
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Modeling and Control of Server-based Systems

Dellkrantz, Manfred

2016

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Dellkrantz, M. (2016). Modeling and Control of Server-based Systems. Department of Automatic Control, Lund
Institute of Technology, Lund University.

Total number of authors:
1

Creative Commons License:
Other

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/0066506b-510c-4535-98ef-9212af417f57

Modeling and Control of Server-based
Systems

Manfred Dellkrantz

Department of Automatic Control

Lic. Tech. Thesis
ISRN LUTFD2/TFRT--3269--SE
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2016 by Manfred Dellkrantz. All rights reserved.
Printed in Sweden by Holmbergs i Malmö AB.
Lund 2016

Abstract

When deploying networked computing-based applications, proper resource man-
agement of the server-side resources is essential for maintaining quality of service
and cost efficiency. The work presented in this thesis is based on six papers, all in-
vestigating problems that relate to resource management of server-based systems.
Using a queueing system approach we model the performance of a database system
being subjected to write-heavy traffic. We then evaluate the model using simulations
and validate that it accurately mimics the behavior of a real test bed. In collaboration
with Ericsson we model and design a per-request admission control scheme for a
Mobile Service Support System (MSS). The model is then validated and the control
scheme is evaluated in a test bed. Also, we investigate the feasibility to estimate the
state of a server in an MSS using an event-based Extended Kalman Filter. In the
brownout paradigm of server resource management, the amount of work required
to serve a client is adjusted to compensate for temporary resource shortages. In this
thesis we investigate how to perform load balancing over self-adaptive server in-
stances. The load balancing schemes are evaluated in both simulations and test bed
experiments. Further, we investigate how to employ delay-compensated feedback
control to automatically adjust the amount of resources to deploy to a cloud appli-
cation in the presence of a large, stochastic delay. The delay-compensated control
scheme is evaluated in simulations and the conclusion is that it can be made fast and
responsive compared to an industry-standard solution.

3

Acknowledgements

First of all I would like to thank my children, Elias and Tilda, for constantly making
my life a little less predictable, more interesting and fun, and of course their mother
Hanna, for supporting me in my work and for being an awesome partner in parent-
hood. I also want to express my gratitude towards my parents Elisabeth and Lennart
and my brother Gustaf for their support and for introducing me to the wonderful
world of computers and coding.

I would also like to thank my supervisors Prof. Anders Robertsson, Prof. Maria
Kihl and Prof. Karl-Erik Årzén. Your passion for the research problems and ability
to navigate the academic jungle is really inspiring and I have learned a lot.

Many thanks also to my many coauthors to the papers we’ve produced over the
years. Among them I would like to send a special thanks to my colleague Jonas
Dürango who has spent countless hours with me, discussing flow models, control
strategies, cloud applications, academics, TV series and video games. We’ve also
shown empirically a number of times that it is possible for colleagues to share very
small hotel rooms without getting on each other’s nerves.

Thanks also to the LCCC research group Cloud/Embedded and the people in
the Cloud group at Umeå University for many hours of interesting discussions and
inspiring research presentations.

Of course, this work wouldn’t have been possible without the help of the peo-
ple that keep the department running; Pontus Andersson, Anders Blomdell, Lizette
Borgeram, Anders Nilsson, Ingrid Nilsson, Mika Nishimura, Monika Rasmusson
and Eva Westin. A special thanks to Leif Andersson, without your LATEX wizardry
the content of this book would have looked a lot worse. Of course I would also like
to send thanks to the other people at the department, both seniors and PhD students,
postdocs and guests, for making it an inspiring, interesting and fun work place.

Financial Support This work has been partly funded by the Swedish Research
Council project “Cloud Control” VR CLOUD 2012-5908 and the Swedish Research
Council grant VR-621-2010-5864. The author is also part of the LCCC Linnaeus
and ELLIIT Excellence Centers.

