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Abstract. We propose here a new procedure for output feedback design for systems with
nonlinearities satisfying quadratic constraints. It provides an alternative for the classical
observer-based design and relies on transformation of the closed-loop system with a dy-
namic controller of particular structure into a special block form. We present two sets
of sufficient conditions for stability of the transformed block system and derive matching
conditions allowing such a representation for a particular challenging example. The two
new tests for global stability proposed for a class of nonlinear systems extend the famous
Circle criterion applied for infinite sector quadratic constraints. The study is motivated
and illustrated by the problem of output feedback control design for the well-known finite
dimensional nonlinear model qualitatively describing surge instabilities in compressors.
Assuming that the only available measurement is the pressure rise, we suggest a construc-
tive procedure for synthesis of a family of robustly globally stabilizing feedback controllers.
The solution relies on structural properties of the nonlinearity of the model describing a
compressor characteristic, which includes earlier known static quadratic constraints and a
newly found integral quadratic constraint. Performance of the closed-loop system is dis-
cussed and illustrated by simulations.

Keywords. Active Surge Control, Output Feedback Control, Quadratic Constraints, Cir-
cle Criterion, Nonlinear Systems, Three-state Moore-Greitzer model, Global Stabilization.
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1 Introduction

The study reported in this paper is motivated by the problem of designing
globally stabilizing output feedback controllers for the following nonlinear
dynamical system

𝑑
𝑑𝑡𝜙 = −𝜓 + 3

2 𝜙+ 1
2

[
1− (1 + 𝜙)3

]
(1)

𝑑
𝑑𝑡𝜓 =

1

𝛽2
(𝜙− 𝑢) , 𝑦 = 𝜓 (2)
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Here 𝜓 and 𝜙 are the scalar state variables, 𝑢 is the control input, 𝛽 is a
positive constant, and 𝑦 is the measured output.

The variables 𝜙 and 𝜓 denote deviations of the averaged flow and the
total-to-static pressure-rise coefficients from their nominal values, respec-
tively; 𝑢 is defined by deviation of the coefficient of the inverse throttle
characteristic function from a nominal value; and 𝑡 is a scaled time mea-
sured in radians of travel of the compressor wheel. For a detailed description
we refer the interested reader to [27]: (1)–(2) corresponds to [27, (59)–(60)
with 𝐽 ≡ 0]. The parameters of the system (1)–(2), known as the Greitzer
model [16, 17], as well as the nonlinearity in (1) can be different from pre-
sented. However, it is instructive to consider the system (1)–(2): many of
the arguments below can be applied for the system with modified constants
and even for a different structure of the nonlinearity.

It should be noted that although sometimes both of the state variables
can be assumed as outputs of the system, on-line measurements of the flow
require special instrumentation and are typically not feasible. So, here, we
consider the case when only the 𝜓 -variable is available for feedback design.

Difficulties in developing feedback controllers for (1)–(2) are due to the
presence of the non-globally Lipschitz (cubic) nonlinearity in the equation
(1) that depends on unmeasured 𝜙-variable. It is easy to see that the zero
dynamics [22, Section 13.2] with respect to the measured output 𝑦 is un-
stable and so designing a globally stabilizing output feedback controller is a
challenge. The key for our development is the fact that the nonlinearity sat-
isfies certain quadratic constraints [39], which can be written in the classical
form of sector conditions [22, Section 6.1].

Our search for a large family of robust globally stabilizing controllers for
(1)–(2) have led us to the following methodology.

∙ First, the closed-loop system with a dynamic output feedback controller
is transformed into a special block form. Possibility of such a transfor-
mation results in a set of matching conditions defining the structure of
a family of parametrized feedback control laws formed by linear terms
and special nonlinear terms defined by the original nonlinearity present
in the open-loop system.

∙ After that, sufficient conditions for the parameters to ensure stability
can be derived exploiting the fact that the nonlinearities satisfy certain
quadratic constraints.

We continue with some preliminary remarks and a definition of the special
instrumental representation for the closed-loop system.

1.1 Preliminaries: A class of dynamical systems achieved
with proposed output feedback controllers

We consider a particular structured class of output feedback controllers, cho-
sen to ensure that after an appropriate change of coordinates the closed-loop
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systems can be rewritten as[
�̇�
�̇�

]
=

[
𝐴11 𝐴12

0 𝐴22

][
𝑥
𝑒

]
+

[
𝐵1

0

]
𝑊 {𝑥}(𝐶𝑥) +

[
0
𝐵2

]
𝑊 {𝑒}(𝑥, 𝑒), (3)

where the combined components of 𝑥 and 𝑒 define the new state vector,
𝐴11 , 𝐴12 , 𝐴22 , 𝐵1 , 𝐵2 , and 𝐶 are constant matrices of appropriate dimen-
sions, 𝑊 {𝑥} and 𝑊 {𝑒} are static nonlinearities that resemble the nonlinearity
present in the original dynamics (1)–(2).

The explicit form and the required properties of 𝑊 {𝑥}(⋅) and 𝑊 {𝑒}(⋅, ⋅)
will be discussed below in Section 2 when we establish stability criteria for (3).
The partial motivation for the decomposition of the state of the closed-loop
system into 𝑥 and 𝑒 and assuming the structure (3) is the following.

∙ The vector 𝑥 shall be composed from the measured state 𝜓 and, possi-
bly, some of transformed states of a dynamic feedback controller. The
conditions for the stability of the 𝑥-subsystem can sometimes be inter-
preted as stability conditions under (dynamic) state feedback controller
designed for (1)–(2) assuming that both variables 𝜙 and 𝜓 are mea-
sured.

∙ The vector 𝑒 shall have a component that can sometimes be interpreted
as a state of the error dynamics of a reduced-order observer for the
unmeasured state 𝜙 .

We will choose parameters of the controller to stabilize two systems

𝑑
𝑑𝑡 𝑥 = 𝐴11 𝑥+𝐵1𝑊

{𝑥}(𝐶𝑥) +𝐴12 𝑒(𝑡) with 𝑒(𝑡) ≡ 0 (4)

and

𝑑
𝑑𝑡 𝑒 = 𝐴22 𝑒+𝐵2𝑊

{𝑒}(𝑥(𝑡), 𝑒) with 𝑥(𝑡) being an unknown signal
(5)

separately and after that look for conditions to ensure stabilization of the
whole interconnected system (3).

It is worth noting that since the 𝑥- and 𝑒-subsystems of (3) are both
nonlinear and coupled, the standard separation principle [33, 37] or one of its
extended versions, see e.g. [5, 12, 1], are not applicable. Cascade arguments
cannot be directly applied for imposing stability of (3) either since (5) is not
decoupled from the other subsystem. Note also that even without such a
dependence on 𝑥(𝑡) in many cases1 the stability proofs are not easy2.

Despite our motivation in the form of observer-based design, the argu-
ments below will not be focused on establishing new conditions for validity of

1Except for special situations like [22, Lemma 4.7].
2The difficulty can be seen from the observation that an exponentially vanishing signal

𝑒(𝑡) can make the state of the 𝑥 -subsystem unbounded even if the decoupled system is
globally exponentially stable [34].
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the separation principle, but will be directly aimed at proving global asymp-
totic stability of the closed-loop system. Nevertheless, some of the derived
output feedback controllers can have the interpretation of observer-based de-
sign in a broad sense. We will return to this point in Section 6.3.

The rest of the paper is organized as follows: In Section 2 we present two
tests for global asymptotic stability of (3) expressed as conditions for stability
of the 𝑥- and 𝑒 -subsystems and properties of the nonlinearities 𝑊 {𝑥}(⋅) and
𝑊 {𝑒}(⋅, ⋅). In Section 3 we discuss a structure of output feedback controllers
and matching conditions that allow transforming the closed-loop system into
(3). We show in Section 4 how both statements can be used for description
of output feedback controllers that are stabilizing for (1)–(2). Results of
numerical simulations are presented in Section 5. Finally, we present some
discussions in Section 6 and concluding remarks in Section 7. This Section
is continued with a description of some key properties of the system (1)–(2).

1.2 Preliminaries: Quadratic constraints for the nonlin-
earity in the surge dynamics (1)-(2)

The nonlinearity of the dynamical system (1)-(2)

𝑊 {𝜙}(𝑣) := 1− (1 + 𝑣)3 (6)

has several useful properties presented below.

Lemma 1 The static nonlinearity (6) satisfies the incremental quadratic
constraint (QC)

𝑒 ⋅
[
𝑊 {𝜙}(𝑣)−𝑊 {𝜙}(𝑣 + 𝑒)

]
≥ 0, ∀ 𝑣, 𝑒 ∈ ℝ1 (7)

and the sector QC 3.

𝒢1

[
𝑣,𝑊 {𝜙}(𝑣)

]
=𝑊 {𝜙}(𝑣) ⋅ (−𝑣)− 3

4 𝑣
2 ≥ 0, ∀ 𝑣 ∈ ℝ1. (8)

Proof: Substituting (6) into the left-hand side of (7) we obtain

𝑒
[ {

1− (1 + 𝑣)3
}− {1− (1 + 𝑣 + 𝑒)3

}]
= 𝑒

[
(𝑣 + 𝑒+ 1)3 − (𝑣 + 1)3

]
= 𝑒2

[
(𝑣 + 1)2 + (𝑣 + 𝑒+ 1)2 + (𝑣 + 1)(𝑣 + 𝑒+ 1)

]
≥ 0

The second constraint can be derived as follows.

𝒢1

[
𝑣,𝑊 {𝜙}(𝑣)

]
= 𝑊 {𝜙}(𝑣) ⋅ (−𝑣)− 3

4𝑣
2 =

[
1− (1 + 𝑣)3

] ⋅ (−𝑣)− 3
4𝑣

2

=
[
3 + 3𝑣 + 𝑣2

] ⋅ (−𝑣)2 − 3
4𝑣

2 =
(
𝑣 + 3

2

)2 ⋅ 𝑣2 ≥ 0
(9)

3The QC (8) is stronger than 𝑊 {𝜙}(𝑣) ⋅ (−𝑣) ≥ 0 used in [23] and some other pa-
pers. Using the latter we would, in particular, arrive at the more restrictive condition
Re {𝑇 (𝑗𝜔)} ≤ 0 instead of (65) in Proposition 2 formulated below.
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Consider now the general form of a dynamic output feedback control law

𝑢 = 𝒰(𝑧, 𝑦), �̇� = ℱ(𝑧, 𝑦) (10)

where 𝒰(⋅) and ℱ(⋅) are smooth functions of appropriate dimensions.

Lemma 2 Suppose [0, 𝜏𝑚𝑎𝑥) is the maximal interval of existence of a solu-
tion

𝑋(𝑡) = [𝜙(𝑡);𝜓(𝑡); 𝑧(𝑡)]

of the closed-loop system (1), (2), (10), where 𝜏𝑚𝑎𝑥 > 0 can be finite or not.
Let 𝐹 (𝑋) be a smooth scalar function. Then, only the following two cases
are possible:

1. There exists a sequence {𝑡𝑘}∞𝑘=1 of time instants with lim
𝑘→∞

𝑡𝑘 = 𝜏𝑚𝑎𝑥

such that the integrals of the quadratic form

𝒢1

[
𝑣,𝑊 {𝜙}(𝑣)

]
=𝑊 {𝜙}(𝑣) ⋅ (−𝑣)− 3

4 𝑣
2 (11)

with 𝑊 {𝜙} defined in (6), along this solution with

𝑣(𝑡) = 𝐹 (𝑋(𝑡))

are strictly positive, i.e.∫ 𝑡𝑘

𝑡𝑘−1

𝒢1

[
𝑣(𝑡),𝑊 {𝜙}(𝑣(𝑡))] 𝑑𝑡 > 0, 𝑘 = 1, 2, . . . (12)

2. Along this solution,

either 𝑣 = 𝐹 (𝑋(𝑡)) ≡ 0 or 𝑣 = 𝐹 (𝑋(𝑡)) ≡ −3/2

Moreover, the integral in (12) of the quadratic form 𝒢1

[
𝑣(𝑡),𝑊 {𝜙}(𝑣(𝑡))]

identically equals zero for any 𝑡 ∈ [0, 𝜏𝑚𝑎𝑥) .

