝜀 

 

We then tested whether the SNPs or the GRSs modify treatment effects at follow-

up. We fitted SNP/GRS × intensive lifestyle intervention and SNP/GRS × 

metformin intervention interaction terms as independent variables with age, age2, 

sex, dummy variables for ILI (1/0) and metformin interventions (1/0), the genetic 

component, the baseline lipid value and the first four genomic PCs (Equation 12). 

 

Equation 12. 𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑢𝑝 𝑙𝑖𝑝𝑖𝑑 = 𝛼 + 𝛽𝐺×𝐼𝐿𝐼  + 𝛽𝐺×𝑚𝑒𝑡𝑓𝑜𝑟𝑚𝑖𝑛 + 𝛽𝑎𝑔𝑒 +

 𝛽𝑎𝑔𝑒2 + 𝛽𝑠𝑒𝑥 +  𝛽𝐼𝐿𝐼 + 𝛽𝑚𝑒𝑡𝑓𝑜𝑟𝑚𝑖𝑛 +  𝛽𝐺 + 𝛽𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑙𝑖𝑝𝑖𝑑 + 𝛽𝑃𝐶1−4 +  𝜀 

 

For all lipid-associated GRSs, we assessed genetic associations at baseline and 

ILI/metformin treatment interactions at follow-up in relation to glycemic traits 

(fasting glucose and post-challenge glucose) in parallel models to those conducted 

for the lipid traits (Equation 11 for baseline and Equation 12 for interactions at 

follow-up). We also conducted GRS analyses for type 2 diabetes incidence using 

Cox proportional hazards models (Equation 13). 

 

Equation 13. ℎ(𝑡|𝑥) = ℎ0(𝑡) × exp (𝛽𝐺×𝐼𝐿𝐼 +  𝛽𝐺×𝑚𝑒𝑡𝑓𝑜𝑟𝑚𝑖𝑛 + 𝛽𝑎𝑔𝑒 +

𝛽𝑎𝑔𝑒2 + 𝛽𝑠𝑒𝑥 + 𝛽𝐼𝐿𝐼 + 𝛽𝑚𝑒𝑡𝑓𝑜𝑟𝑚𝑖𝑛 + 𝛽𝐺 + 𝛽𝑃𝐶1−4) 
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Meta-analysis 

In Paper I, we conducted random-effects meta-analysis. We used the metan module 

in STATA.191 

In Paper II we conducted random-effects and fixed-effect meta-analysis using 

GWAMA.192 We expected high heterogeneity between the studies, mainly due to 

different baseline age, follow-up time, fasting status, medication usage. However, 

heterogeneity (assessed by Cochran’s P values and I2 statistics as suggested by 

Higgins et al)193 was low in the random-effects models, therefore we report 

estimates from the fixed-effect models.  

In Paper III, cohort-specific estimates were meta-analyzed using the metagen and 

forest functions of the meta package in R.194 Both random-effects and fixed-effect 

meta-analyses were conducted. Between-study effect estimates were very similar 

(low heterogeneity). Therefore, estimates were reported from the fixed-effect 

models. 

Multiple testing correction 

Multiple testing can result in alpha inflation and type I error. There are several 

methods to correct for multiple testing ranging from highly conservative methods 

(e.g. Bonferroni correction) to less conservative ones (e.g. permutations).195, 196 

In Paper I, Benjamini-Hochberg false discovery rate (FDR) was used to correct for 

multiple testing.197 In Paper II, instead of correcting for multiple testing, all results 

with P<0.01 in the discovery phase in the GLACIER Study were selected for 

replication. After the replication and the meta-analysis, we functionally annotated 

and further examined loci reaching P<10-3 in the fixed-effect meta-analysis. In 

Paper III, Benjamini-Hochberg FDR was applied to correct for multiple testing.197 

In Paper IV, no multiple testing corrections were applied in the baseline analyses. 

In the SNP/GRS interaction analysis at follow-up, Bonferroni correction was 

applied, where the nominal α=0.05 was divided by the number of statistical tests 

done.198 

Other study-specific statistical methods 

In Papers I and II, trait differences between baseline and follow-up were assessed 

by paired samples t-tests. In Paper IV, differences between subgroups were 

assessed by independent samples t-tests. In these analyses we compared participants 

at high and low genetic risk (defined by the GRS); To graphically illustrate results, 

we stratified the cohort into participants with high genetic risk vs. low genetic risk 

for a given trait based on median GRS values. 

In Papers I and IV, we assessed the proportion of the variance in the trait explained 

by the GRSs. We obtained these estimates from linear regression models where we 
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fitted the lipid traits as dependent variables and the respective GRSs as independent 

variables. In these models, no other covariates were fitted. 

In Paper I, we assessed predictive accuracy by using receiver operating curve 

(ROC) area under the curve (AUC) analyses.199 For the these analyses, lipid levels 

were dichotomized (low/high) according to the American Heart Association 

criteria.200 We compared 4 models: 

- M1: age, age2, sex and BMI 

- M2: M1 + trait specific wGRS 

- M3: M1 + traditional risk factors for hyperlipidemia reported by Lu et al 

(age, sex, BMI, smoking status, alcohol intake)103  

- M4: M1 + trait specific wGRS + traditional risk factors for hyperlipidemia 

In Paper II, we attempted to functionally annotate the loci with the strongest 

evidence for association in relation to lipid level changes and coronary artery 

disease. We characterized the regulatory potential of these loci by examining how 

they overlap with evolutionarily conserved elements determined using the GERP 

algorithm.201 Using data on DNaseI hypersensitive sites (DHS) in 125 cell lines 

generated by The ENCODE Project202 we determined the frequencies with which 

DHS-sites overlap with candidate loci. We used ChIP-seq data, also from the 

ENCODE Project to assess binding capacity of various regulatory factors to the loci 

in question. Furthermore, we used genome-wide chromatin state maps from nine 

cell lines on histone modification patterns and binding of CCCTC-binding factors 

generated by Ernst et al.203 Overlaps between genomic annotation tracks and SNPs 

were calculated using the GenomicRanges package in R.204 

In Paper III, we undertook protein-protein network analyses. We used the Human 

Protein Reference Database (HRPD)205 to extract relevant protein-protein 

interactions networks.206 We connected genomic loci linked to GWAS-reported 

BMI- and TG-associated loci to the HPRD protein-protein interaction network. We 

extracted neighboring nodes from the mapped genes to generate a TG-BMI protein 

interaction network comprised of the genes associated with BMI, TG and their 

interacting partner genes. The TG-BMI interaction network consists of genes that 

directly connect the two phenotypes (directly interacting nodes) and those that 

interact through one intermediate node. Pathway enrichment analyses were 

performed on this sub-network using a Cytoscape plug-in designed for pathway 

analyses based on the REACTOME database.207 In Paper IV, we undertook 

pathway analysis using the REACTOME database.208 

In Paper IV, we calculated Pearson correlation coefficients between traits. SNPs 

and GRSs for the four main lipid traits (TC, TG, HDL-C and LDL-C) were analyzed 

in relation to their respective traits and any lipoprotein subfraction 

concentration/size with a |r|≥0.5. 



53 

In Paper IV, we conducted subgroup analysis by repeating all GRS analyses in self-

reported white participants only. 
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Results and Discussion 

In this section I give a short summary of the main findings of Papers I-IV. Although 

methods are explained in detail above and in the attached manuscripts, the main 

aims and analytic strategy for Papers I-IV is also presented here in the first 

paragraphs of the respective sections. Apart from presenting the results, I also 

discuss Papers I-IV by explaining the implications of the studies, putting them into 

the context of the existing scientific evidence on the subject and explaining the main 

strengths and limitations of the projects. 

Paper I 

In Paper I, I examined the published TC-, TG-, HDL-C and LDL-C-related SNPs in 

the northern Swedish GLACIER Study in cross-sectional and longitudinal settings. 

I assessed associations between the four main lipid traits and SNPs identified by 

GWAS for lipid levels. I undertook further analysis to investigate these SNPs’ 

combined effects on the same lipid traits. I created trait-specific GRSs and wGRSs. 