5

Contents

1. Introduction 9
2. Resource management of computer systems 11

2.1 Performance Models . 11
2.2 Mobile Service Support System 12
2.3 Cloud Computing . 13
2.4 Brownout . 15

3. Publications 17
Bibliography 21
Paper I. Performance Modeling and Analysis of a Database Server

with Write-Heavy Workload 23
1 Introduction . 24
2 System Description . 25
3 Performance Characterization 26
4 Performance Model . 27
5 Conclusions . 30
References . 30

Paper II. Application of Control Theory to a Commercial Mobile
Service Support System 33
1 Introduction . 34
2 System and Problem Description 35
3 Testbed . 38
4 Performance Models . 39
5 Admission Control . 46
6 Monitoring and Estimation . 54
7 Conclusion . 57
References . 59

7

Contents

Paper III. Event-Based Response Time Estimation 63
1 Introduction . 64
2 Mobile service support system 65
3 Modeling . 66
4 Estimation . 67
5 Simulation . 69
6 Fundamental Limitations . 74
7 Summary . 75
8 Acknowledgment . 75
References . 76

Paper IV. Control-Theoretical Load-Balancing for Cloud Applications
with Brownout 79
1 Introduction . 80
2 Related Work . 81
3 Problem Statement . 83
4 Solution . 85
5 Evaluation . 88
6 Conclusion . 94
References . 94

Paper V. Improving Cloud Service Resilience using Brownout-Aware
Load-Balancing 99
1 Introduction . 100
2 Background and Motivation . 101
3 Design and Implementation . 105
4 Empirical Evaluation . 106
5 Related Work . 116
6 Conclusion and Future Work 117
Acknowledgment . 118
References . 118

Paper VI. Model-Based Deadtime Compensation of Virtual Machine
Startup Times 123
1 Introduction . 124
2 Delays in cloud applications . 126
3 Response time control . 128
4 Experimental Results . 131
5 Conclusions . 135
6 Acknowledgments . 136
References . 136

8

1
Introduction

Resource management of computer systems, which has gained increased attention
during the last few decades, was explored already in the late sixties. It is an essential
mechanism to handle load disturbances such as resource outages, traffic surges and
changes in user behavior. In this thesis we explore resource management of large
computer systems that are at least indirectly facing human users.

The load such systems are subjected to is stochastic and varies on a few differ-
ent time scales. On the very large time scale there is the long term evolution of the
usage, for example, a specific service gradually growing in popularity or users that
are following a trend in changing their usage pattern. The load typically also expe-
riences seasonal variations, such as lows during the night, highs during the day and
peaks around holidays. These variations are typically possible to predict to some
extent.

But there are also changes in load which are impossible to predict, such as the
traffic surge in a cellular network after a natural disaster or the rush to a news service
after some political event. On June 25, 2009 CNN reported a five-fold increase
in traffic and Twitter was forced to disable parts of its services due to the death
of Michael Jackson1. A resource shortage can also have the opposite cause, for
example that we suddenly lose parts of our resources due to, for example, a power
outage.

Poorly managed resources can severely degrade the performance of a system
with potentially large financial consequences. Resource management of these sys-
tems, based on measurements of the system states such as actual utilization and
response times, is crucial for the optimization of operation cost and the guaran-
tee of service level agreements during load surges, for example during marketing
campaigns or various events. In the last decades the environmental effects of under-
utilizing computing resources have also come into the focus of research, since low-
ering the resource-demand lowers the power-consumption which in turn reduces the
environmental impact.

1 http://web.archive.org/web/20160305092105/http://edition.cnn.com/2009/TECH/
06/26/michael.jackson.internet/

9

Chapter 1. Introduction

Therefore, the challenge is how to maintain adequate system performance while
providing guarantees on system convergence and disturbance rejection. As for many
other areas where control is used, resource management of computing systems
comes down to collecting measurements, making educated estimations of what is
causing these values and then acting to get the system to behave as desired.

10

2
Resource management of
computer systems

The field of control of large computer systems comes with many challenges. In this
chapter the challenges addressed in this thesis will be discussed. Each section ends
with references to the papers in which the challenge is addressed.