Proof: To check (12), observe that integrating the relation (9) along a solution
of the closed-loop system over [𝑡𝑘, 𝜏

𝑚𝑎𝑥) with 𝑣(𝑡) = 𝐹 (𝑋(𝑡)) results in zero
value for any 𝑡𝑘 ∈ [0, 𝜏𝑚𝑎𝑥). Then, 𝑣(𝑡) equals either 0 or − 3

2 on [𝑡𝑘, 𝜏
𝑚𝑎𝑥)

and it is just left to notice that we can shift the time since the system is
time-invariant.



880 A. Shiriaev, L. Freidovich, R. Johansson and A. Robertsson

2 Main result: Stability criteria for (3)

Let us postpone the discussion on how to transform the closed-loop system
(1), (2), (10) into the form of (3) and search for conditions, under which global
stability of (3) follows from properties of the separated 𝑥- and 𝑒-subsystems.
It is worth noting that neither 𝑥- nor 𝑒-subsystems are independent, and
just assuming asymptotic stability of each of them will not necessary result
in asymptotic stability of (3). Stronger properties will be requested and
features of the nonlinear functions 𝑊 {𝑥}(⋅) and 𝑊 {𝑒}(⋅, ⋅) will be used. To
this purpose, assumptions of the following properties are made:

Assumption 1: The nonlinearity 𝑊 {𝑥}(⋅) satisfies the relations (9) and
(12), which are satisfied by 𝑊 {𝜙}(⋅) defined in (6).

Assumption 2: The nonlinearity 𝑊 {𝑒}(⋅, ⋅) satisfies the infinite sector
quadratic constraint

𝒢2

[
𝑒,𝑊 {𝑒}(𝑥, 𝑒)

]
= 𝑒𝑇Π𝑒𝑊

{𝑒}(𝑥, 𝑒) ≥ 0, ∀𝑥, 𝑒 (13)

with Π𝑒 being a constant nonzero matrix, that is the relation similar to (7)
defined for the original nonlinearity 𝑊 {𝜙}(⋅) .
The first stability condition will rely on quadratic stabilities of both 𝑥- and
𝑒 -subsystems.

Theorem 1 Let Assumptions 1 and 2 hold. Suppose that:

1. There exist matrices 𝑃1 = 𝑃 𝑇
1 and 𝑄1 = 𝑄𝑇

1 > 0 such that the following
inequality

2𝑥𝑇𝑃1

(
𝐴11𝑥+𝐵1𝑤1

)
+𝒢1 [𝐶𝑥,𝑤1]

= 2𝑥𝑇𝑃1

(
𝐴11𝑥+𝐵1𝑤1

)
+
(−𝑥𝑇𝐶𝑇𝑤1 − 3

4𝑥
𝑇𝐶𝑇𝐶𝑥

)
< −𝑥𝑇𝑄1𝑥,

(14)
holds for all 𝑥 ∕= 0 and 𝑤1 ∕= 0 . Moreover, the matrix

(
𝐴11 − 3

4𝐵1𝐶
)

is Hurwitz.

2. There exist matrices 𝑃2 = 𝑃 𝑇
2 and 𝑄2 = 𝑄𝑇

2 > 0 such that

𝑒𝑇 (𝐴𝑇
22𝑃2 + 𝑃2𝐴22) 𝑒 < −𝑒𝑇𝑄2𝑒, 𝑒𝑇 (2𝑃2𝐵2 +Π𝑒)𝑤2 = 0 (15)

for all 𝑒 ∕= 0 and 𝑤2 ∕= 0. Moreover, the matrix 𝐴22 is Hurwitz.

Then, the nonlinear system (3) is quadratically stable, i.e. there are matrices
𝒫 = 𝒫𝑇 > 0 and 𝒬 = 𝒬𝑇 > 0 such that along any nontrivial solution
[𝑥(𝑡); 𝑒(𝑡)] of (3) we have

𝑑
𝑑𝑡

[
𝑥(𝑡)
𝑒(𝑡)

]𝑇
𝒫
[
𝑥(𝑡)
𝑒(𝑡)

]
< −

[
𝑥(𝑡)
𝑒(𝑡)

]𝑇
𝒬
[
𝑥(𝑡)
𝑒(𝑡)

]
(16)
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Proof: By the standard arguments, see e.g. [39, pp. 93–97], we conclude that
the matrices 𝑃1 and 𝑃2 in the inequalities (14) and (15) are positive definite,
so that the systems (4) and (5) are quadratically stable.

Let us consider now the positive definite quadratic form

𝒲(𝑥, 𝑒) =

[
𝑥
𝑒

]𝑇
𝒫
[
𝑥
𝑒

]
, 𝒫 =

[
𝑃1 0
0 𝛾 ⋅ 𝑃2

]
(17)

with 𝛾 > 0 and compute the time-derivative of 𝒲(⋅) along a solution of (3):

𝑑
𝑑𝑡
𝒲(𝑥(𝑡), 𝑒(𝑡))=2𝑥𝑇𝑃1

[
𝐴11𝑥+𝐴12𝑒+𝐵1𝑊

{𝑥}(𝐶𝑥)
]
+2𝛾𝑒𝑇𝑃2

[
𝐴22𝑒+𝐵2𝑊

{𝑒}(𝑥, 𝑒)
]

Since the inequalities (9) and (13) are valid along any solution of (3), we
have

𝑑
𝑑𝑡
𝒲 ≤ 2𝑥𝑇𝑃1

[
𝐴11𝑥+𝐴12𝑒+𝐵1𝑊

{𝑥}(𝐶𝑥)
]
+ 2 𝛾 𝑒𝑇𝑃2

[
𝐴22𝑒+𝐵2𝑊

{𝑒}(𝑥, 𝑒)
]

+𝒢1

[
𝐶𝑥,𝑊 {𝑥}(𝐶𝑥)

]
+ 2 𝛾 𝒢2

[
𝑒,𝑊 {𝑒}(𝑥, 𝑒)

]
(18)

Taking into account the relations (14), (15), one can observe that the right-
hand side of (18) becomes less or equal to

−𝑥𝑇𝑄1𝑥+ 2𝑥𝑇𝑃1𝐴12𝑒− 𝛾 𝑒𝑇𝑄2𝑒,

which after completing the squares becomes

− (𝑅1𝑥+ 𝑟1𝑒)
2 − 𝑒𝑇 (𝛾 𝑄2 − 𝑟𝑇1 𝑟1) 𝑒 (19)

Here 𝑅1 is such that 𝑄1 = 𝑅𝑇
1𝑅1 , and 𝑟𝑇1 = 𝐴𝑇

12𝑃1𝑅
−1
1 . If the constant 𝛾 is

chosen large enough, then the quadratic form (19), which serves as an upper
bound for 𝑑

𝑑𝑡𝒲(𝑥(𝑡), 𝑒(𝑡)), is negative definite.

The second stability criterion is again based on quadratic stability of the
𝑒 -subsystem, but requires weaker properties of the 𝑥-subsystem.

Theorem 2 Let Assumptions 1 and 2 hold. Suppose that:

1. There exist a matrix 𝑃1 = 𝑃 𝑇
1 such that the following inequality

2𝑥𝑇𝑃1

(
𝐴11𝑥+𝐵1𝑤1

)
+𝒢1 [𝐶𝑥,𝑤1]

= 2𝑥𝑇𝑃1

(
𝐴11𝑥+𝐵1𝑤1

)
+
(−𝑥𝑇𝐶𝑇𝑤1 − 3

4𝑥
𝑇𝐶𝑇𝐶𝑥

) ≤ 0
(20)

holds for all 𝑥 ∕= 0 and 𝑤1 ∕= 0 . Moreover, the matrix
(
𝐴11 − 3

4𝐵1𝐶
)

is Hurwitz and the pair
[
𝐶,𝐴11

]
is observable.

2. There exist matrices 𝑃2 = 𝑃 𝑇
2 and 𝑄2 = 𝑄𝑇

2 > 0 such that (15) is
valid for all 𝑒 ∕= 0 and 𝑤2 ∕= 0. Moreover, the matrix 𝐴22 is Hurwitz.

3. The system (3) has no nontrivial solution [𝑥(𝑡); 𝑒(𝑡)] along which 𝑒(𝑡) ≡
0 and 𝐶 𝑥(𝑡) ≡ const ∈ {−3

2 ; 0
}
.
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Then, the origin of nonlinear system (3) is locally exponentially stable and
globally asymptotically stable.

Proof is based on the following four claims.

Claim 1 Under the assumptions of Theorem 2 the system (4) is globally
asymptotically stable.

With the change of 𝑤1 into �̃�1 defined by

�̃�1 = 𝑤1 +
3
4 𝐶𝑥

the inequality (20) has the form

2𝑥𝑇𝑃1

[(
𝐴11 − 3

4𝐵1𝐶
)
𝑥+𝐵1�̃�1

]
+ (−𝑥𝑇𝐶𝑇 �̃�1) ≤ 0 ∀𝑥, �̃�1

By assumption, it has a solution. The facts that
(
𝐴11 − 3

4𝐵1𝐶
)
is Hurwitz

and
[
𝐶,𝐴11

]
is observable, imply that 𝑃1 > 0 (see [39, Theorem 2.15, p.97]).

Consider the Lyapunov function candidate 𝑉1(𝑥) = 𝑥𝑇𝑃1𝑥 . Due to (20) and
(9), its time derivative along a solution 𝑥(𝑡) of the system (4) satisfies the
non-strict inequality

𝑑
𝑑𝑡𝑉1(𝑥(𝑡))

= 2𝑥(𝑡)𝑇𝑃1

(
𝐴11𝑥(𝑡) +𝐵1𝑊

{𝑥}(𝐶𝑥(𝑡))
)

≤ 2𝑥(𝑡)𝑇𝑃1

(
𝐴11𝑥(𝑡) +𝐵1𝑊

{𝑥}(𝐶𝑥(𝑡))
)
+ 𝒢1

[
𝐶𝑥(𝑡),𝑊 {𝑥}(𝐶𝑥(𝑡))

]
≤ 0 (21)

It implies an existence of the solutions of the system (4) on an infinite interval
of time [22, Theorem 3.3], Lyapunov stability [22, Theorem 4.1], and their
boundedness. It is left to verify that 𝑥(𝑡) converges to the origin. Considering
the integral form of (21), we have the inequalities

𝑉1(𝑥(𝑡𝑘))− 𝑉1(𝑥(𝑡𝑘−1))

=

𝑡𝑘∫
𝑡𝑘−1

2𝑥𝑇𝑃1

(
𝐴11𝑥(𝑡) +𝐵1𝑊

{𝑥}(𝐶𝑥(𝑡))
)
𝑑𝑡

<

𝑡𝑘∫
𝑡𝑘−1

2𝑥(𝑡)𝑇𝑃1

(
𝐴11𝑥(𝑡) +𝐵1𝑊

{𝑥}(𝐶𝑥(𝑡))
)
𝑑𝑡+

𝑡𝑘∫
𝑡𝑘−1

𝒢1

[
𝐶𝑥(𝑡),𝑊 {𝑥}(𝐶𝑥(𝑡))

]
𝑑𝑡

≤ 0 (22)

where the sequence {𝑡𝑘}∞𝑘=1 is from (12), which by assumption exists for
any particular nontrivial solution4 of (3). Hence, 𝑉1(𝑥(𝑇 )) → 𝑐 ≡ 𝑐𝑜𝑛𝑠𝑡

4Note that using these special intervals of time allows us to make one of the inequalities
strict. This is the key point of the proof.
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as 𝑇 → ∞ . It follows from (21) that the 𝜔 -limit set of any solution is
nonempty, compact, and invariant [22, Lemma 4.1]. Taking a solution 𝑥∞(𝑡)
of the system (4) from an 𝜔 -limit set and applying (21) and (22) to it, we
conclude that 𝑐 = 0 and so 𝑥(𝑇 ) → 0 as 𝑇 → ∞ .