The variants used in these analyses were initially identified in large-scale cross-

sectional meta-analyses. I also conducted prediction analysis for developing 

hyperlipidemia from baseline to follow-up. In these analyses I assessed how much 

traditional risk factors (including smoking and alcohol intake) and the wGRS add 

to a simple model using only age, age2, sex and BMI information in predicting 

hyperlipidemia at follow-up. This study was the first comprehensive assessment of 

all published lipid loci in a prospective analysis. 

The previously associated GWAS SNPs explained 8.8%, 4.9%, 4.8% and 9.1% of 

the variance in baseline TC, TG, HDL-C and LDL-C, respectively. The trait-specific 

wGRSs explained 7.0%, 3.9%, 2.6% and 6.9% variance for baseline TC, TG, HDL-

C and LDL-C, respectively. In the first lipid GWAS reported by Teslovich et al, 

GRSs for the main lipid traits explained ~12% trait variance.72 The second GLGC 

GWAS of lipid traits reported 62 novel loci, but made only a modest addition to the 

explained trait variances (~2% for each of the four traits).74 Previous studies 

reported trait variances explained by GRSs comprised of only a handful of 

established lipid-associated loci in the range of 5-7%.71, 103, 209 In Lutsey et al’s study 

(a study similar to ours), GRSs (comprised of the 95 established lipid loci by 

Teslovich et al) explained 6.8%, 6.0%, 6.0% and 1.6% trait variances for TC, TG, 

LDL-C and HDL-C.97 These numbers correspond well with the numbers obtained 

from the GLACIER Study. 
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In baseline, cross-sectional analyses, 48% (36/75) of the TC SNPs, 30% (13/43) of 

the TG SNPs, 14% (10/73) of the HDL-C SNPs and 33% (19/58) of the LDL-C 

SNPs were nominally associated (P<0.05) with their corresponding traits. The trait-

specific GRSs and wGRSs showed robust associations with their respective baseline 

traits. As weights were obtained from the latest cross-sectional GLGC GWAS,74 we 

anticipated that using the wGRSs would strengthen the associations. Indeed, as 

shown in Table 2, using the wGRS strengthened the associations in all cases, 

although the effect sizes remained similar in magnitude. 

Table 2. Trait specific GRS associations with lipid traits at baseline 

Trait β (mmol/allele) 95% CI (mmol/allele) SE PGRS PwGRS 

TC 0.05 0.04, 0.06 0.003 3.01×10-67 2.43×10-101 

TG 0.03 0.02, 0.04 0.003 4.58×10-23 4.24×10-41 

HDL-C -0.01 -0.012, -0.008 0.001 1.35×10-11 7.06×10-22 

LDL-C 0.05 0.04, 0.06 0.005 2.44×10-28 1.17×10-50 

β – effect size; CI – confidence interval; SE – standard error. P values are obtained from multiple linear 
regression models. 

The main focus of this paper was on longitudinal analyses. We hypothesized that 

previously established variants would associate differently with lipid level changes 

than with baseline levels. Similarly, as weights for the lipid-loci were extracted from 

a cross-sectional GWAS,74 we did not expect that the use of wGRSs instead of the 

GRSs would necessarily strengthen results. Due to different measurement 

techniques of HDL-C (HDL-C is obtained by dextran-sulfate precipitation of LDL-

C and VLD-C from TC) and the fact that LDL-C is derived from measures of TC, 

TG and HDL-C using the Fridewald formula,174 we only had sufficient data for TC 

and TG level changes in GLACIER. TC concentrations decreased between baseline 

and follow-up (∆TC=-0.18±1.12 mmol/l; P<0.0001). No change in TG levels was 

observed (∆TG=0.02±1 mmol/l; P=0.32). When presenting the SNP/GRS results 

for TC and TG level changes, we use the ∆TC and ∆TG expressions. However, in 

our regression models, the follow-up lipid measures were fitted as dependent 

variables and analyses were adjusted for baseline levels. This means that the 

dependent variables were not TC and TG level changes (∆TC and ∆TG) per se. This 

approach accounts for baseline trait differences and considered an appropriate way 

to model trait changes in a prospective setting with only two time points. 

The TC- and TG-specific GRSs robustly associated with their respective trait level 

changes (Figures 9A and 9B) during follow-up and using the wGRSs increased the 

strength and magnitude of the results as shown in Table 3. 

Table 3. Trait specific GRS associations with lipid trait changes 

Trait β (mmol/l/decade follow-up) 95% CI SE PGRS PwGRS 

ΔTC 0.02 0.01, 0.03 0.003 2.010-11 9.810-18 

ΔTG 0.02 0.01, 0.03 0.005 0.0005 6.510-11 

β – effect size; CI – confidence interval; SE – standard error. 95% CI and SE have the same units as 
the β. P values are obtained from multiple linear regression models. 
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Figure 9. TC and TG level changes over 10-yr follow-up by wGRS quartiles.  
Δ – trait change; TC – total cholesterol; TG – triglycerides; wGRS – weighted genetic risk score. Error 
bars represent 95% confidence intervals. Ref: Varga TV et al. Genetic determinants of long-term 
changes in blood lipid concentrations: 10-year follow-up of the glacier study. PLoS Genetics. 
2014;10:e1004388. 
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In individual SNP analysis, FDR corrected statistically significant associations were 

observed for the rs6589564 in APOA1 and ∆TG (β=0.31 mmol/l per allele per 

decade follow-up, 95% CI: 0.21, 0.41, SE=0.05, PFDR=6.6×10-7), rs2954029 in 

TRIB1 and ∆TG (β=0.09 mmol/l per allele per decade follow-up, 95% CI: 0.03, 

0.15, SE=0.03, PFDR=0.009) and rs4420638 in APOE and ∆TC (β=0.12 mmol/l per 

allele per decade follow-up, 95% CI: 0.06, 0.18, SE=0.03, PFDR=0.002). In total, 15 

variants associated with lipid trait changes at a level of nominal statistical 

significance (unadjusted P<0.05). These SNPs were carried forward for replication 

in the MDC Study. As mentioned above, we did not have data on HDL-C and LDL-

C changes in GLACIER, but these variables were available in the MDC Study. 

Therefore, the 15 top hits in the discovery part of the analyses were tested in relation 

to these traits as well. Associations for five SNPs for ∆TC and six SNPs for ∆TG 

were nominally statistically significant (P<0.05) and directionally consistent with 

GLACIER results in MDC. Four SNPs also associated with ∆LDL-C. None of the 

SNPs associated with ∆HDL-C. All three variants robustly associated with lipid 

level changes in GLACIER in the discovery phase (rs6589564 in APOA1 and 

rs2954029 in TRIB1 for ∆TG; rs4420638 in APOE for ∆TC) replicated in MDC. In 

random-effects meta-analysis, three ∆TC associated variants and six ∆TG 

associated variants yielded statistically nominally significant (P<0.05) effect 

estimates. Our three most robust results, TRIB1, APOA1 and APOE are all well-

known dyslipidemia-related loci with many studies published on them. Apart from 

the associations with lipid levels, TRIB1 also associates with CAD, ischemic heart 

disease and MI.66, 69, 210, 211 APOE lies in the APOE-APOC1-APOC2 gene cluster and 

it is also associated with familial dyslipoproteinemia, polygenic dyslipidemia, 

plasma C-reactive protein levels, CAD and MI.67, 212-215 APOA1 lies in the APOA1-

APOC3-APOA4-APOA5-BUD13 gene cluster and it is also associated with 

polygenic dyslipidemia, metabolic syndrome, CAD and MI.67, 216-218 

Prediction algorithms may contain unmodifiable risk factors (e.g. age, sex, genetic 

predisposition, family history), and modifiable risk factors (e.g. dietary intakes, 

levels of exercise). It is important to denote that factors in risk prediction models do 

not need to be causal for the outcome. We assessed differences in predictive 

accuracy for developing hyperlipidemia by comparing four models. The simplest 

one contained basic information about age, age2, sex and BMI (which is obtained 

by basic anthropometric measures) (M1). We compared this model to three other 

models including the basic information + wGRS (M2), basic information + 

traditional risk factors for hyperlipidemia (M3) and basic information + wGRS + 

traditional risk factors for hyperlipidemia (M4). The differences between M1 and 

M4 were 4% (62% for M1 - 66% for M4; P=0.011) for TC and 2% (65% for M1 - 

67% for M4; P=0.052) for TG. We conclude that the predictive ability of these loci 

in the GLACIER Study is low, although comparable with an earlier study by Lu et 

al (3% AUC difference for TC), who used a GRS comprised of 12 TC-associated 

loci. Genetic factors have not yet proved to add significantly to existing risk 

prediction models.219 More precise measurements and better models are warranted 

to more accurately predict dyslipidemia. 