2.1 Performance Models

Typically when employing control-schemes optimizing resource utilization, a
model describing the entity that is to be controlled can provide useful insights into
the properties of the system. Models can for example tell you what kind of con-
trol action is needed, how aggressively a controller can be tuned or where in the
system a potential bottleneck can occur. In the case of resource management for
computer systems providing some kind of service, you are typically interested in
some sort of performance model. Such a model should capture the important as-
pects regarding the system considered, such as user behavior, application resource
demands and the influence of the underlying infrastructure. Based on these factors,
the model should give as output some measure of the performance of the system,
such as user-perceived Quality of Service (QoS) or service revenue.

Common in the control of computer systems community is to use models based
on queueing systems [Kleinrock, 1975]. Incoming work in the form of jobs are put
in a queue awaiting to be serviced. A server takes jobs from the queue in some order,
takes some time to process each job, and then sends a response. Since queueing
systems are, in many aspects, hard to deal with analytically it is often considered
enough to use continuous time, approximative fluid-models [Agnew, 1976; Rider,
1976; Wang et al., 1996]. These result in first-order nonlinear ODEs describing the
relation from incoming load to queue length to response latency. Response latency
(response time) is a commonly used metric for QoS.

In Paper I modeling of disk write-intensive database-traffic is investigated. In
Paper II a queueing system-based model of a Mobile Service Support System (MSS)

11

Chapter 2. Resource management of computer systems

Customer administration
system

Mobile service support
system (MSS)

Network elements (NE)

Mobile phone
users

Figure 2.1 Illustration of the challenge in an MSS. NEs needs to handle loads from
both the MSS and from actual users and can become overloaded.

is developed. In Paper III estimation of the queue length of a queueing system using
an Extended Kalman Filter (EKF) is explored. In Paper VI a queueing system-based
simulation model is used, and a delay-compensator using a fluid-approximation
model is designed.

2.2 Mobile Service Support System

Parts of the work in this thesis is aimed at a commercial Mobile Service Support
System (MSS) developed and produced by Ericsson AB. MSSs are used by net-
work operators for all processing regarding new subscribers and services in the
network. Each new subscriber or service requires processing and data storage in
several Network Elements (NEs). Not only are the NEs geographically distributed,
with different roles, but they typically also have different owners and manufactur-
ers, making the network highly heterogeneous. The MSS presents to the operator
and its business support systems a unified middleware where complex functions can
be easily invoked. The software architecture is complex with several layers and dis-
tributed infrastructures, which means that specific parts of the system will not have
complete knowledge of the interactions among other parts of the system.

The system architecture is illustrated in Figure 2.1. One request to the MSS
from an upstream system normally results in a number of requests downstream out
on the mobile network to several different NEs. An NE is usually a database storing
subscriber and service data, for example, the Home Location Register (HLR). A

12

2.3 Cloud Computing

user ID, which needs to be fetched from one database, needs to be supplied in a
query to another database to get the system consistent. In parallel to the changes and
setups that the MSS performs, the network is also used by the end users. Services
being set up by the MSS are queried by base stations and other systems requiring
that information. In respect to the MSS, this traffic can be considered as unknown
background traffic, in contrast to the known traffic flowing through the MSS.

The experience from deployed Ericsson systems shows that there can be prob-
lems with overloads in the NEs. The measurable load arriving from the MSS and
the unknown (not directly measurable) load arriving from mobile users may inter-
fere with each other, creating a race for resources that may lead to overload in a
NE. When one NE becomes overloaded and unresponsive, this may result in the
entire transaction requiring rollback to avoid in-consistencies in the network. Such
a rollback may require manual work which is of course costly for the operator. To
protect against such situations, traffic monitoring and control are crucial.

In Paper II we investigate a few different control-related problems in MSSs. In
Paper III we design an observer for the state of an MSS.

2.3 Cloud Computing

There are many ways of defining what cloud computing is. Most definitions agree
that cloud computing is the business model where a service provider leases IT-
related resources of some kind to a service consumer. National Institute of Standards
and Technology (NIST) defines cloud computing by specifying the following five
requirements [Mell and Grance, 2009]:

On-demand self-service
By this they mean that the consumers should themselves be in control of the
amount of acquired resources.

Broad network access
The service should be accessible over the Internet using appropriate, con-
nected devices and software.

Resource pooling
The available resources should be pooled by the provider. The pool of re-
sources should be available for the consumers. This also implies that all
resources in some sense are both location- and infrastructure-unaware. You
don’t know on what kind of hardware you run, or exactly where in the data
center.