Claim 2 There are no solutions of (3) that escape to infinity in finite time.

The time-derivative of the function 𝒲(⋅) defined by (17) with 𝛾 = 1 along
any solution of (3) satisfies the inequality

𝑑
𝑑𝑡𝒲(𝑥(𝑡), 𝑒(𝑡))≤2𝑥(𝑡)𝑇𝑃1𝐴12𝑒(𝑡)− 𝑒(𝑡)𝑇𝑄2𝑒(𝑡) ≤ 𝜀1 𝒲(𝑥(𝑡), 𝑒(𝑡)) (23)

for some 𝜀1 > 0. Hence, solutions cannot grow faster than exponentially, see
e.g. [22, Lemma 3.4], and exist on the infinite interval of time.

Claim 3 Along any (even unbounded) solution [𝑥(𝑡), 𝑒(𝑡)] of (3), 𝑒(𝑡) expo-
nentially converges to zero.

This fact immediately follows from (15) and the fact that the matrix 𝐴22 is
Hurwitz.

Claim 4 All solutions of (3) are bounded.

The first inequality in (23) can be rewritten as

𝑑
𝑑𝑡𝒲(𝑥(𝑡), 𝑒(𝑡)) ≤ 𝜀2 ⋅

√
𝒲(𝑥(𝑡), 𝑒(𝑡)) ⋅ 𝛽(𝑡) (24)

with 𝛽(𝑡) = 𝑒(𝑡) and 𝜀2 > 0. Integrating (24) results in the following
inequality √

𝒲(𝑥(𝑇 ), 𝑒(𝑇 ))−
√
𝒲(𝑥(0), 𝑒(0)) ≤ 𝜀3 ⋅

∫ 𝑇

0

𝛽(𝑡)𝑑𝑡

Exponential convergence of 𝛽(𝑡) to zero implies that 𝛽(⋅) ∈ 𝐿1[0,+∞). In
turn, integrability of 𝛽(𝑡) over the interval [0,+∞) implies boundedness of
𝒲(⋅) and consequently boundedness of the solution [𝑥(𝑡), 𝑒(𝑡)] .

With the four claims at hand, to finish the proof of Theorem 2, one can
observe that any solution [𝑥(𝑡), 𝑒(𝑡)] of (3) will have a non-empty 𝜔 -limit
set, while on this set 𝑒 -variable should be zero. That is, this set consists
of solutions of (4), which are asymptotically stable. This implies that all
solutions of (3) converge to the origin. Furthermore, it is readily seen that
with the conditions of Theorem 2 the origin is locally exponentially stable by
linearization5. Hence, it is globally asymptotically stable.

With the formulated two criteria for stability of the transformed system
(3), it is left to establish the possibility and a constructive procedure for
transforming (1), (2), and (10) into such a form. This will be discussed next.

5Note that the quadratic constraints in the form of sector conditions imply exponential
stability for 𝑥 - and 𝑒 -subsystems with all the linear functions 𝑊 {𝑥}(⋅) and 𝑊 {𝑒}(⋅, ⋅)
satisfying the quadratic constraints, i.e. the ones appearing after linearization.
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3 Feedback controllers for (1)–(2) and suffi-
cient conditions to meet the structure of (3)

Here we introduce a class of output feedback controllers (10) for (1)–(2) and
discuss matching conditions for the closed-loop system to be equivalent to
the dynamical system (3). We will separate the linear and nonlinear parts in
the control law, restrict ourselves to linear changes of coordinates and look
for sufficient conditions to perform the transformation.

3.1 Parametric set of controllers

Consider the family of output feedback controllers (10) with the following
structure

𝑢 = Λ{𝑢}
[
𝜓
𝑧

]
+𝑊 {𝑢}(𝜓, 𝑧), 𝑑

𝑑𝑡 𝑧 = Λ{𝑧}
[
𝜓
𝑧

]
+𝑊 {𝑧}(𝜓, 𝑧), 𝑧 ∈ ℝ𝑚,

(25)

where Λ{𝑢} =
[
Λ
{𝑢}
𝜓 ,Λ

{𝑢}
𝑧

]
, Λ{𝑧} =

[
Λ
{𝑧}
𝜓 ,Λ

{𝑧}
𝑧

]
are constant matrices of

appropriate dimensions; 𝑊 {𝑢}(⋅), 𝑊 {𝑧}(⋅) are static nonlinearities. With
such a feedback controller the dynamics of the system (1)–(2) becomes⎡⎢⎢⎣
�̇�

�̇�

�̇�

⎤⎥⎥⎦=
⎡⎢⎢⎣

3
2 −1 0

1
𝛽2 − 1

𝛽2Λ
{𝑢}
𝜓 − 1

𝛽2Λ
{𝑢}
𝑧

0 Λ
{𝑧}
𝜓 Λ

{𝑧}
𝑧

⎤⎥⎥⎦
︸ ︷︷ ︸

= 𝒜𝑐𝑙

⎡⎢⎢⎢⎣
𝜙

𝜓

𝑧

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
1
2 0 0

0 − 1
𝛽2 0

0 0 1𝑚

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

= ℬ𝑐𝑙

⎡⎢⎢⎢⎣
𝑊 {𝜙}(𝜙)

𝑊 {𝑢}(𝜓, 𝑧)

𝑊 {𝑧}(𝜓, 𝑧)

⎤⎥⎥⎥⎦
(26)

Below we present the conditions that allow rewriting the system (26) in the
the form (3) with 𝑥- and 𝑒-variables being defined by linear combinations of
the components of the state vector [𝜙;𝜓; 𝑧] , i.e.

𝑥 = 𝑇 {𝑥}
[
𝜓
𝑧

]
= 𝑇

{𝑥}
𝜓 𝜓 + 𝑇 {𝑥}

𝑧 𝑧, 𝑒 = 𝑇 {𝑒}

⎡⎣ 𝜙𝜓
𝑧

⎤⎦ = 𝑇
{𝑒}
𝜙 𝜙+ 𝑇

{𝑒}
𝜓 𝜓 + 𝑇 {𝑒}

𝑧 𝑧

(27)
where 𝑇 {𝑥} and 𝑇 {𝑒} are constant matrices of appropriate dimensions. As
seen, the 𝑥-variable is constructed from the measured quantity and internal
states of the controller, while the 𝑒-variable depends on all components of
the state vector of (26).

3.2 The first matching condition: the 𝑒-dynamics

Differentiating the 𝑒-variable defined by (27), (26) and equating the result
with the 𝑒 -dynamics in (3), we obtain the first matching condition written
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as

𝑇 {𝑒}

⎛⎝𝒜𝑐𝑙

⎡⎣ 𝜙𝜓
𝑧

⎤⎦+ ℬ𝑐𝑙
⎡⎣ 𝑊 {𝜙}(𝜙)
𝑊 {𝑢}(𝜓, 𝑧)
𝑊 {𝑧}(𝜓, 𝑧)

⎤⎦⎞⎠ = 𝑇 {𝑒}

⎡⎣ �̇��̇�
�̇�

⎤⎦
︸ ︷︷ ︸

= �̇�

= 𝐴22 𝑇
{𝑒}

⎡⎣ 𝜙𝜓
𝑧

⎤⎦
︸ ︷︷ ︸

= 𝑒

+𝐵2𝑊
{𝑒}
(
𝑇 {𝑥}

[
𝜓
𝑧

]
︸ ︷︷ ︸

= 𝑥

, 𝑇 {𝑒}

⎡⎣ 𝜙𝜓
𝑧

⎤⎦
︸ ︷︷ ︸

= 𝑒

)

With some loss of generality, let us consider separately the relations between
the linear and nonlinear terms. We obtain the identity between matrices

𝑇 {𝑒}𝒜𝑐𝑙 ≡ 𝐴22𝑇
{𝑒} (28)

and the identity for the nonlinearities

𝑇 {𝑒}ℬ𝑐𝑙
⎡⎣ 𝑊 {𝜙}(𝜙)
𝑊 {𝑢}(𝜓, 𝑧)
𝑊 {𝑧}(𝜓, 𝑧)

⎤⎦ ≡ 𝐵2𝑊
{𝑒}

⎛⎝𝑇 {𝑥}
[
𝜓
𝑧

]
, 𝑇 {𝑒}

⎡⎣ 𝜙𝜓
𝑧

⎤⎦⎞⎠ ∀𝜙, 𝜓, 𝑧 (29)

The quadratic constraint (13) originally expressed in the 𝑥- and 𝑒-variables
becomes

[𝜙, 𝜓, 𝑧𝑇 ]
(
𝑇 {𝑒}

)𝑇
Π𝑒𝑊

{𝑒}

⎛⎝𝑇 {𝑥}
[
𝜓
𝑧

]
, 𝑇 {𝑒}

⎡⎣ 𝜙𝜓
𝑧

⎤⎦⎞⎠ ≥ 0, ∀𝜙, 𝜓, 𝑧 (30)

3.3 The second matching condition: the 𝑥-dynamics

Differentiating the 𝑥-variable defined by (27), (26) and equating the result
with the 𝑥-dynamics in (3), we obtain the second matching condition written
as

[
0, 𝑇 {𝑥}

]⎛⎝𝒜𝑐𝑙

⎡⎣ 𝜙𝜓
𝑧

⎤⎦+ ℬ𝑐𝑙
⎡⎣ 𝑊 {𝜙}(𝜙)
𝑊 {𝑢}(𝜓, 𝑧)
𝑊 {𝑧}(𝜓, 𝑧)

⎤⎦⎞⎠ =
[
0, 𝑇 {𝑥}

]⎡⎣ �̇��̇�
�̇�

⎤⎦ = 𝑑
𝑑𝑡𝑥

= 𝐴11 𝑇
{𝑥}
[
𝜓
𝑧

]
︸ ︷︷ ︸

= 𝑥

+𝐴12 𝑇
{𝑒}

⎡⎣ 𝜙𝜓
𝑧

⎤⎦
︸ ︷︷ ︸

= 𝑒

+𝐵1𝑊
{𝑥}
(
𝐶 𝑇 {𝑥}

[
𝜓
𝑧

]
︸ ︷︷ ︸

= 𝑥

)
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This identity will be satisfied if we equate the linear and nonlinear terms.
Namely, if the relations between the matrices

[
0, 𝑇 {𝑥}

]
𝒜𝑐𝑙

⎡⎣ 1
0
0

⎤⎦ ≡ 𝐴12𝑇
{𝑒}

⎡⎣ 1
0
0

⎤⎦ (31)

[
0, 𝑇 {𝑥}

]
𝒜𝑐𝑙

⎡⎣ 0 0
1 0
0 1𝑚

⎤⎦ ≡ 𝐴11𝑇
{𝑥} +𝐴12𝑇

{𝑒}

⎡⎣ 0 0
1 0
0 1𝑚

⎤⎦ (32)

hold, and if the nonlinearities are equal

[
0, 𝑇 {𝑥}

]
ℬ𝑐𝑙
⎡⎣ 𝑊 {𝜙}(𝜙)
𝑊 {𝑢}(𝜓, 𝑧)
𝑊 {𝑧}(𝜓, 𝑧)

⎤⎦ ≡ 𝐵1𝑊
{𝑥}
(
𝐶𝑇 {𝑥}

[
𝜓
𝑧

])
∀𝜙, 𝜓, 𝑧 (33)

The first column of 𝒜𝑐𝑙 in (26) cannot be changed by the controller, hence
the relation (31) is