59 

Although there are few studies reporting on genetic associations for prospective 

traits,97, 103, 104, 138 none has comprehensively assessed all published dyslipidemia-

associated loci in a longitudinal setting. In a previous study, Lutsey et al 97 studied 

95 dyslipidemia-related loci identified by Teslovich et al.72 They examined whether 

trait-specific genetic risk scores for TC, TG, LDL-C and HDL-C associate with 9-

year changes of lipid levels in the ARIC Study. Although higher genetic risk scores 

(adverse genetic predisposition) for all traits were associated with a higher incidence 

of dyslipidemia at follow-up, only the TG-specific GRS was statistically 

significantly associated with lipid level change in their study. In our study (with a 

similar baseline age and follow-up time), GRSs associated both with TG- and TC 

level changes. An important strength of our study is the inclusion of replication data 

from the MDC Study. Our findings from the GLACIER Study were corroborated 

by results from the MDC Study and together they provide evidence for a small 

number of loci associating with lipid level changes. 

Paper II 

In Paper II, I extended the work done in Paper I 220 by assessing a wider range of 

loci. We hypothesized that SNPs in large-scale GWAS which almost reached a 

genome-wide level of statistical significance (P=5×10-8) might not have reached it 

due to time-dependent effects and the age-heterogeneity of the participating cohorts 

the results were obtained from.96 The Illumina Cardio-MetaboChip array was 

constructed after the first wave of GWAS studies and a large number (~5000) of 

these “almost genome-wide significant” sets of SNPs (termed Replication SNPs) for 

the most studied cardio-metabolic traits were put on this array. Other SNPs on the 

array include Fine-mapping SNPs for established loci and Wildcard SNPs for 

consortium-specific purposes.73 In total, we extracted 29,387 Replication/Fine-

mapping/Wildcard SNPs for TC, TG, HDL-C and LDL-C and analyzed these in the 

discovery stage in GLACIER. This set of SNPs was not pruned for LD. We selected 

all SNPs having an association with TC or TG level changes with P<0.01 for 

replication in four European prospective studies and meta-analyzed estimates. We 

then selected all loci with P<10-3 in the fixed-effect meta-analysis and further 

examined these loci by doing in silico look-ups in publicly available results from 

international consortia74, 171-173 and conducted functional annotations.  

In the discovery stage of the analysis, a few SNPs reached genome-wide 

significance in relation to ∆TG. These included a single low frequency (MAF<5%) 

SNP at APOE (chr19:50121999; β=0.64 mmol/l/10-yr; SE=0.11; P=1.7×10-8) and a 

number of SNPs in LD at the APOA1-APOC3-APOA4-APOA5-BUD13 gene cluster 

(top SNP rs9326246, β=0.32 mmol/l/10-yr; SE=0.05; P=4.4×10-9). SNPs at DOCK7 

(chr1:62714800; β=0.59 mmol/l/10-yr; SE=0.11; P=9.6×10-8), BRE 

(chr2:28165690; β=0.59 mmol/l/10-yr; SE=0.12; P=6.7×10-7), KCNIP1 

(rs10041010; β=0.54 mmol/l/10-yr; SE=0.11; P=8.7×10-7) and SYNE1 (rs594522; 
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β=0.55 mmol/l/10-yr; SE=0.11; P=1.4×10-6) reached study-wide significance 

(α=0.05/29,387=1.7×10-6) for ΔTG. The rs7412 variant in APOE (β=-0.23 

mmol/l/10-yr; SE=0.04; P=1.8×10-7) reached study-wide significance for ΔTC. In 

total, from the 29,387 tested SNPs, 478 and 490 SNPs associated (P<0.01) with 

ΔTC and ΔTG, respectively (in total, 956 variants, as 12 variants associated both 

with ΔTC and ΔTG). As the original set of SNPs was not pruned, these SNPs 

represent dependent signals (e.g. multiple associations of correlated SNPs in an LD 

block in relation to ΔTC or ΔTG). We looked-up association statistics of these 956 

variants in relation to TC and TG levels in the GLGC publicly available cross-

sectional data for lipid traits. Approximately 30% of the associations (273/956) had 

no cross-sectional associations with TC/TG levels (148 variants associated with TG, 

183 variants associated with TC and 351 variants associated with both traits 

P<5×10-8). These results show that while many variants convey both cross-sectional 

and longitudinal associations in relation to lipid levels, most cross-sectional signals 

do not demonstrate prospective trait genetic associations, and a fraction of 

longitudinal signals do not associate with lipid traits cross-sectionally (although loci 

from this latter group have not been robustly replicated in the following replication 

analysis). 

In the replication phase (meta-analysis of replication cohorts without GLACIER), 

the variant at rs7412 at APOE replicated for ∆TC (P=1. 5×10-7) and multiple signals 

at the APOA1-APOC3-APOA4-APOA5-BUD13 gene cluster replicated for ∆TG 

(Pmin=6.5×10-7). In these analyses, 28% of the SNPs replicated for ∆TC (135/478 

SNPs), while 13% of the SNPs replicated for ∆TG (66/490 SNPs) at a nominal level 

of statistical significance (P<0.05). 

In the meta-analysis including all cohorts (GLACIER and all replication cohorts) 

88 SNPs at six loci for ∆TC and 51 SNPs at five loci for ∆TG (ten loci in total, as 

the DOCK7-ANGPTL3 complex associated with both traits) replicated (P<10-3); 

these loci are shown in Table 4. 
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Table 4. Lead SNPs from the meta-analysis of the five studies in Paper II. (Nmax=8,263) 

Trait SNP LOCUS β 
(mmol/l/yr) 

SE P I2 

ΔTC chr1:62912318 DOCK7/ANGPTL3 -0.004 0.001 2.5×10-4 0.43 

ΔTC rs13282247 LPL/CSGALNACT1 -0.004 0.001 1.7×10-4 0.45 

ΔTC chr15:40469997 CAPN3 0.015 0.004 1.5×10-4 0.08 

ΔTC chr16:70636491 HP/HPR 0.008 0.002 2.3×10-4 0.56 

ΔTC rs17304534 LDLR -0.004 0.001 1.0×10-3 0.53 

ΔTC rs7412 APOE/C1 -0.014 0.002 2.0×10-12 0.38 

ΔTG chr1:62954723 DOCK7/ANGPTL3 -0.002 0.001 5.2×10-4 0.17 

ΔTG rs2954029 TRIB1 -0.003 0.001 8.1×10-6 0.53 

ΔTG rs651821 ZNF159/APOA5/A1 0.009 0.001 1.4×10-10 0.83 

ΔTG rs10406431 GIPR -0.003 0.001 1.7×10-4 0.27 

ΔTG rs11668847 QPCTL 0.003 0.001 2.7×10-5 0.54 

β – effect size; CI – confidence interval; SE – standard error; SNP – single nucleotide polymorphism. 
SE has the same units as the β. I2 values denote heterogeneity estimates in the meta-analysis. P 
values are obtained from fixed-effect meta-analysis of the five studies. 

All these associations remained nominally statistically significant (P<0.05) after the 

removal of the GLACIER Study from the meta-analysis. With the inclusion of all 

five cohorts, the three most significant loci from Varga et al (Paper I),220 TRIB1, 

APOE and APOA1 were replicated with a statistically more significant P value. 