1
𝛽2 𝑇

{𝑥}
𝜓 = 𝐴12𝑇

{𝑒}
𝜙 with 𝑇 {𝑥} =

[
𝑇

{𝑥}
𝜓 , 𝑇 {𝑥}

𝑧

]
, 𝑇 {𝑒} =

[
𝑇

{𝑒}
𝜙 , 𝑇

{𝑒}
𝜓 , 𝑇 {𝑒}

𝑧

]
(34)

The constraint (9) with the quadratic form 𝒢1[⋅, ⋅] becomes rewritten as

𝒢1

[
𝐶𝑇 {𝑥}

[
𝜓
𝑧

]
,𝑊 {𝑥}

(
𝑇 {𝑥}

[
𝜓
𝑧

])]
≥ 0, ∀ 𝜓, 𝑧 (35)

3.4 Example

To illustrate some of the above conditions for matching, for instance, imposed
on the 𝑒 -dynamics in Section 3.2, let us consider the simplest case of the
controller (25) with no dynamics. For this case several of the parameters
will have predefined zero values and the matching relations become simpler:
Indeed, the variables 𝑥 and 𝑒 are scalars and the linear transforms (27) take
the form

𝑥 =
[
𝑇

{𝑥}
𝜓 , 0

] [𝜓
𝑧

]
, 𝑒 =

[
𝑇

{𝑒}
𝜙 , 𝑇

{𝑒}
𝜓 , 0

]⎡⎣ 𝜙𝜓
𝑧

⎤⎦ 𝑥 ∈ ℝ1, 𝑒 ∈ ℝ1

where 𝑇
{𝑥}
𝜓 , 𝑇

{𝑒}
𝜙 and 𝑇

{𝑒}
𝜓 are scalar parameters. The equation (28) that

matches the linear parts of the 𝑒-dynamics is reduced now to

[
𝑇

{𝑒}
𝜙 , 𝑇

{𝑒}
𝜓

] [ 3
2 −1

1
𝛽2 − 1

𝛽2Λ
{𝑢}
𝜓

]
= 𝐴22

[
𝑇

{𝑒}
𝜙 , 𝑇

{𝑒}
𝜓

]
(36)

The next statement describes the necessary and sufficient conditions for this
(Sylvester-like) equation to have non-trivial solutions
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Lemma 3 The set of parameters {𝑇 {𝑒}
𝜙 , 𝑇

{𝑒}
𝜓 ,Λ

{𝑢}
𝜓 , 𝐴22} , which satisfy (36),

is non-trivial if and only if {Λ{𝑢}
𝜓 , 𝐴22} satisfy the equation

(𝐴22)
2
+
[

1
𝛽2 Λ

{𝑢}
𝜓 − 3

2

]
⋅𝐴22 +

1
𝛽2 − 3

2𝛽2 Λ
{𝑢}
𝜓 = 0 (37)

Proof is based on the observation that (36) has nontrivial solution if and only
if the determinant of the matrix⎡⎣ ( 32 −𝐴22

) −1

1
𝛽2

(
− 1
𝛽2Λ

{𝑢}
𝜓 −𝐴22

) ⎤⎦
is zero. This results in the equation (37). The pair

[
𝑇

{𝑒}
𝜙 , 𝑇

{𝑒}
𝜓

]
can be found

then computing a left eigenvector corresponding to the zero eigenvalue.

If the parameters {𝑇 {𝑒}
𝜙 , 𝑇

{𝑒}
𝜓 ,Λ

{𝑢}
𝜓 , 𝐴22} are chosen as described in

Lemma 3 and if the nonlinearity 𝑊 {𝑢}(⋅) of the controller (25) is taken as

𝑊 {𝑢}(𝜓) = 𝑤𝑢 ⋅
(
1− (1 + 𝑡𝑢 ⋅ 𝜓)3

)
(38)

where 𝑤𝑢 , 𝑡𝑢 are constants, then the relation (29) defines 𝐵2 and 𝑊 {𝑒}(⋅, ⋅).
In turn, the quadratic constraint (30) can be met with an appropriate choice
of 𝑤𝑢 and 𝑡𝑢 . Indeed, the right-hand side of the inequality (30) is then
equal, up to a constant factor, to[

1
2 𝑇

{𝑒}
𝜙 𝑊 {𝜙}(𝜙)− 1

𝛽2 𝑇
{𝑒}
𝜓 𝑊 {𝜓}(𝜓)

]
⋅
(
𝑇

{𝑒}
𝜙 𝜙+ 𝑇

{𝑒}
𝜓 𝜓

)
Taking the factor 1

2

(
𝑇

{𝑒}
𝜙

)2
outside the brackets, the last expression has

the form

1
2

(
𝑇

{𝑒}
𝜙

)2 [
𝑊 {𝜙}(𝜙)− 2

𝛽2

𝑇
{𝑒}
𝜓

𝑇
{𝑒}
𝜙

⋅ 𝑤𝑢 ⋅
(
1− (1 + 𝑡𝑢 ⋅ 𝜓)3

)] ⋅(𝜙+
𝑇

{𝑒}
𝜓

𝑇
{𝑒}
𝜙

𝜓

)
and it is reduced to

1
2

(
𝑇

{𝑒}
𝜙

)2 [
𝑊 {𝜙}(𝜙)− (1− (1 + 𝑡𝑢 ⋅ 𝜓)3

)]⋅(𝜙− 𝑡𝑢 ⋅ 𝜓)
= 1

2

(
𝑇

{𝑒}
𝜙

)2 [
(1 + 𝑡𝑢 ⋅ 𝜓)3 − (1 + 𝜙)3

] ⋅ (𝜙− 𝑡𝑢 ⋅ 𝜓)
(39)

provided that 𝑤𝑢 and 𝑡𝑢 are taken as

𝑤𝑢 = 𝛽2

2

𝑇
{𝑒}
𝜙

𝑇
{𝑒}
𝜓

, 𝑡𝑢 = −𝑇
{𝑒}
𝜓

𝑇
{𝑒}
𝜙

The relation (39) is already sign-definite for any 𝜙 and 𝜓 as requested in
(30).
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4 Sufficient conditions for robust global stabi-
lization of (1), (2) via output feedback

Here we present two families of dynamic output feedback control laws (25)
that meet the full set of matching conditions of the previous Section to fit the
structure of (3). With additional constraints on coefficients the first family
of controllers satisfies the conditions of Theorem 1 and the second satisfies
the conditions of Theorem 2 ensuring in each case global asymptotic stability
of the respective closed-loop system.

4.1 Output feedback controller design: Example 1

Consider a subset of output feedback controllers (25) with 𝑧 ∈ ℝ1 and the
transformations (27) defined by

𝑥 =

[
1 0
0 1

]
︸ ︷︷ ︸
= 𝑇 {𝑥}

[
𝜓
𝑧

]
∈ ℝ2, 𝑒 = [1, −𝑡𝜓, −𝑡𝑧]︸ ︷︷ ︸

= 𝑇 {𝑒}

⎡⎣ 𝜙𝜓
𝑧

⎤⎦ ∈ ℝ1 (40)

Suppose that the nonlinearities 𝑊 {𝑢}(⋅), 𝑊 {𝑧}(⋅) in the controller (25) are
similar and defined as

𝑊 {𝑢}(𝜓, 𝑧) = 𝑤𝑢 ⋅𝑊 (𝜓, 𝑧), 𝑊 {𝑧}(𝜓, 𝑧) = 𝑤𝑧 ⋅𝑊 (𝜓, 𝑧), (41)

where 𝑤𝑢 , 𝑤𝑧 are constants and

𝑊 (𝜓, 𝑧) = 1− (1 + 𝑡𝜓𝜓 + 𝑡𝑧𝑧
)3

(42)

With such a choice, the controller (25) is

𝑢 = Λ
{𝑢}
𝜓 𝜓+Λ{𝑢}

𝑧 𝑧+𝑤𝑢⋅𝑊 (𝜓, 𝑧), 𝑑
𝑑𝑡 𝑧 = Λ

{𝑧}
𝜓 𝜓+Λ{𝑧}

𝑧 𝑧+𝑤𝑧 ⋅𝑊 (𝜓, 𝑧), (43)

with 𝑧 ∈ ℝ1 , and the closed-loop system (26) takes the form⎡⎢⎢⎣
�̇�

�̇�

�̇�

⎤⎥⎥⎦=
⎡⎢⎢⎣

3
2 −1 0

1
𝛽2 − 1

𝛽2Λ
{𝑢}
𝜓 − 1

𝛽2Λ
{𝑢}
𝑧

0 Λ
{𝑧}
𝜓 Λ

{𝑧}
𝑧

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
𝜙

𝜓

𝑧

⎤⎥⎥⎥⎦+
⎡⎢⎢⎣

1
2 0 0

0 − 1
𝛽2𝑤𝑢 0

0 0 𝑤𝑧

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
𝑊 {𝜙}(𝜙)

𝑊 (𝜓, 𝑧)

𝑊 (𝜓, 𝑧)

⎤⎥⎥⎥⎦
(44)

Here the nonlinearities 𝑊 {𝜙}(⋅) and 𝑊 (⋅) are defined by (6) and (42) re-

spectively; Λ
{𝑢}
𝜓 , Λ

{𝑢}
𝑧 , Λ

{𝑧}
𝜓 , Λ

{𝑧}
𝑧 are scalar constant parameters.

The most demanding part in rewriting (44) in the form of (3) is the
relation (28). For this case it requires finding a solution of the linear matrix
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equation

[𝜏𝜙, 𝜏𝜓, 𝜏𝑧]

⎡⎢⎢⎣
3
2 −1 0

1
𝛽2 − 1

𝛽2Λ
{𝑢}
𝜓 − 1

𝛽2Λ
{𝑢}
𝑧

0 Λ
{𝑧}
𝜓 Λ

{𝑧}
𝑧

⎤⎥⎥⎦ = 𝐴22 [𝜏𝜙, 𝜏𝜓, 𝜏𝑧] , (45)

from which the parameters 𝑡𝜓 and 𝑡𝑧 are computed as

𝑡𝜓 = −𝜏𝜓
𝜏𝜙
, 𝑡𝑧 = − 𝜏𝑧

𝜏𝜙
, if 𝜏𝜙 ∕= 0. (46)

The conditions for (45) to have a nontrivial solution are given next6.

Lemma 4 There exist non-trivial solutions [𝜏𝜙, 𝜏𝜓, 𝜏𝑧] for (45) if and only

if the parameters Λ
{𝑢}
𝜓 , Λ

{𝑢}
𝑧 , Λ

{𝑧}
𝜓 , Λ

{𝑧}
𝑧 , and 𝐴22 satisfy the equation

−𝐴3
22+

[
3
2 − Λ

{𝑢}
𝜓

𝛽2 + Λ
{𝑧}
𝑧

]
𝐴2

22+

[
3Λ

{𝑢}
𝜓

2𝛽2 − 1
𝛽2 +

Λ
{𝑢}
𝜓 Λ{𝑧}

𝑧

𝛽2 − 3Λ{𝑧}
𝑧

2 − Λ{𝑢}
𝑧 Λ

{𝑧}
𝜓

𝛽2

]
𝐴22

+
Λ{𝑧}
𝑧

𝛽2 − 3Λ
{𝑢}
𝜓 Λ{𝑧}

𝑧

2𝛽2 +
3Λ{𝑢}

𝑧 Λ
{𝑧}
𝜓

2𝛽2 = 0

(47)

Proof is based on the observation that (45) has a solution if and only if the
determinant of the matrix⎡⎢⎢⎢⎣

(
3
2 −𝐴22

) −1 0

1
𝛽2

(
− 1
𝛽2Λ

{𝑢}
𝜓 −𝐴22

)
− 1
𝛽2Λ

{𝑢}
𝑧

0 Λ
{𝑧}
𝜓

(
Λ
{𝑧}
𝑧 −𝐴22

)
⎤⎥⎥⎥⎦

is zero. This results in the equation (47). The row [𝜏𝜙, 𝜏𝜓, 𝜏𝑧] can be found
then as the left eigenvector corresponding to the zero eigenvalue.

The relation (29) takes for this case the form

1
2𝑊

{𝜙}(𝜙) +
[

1
𝛽2 𝑡𝜓𝑤𝑢 − 𝑡𝑧𝑤𝑧

]
𝑊 (𝜓, 𝑧) = 𝐵2𝑊

{𝑒}(𝑥, 𝑒)

If the parameters satisfy the relation

1
𝛽2 𝑡𝜓𝑤𝑢 − 𝑡𝑧𝑤𝑧 = − 1

2 , (48)

then 𝐵2 is equal to 1
2 and 𝑊 {𝑒}(𝑥, 𝑒) = 𝑊 {𝜙}(𝜙) − 𝑊 (𝜓, 𝑧). With this

choice, the inequality (30) is satisfied with Π𝑒 = −1 since

𝑒 ⋅ (−1) ⋅𝑊 {𝑒}(𝑥, 𝑒) = −(𝜙− 𝑡𝜓𝜓 − 𝑡𝑧𝑧) ⋅
[(
1 + 𝑡𝜓𝜓 + 𝑡𝑧𝑧

)3 − (1 + 𝜙)3
]
≥ 0

(49)

6However, not all solutions of (45) might be of interest. Indeed, if for some parameters
the equation (45) has a solution with 𝜏𝜙 = 0, then this solution cannot be used for
transformations of coordinates [𝜙;𝜓; 𝑒] into [𝑥; 𝑒] as done in (40).



890 A. Shiriaev, L. Freidovich, R. Johansson and A. Robertsson

As seen, the quadratic form is non-negative for any 𝜙 , 𝜓 , 𝑧 .
The matching conditions for the 𝑥-dynamics are straightforward for the

case and allow defining coefficients of matrices 𝐴11 , 𝐴12 , 𝐵1 as well as the
nonlinearity 𝑊 {𝑥}(⋅) without imposing additional constraints on parameters
of the controller. Namely, with 𝑇 {𝑥} = 12 the relation (31) uniquely defines
the column 𝐴12 ∈ ℝ2×1 as follows

[
0 1 0

0 0 1

]⎡⎢⎢⎣
3
2 −1 0

1
𝛽2 − 1

𝛽2Λ
{𝑢}
𝜓 − 1

𝛽2Λ
{𝑢}
𝑧

0 Λ
{𝑧}
𝜓 Λ

{𝑧}
𝑧

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

1

0

0

⎤⎥⎥⎥⎦
=

[ 1
𝛽2

0

]
= 𝐴12 [1, −𝑡𝜓, −𝑡𝑧]

⎡⎢⎣ 1

0

0

⎤⎥⎦ = 𝐴12

(50)
In turn, the relation (32) that takes for the case the form

[
0 1 0

0 0 1

]⎡⎢⎢⎣
3
2

−1 0

1
𝛽2 − 1

𝛽2Λ
{𝑢}
𝜓 − 1

𝛽2Λ
{𝑢}
𝑧

0 Λ
{𝑧}
𝜓 Λ

{𝑧}
𝑧

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

0 0

1 0

0 1

⎤⎥⎥⎥⎦ =

⎡⎣− 1
𝛽2Λ

{𝑢}
𝜓 − 1

𝛽2Λ
{𝑢}
𝑧

Λ
{𝑧}
𝜓 Λ

{𝑧}
𝑧

⎤⎦

= 𝐴11 +𝐴12 [1, −𝑡𝜓, −𝑡𝑧]

⎡⎢⎢⎢⎣
0 0

1 0

0 1

⎤⎥⎥⎥⎦ = 𝐴11 +

[− 1
𝛽2 𝑡𝜓 − 1

𝛽2 𝑡𝑧

0 0

]

uniquely defines coefficients of 𝐴11 ∈ ℝ2×2 as follows

𝐴11 =

⎡⎣− 1
𝛽2

(
Λ
{𝑢}
𝜓 − 𝑡𝜓

)
− 1
𝛽2

(
Λ
{𝑢}
𝑧 − 𝑡𝑧

)
Λ
{𝑧}
𝜓 Λ

{𝑧}
𝑧

⎤⎦ (51)

The relation (33) is now

[
0 1 0

0 0 1

]⎡⎢⎢⎢⎣
1
2

0 0

0 − 1
𝛽2𝑤𝑢 0

0 0 𝑤𝑧

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑊 {𝜙}(𝜙)

𝑊 (𝜓, 𝑧)

𝑊 (𝜓, 𝑧)

⎤⎥⎥⎥⎦ =

[− 1
𝛽2𝑤𝑢

𝑤𝑧

]
𝑊 (𝜓, 𝑧) = 𝐵1𝑊

{𝑥}(𝐶𝑥)

Hence

𝐵1 =

[− 1
𝛽2𝑤𝑢

𝑤𝑧

]
, 𝑊 {𝑥}(𝐶𝑥) =𝑊 (𝜓, 𝑧), 𝐶𝑥 = 𝑡𝜓𝜓 + 𝑡𝑧𝑧 = [𝑡𝜓, 𝑡𝑧]

[
𝜓

𝑧

]
(52)

One can readily check that with such choices of 𝑊 {𝑥}(𝐶𝑥) and of the row
𝐶 the nonlinearity satisfies the quadratic constraint (35). Summing up the
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manipulations made with the closed-loop system (44), we obtain the follow-
ing.

Lemma 5 Suppose the coefficients of the controller (43) with 𝑊 (⋅) defined
by (42) satisfy the relations (45)–(48). Then, the following is true.

1. The closed-loop system (44) can be equivalently written as (3), where
𝑥 and 𝑒 are given by (40) and

∙ The scalar 𝐴22 is defined from the equation (45), the scalar 𝐵2

equals 1
2 .

∙ The matrices 𝐴11 , 𝐴12 , and 𝐵1 are defined by (50)–(52).

2. The nonlinear function 𝑊 {𝑒}(⋅, ⋅) is defined by 𝑊 {𝑒}(𝑥, 𝑒) :=𝑊 {𝜙}(𝜙)−
𝑊 (𝜓, 𝑧) and satisfies the infinite sector condition (13) with Π𝑒 = −1 .

3. The nonlinearity 𝑊 {𝑥}(⋅) is defined by 𝑊 {𝑥} :=𝑊 (𝜓, 𝑧) and the linear
output

𝑣𝑥 = 𝑡𝜓𝜓 + 𝑡𝑧𝑧 = 𝐶𝑥 (53)

of the 𝑥-dynamics satisfies the relation (9) defined by the quadratic
form

𝒢1

[
𝑣𝑥,𝑊

{𝑥}(𝑣𝑥)
]
=𝑊 {𝑥}(𝑣𝑥) ⋅ (−𝑣𝑥)− 3

4 𝑣
2
𝑥 ≥ 0, ∀𝜓, 𝑧

with the redefined state and the linear output.

Once the coefficients of the controller (43) , for which after a change of
coordinates the closed-loop system (44) can be rewritten as (3), are found,
we can apply Theorem 1 and search for a set of parameters corresponding to
stabilizing controllers. The result based on applying the Frequency Theorem
[39] to verify (14) is formulated next.

Proposition 1 Consider the closed-loop system (44). Suppose that the pa-
rameters are such that the relations (45)–(48) are satisfied, the matrices 𝐴11 ,
𝐴12 , 𝐴22 , 𝐵1 , 𝐵2 , 𝐶 are defined as in Lemma 5 and the following condi-
tions hold:

1. The inequality
Re
{
𝑇 (𝑗𝜔)

}− 3
4 ∣𝑇 (𝑗𝜔)∣2 < 0 (54)

is valid for all 𝜔 ≥ 0 , where

𝑇 (𝑠) = −𝐶 (𝑠𝐼2 −𝐴11

)−1
𝐵1 =

− 1
2 𝑠+ 𝑝0

𝑠2 + 𝑙1𝑠+ 𝑙0
(55)

2. The 2× 2 matrix
(
𝐴11 − 3

4𝐵1𝐶
)
is Hurwitz.
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3. The scalar 𝐴22 is negative.

Then with any sets of these parameters the closed-loop system (44), i.e., the
system (1), (2) with the dynamic output feedback controller (43) defined by
these parameters, is quadratically stable.

Proof: Since the matrix
(
𝐴11 − 3

4𝐵1𝐶
)
is stable, the pair [𝐴11, 𝐵1] is sta-

bilizable. Then the strict inequality (54) implies the solvability of (14) with
respect to matrix 𝑃1 (see [39, Theorem 2.13, p. 92]). The inequality (15) is
scalar with 𝐵2 = 1

2 and Π𝑒 = −1, then 𝑃2 can be chosen as 1. So all the
conditions of Theorem 1 are met and the quadratic stability of (44) follows.

4.2 Output feedback controller design: Example 2

Consider the modification of the family of output feedback controllers (43)
by adding new internal state as a dynamic extension bringing an integral

action. Namely 𝑧 =

[
𝑧1
𝑧2

]
∈ ℝ2 , the linear transforms (27) are given by

𝑥 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦
︸ ︷︷ ︸

= 𝑇 {𝑥}

⎡⎣ 𝜓𝑧1
𝑧2

⎤⎦ ∈ ℝ3, 𝑒 = [1, −𝑡𝜓, −𝑡𝑧1 , 0]︸ ︷︷ ︸
= 𝑇 {𝑒}

⎡⎢⎢⎣
𝜙
𝜓
𝑧1
𝑧2

⎤⎥⎥⎦ ∈ ℝ1 (56)

and the output feedback controller is⎧⎨⎩

𝑢 =
[
Λ
{𝑢}
𝜓 ,Λ{𝑢}

𝑧1 ,Λ{𝑢}
𝑧2

]
︸ ︷︷ ︸

= Λ{𝑢}

⎡⎣ 𝜓𝑧1
𝑧2

⎤⎦+ 𝑤𝑢 ⋅𝑊 (𝜓, 𝑧1)︸ ︷︷ ︸
=𝑊 {𝑢}(⋅)

𝑑
𝑑𝑡

[
𝑧1

𝑧2

]
=

[
Λ
{𝑧1}
𝜓 Λ

{𝑧1}
𝑧1 Λ

{𝑧1}
𝑧2

−𝑡𝜓 −𝑡𝑧1 0

]
︸ ︷︷ ︸

= Λ{𝑧}

⎡⎣ 𝜓𝑧1
𝑧2

⎤⎦+

[
𝑤𝑧1

0

]
𝑊 (𝜓, 𝑧1)︸ ︷︷ ︸

=𝑊 {𝑧}(⋅)
(57)

where the nonlinearity 𝑊 (𝜓, 𝑧1) is similar to (42) and defined as

𝑊 (𝜓, 𝑧1) = 1− (1 + 𝑡𝜓𝜓 + 𝑡𝑧1𝑧1
)3
. (58)
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The closed-loop system (1)-(2) with the controller (57) takes the form⎡⎢⎢⎢⎢⎢⎢⎣
�̇�

�̇�

�̇�1

�̇�2

⎤⎥⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎢⎣

3
2 −1 0 0

1
𝛽2 −Λ

{𝑢}
𝜓

𝛽2 −Λ{𝑢}
𝑧1

𝛽2 −Λ{𝑢}
𝑧2

𝛽2

0 Λ
{𝑧1}
𝜓 Λ

{𝑧1}
𝑧1 Λ

{𝑧1}
𝑧2

0 −𝑡𝜓 −𝑡𝑧1 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

𝜙

𝜓

𝑧1

𝑧2

⎤⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣

1
2 0 0

0 −𝑤𝑢
𝛽2 0

0 0 𝑤𝑧1

0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑊 {𝜙}(𝜙)

𝑊 (𝜓, 𝑧1)

𝑊 (𝜓, 𝑧1)

⎤⎥⎥⎥⎦
(59)

Among matching conditions of Section 3 to rewrite (44) in the form (3)—as
in the previous example—the relation (28) is the most challenging to satisfy.
For this case it requires searching a solution of the linear matrix equation

[𝜏𝜙, 𝜏𝜓, 𝜏𝑧1 , 0]

⎡⎢⎢⎢⎢⎢⎢⎣

3
2 −1 0 0

1
𝛽2 −Λ

{𝑢}
𝜓

𝛽2 −Λ{𝑢}
𝑧1

𝛽2 −Λ{𝑢}
𝑧2

𝛽2

0 Λ
{𝑧1}
𝜓 Λ

{𝑧1}
𝑧1 Λ

{𝑧1}
𝑧2

0 −𝑡𝜓 −𝑡𝑧1 0

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝐴22 [𝜏𝜙, 𝜏𝜓, 𝜏𝑧1 , 0] , (60)

from which the parameters 𝑡𝜓 , 𝑡𝑧 and 𝜏𝜙 , 𝜏𝜓 , 𝜏𝑧1 are related as

𝑡𝜓 = −𝜏𝜓
𝜏𝜙
, 𝑡𝑧 = −𝜏𝑧1

𝜏𝜙
, if 𝜏𝜙 ∕= 0. (61)

However, it is straightforward to check that the equation (60) has a solution if
and only if the conditions of Lemma 4 are valid and, in addition, the following
identity holds:

Λ{𝑧1}
𝑧2 𝜏𝑧1 = 1

𝛽2 Λ
{𝑢}
𝑧2 𝜏𝜓 (62)

Arguments similar to the ones presented above in Example 1 allow verification
that the other matching conditions are met provided the relation (48) is valid.
Hence, we obtain the following.