We further examined these ten loci by conducting in silico look-ups in publicly 

available databases (CARDIoGRAMplusC4D for CAD,171 DIAGRAM for T2D172 

and ICBP for SBP and DBP173). We used published, publicly available data from 

international consortia presenting results from large-scale cross-sectional meta-

analyses, identifying a locus with a P value below 5×10-8 would obviously mean 

that this locus is already published and not a novel finding. Hence, our study had 

the caveat of not being able to demonstrate novel, extremely robust evidence for 

associations with CAD, T2D, SBP or DBP.  Therefore, we were primarily interested 

in sub-GWAS significant loci where we hypothesized that this level of evidence 

will be strengthened by the original association with lipid level changes and 

potentially, other in silico findings (e.g. results from a different consortium or results 

from the functional annotation). To be clearer, we hypothesized that a given SNP 

with a P~10-4 for TG changes, P~10-4 for CAD, P~10-4 for SBP and further evidence 

from functional annotations could be equally interesting and worthy of follow-up as 

a results with a single P<5×10-8 for CAD. 

Five of the ten loci associated with lipid changes were genome-wide significant for 

CAD (P<5×10-8) (APOE-APOC1, TRIB1, ZNF159-APOA5-APOA1, LPL-

CSGALNACT and LDLR), two were not associated with CAD (P>0.05 for DOCK7-

ANGPTL3 and GIPR). Three loci showed promising suggestive evidence for CAD 

(5×10-8<P<10-3) – these loci were CAPN3, HP-HPR and QPCTL. These results are 

demonstrated in Table 5. 
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Table 5. Lead SNPs from the meta-analysis of the five studies in Paper II. (Nmax=8,263) 

Trait SNP LOCUS Δlipid P SNP CAD OR CAD P 

ΔTC chr15:40469997 CAPN3 1.5×10-4 rs2412710 1.14 2.4×10-4 

ΔTC chr16:70636491 HP/HPR 2.3×10-4 rs7197453 1.04 6.1×10-5 

ΔTG rs11668847 QPCTL 2.7×10-5 rs2341097 1.03 3.5×10-4 

CAD – coronary artery disease; SNP – single nucleotide polymorphism; OR – odds ratio; TC – total 
cholesterol; TG - triglycerides. Δlipid P values are obtained from fixed-effect meta-analysis of the five 
studies. CAD P values are extracted from the CARDIoGRAMplusC4D Consortium publicly available 
dataset.  

Three loci (APOE-APOC1, TRIB1 and CAPN3) showed suggestive statistically 

significant associations with T2D (5×10-8<P<10-3), while two loci provided further 

suggestive evidence for systolic blood pressure (CAPN3 and DOCK7-ANGPTL3). 

None of the ten loci was associated with diastolic blood pressure. 

We functionally annotated our lead SNPs at the LPL-CSGALNACT1, LDLR, 

DOCK7-ANGPTL3, CAPN3, HP-HPR, GIPR and QPCTL loci. Two SNPs, 

rs1050362 near HPR and rs2341097 at SIX5 (in close proximity to QPCTL and 

GIPR) overlapped with elements displaying excess constraint. Variants rs2412710 

at CAPN3, rs1050362 near HPR, rs2341097 at SIX5 and rs13282247 at LPL-

CSGALNACT1 disrupted CpG-dinucleotides, potentially altering the local balance 

of DNA methylation. In total, 6/11 SNPs exhibited DHSs in at least one ENCODE 

cell line, including rs2412710 at CAPN3. The rs2412710 variant at CAPN3 was 

indicated by a “weak enhancer” state in HepG2 cells, the rs10406431 variant at 

GIPR was indicated by a “weak enhancer” state in K562 cells and a “repressed” 

state in GM12878 cells. The rs11668847 at QPCTL was indicated by a “strong 

enhancer” state in GM12878 cells. In total, 5/11 SNPs were in regions with ChIP-

seq peaks. Variants rs11668847 at QPCTL, rs10406431 at GIPR, rs17304534 at 

LDLR, chr1:62954723 at DOCK7-ANGPTL3 and rs13282247 at LPL-

CSGALNACT1 displayed evidence for binding of multiple enhancer and gene 

regulation-related factors. 

One of the most interesting findings of this study was for the CAPN3 locus, which 

was associated with TC level changes (P=1.5×10-4) and suggestively associated 

with CAD (P=1.2×10-4), T2D (P=1.6×10-3) and SBP (P=6.9×10-3). Functional 

annotation of the top SNP showed that it disrupts CpG-dinucleotides, displays 

DNaseI hypersensitivity sites in two cell lines and a “weak enhancer” status in 

HepG2 cells. Prior evidence demonstrated links between this locus and heart 

disease. In a murine study, targeted knock-in of calpain3 leads to increased 

circulating creatine kinase levels, a known marker for MI.221 A Japanese autopsy 

study reported on two unrelated patients with calpainopathy (symmetric, 

progressive weakness of proximal muscles), who had died of ischemic 

cardiomyopathy and systemic circulatory failure, carrying mutations in CAPN3.222 

Further interesting evidence was observed at the QPCTL and GIPR loci for TG 

change (P=1.7×10-4 and P=2.7×10-5, respectively). The top SNPs in these loci show 

evidence for functionality by displaying DNaseI hypersensitivity and regulatory 
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factor binding potential in multiple cell lines. The rs2341097 variant in the SIX5 

locus is in the close proximity of the QPCTL and GIPR loci and it shows suggestive 

evidence for association with CAD (P=1.9×10-4). The SIX5 rs16980013 variant has 

been associated with MI in Japanese adults.223 

The HP-HPR locus was significantly associated with TC changes (P=2.3×10-4) and 

showed suggestive evidence of association with CAD (P=3.5×10-5). Although high 

haptoglobin level is a known risk factor for acute MI, stroke and heart failure,224, 225 

HP-HPR has not been associated with CAD in previous studies. 

To understand prospective genetic associations with lipids, further studies 

examining HDL-C and LDL-C and other lipoprotein subfraction changes are 

warranted. In this study, we examined almost 30,000 variants from the Illumina 

CardioMetaboChip array, a genotyping chip enriched with sub-GWAS significant 

loci.73 We assumed that these loci did not reach the required level of statistical 

significance due to various sources of heterogeneity (including heterogeneity in the 

average age of the study participants) in the original GWAS studies. Nevertheless, 

hypothesis-free studies might help to identify novel genetic variation in relation to 

lipid level changes. An important limitation of our study is the use of cohorts only 

from Northern Europe (four studies from Sweden, one from the UK), which results 

in a homogenous sample to study genetic associations. Further studies would benefit 

from the assessment of the genetic background of other ethnicities. 

Paper III 

In Paper III, we aimed to replicate a Danish study showing a statistically significant 

interaction between BMI and a GRS comprised of TG-associated variants on 

circulating TG levels. The Danish study by Justesen et al suggested that previously 

established TG-associated loci modify the association between BMI and TG, but to 

our knowledge, no independent replication studies had yet been published.114 In 

addition, the original study showed heterogeneous interaction effects by sex but no 

formal three-way GRS × BMI × sex interactions were tested. In this study we 

independently replicated the GRS×BMI interaction in the Swedish GLACIER and 

MDC Studies and meta-analyzed our results with the findings from the original 

study. We tested for sex heterogeneity and we mapped whether these associations 

are mediated by various lifestyle factors including smoking, physical activity and 

diet. We also tested whether BMI × lifestyle interactions might underlie our 

findings. Last, we performed protein-protein interaction network analysis. In Paper 

III, I refer to the TG-associated weighted wGRS simply as wGRS as we did not 

work with any other traits’ GRS in this project. 

First, we conducted replication analysis in the northern Swedish GLACIER Study 

and the southern Swedish MDC Study. In GLACIER, both BMI and the wGRS 

robustly associated with TG levels (2.8% higher TG/BMI unit; P=8.4×10-84 and 2% 
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higher TG/wGRS unit; P=7.6×10-48). No association was observed between the 

wGRS and BMI (P=0.14). The association between the wGRS and TG was stronger 

in overweight/obese (defined as BMI ≥ 25) participants (2.4% higher TG/wGRS 

unit; 5.7% TG population variance explained by the wGRS) than in normal weight 

(defined as 18 ≤ BMI < 25) participants (1.5% higher TG/wGRS unit; 3.4% TG 

population variance explained by the wGRS). This heterogeneity indicates the 

presence of a gene × environment interaction, which was formally tested 

(Pinteraction=0.056). Analysis in the MDC Study showed results directionally 

consistent and similar in magnitude to those observed in GLACIER. The interaction 

effect size in MDC was directionally consistent, albeit less statistically robust 

(Pinteraction=0.083) than the one observed in GLACIER (Figure 10). 

 

Figure 10. Bar plot indicating adjusted least square mean TG concentrations stratified by wGRS 
level. 
BMI – body mass index; GRS – genetic risk score; wGRS – weighted genetic risk score. Black bars ≤ 
44.6; grey bars > 44.6 units/alleles. Error bars indicate standard error of the least squared means. 

We tested whether any of the individual SNPs from the wGRS underlie the observed 

interaction in GLACIER and MDC. None of the SNP × BMI interactions replicated 

between GLACIER and MDC (none of the SNP interactions have P<0.05 in both 

studies). In the literature, there are examples of robust interactions between 

established lipid-associated variants and lifestyle factors. A study by Zhang et al 

reports on a single variant in the LIPC locus interacting with dietary fat and BMI in 

relation to HDL-C levels in male participants of the Health Professionals Follow-
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up Study.226 Another study by Ahmad et al observed interactions between three 

lipid-associated loci, LPL, CETP and LIPC with physical activity on HDL-C levels 

and one, LPL, on MI in the Women’s Health Initiative.227 

In GLACIER, the wGRS × BMI interaction was only observed in females 

(Pinteraction=0.0014), not in males (Pinteraction=0.15). We formally tested a wGRS × 

BMI × sex three-way interaction, which proved to be statistically significant 

(Pinteraction=0.0084). We conducted the same analysis in MDC, where the interaction 

was directionally consistent with GLACIER, but not statistically significant 

(Pinteraction=0.11). 

We tested whether lifestyle factors, such as dietary factors, physical activity, 

education or smoking mediate the interaction effects in GLACIER. Adjusting the 

interaction model with these factors strengthened the results (Pinteraction=0.003 after 

diet score adjustment, Pinteraction=0.01 after physical activity adjustment and 

Pinteraction=0.01 after smoking adjustment). In separate models, we included wGRS 

× environmental factor interaction terms. None of these interactions were 

statistically significant (Pinteraction=0.26 for the diet score; Pinteraction=0.85 for leisure 

time physical activity; Pinteraction=0.89 for smoking). It is possible that environmental 

factors correlated with BMI underlie the observed interactions - however, analyses 

testing this by further adjusting the models with lifestyle variables or including 

additional interaction terms did not materially change the results. Therefore, we 

conclude that the three major lifestyle factors, diet, physical activity and smoking 

are unlikely to underlie the observed wGRS × BMI interaction. 

We meta-analyzed interaction effect estimates from GLACIER and MDC. We also 

extracted summary statistics from the original publication of the Danish studies. 

This way we were also able to meta-analyze the Swedish studies with the two 

Danish studies (Inter99 and Health2006). The meta-analysis of the two Swedish 

cohorts yielded a statistically significant wGRS × BMI interaction effect estimate 

(Pinteraction=6.0×10-4), which was further strengthened with the inclusion of the two 

Danish studies in the meta-analysis (Pinteraction=6.5×10-7). No heterogeneity was 

observed when meta-analyzing the four cohorts (I2=0%, Cochran’s P=0.70).  

In the meta-analysis of the two Swedish cohorts, the wGRS × BMI × sex three-way 

interaction effect was nominally statistically significant (Pinteraction=0.03). As the 

original study conducted no sex-specific interaction analyses, we were only able to 

meta-analyze their sex-stratified estimates with estimates from the Swedish studies. 

The sex-stratified meta-analysis demonstrated that the interaction effect size is 

much stronger in females (Pinteraction=6.8×10-6) than in males (Pinteraction=0.029). No 

heterogeneity was observed in the females-only meta-analysis (I2= 0%, Cochran’s 

P=0.75), but moderate-to-high heterogeneity was observed in the males-only meta-

analysis (I2=58.2%, Cochran’s P=0.06). 

In silico network analyses based on biological protein-protein interactions revealed 

that BMI-related protein products and TG-related protein products form two 

separate dense protein-protein interaction networks connected through interacting 
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nodes (Figure 11). This analysis suggests that there is cross-talk between BMI-

associated and TG-associated gene networks. We identified three genomic loci, low 

density lipoprotein receptor-related protein 1B (LRP1B), SH2B adaptor protein 1 

(SH2B1) and tubby bipartite transcription factor (TUB) close to established BMI-

associated loci that directly interact with genes low density lipoprotein receptor-

related protein associated protein 1 (LRPAP1), insulin receptor (INSR) and insulin 

receptor substrate 1 (IRS1) close to established TG-associated loci. Six of the nine 

genes in this network are enriched in the Lipid digestion, mobilization, and transport 

Reactome pathway (PFDR<0.001). 

 

Figure 11. A sub-network of BMI- and TG-associated loci extracted from Human Protein 
Reference Database. 
Genes close to BMI-associated loci (red) and genes close to TG-associated loci (blue) connected with 
only one intermediate gene (light blue) are displayed. 

An important limitation of this study is the cross-sectional setting. In studies like 

ours, it is a difficult task to determine whether the observed findings are causal or 

not. Evidence from randomized controlled trials or studies with elaborate statistical 
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methods, such as well-powered Mendelian randomization might elucidate the causal 

of nature of the observations reported here. 

Paper IV 

In Paper IV, we aimed to comprehensively assess the established lipid-, lipoprotein 

subfraction- and lipoprotein size-associated genomic loci in relation to their 

respective traits in the DPP, a multi-ethic, multi-center randomized controlled trial. 

We examined the GWAS-established variants (the SNPs individually and in trait-

specific GRSs) in relation to the lipoprotein traits at the baseline of the DPP. We 

assessed how much trait variance (in each lipoprotein trait) the GRSs and wGRSs 

account for. We studied SNP and GRS/wGRS × treatment arm (lifestyle 

intervention arm and metformin arm) interactions in relation to lipoprotein traits. 

We tested 150 SNPs in relation to the four standard lipid traits (TG, TC, LDL-C and 

HDL-C) and 113 SNPs in relation to 16 other traits (small, large and total LDL 

particle numbers; small, medium, large and total VLDL particle numbers; small, 

medium, large and total HDL particle numbers; IDL-C, ApoB; LDL, VLDL and 

HDL particle sizes). Where any of these 16 traits correlated (|r|≥0.5) with a standard 

lipid trait (TG, TC, LDL-C and HDL-C), we tested associations between the 

correlated trait and the genetic component (SNP/GRS) for the standard trait (e.g. as 

LDL particle size correlated with TG, we tested associations between LDL particle 

size and TG-associated loci and the TG GRS. We also tested whether TG-associated 

loci or the TG GRS interact with the treatment arms on LDL particle size). Last, we 

assessed whether high genetic burden can be overcome with intensive lifestyle 

intervention for the traits in question by stratifying the DPP by the median GRS for 

all traits and comparing pre-intervention low GRS levels with post-intervention high 

GRS levels for each trait. 

In SNP analyses at baseline, 59 (25.7%) of the associations between SNPs and 

standard lipid traits (TG, TC, HDL-C, LDL-C) replicated at the nominal α=0.05 

level. For the lipoprotein sub-fractions, of the 207 trait-specific associations and the 

673 associations with correlated traits, 180 (20.5%) replicated at the nominal α=0.05 

level. Collectively, 227/1,110 (20.5%) of the association tests were statistically 

significant at a critical α=0.05. In all baseline single SNP analyses, 28 SNPs (2.5%) 

reached the Bonferroni adjusted level of α=0.05/1110=4.5×10-5. 

In baseline GRS/wGRS analyses, in almost all the cases (32/34), the associations 

between the GRSs and their respective traits were statistically significant (P values 

ranging from 1.3×10-4 for total LDL to 2.4×10-16 for TC), with P>0.05 for tests of 

association for medium HDL and IDL-C with their respective GRSs. Using the 

wGRS strengthened the results for the majority of the traits (28/34 associations 

strengthened by using the wGRS instead of the GRS). The GRSs were positively 

correlated with baseline concentrations of TG, TC, LDL-C, small, large and total 
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LDL particle numbers, small, medium, large and total VLDL particle numbers, 

ApoB; LDL and VLDL particle sizes. The GRSs were negatively correlated with 

IDL-C, HDL-C, HDL particle size, and small, medium, large and total HDL particle 

numbers. The GRS – wGRS pairs (e.g. the GRS and wGRS for large VLDL particle 

concentration) were highly correlated; the average correlation coefficient between 

them was r2=0.84. 