Lemma 6 Suppose the coefficients of the controller (57) with 𝑊 (𝜓, 𝑧1) de-
fined by (58) satisfy the relations (45)–(48) and (62). Then, the following is
true.

1. The closed-loop system (59) can be equivalently written as (3), where
𝑥 and 𝑒 are given by (56) and

∙ The scalar 𝐴22 is defined from the equation (60) and the scalar
𝐵2 is equal to 1

2 .

∙ The matrices 𝐴11 , 𝐴12 , and 𝐵1 are defined as follows:

𝐴11 =

⎡⎢⎢⎢⎣
−Λ

{𝑢}
𝜓 −𝑡𝜓
𝛽2 −Λ{𝑢}

𝑧1
−𝑡𝑧1
𝛽2 −Λ{𝑢}

𝑧2

𝛽2

Λ
{𝑧1}
𝜓 Λ

{𝑧1}
𝑧1 Λ

{𝑧1}
𝑧2

−𝑡𝜓 −𝑡𝑧1 0

⎤⎥⎥⎥⎦ , 𝐴12 =

⎡⎢⎢⎣
1
𝛽2

0

0

⎤⎥⎥⎦ , 𝐵1 =

⎡⎢⎢⎣
−𝑤𝑢
𝛽2

𝑤𝑧1

0

⎤⎥⎥⎦
(63)
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2. The nonlinear function 𝑊 {𝑒} is defined by 𝑊 {𝑒}(𝑥, 𝑒) := 𝑊 {𝜙}(𝜙) −
𝑊 (𝜓, 𝑧1) and satisfies the infinite sector condition

𝑒 ⋅Π𝑒 ⋅𝑊 {𝑒}(𝑥, 𝑒) ≥ 0 ∀𝑥, ∀ 𝑒
similar to (7), (30), and (49) with Π𝑒 = −1 .

3. The nonlinearity 𝑊 {𝑥}(⋅) is defined by 𝑊 {𝑥} := 𝑊 (𝜓, 𝑧1) and the
linear output

𝑣𝑥 = 𝑡𝜓𝜓 + 𝑡𝑧1𝑧1 = [𝑡𝜓, 𝑡𝑧1 , 0]︸ ︷︷ ︸
= 𝐶

⎡⎣ 𝜓𝑧1
𝑧2

⎤⎦ (64)

of the 𝑥-dynamics satisfies the relation (9) defined by the quadratic
form

𝒢1

[
𝑣𝑥,𝑊

{𝑥}(𝑣𝑥)
]
=𝑊 {𝑥}(𝑣𝑥) ⋅ (−𝑣𝑥)− 3

4 𝑣
2
𝑥 ≥ 0, ∀𝜓, 𝑧

with the redefined state and the linear output.

With coefficients of controllers (57) as in Lemma 6, we can apply Theorem 2
using the Frequency Theorem [39] to verify (20) and to identify stabilizing
controllers in the family.

Proposition 2 Consider the closed-loop system (59). Suppose that the pa-
rameters are such that the relations (45)–(48) and (62) are satisfied, the
matrices 𝐴11 , 𝐴12 , 𝐴22 , 𝐵1 , 𝐵2 , 𝐶 are defined as in Lemma 6 and the
following conditions hold:

1. The inequality
Re {𝑇 (𝑗𝜔)} − 3

4 ∣𝑇 (𝑗𝜔)∣2 ≤ 0 (65)

is valid for any 𝜔 ≥ 0 , where

𝑇 (𝑠) = −𝐶 (𝑠𝐼3 −𝐴11)
−1
𝐵1 =

− 1
2 𝑠

2 + 𝑝1𝑠

𝑠3 + 𝑙2𝑠2 + 𝑙1𝑠+ 𝑙0
(66)

2. The matrix
(
𝐴11 − 3

4𝐵1𝐶
)
is Hurwitz.

3. The pair
[
𝐶,𝐴11

]
is observable and the pair

[
𝐴11, 𝐵1

]
is controllable.

4. The scalar 𝐴22 is negative.

Then, with any sets of these parameters the closed-loop system (59), i.e., the
system (1), (2) with the dynamic output feedback controller (57) defined by
these parameters, is globally asymptotically and locally exponentially stable.
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Proof: The inequality (65) together with conditions 2 and 3 of Proposition 2
imply that the inequality (20) has a solution 𝑃1 and it is positive definite.
The scalar 𝑃2 in (15) can be chosen as 1. To check that the 𝑥-subsystem of
(59), i.e. (4), has no nontrivial solutions consistent with the constraints

𝑣𝑥(𝑡) = 𝐶𝑥(𝑡) ≡ 0, ∀ 𝑡 or 𝑣𝑥(𝑡) = 𝐶𝑥(𝑡) ≡ − 3
2 , ∀ 𝑡

let us consider the two cases separately.
Case 1: If there is a solutions 𝑥(𝑡) with 𝑣(𝑡) ≡ 0, then it is the solution

of the system
�̇� = 𝐴11𝑥+𝐵1𝑊

{𝑥}(0) = 𝐴11𝑥

Differentiating 𝑣(𝑡) twice with respect to time, we obtain

�̇�(𝑡) = 𝐶𝐴11𝑥(𝑡) ≡ 0, 𝑣(𝑡) = 𝐶𝐴2
11𝑥(𝑡) ≡ 0.

Hence the solution 𝑥(𝑡) ∕≡ 0, if exists, should satisfy the relation⎡⎣ 𝐶
𝐶𝐴11

𝐶𝐴2
11

⎤⎦𝑥(𝑡) ≡ 03×1

But this contradicts the observability of [𝐶,𝐴11] .
Case 2: If there is a solutions 𝑥(𝑡) with 𝑣(𝑡) ≡ − 3

2 , then it is a solution
of the system

�̇� = 𝐴11𝑥+𝐵1𝑊
{𝑥}(− 3

2 ) = 𝐴11𝑥+𝐵1

(
1− (1− 3

2 )
3
)
= 𝐴11𝑥+𝐵1

9
8

Differentiating 𝑣(𝑡) twice with respect to time, we obtain

�̇�(𝑡) = 𝐶𝐴11𝑥(𝑡) + 𝐶𝐵1
9
8 ≡ 0, 𝑣(𝑡) = 𝐶2𝐴2

11𝑥(𝑡) + 𝐶𝐴11𝐵1
9
8 ≡ 0.

The last two relations together with 𝑣(𝑡) ≡ − 3
2 can be rewritten as⎡⎣ 𝐶

𝐶𝐴11

𝐶𝐴2
11

⎤⎦𝑥(𝑡) ≡
⎡⎣ − 3

2−𝐶𝐵1
9
8−𝐶𝐴11𝐵1

9
8

⎤⎦
The pair [𝐶,𝐴11] is observable, then the 3 × 3-matrix in the left-hand side
of the last equation is of full rank. Hence 𝑥(𝑡) is an equilibrium. The 𝑥-
dynamics has the particular structure and the last differential equation (see
(59)) with respect to 𝑧2 -variable is

𝑑
𝑑𝑡 𝑧2(𝑡) = −𝑣(𝑡)

If 𝑥(𝑡) = [𝜓(𝑡); 𝑧1(𝑡); 𝑧2(𝑡)] is an equilibrium, then 𝑣(𝑡) should be zero. This
contradicts the assumption that 𝑣(𝑡) ≡ −3

2 . Summarizing, all the conditions
of Theorem 2 are checked and so global asymptotic stability of the closed-loop
system (59) follows.
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5 Choosing coefficients of the designed output
feedback controllers for (1)–(2)

To illustrate the procedure for solving the matching equations and finding
coefficients for the control laws suggested in Proposition 1 and 2 of Section 4,
we present here two numerical examples of successful designs.

5.1 Example for Proposition 1

Suppose that 𝛽 = 1 and the scalars Λ
{𝑢}
𝜓 , Λ

{𝑢}
𝑧 , Λ

{𝑧}
𝜓 , Λ

{𝑧}
𝑧 are chosen as

Λ
{𝑢}
𝜓 = −17, Λ{𝑢}

𝑧 = −4, Λ
{𝑧}
𝜓 = − 207

2 , Λ{𝑧}
𝑧 = − 47

2 . (67)

Then, the equation (46) with the matrix 𝒜𝑐𝑙 takes the form

[𝜏𝜙, 𝜏𝜓, 𝜏𝑧]

⎡⎢⎢⎣
3
2 −1 0

1 17 4

0 −207
2 − 47

2

⎤⎥⎥⎦ = 𝐴22 [𝜏𝜙, 𝜏𝜓, 𝜏𝑧]

The values of 𝐴22 , for which this equation has a non-trivial solution, are
determined by the equation (37). They are

𝐴22 =
{−0.5, −1, −3.5

}
and all are negative. The corresponding left eigenvectors define the constants
𝑡𝜓 , 𝑡𝑧 by (46). For example, if 𝐴22 = −3.5, then

𝑡𝜓 = 5, 𝑡𝑧 = 1. (68)

The last matching condition from Section 3 defines the constraint on values
of 𝑤𝑢 , 𝑤𝑧 . This is the linear relation (48), which is now

− 1
2 = 1

𝛽2 𝑡𝜓𝑤𝑢 − 𝑡𝑧𝑤𝑧 = 5𝑤𝑢 − 𝑤𝑧

The values
𝑤𝑢 = −1, 𝑤𝑧 = − 9

2 (69)

as well as many others, meet this condition. With such assignments all
coefficients of the controller (43) are fixed and the matrices 𝐴11 , 𝐵1 and 𝐶
can be found from the relations (50)–(52) as follows

𝐴11 =

[
22 5

−207
2 − 47

2

]
, 𝐵1 =

[
1
− 9

2

]
, 𝐶 = [5, 1] (70)

To verify that this controller is stabilizing, we check one by one the conditions
of Proposition 1:
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1. The transfer functions (55) is now

𝑇 (𝑠) =
− 1

2𝑠− 1
2

𝑠2 + 3
2𝑠+

1
2

. (71)

Since −𝑇 (𝑠) is positive real [22, Sec. 6.3], it satisfies (54).

2. The eigenvalues of the matrix 𝐴11 − 3
4𝐵1𝐶1 are {−1, −0.875} ; hence,

it is Hurwitz.