The average trait variance explained by the trait-specific GRSs was 1.7% 

(minimum: 0.06% for IDL-C; maximum: 3.54% for small LDL particles). The trait-

specific wGRSs explained on average 2.4% of the phenotypic variance (minimum: 

0.02% for IDL-C; maximum: 4.66% for ApoB). We repeated these analyses by 

assessing how much trait variances the 20 GRSs explain cumulatively.  All GRSs 

explained 5% of the phenotypic variance on average (minimum: 1.82% for HDL 

size; maximum: 8.88% for large VLDL particles). All wGRSs explained 6% of the 

phenotypic variance on average (minimum: 2.57% for medium HDL particles; 

maximum: 9.93% for large VLDL particles). The trait variances explained by the 

wGRS for the four main lipid traits ranged between 2% and 4.2%. Even though 

these wGRSs contain all dyslipidemia-associated loci, these explained variances are 

lower than those reported in Lutsey et al and Varga et al, other comprehensive 

assessments of lipid-related loci.97, 220 As the DPP’s sample size is smaller than these 

studies, the numbers reported here are probably less reliable. 

In SNP × treatment arm interaction analyses, only one interaction test passed the 

Bonferroni corrected critical α level (α=0.05/1101=4.5×10-5). The rs581080 variant 

in tetratricopeptide repeat domain 39B (TTC39B) showed evidence for interaction 

with the lifestyle treatment in relation to large HDL particle numbers 

(Pinteraction=2.8×10-6 for lifestyle vs. placebo). The interaction between rs581080 and 

lifestyle intervention was not apparent in the metformin arm (Pinteraction=0.19 for 

metformin vs. placebo). The interaction for rs581080 was no longer statistically 

significant when assessed only in European ancestry participants (Pinteraction=0.12 for 

lifestyle vs. placebo). When visualizing our results, we concluded that the observed 

interaction between this SNP and the lifestyle intervention is likely to be a spurious 

result (interaction is driven by pre-randomization differences). The rs581080 variant 

was originally associated with HDL-C and TC concentrations in Willer et al. 74 

Mouse experiments reported that in vivo knockdown of the TTC39B mouse homolog 

results in higher plasma HDL-C concentrations.211, 219 

In GRS/wGRS × treatment arm interaction analyses, the metformin treatment arm 

and the lifestyle intervention arm modified the effect of the large HDL particle GRS, 

such that a higher GRS was associated with lower 1-year baseline-adjusted large 

HDL particle numbers in the metformin group (β=-0.08 µmol/l per GRS risk allele; 

95%CI -0.141, -0.008; P=0.027; Pinteraction=0.07 for metformin vs. placebo) and the 

lifestyle group (β=-0.11 µmol/l per GRS risk allele; 95%CI -0.188, -0.033; P=5×10-

3; Pinteraction=1×10-3 for lifestyle vs. placebo), but not the placebo group (β=-0.02 

µmol/l per GRS risk allele; 95%CI -0.086, 0.042; P=0.50). Lifestyle intervention 

also modified the effect of the HDL size GRS, such that higher levels of the GRS 



69 

was associated with lower 1-year baseline-adjusted HDL particle size in the lifestyle 

group (β=-0.02 nm per GRS risk allele; 95%CI -0,036, -0,009; P=1×10-3; 

Pinteraction=8×10-3 for lifestyle vs. placebo), but not in the placebo and metformin 

groups (β=-0.004 nm per GRS risk allele; 95%CI -0.014, 0.007; P=0.50 for placebo 

and β=-0.01 nm per GRS risk allele; 95%CI -0.021, 0.002; P=0.11; Pinteraction=0.28 

for metformin vs. placebo). This latter interaction in relation to HDL size did not 

survive our Bonferroni corrected critical α=0.05/34=0.0015. Using the wGRS 

attenuated these results, such that the interaction between lifestyle intervention and 

the large HDL particles wGRS on large HDL particle numbers (Pinteraction=6×10-3 for 

lifestyle vs. placebo) and the interaction between lifestyle intervention and the HDL 

size wGRS on HDL particle size (Pinteraction=0.024 for lifestyle vs. placebo) both 

became nominally significant. The interaction between large HDL particle 

concentrations and the lifestyle intervention arm is the most important finding of 

this study. The interaction means that even though lifestyle intervention was 

effective in the increase of large HDL particles on average, those with high genetic 

risk benefit less from lifestyle intervention than those with favorable genetic risk 

(Figure 12). In addition to this and as expected, those with the higher genetic risk 

have lower concentrations of large HDL particles from the outset.  

 

 

Figure 12. Large HDL particle numbers at baseline and 1-year later stratified by treatment group 
and high and low levels of the trait-specific genetic risk score (GRS). 
GRS – genetic risk score; HDL – high-density lipoprotein. GRS by treatment interactions are shown for 
each active treatment group compared with the placebo group. Error bars represent standard 
deviations of the means. 
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Our study helps understand why some people are more responsive to drug and 

lifestyle therapies than others. It is important to note that we only observed 

interactions for lipoprotein subfractions and not for the four most studied lipid traits 

(TC, TG, LDL-C, HDL-C). Studies report that therapies targeting lipoprotein 

subfractions instead of the major fractions might be more clinically effective.228, 229 

Also, some studies report lipoprotein subfractions performing better in risk 

prediction algorithms focusing on hard outcomes such as type 2 diabetes and 

vascular diseases.230, 231 Fibrate use resulting in the pharmacologic increase of small 

HDL particle concentrations reduced cardiovascular disease risk. 232 

A previous project in the DPP by Pollin et al 36 investigated treatment interactions 

with a GRS comprised of 32 lipid-associated variants reported by Kathiresan et al.67 

The GRS used in that study was not strait-specific; interactions were tested for each 

lipoprotein subfraction using the same risk score. In this study, two interactions 

were observed; the GRS was associated with higher baseline-adjusted LDL-C and 

small LDL particle concentrations in the lifestyle arm but not in the placebo arm. 

This means that high genetic risk attenuated the response to the intervention (those 

with high genetic risk were less able to decrease their LDL-C and small LDL particle 

levels in the lifestyle intervention arm), similarly as we observed with large HDL 

particles and HDL size in our study. Pollin et al’s and our study provide evidence 

that genetic burden cannot be completely overcome by interventions. On the other 

hand, both individuals in the low genetic risk group and the high genetic risk group 

benefited from the lifestyle intervention. It is important to note, that the results of 

these studies do not advocate against lifestyle interventions in high genetic risk 

groups, they merely provide evidence for how genetic burden is able to modify 

treatment responses. Goldberg et al examined the general effects of the metformin 

treatment and the intensive lifestyle intervention on lipid traits and lipoprotein 

subfractions in the DPP.35 Lifestyle had a prominent favorable impact on VLDL 

particle numbers, mainly through large VLDL particle concentrations, a lipoprotein 

subclass very important in diabetic dyslipidemia.233 Lifestyle intervention was also 

shown to be associated with increased large HDL particle numbers and size, LDL 

size, decreased total LDL particle numbers and most importantly, decreased small 

LDL particle numbers, a highly atherogenic lipoprotein subclass.234 The metformin 

treatment arm elevated total and small HDL particle concentrations and lowered 

LDL subfraction concentrations. 

We also undertook analysis to examine whether the dyslipidemia-associated 

GRSs/wGRSs modify treatment effects in relation to fasting and post-challenge 

glucose at follow-up and incident diabetes, the primary outcome of the DPP. None 

of the interactions survived multiple testing correction and we concluded that 

genetic risk for dyslipidemia are unlikely to modify treatment effects in relation to 

glycaemia. Previous evidence shows that many lipid and lipoprotein subfraction 

traits associate with glycemic traits (e.g. VLDL particle concentration is associated 

with diabetic dyslipidemia, LDL size correlates with fasting insulin).233, 235 
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Therefore, further analysis is warranted to identify whether the relationships 

between lipid and glycemic traits are modified by genetic loci. 