3. By our choice, 𝐴22 = −3.5; and it is negative.

So, the assumptions of Proposition 1 are all valid; therefore, the controller
(43) with the coefficients (67)–(69) quadratically stabilizes the system (1)–
(2). Fig. 1 depicts the evolution of the variables 𝜙 and 𝜓 for the solution of
the closed-loop system with initial conditions at 𝜙(0) = −2.07, 𝜓(0) = 0.5,
𝑧(0) = 0.

0 2 4 6 8 10 12 14 16 18 20
−3

−2.5

−2

−1.5

−1

−0.5
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0.5

1

time

φ

0 2 4 6 8 10 12 14 16 18 20
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−2

−1.5

−1

−0.5

0

0.5

time

ψ

Figure 1: The behavior of the 𝜙 -and 𝜓 -variables for the solution of the closed-loop
system (44) with the dynamical controller (43) when coefficients are chosen as in
(67)–(69) and the initial conditions are 𝜙(0) = −2.07, 𝜓(0) = 0.5, 𝑧(0) = 0.

5.2 Example for Proposition 2

Suppose 𝛽 = 1 and the scalars Λ
{𝑢}
𝜓 , Λ

{𝑢}
𝑧1 , Λ

{𝑧1}
𝜓 , Λ

{𝑧1}
𝑧1 are chosen as in

(67), i.e.,

Λ
{𝑢}
𝜓 = −17, Λ{𝑢}

𝑧1 = −4, Λ
{𝑧1}
𝜓 = − 207

2 , Λ{𝑧1}
𝑧1 = − 47

2 , (72)

the gain 𝐴22 is −3.5 and the coefficients 𝑡𝜓 , 𝑡𝑧1 , 𝑤𝑢 , 𝑤𝑧1 are as in (68),
(69), i.e.,

𝑡𝜓 = 5, 𝑡𝑧1 = 1, 𝑤𝑢 = −1, 𝑤𝑧1 = − 9
2 (73)

These parameters for the controller (57) meet all the matching conditions of
Lemma 6 except the relation (62), which defines a constraint on coefficients
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Λ
{𝑧1}
𝑧2 and Λ

{𝑢}
𝑧1 . With (73) this constraint has the form

Λ{𝑧1}
𝑧2 = 5 ⋅ Λ{𝑢}

𝑧1

If, for instance,
Λ{𝑧1}
𝑧2 = 4, Λ{𝑢}

𝑧1 = 4
5 (74)

then it is satisfied. With such assignments all coefficients of the controller
(57) are fixed and the matrices 𝐴11 , 𝐵1 and 𝐶 can be found from the
relations similar to (50)–(52) as follows

𝐴11 =

⎡⎣ 22 5 − 4
5− 207

2 −47
2 4

−5 −1 0

⎤⎦ , 𝐵1 =

⎡⎣ 1
−9

2
0

⎤⎦ , 𝐶 = [5, 1, 0]

To verify that the controller is stabilizing, we check one by one the conditions
of Proposition 2:

1. The transfer function (66) is now

𝑇 (𝑠) =
− 1

2 𝑠
2 − 1

2 𝑠

𝑠3 + 3
2 𝑠

2 + 1
2 𝑠+

4
5

The transfer function −𝑇 (𝑠) is not strictly positive real (SPR)7 , but
it satisfies the inequality (65).

2. The eigenvalues of the matrix
(
𝐴11 − 3

4𝐵1𝐶
)
are {−0.118± 0.688𝑗,

−1.639} ; hence, it is Hurwitz.
3. The controllability and observability matrices 𝑊𝑐 and 𝑊𝑜 for this case

are

𝑊𝑐 = [𝐵1, 𝐴11𝐵1, 𝐴
2
11𝐵1] =

⎡⎣ 1 −0.5 0.65
−4.5 2.25 −3.125
0 −0.5 0.25

⎤⎦
𝑊𝑜 =

⎡⎣ 𝐶
𝐶𝐴11

𝐶𝐴2
11

⎤⎦ =

⎡⎣ 5 1 0
6.5 1.5 0

−12.25 −2.75 0.8

⎤⎦
and both are of full rank. Hence, the pair [𝐴11, 𝐵1] is controllable and
the pair [𝐶,𝐴11] is observable.

4. By construction, 𝐴22 = −3.5; and it is negative.

All the conditions are valid; then, the controller (57) with the coefficients
(72)–(74) stabilizes the system (1)–(2). Fig. 2 depicts the evolution of the
variables 𝜙 and 𝜓 for the closed-loop system with the initial conditions
𝜙(0) = −2.07, 𝜓(0) = 0.5, 𝑧1(0) = 𝑧2(0) = 0.

7Going back to footnote 3, we note that it is important here to use the QC (8) instead
of the weaker one since the latter leads to the SPR condition, which is not satisfied for
this transfer function.
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Figure 2: The solution of the closed-loop system with the dynamical controller
(59) when coefficients are chosen as in (72)–(74).

To conclude, we have designed two globally stabilizing output feedback
controllers for the nominal system (1)–(2) and have verified that they work
in simulations. Let us now discuss the issue of robustness and give some
comments on the contribution and the proposed approach.

6 Discussion and Comments

Our design is based on a structural transformation and on the fact that for
each nonlinearity in the transformed system from a specified class there exists
a quadratic Lyapunov function. Intuitively, certain degree of robustness is
expected with respect to parametric uncertainties and measurement noise,
see e.g., [22, Lemma 9.4]. A few related comments are given below.

6.1 Robustness of the closed-loop system (26) with re-
spect to parametric uncertainty

We have developed a constructive procedure for synthesis of stabilizing con-
trollers for (1)-(2), application of which leads to verification of two separate
sets of conditions:

∙ The first one is one of the stability criteria for the dynamical system
(3) presented in Theorems 1 and 2.

∙ The second one consists of the matching conditions for the closed-loop
system to be equivalent to (3) for controllers with a certain structure.

The stability criteria explicitly rely on structural properties of nonlinearities
of the system written as two quadratic constraints (7) and (12). These re-
lations are valid for solutions of the closed-loop system (26) irrespective of
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whether the matching conditions of Section 3 are in place or not8.
To illustrate this point, let us re-use the found quadratic constraints and

apply the Circle criterion [22, 39] directly to re-prove the stability of the
closed-loop system in Example 1 (Section 5.1), which has the form

𝑑

𝑑𝑡

⎡⎢⎢⎣
𝜙

𝜓

𝑧

⎤⎥⎥⎦ =

⎡⎢⎢⎣
3
2 −1 0

1 17 4

0 −207
2 − 47

2

⎤⎥⎥⎦
︸ ︷︷ ︸

= 𝐴

⎡⎢⎢⎣
𝜙

𝜓

𝑧

⎤⎥⎥⎦+

⎡⎢⎢⎣
1
2 0

0 1

0 − 9
2

⎤⎥⎥⎦
︸ ︷︷ ︸
= [𝐵1, 𝐵2]

[
1− (1 + 𝜙)3

1− (1 + 5𝜓 + 𝑧)3

]
︸ ︷︷ ︸

=

[
𝑊1

𝑊2

]
(75)

The outputs of the static nonlinearities

𝑊1 =𝑊 {𝜙}(𝑣1) = 1−

⎛⎜⎝1 + (𝜙)︸︷︷︸
= 𝑣1

⎞⎟⎠
3

and 𝑊2 =𝑊 {𝜙}(𝑣2) = 1−

⎛⎜⎝1 + (5𝜓 + 𝑧)︸ ︷︷ ︸
= 𝑣2

⎞⎟⎠
3

and the outputs of the linear parts of the system (75)

𝑣1 = 𝜙 = [1, 0, 0]︸ ︷︷ ︸
= 𝐶1

⎡⎣ 𝜙𝜓
𝑧

⎤⎦ and 𝑣2 = 5𝜓 + 𝑧 = [0, 5, 1]︸ ︷︷ ︸
= 𝐶2

⎡⎣ 𝜙𝜓
𝑧

⎤⎦
satisfy at least the next three quadratic constraints

−𝑊1 ⋅ 𝑣1− 3
4 ∣𝑣1∣2 ≥ 0, −𝑊2 ⋅ 𝑣2− 3

4 ∣𝑣2∣2 ≥ 0, −(𝑊1−𝑊2) ⋅ (𝑣1− 𝑣2) ≥ 0
(76)

valid for ∀𝜙, 𝜓, 𝑧 . Following the Circle criterion, to validate stability of the
system (75) it is enough to check the next two conditions [39]

1. There are constants 𝜏1 ≥ 0, 𝜏2 ≥ 0, 𝜏3 ≥ 0 such that 𝜏1 + 𝜏2 + 𝜏3 > 0
and the inequality

−𝜏1Re
{
�̃�∗

1𝑣1+
3
4
∣𝑣1∣2

}−𝜏2Re
{
�̃�∗

2𝑣2+
3
4
∣𝑣2∣2

}−𝜏3Re {(�̃�1−�̃�2)
∗(𝑣1−𝑣2)} < 0

(77)

with

𝑣1 = 𝑇11(𝑗𝜔)�̃�1 + 𝑇12(𝑗𝜔)�̃�2 = 𝐶1 (𝑗𝜔𝐼3 −𝐴)
−1
[𝐵1�̃�1+𝐵2�̃�2]

𝑣2 = 𝑇21(𝑗𝜔)�̃�1 + 𝑇22(𝑗𝜔)�̃�2 = 𝐶2 (𝑗𝜔𝐼3 −𝐴)
−1
[𝐵1�̃�1+𝐵2�̃�2]

(78)
holds for all �̃�1 ∈ ℂ1 , �̃�2 ∈ ℂ1 , 𝜔 ∈ ℝ1 . If the inequality (77) is met
with 𝜏𝑖 > 0, then the 𝑖-th quadratic constraint is called active.

8These conditions are obviously needed if one would like to use one of the Theorems
presented above to prove stability. However, their value is to give a hint on how to choose
the structure of a feedback controller such that its parameters can be tuned to ensure
stability using quadratic constraints.
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2. There are row matrices 𝐾1 and 𝐾2 such that the linear relations

𝑊1 = 𝐾1

⎡⎣ 𝜙𝜓
𝑧

⎤⎦ and 𝑊2 = 𝐾2

⎡⎣ 𝜙𝜓
𝑧

⎤⎦
satisfy all the active quadratic constraints and the matrix(

𝐴+𝐵1𝐾1 +𝐵2𝐾2

)
is Hurwitz.

To use these statements for the system (75) let 𝜏1 = 0, 𝜏2 = 1, and 𝜏3 =
𝜏 > 0; so that the first quadratic constraint is not active, while the second
and the third ones are taken into account. To meet the second condition we
suggest to choose the following gains

𝐾1 = − 3
4 𝐶2 and 𝐾2 = − 3

4 𝐶2

It is readily seen that with this choice the active constraints are satisfied:

−𝑊2⋅𝑣2− 3
4 ∣𝑣2∣2 = 3

4 ∣𝑣2∣2− 3
4 ∣𝑣2∣2 = 0,−(𝑊1−𝑊2)⋅(𝑣1−𝑣2) = −0⋅(𝑣1−𝑣2) = 0

The eigenvalues of (𝐴+𝐵1𝐾1 +𝐵2𝐾2) are

𝜆 = {−0.875, −1, −3.5 }
The inequality (77) is reduced to

−Re
{
�̃�∗

2𝑣2+
3
4 ∣𝑣2∣2

}− 𝜏Re {(�̃�1−�̃�2)
∗(𝑣1−𝑣2)} < 0 (79)

By straightforward computations, it is equivalent to the inequality[
�̃�1

�̃�2

]∗ [
0 1

1 −1

][
Re {𝑇11(𝑗𝜔)} 𝑇12(𝑗𝜔)

𝑇12(𝑗𝜔)
∗ 𝜏 ⋅ Re {𝑇22(𝑗𝜔)}

]
︸ ︷︷ ︸

Π(𝑗𝜔)

[
0 1

1 −1

][
�̃�1

�̃�2

]
> 0

that should be valid for some 𝜏 > 0 and �̃�1 ∈ ℂ1 , �̃�2 ∈ ℂ1 , 𝜔 ∈ ℝ1 . Here

𝑇11(𝑠) =
0.5

𝑠+ 0.875

𝑇12(𝑠) =
2.5𝑠+ 7

(𝑠+ 3.5)(𝑠+ 1)(𝑠+ 0.875)

𝑇22(𝑠) =
0.5

𝑠+ 3.5

The diagonal elements of Π(𝑗𝜔) are positive definite, therefore this 2 × 2
matrix is positive definite for some 𝜏 > 0 if its determinant is positive. It is
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not hard to show that

detΠ(𝑗𝜔) = 𝜏 ⋅Re {𝑇11(𝑗𝜔)}⋅Re {𝑇22(𝑗𝜔)}−∣𝑇12(𝑗𝜔)∣2 =

=
𝜔2
(
𝜏 49
64 − 25

4

)
+
(
𝜏 49
64 − 49

)
∣𝑗𝜔 + 3.5∣2 ∣−𝜔2 + 1.5𝑗𝜔 + 0.5∣2

The last expression—and hence (79)—is positive if 𝜏 > 64. The alternative
proof of stability of the closed-loop system (75) is completed.