In our analysis, lipid levels at randomization (baseline) in low genetic risk 

participants were compared with post- lifestyle intervention levels in high genetic 

risk participants. With this analysis, we aimed to assess whether high genetic burden 

can be overcome by intensive lifestyle intervention. For 17 out of the 20 traits, the 

post-intervention levels in the high GRS group were equal or more favorable than 

the pre-intervention levels in the low GRS group. This finding provides encouraging 

evidence that to a certain extent, high genetic risk can be overcome by intensive 

lifestyle interventions. 

This is the most comprehensive assessment to date of dyslipidemia-associated loci 

in a longitudinal, randomized controlled trial setting. A major strength of this study 

is its design. Randomized controlled trials are considered to provide the highest 

level of evidence as they are the least prone to confounding, reverse causality and 

other sources of bias. Other strengths include the comprehensive assessment of all 

published dyslipidemia associated loci and the multi-ethnic nature of the analysis. 

An important limitation of the study is the low statistical power to detect 

associations and the lack of replication RCTs. As DPP is a unique source of data, 

we were unable to find an adequate replication study with a similar setting, 

availability of lipoprotein subfractions and genetic data. In the manuscript, we 

provided detailed power calculations and when presenting results, we always 

provided 95% CIs to inform the reader of the precision of our estimates. We 

acknowledge that the DPP has limited power to show gene × treatment interactions 

with low effect sizes; however, interactions with low effect sizes are unlikely to be 

clinically relevant. In conclusion, this study provides evidence for gene × treatment 

interactions in relation to large HDL particle concentrations. The remaining GWAS-

derived variants, of which there are hundreds, did not modify treatment effects in 

the DPP to a clinically relevant degree. 
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Summary and conclusions  

During my PhD, I conducted multiple analyses on the topic of genetics, gene × 

environment interactions and genetic epidemiology of complex traits. This thesis 

comprises the manuscripts/publications related to my work in lipid genetics, my 

primary interest during the past four years. In the two first projects, I aimed to assess 

whether genetic variants are associated with lipid level changes. Although there are 

a small number of genetic association studies which examine longitudinal genetic 

effects, our approach to meta-analyze estimates from multiple prospective studies 

can be considered a pioneering step. In Paper I, I examined previously published 

variants, while in Paper II, I extended this project by conducting a hypothesis-free 

study of a larger number of genetic variants. Apart from these longitudinal genetic 

association studies, which had little focus on environmental or lifestyle factors, I 

was also interested in whether there is evidence for gene × environment interactions 

in relation to lipid levels in observational studies or randomized clinical trials. In 

Paper IV, I studied established dyslipidemia loci in a clinical trial, where I assessed 

whether these genetic variants modify treatment effects. Paper III is the only study 

in this thesis that was conducted in a cross-sectional setting. Here I assessed whether 

obesity modifies the effects of established genetic risk factors for 

hypertriglyceridemia. 

 

The most important conclusions of these papers are: 

 

 The majority of the established lipid-related loci, which are highly 

significantly associated with lipid levels in large-scale cross-sectional 

meta-analyses, do not associate with lipid level changes in prospective 

studies. In Paper I, only three of the 157 established dyslipidemia loci 

associated with lipid level changes. In Paper II, multiple hits from the 

discovery phase of the analysis had no cross-sectional associations. 

 There are genetic variants that associate with lipid level changes. Both 

Paper I (three novel variants) and Paper II (seven novel variants) report on 

novel genetic associations in relation to lipid level changes. 

 Established dyslipidemia-associated loci are poor predictors of future 

dyslipidemia. Paper I demonstrated that genetic risk scores add very little 

to risk prediction models containing only basic information, such as age, 

sex and BMI. 
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 Some genetic loci, which associate with lipid level changes show 

associations with clinical outcomes such as coronary artery disease, 

type 2 diabetes and hypertension. In Paper II six variants showed 

evidence for associations for these traits in addition to the longitudinal 

genetic associations in relation to lipid levels. 

 Statistically significant gene × environment interactions can be 

detected in both observational, cross-sectional studies and randomized 

clinical trials. Both Paper III and Paper IV report on statistically significant 

gene × environment interactions with the genetic factor being single 

variants and genetic risk scores and the environmental factors being 

adiposity and a complex lifestyle intervention. While the interactions we 

detected are unlikely to be of high clinical relevance, they clearly 

demonstrate the complex multifactorial nature of blood lipid levels. 

 Higher genetic risk for certain lipoprotein traits attenuates responses 

to lifestyle intervention. Paper IV reports a statistically significant gene × 

treatment interaction in relation to large HDL particle concentrations. This 

interaction means that response to lifestyle intervention is attenuated by 

high genetic risk. Although both low and high genetic risk participants had 

improved large HDL particle concentrations in the lifestyle intervention 

arm at follow-up, those with the adverse genetic predisposition benefited 

less from the intervention.  



75 

Future Perspectives 

To continue the efforts of Paper I and Paper II, we have recently established a larger 

consortium, The LOngitudinal traits - ConsortiUm of prospective Studies (LOCUS) 

to study genetic effects in relation to longitudinal changes in various quantitative 

anthropometric and cardiometabolic traits. These traits are TC, TG, HDL-C, LDL-

C, height, waist circumference, waist-to-hip ratio, BMI, SBP, DPB, pulse pressure, 

mean arterial pressure, fasting glucose, 2-hr glucose, HbA1c and fasting insulin. 

LOCUS’s overarching focus is on discovering genetic variants that convey time-

dependent effects on these 16 anthropometric and cardiometabolic traits. In addition 

to the standard genetic association study in relation to trait changes, we are 

conducting heterogeneity of variance (an analytical method to infer gene × 

environment interactions) analysis and cross-phenotype association studies, as these 

may shed light on genetic effects and gene-environment interactions that are 

conditional on one or more additional traits. As many of the analyzed traits 

demonstrate sex heterogeneity, we study males and females separately. 

GWAS has been extremely successful in detecting common genetic variation in 

relation to complex diseases. In order to validate findings from these studies, it is 

important to functionally characterize genetic associations and gene × environment 

interaction results. Current studies aim to refine these associations in pursuit of the 

causal loci and the causal variant(s) for cardiometabolic outcomes. Although we 

conducted functional studies in Papers II (functional annotation of top hits), III 

(protein-protein interaction network analysis) and IV (pathway enrichment analysis) 

using in silico resources, it is important that our findings and findings from GWAS 

studies are carried further and studied more so we fully understand their underlying 

physiology. In addition to this, emerging novel methods (e.g. Mendelian 

randomization studies) should be utilized to study the causal nature of genetic 

associations and gene × environment interactions. 

Similarly, results from cross-sectional genetic association studies should be tested 

in prospective settings to gain further evidence of association/deeper understanding 

of etiology. These might include prospective cohort studies, randomized controlled 

trials, or new, cutting-edge study designs such as randomized controlled trials based 

on phenotype- or genotype-based recalls. In addition, as epidemiologic evidence has 

accumulated, results from genetic analyses should be carried further and studied in 

in vitro studies, such as knock-out/knock-down experiments or with CRISPR-

Cas9/CRISPR-Cpf1 genome editing tools. 

Genetic findings have proven extremely useful in developing novel drug targets 

(e.g. ongoing RCTs of PCSK9 inhibitors, LPL gene therapy). As our knowledge 
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about genetic associations grows, the greater our ability will be to identify regions 

that are good candidates for pharmacologic intervention. 

Some of the studies in the literature and our study in the DPP show statistically 

significant interactions where those with adverse genetic predisposition benefit less 

from an intervention or have a relatively more unfavorable level of a certain trait 

after intervention. It would be potentially disastrous if one were to draw from these 

results the conclusion that lifestyle intervention should not be recommended to those 

with higher genetic risk. Our study only shows an example where genetic 

background modifies treatment effects and explains in part why certain individuals 

respond to various treatments differently. On the contrary to the detrimental 

conclusion mentioned above, those with high genetic risk should rather be 

prioritized for novel, more effective treatments. Further research, novel 

interventions and study designs are warranted to study and help these subgroups of 

individuals. 

The study of clinical genetics has the potential to shift general medicine to precision 

medicine and eventually towards personalized medicine. Understanding how 

individual differences in the genome contribute to complex phenotypes may one 

day prove to be a powerful approach in designing more targeted clinical 

interventions, developing accurate prediction models, reducing side-effects of 

medications, improving cost-effectiveness of interventions and providing relief 

from the suffering associated with disease. 
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Swedish summary 

Dyslipidemi betecknar ett tillstånd med kroniska avvikelser från normala 

blodfettsnivåer som ökar risken att drabbas av ateroskleros och andra 

kardiovaskulära sjukdomar. Dyslipidemi är resultatet av en kombination av ärftliga 

faktorer och miljö- och livsstilsrelaterade faktorer. Även om nivåerna av totalt 

kolesterol, HDL-kolesterol, LDL-kolesterol och triglycerider i blodet delvis är 

ärftliga är inte mycket känt om genetiska faktorer som kan bidra till försämring av 

blodfettsnivåer över tid. Genom det arbete som beskrivs i denna avhandling har jag 

försökt identifiera tidigare okända genetiska markörer för förändringar i blodfetter 

över tid. Jag har även undersökt om livsstilsfaktorer kan modifiera genetisk 

riskbenägenhet för dyslipidemi. 

I delarbete I studeras de genetiska markörer som i tvärsnittstudier visat samband 

med nivåer av totalt kolesterol, HDL-kolesterol, LDL-kolesterol och triglycerider i 

storskaliga genomvida associationsstudier (GWAS). Samband mellan dessa 

genetiska markörer och blodfettsnivåer undersöktes med tvärtsnitts- och 

longitudinella analyser (10-års uppföljning) i GLACIER-kohorten från norra 

Sverige för att undersöka samband med både absoluta värden och förändringar i 

blodfetter över tid. Både den enskilda samt sammantagna effekten av de genetiska 

markörerna undersöktes. Detta arbete är den första studie där dessa genetiska 

markörer undersöks i longitudinella analyser. Jag utförde även 

riskprediktionsanalyser för risken att utveckla dyslipidemi under uppföljningstiden, 

detta för att undersöka hur mycket traditionella riskfaktorer samt genetiska 

riskfaktorer bidrar till en grundläggande riskprediktionsmodell som endast 

inkluderar ålder, kön och antropometriska data.  

Delarbete II är en utvidgning av delarbete I där analyserna initialt utgår från ett 

mycket större antal genetiska markörer. Vår hypotes var att genetiska markörer som 

i genomvida associationsstudier inte riktigt (men nästan) uppvisar statistiskt 

säkerställda samband kanske inte gör det på grund av att sambandet mellan genetisk 

markör och blodfettsnivåer är tidsberoende och på olikheter i spridningen i ålder på 

deltagarna i de kohorter som analyserna genomförs i. I GLACIER-kohorten valde 

vi därför ut de totalt 29 387 genetiska markörer för blodfetter som inkluderats på 

MetaboChip array:en, dessa inkluderar även genetiska markörer som i tidigare 

studier visat tecken på samband som inte kunnat säkerställas statistiskt. I en första 

undersökande analys valde vi ut de genetiska markörer som uppvisade ett statistiskt 

samband med förändringar över tid i totalt kolesterol eller triglyceridnivåer i 

GLACIER-kohorten med ett p-värde <0.01. Sambandet mellan de utvalda genetiska 

markörerna och blodfetter undersöktes sedan i uppföljande analyser i fyra 

Europeiska prospektiva kohorter och slutligen meta-anlyserades resultaten från de 

totalt fem studierna.  
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Syftet med delarbete III var att upprepa (och därmed verifiera) resultaten från en 

dansk studie som visar att det observerade sambandet mellan vissa genetisk 

markörer och triglyceridnivåer i blodet modifieras av BMI. Med andra ord, 

sambandet mellan genetisk markör och triglyceridnivåer är inte konstant utan 

förändras beroende på forskningspersonens BMI. Detta fenomen kallas gen-

miljöinteration. Interaktionsanalyserna genomfördes i GLACIER-kohorten och 

Malmö Kost Cancer studien och resultaten från de två studierna meta-analyserades 

tillsammans med resultatet från den ursprungliga danska studien. Vi studerade också 

om interaktionen var könsspecifik och hur den påverkas om man på olika sätt tar 

hänsyn till livsstilsfaktorer som rökning, fysiskt aktivetet och kost.  

I delarbete IV var syftet att genomföra en omfattande analys av de genetiska 

markörer som identifierats för blodfetter, lipoproteinsubfraktioner och 

lipoproteinstorlek i DPP som är en multietnisk, multicenter, randomiserad, 

kontrollerad studie i USA. De genetiska markörer som identifierats i genomvida 

associationsstudier studerades i relation till blodfettsnivåer som mätts vid det basala 

undersökningstillfället. Både den enskilda samt sammantagna effekten av de 

genetiska markörerna som identifierats för respektive blodfettsprofil undersöktes. 

Vi studerade också hur mycket av den variation som fanns i uppmätta 

blodfettsvärden mellan forskningsdeltagarna som förklarades av de genetiska 

markörerna. Slutligen undersöktes om det fanns en gen-interventionsinteraktion; 

ifall sambandet mellan den sammantagna effekten av de genetiska markörerna för 

varje blodfettsprofil skiljde sig åt i de olika interventionsgrupperna (placebo, livsstil 

eller metformin-behandling). 

De viktigaste resultaten och slutsatserna från delarbetena i min avhandling är: 

 Majoriteten av de genetiska markörer för blodfetter som identifierats 

i storskaliga meta-analyser av tvärsnittstudier är inte kopplade till 

förändringar i blodfetter över tid i prospektiva studier. I delarbete I 

visade endast tre av 157 etablerade genetiska markörer för blodfetter på 

samband med förändring av blodfettsnivåer över tid. En del av de genetiska 

markörerna som i delarbete II uppvisade preliminära samband med 

förändringar i blodfetter över tid visade tvärtom inget samband med 

absoluta nivåer av blodfetter i tvärtsnittsanalyser.     

 Det finns genetiska variationer som fungerar som markörer för 

förändringar i blodfetter över tid. Både delarbete I (tre genetiska 

variationer) och delarbete II (sju genetiska variationer) rapporterar tidigare 

okända samband mellan genetisk variation och förändring i blodfetter över 

tid.  

 Etablerade genetiska markörer för dyslipidemi är dåliga på att 

prediktera framtida risk för dyslipidemi. Delarbete I demonstrerar att 

den sammantagna genetiska risken för dyslipidemi tillför väldigt lite till 

kliniska riskprediktionsmodeller som innefattar basal information som 

ålder, kön och BMI. 
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 Vissa genetiska markörer som kopplas samman med förändring av 

blodfetter över tid visar också ett samband med ökad risk för 

kransartärsjukdom, typ 2-diabetes och högt blodtryck. I delarbete II 

visade sex av de genetiska markörer som visade samband med förändringar 

i blodfetter över tid även samband med kliniska utfall som 

kransartärsjukdom, typ 2-diabetes och högt blodtryck. 

 Gen-miljöinteraktioner kan studeras i både observations-, tvärtsnitts- 

och randomiserade kliniska studier. Både delarbete I och IV visar på 

statistiskt signifikanta gen-miljöinteraktioner där den genetiska 

kompontenten är individuella genetiska variationer eller sammantagen 

genetisk risk och där miljökomponenten är fetma och livsstilsintervention. 

Även om de interaktioner som vi rapporterar i delarbete I och IV sannolikt 

inte har stor klinisk betydelse visar de tydligt på den komplexa och 

multifaktoriella regleringen av blodfetter. 

 Effekten av livsstilsintervention på lipoproteinprofiler kan reduceras 

till följd av en persons genetiska bakgrund. Delarbete IV visar på en 

statistiskt signifikant gen-miljöinteraktion med avseende på 

koncentrationen av stora HDL-partiklar i blodet. Den observerade 

interaktionen innebär att även om personerna i gruppen som erhöll 

livsstilsintervention överlag uppvisade förbättrade värden med avseende på 

koncentrationen av stora HDL-partiklar i blodet vid det uppföljande 

besökstillfället så var effekten inte lika påtaglig bland forskningspersonerna 

med en hög genetisk predisposition för dyslipidemi.   
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