The above arguments and inequality (77) are more general stability con-
ditions than proposed in Theorem 1. They allow using all three quadratic
constraints and showing how to introduce a new quadratic constraint in
the analysis if it is found. Verifying the inequality (77) for a system with
perturbed values of parameters of the closed-loop system allows obtaining
bounds on the perturbations for which quadratic stability is preserved.

6.2 Robustness of the closed-loop system (26) with re-
spect to hidden dynamics: Simulation of the 3-State
Moore-Greitzer model with non-trivial stall

The system (1)-(2) describes only a part of dynamics for the so-called three-
state Moore-Greitzer model [26, 18, 27, 15], see in particular [27, (59),(60),
and (61)]

𝑑
𝑑𝑡𝜙 = 3

2𝜙− 𝜓 + 1
2

[
1− (1 + 𝜙)3

]− 3𝑅(1 + 𝜙)

𝑑
𝑑𝑡𝜓 = 1

𝛽2 (𝜙− 𝑢)

𝑑
𝑑𝑡𝑅 = −𝜎𝑅2 − 𝜎𝑅

(
2𝜙+ 𝜙2

)
, 𝑅(0) ≥ 0

(80)

where 𝜎 > 0 is another parameter. The dynamics of the additional state
variable 𝑅 , known as stall, is hidden and is often considered as a dynamic
perturbation to (1)–(2). The variable 𝑅 cannot be measured and used for
feedback design.

It can be shown that for any (even unbounded) solution of (80) the pos-
itive variable 𝑅(𝑡) quickly enters the strip 0 ≤ 𝑅 < 1 and never leaves it
[30, 31]. It is of interest to check whether the controllers designed above for
the surge subsystem will work for the extended one (80). The typical tra-
jectories of the two closed-loop systems with the design of the controllers of
Example 1 and of Example 2 above are shown below. In these simulations,
we have some noise added to the measured value of 𝜓 .

In Figure 3 we show a trajectory with the design based on Proposition 1.
As seen, this robustly stabilizing controller for the surge subsystem does not
stabilize the origin of the extended system obtained by adding the stall dy-
namics. Note that it is not hard to verify that addition of the stall dynamics
results in creation of a new equilibrium that is locally asymptotically stable.
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Figure 3: The solution of the closed-loop system with the dynamical controller
from Proposition 1 and measurement noise.

In Figure 4 we show a trajectory with the design based on Proposition 2.
As seen, this robustly stabilizing controller for the surge subsystem does sta-
bilize the whole system when the stall dynamics is added. Note that the
presence of the integral action in the controller prevents the appearance of
other equilibria. In fact, it can be easily proved that there is a unique equilib-
rium of the closed-loop system with stall dynamics. Simulations with various
initial conditions suggest that the system is still globally asymptotically sta-
ble. However, a rigorous proof of this assessment is not finished yet.

Meanwhile, let us come back to our result for the surge subsystem (1)–(2)
and compare the proposed here approach with a more classical observer-based
feedback control design.

6.3 Theorems 1-2 versus the Separation Principle

The presented decomposition of the state vector of the system (3) into vectors
𝑥 and 𝑒 , the structure of assumptions of Theorems 1 and 2, as well as ar-
guments of their proofs may look related to the ideas behind the separation
principle [22, bottom of p. 611]: “. . . that allows us to separate the [con-
troller] design into two tasks. First we design a state feedback controller that
stabilizes the system . . .Then, an output feedback controller is obtained by
replacing the state 𝑥 by its estimate �̂� provided by the [high-gain] observer.”

In order to relate our design with a possible one directly based on a
Separation Principle, we elaborate further on the first example from Section 5
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Figure 4: The solution of the closed-loop system with the dynamical controller
from Proposition 2 and measurement noise.

and approach the task of static state feedback design for the system (1)–(2).
Consider a family of state feedback controllers of the form

𝑢 = −𝜙− 𝛽2
[
𝜆𝜙 ⋅ 𝜙+ 𝜆𝜓 ⋅ 𝜓 + 𝑤𝑢 ⋅𝑊 {𝜙}(𝜙)

]
(81)

where 𝜆𝜙 , 𝜆𝜓 , 𝑤𝑢 are constants and the nonlinearity 𝑊 {𝜙}(⋅) is from (6).
The system (1)–(2) with the controller (6) is

𝑑

𝑑𝑡

[
𝜙

𝜓

]
=

[
3
2 −1

𝜆𝜙 𝜆𝜓

]
︸ ︷︷ ︸

𝐴𝑠𝑡

[
𝜙

𝜓

]
+

[
1
2

𝑤𝑢

]
︸ ︷︷ ︸
𝐵𝑠𝑡

𝑊 {𝜙}(𝑣), 𝑣 = [1, 0]︸ ︷︷ ︸
= 𝐶𝑠𝑡

[
𝜙

𝜓

]
(82)

The nonlinearity 𝑊 {𝜙}(⋅) satisfies the QC (9). Hence, the conditions similar
to assumptions 1 and 2 of Theorem 1 can be used for description of stabilizing
controllers (81). Namely, if the transfer function

𝑇 (𝑠) = −𝐶𝑠𝑡
(
𝑠𝐼2 −𝐴𝑠𝑡

)−1
𝐵𝑠𝑡 =

− 1
2 𝑠+ 𝑝0

𝑠2 + �̃�1𝑠+ �̃�0
(83)

satisfies the inequality

Re
{
𝑇 (𝑗𝜔)

}− 3
4 ∣𝑇 (𝑗𝜔)∣2 < 0, ∀𝜔 ≥ 0 (84)
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and the matrix
(
𝐴𝑠𝑡 − 3

4𝐵𝑠𝑡𝐶𝑠𝑡
)
is Hurwitz, then the closed-loop system (82)

is quadratically stable and the corresponding static state feedback control law
(81) is stabilizing. For instance, this is the case for the parameters

𝜆𝜙 = 5, 𝜆𝜓 = −3, 𝑤𝑢 = 1

Then the matrices of (82) are

𝐴𝑠𝑡 =

[
3
2 −1
5 −3

]
, 𝐵𝑠𝑡 =

[
1
2
1

]
, 𝐶𝑠𝑡 = [1, 0] (85)

and the transfer function

𝑇 (𝑠) = −𝐶𝑠𝑡 (𝑠𝐼2 −𝐴𝑠𝑡)
−1
𝐵𝑠𝑡 =

− 1
2𝑠− 1

2

𝑠2 + 3
2𝑠+

1
2

,

while the eigenvalues of
(
𝐴𝑠𝑡 − 3

4𝐵𝑠𝑡𝐶𝑠𝑡
)
are {−1, −0.875} . As seen, the

conditions are the same as we found for the 𝑥-subsystem in Example 1, when
the matrices 𝐴11 , 𝐵1 , 𝐶 were computed as (70) to meet all the matching
conditions.

This observation shows that, even though it might be difficult (or impos-
sible) to meet literally all 8 parameters of 𝐴𝑠𝑡 , 𝐵𝑠𝑡 , 𝐶𝑠𝑡 with some choice
of controller coefficients of (43), one can interpret the 𝑥-subsystem of Exam-
ple 1 as closed-loop system (1)-(2) under the full state feedback (81): Indeed,
we do not need to compare and match the coefficients of (85) and (70) (even
after a similarity transformation), but rather focus on properties of the as-
sociated transfer functions 𝑇 (𝑠). If there is a choice of 𝑇 (𝑠) that meets the
conditions of quadratic stability with the QC (9), then reaching this transfer
function by the full-state feedback control as well as by appropriate choice of
coefficients using output feedback control would be the tasks. However, it is
worth to note that matching the structure of a particular 𝑇 (𝑠) for full state
and output feedback designs might not be feasible for both cases simultane-
ously.

Another comment that relates the presented output feedback design to
the separation principle is the observation that the 𝑒-variable for Example 1
written as

𝑒 = 𝜙− 𝑡𝜓𝜓 − 𝑡𝑧𝑧 = 𝜙− 𝜙

and its dynamics can be seen as the error variable and the reduced-order ob-
server for 𝜙 . Assumption 2 of Theorem 1 implies that such error dynamics
is exponentially stable, see also [24, 23, 2]. So the analogy of Example 1 with
the observer-based feedback design and the separation principle is clearly in
place. However, there are decompositions of the state of the closed-loop sys-
tem (3) into 𝑥 and 𝑒 , which might not easily admit such interpretations and
arguments. For instance, one can consider the case when dim 𝑒 > dim𝜙 = 1.
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6.4 Bibliographical remarks

Based on a PDE model of compression systems, Moore and Greitzer applied
Galerkin approximation to provide a simplified ODE model of the pressure
and flow behavior of a compressor system [16, 26, 27], which is in the form
of (80). Using the Moore-Greitzer model, considerable research was carried
out on the analysis and control of the stall and surge, revealing instabili-
ties and difficult challenges in nonlinear control [6, 7, 8, 9, 20, 21, 23, 28,
29, 30, 31, 32, 35, 36]. In addition, several approaches to stabilization were
made based on models described by partial differential equations underly-
ing the Moore-Greitzer model [6, 19]. Parametrized nonlinear state feedback
stabilizing the Moore-Greitzer system to the right of the compressor charac-
teristic was proposed in [38]. Various approaches to observer designs relevant
for output-feedback stabilization of Moore-Greitzer systems are to be found
in [7, 10, 28, 13, 2, 3, 4]. Among these observer design circle criterion formu-
lations with attention to quadratic constraints are provided. Whereas stabi-
lization of the Moore-Greitzer model were not always accomplished, several
valuable partial results were provided. Sometimes, these results have pro-
vided important theoretical progress on nonlinear output feedback. However,
there is still no controllers that are shown to provide acceptable performance
in an experiment even for the practical systems where the stall dynamics can
be disregarded. Proposing such a design would make an enormous impact
on many industries.

7 Conclusion

We have suggested two families of robust dynamic output feedback controllers
that globally stabilize a well-known two dimensional model for surge insta-
bility of compressor systems assuming only availability of measurements for
one state associated with the drop in pressure. Theoretical results are rigor-
ously proved using quadratic constraints; while the feedback controllers are
systematically designed using the Frequency Theorem and a new construc-
tive procedure using a feedback transformation of the dynamics into a special
block form. Controllers from the first family ensure global exponential sta-
bilization. The ones from the second family provide integral action but only
ensure local exponential and global asymptotic stability. Performance and
robustness with respect to measurement noise and presence of hidden stall
dynamics are verified by simulations. Some relations with direct application
of the circle criterion and observer-based designs are drawn.
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