Rapid elasticity
It should be possible to rapidly let go of, and acquire more resources as the
needs of the consumer change.

13

Chapter 2. Resource management of computer systems

Measured service
The amount of used resources should be metered by the provider. This meter-
ing information can also be made available to the consumer.

Even though this list of requirements is not always fulfilled for services that still are
referred to as cloud services, the requirements gives a good idea of what the core of
the concept cloud computing is.

Cloud computing is often divided into the three service models Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service (SaaS).
IaaS are services offering consumers on-demand computing infrastructure such as
computers, data storage, memory or network. These resources are often virtualized.
PaaS covers services which provide some sort of computing platform. This could
for instance be programming language execution environments, databases or web
servers. In the SaaS model application software is made available on-demand to its
users. Examples of this includes Google Apps and Microsoft Office 365.

Commonly, the central part of the cloud services offered by providers is the
virtual private servers. Examples of such services include Amazon EC2, Google
Compute Engine and City Cloud. These services gives access to Virtual Machines
(VMs), or “instances”, which are run in a physical computer in a data center.
Through either a web interface or an API, users can boot up new instances, and ter-
minate those already running. New instances are of a user-specified instance type,
each with its own amount of memory, CPU reservation and disk. The consumer is
then billed for every machine time unit used, rates varying with the instance type
and service provider.

Since the cloud computing model offers On-demand self-service, Rapid elas-
ticity and Resource pooling, many SaaS services are built and deployed on top of
IaaS or PaaS services. This allows for a start-up company launching a service to
adjust their capacity with no up-front payment. And in the event the service grows
in popularity, the capacity can be easily increased.

For example Netflix has been very open with their usage of the Amazon cloud
computing platform for building their services and is therefore commonly used as an
use case in the research community. They rent capacity from Amazon, both in form
of VMs (through EC2) and storage space (through the block storage service S3). On
this they deploy many smaller services which combine to form their SaaS service
of streaming movies and TV series to users all over the world. Examples of these
smaller services could be searching, storing ratings or computing recommendations
based on previously watched content.

When a user makes a request to an online service, such as opening the front page
in Netflix, there is a server responding from some data center. Typically, for large
services, such a request involves a multitude of sub-services handling different parts
of the presentation of the complete service. This puts some load on the resources
running the service. If the service is already under heavy load, the request will be
queued up for a long time, waiting to be served. Long delays in responses (response

14

2.4 Brownout

times) will lower the user-perceived QoS, in other words customers that have to
wait gets unhappy [Nah, 2004].

The flexible resource model in cloud computing pose a challenge in adapting the
right amount of resources, so as to avoid wastefulness as well as decreased QoS. Au-
toscaling refers to making resource allocation decisions autonomically. Autoscaling
has previously been approached with feedback control. However a lot of the previ-
ous work has ignored the fact that, even though we have “rapid elasticity”, scaling
up still typically takes in the order of minutes [Mao and Humphrey, 2012], which
can cause problems for feedback controllers. Autoscalers used in production typi-
cally uses threshold controllers with a cooldown period [Amazon, 2014; Google,
2014; Rackspace, 2014]. Threshold controllers observe a metric over time and if it
has been over a predefined threshold for some amount of time the controller acts.
After the controller has acted it gets put in a cooldown state for one cooldown period
in which it is prevented from acting. This is to prevent the controller from taking
more decisions while the previous decision has not yet come into effect.

Paper VI presents a delay-compensating controller able to control virtual ma-
chine deployment even in the presence of long, asymmetric, stochastic resource
reconfiguration delays.

2.4 Brownout

Since deploying applications on a very large scale requires a lot of hardware, vir-
tual or physical, such applications must be able to handle hardware failures. Single
computers rarely fail, but in a ten thousand node cluster, failure is something that
happens daily. Therefore software built for running on this scale is typically built
from the beginning to withstand sudden loss of parts of the hardware set [Hamilton
et al., 2007]. However failures on this scale can often also be correlated in both
space and time, and this can lead to a temporarily under-provisioned system [Gallet
et al., 2010; Yigitbasi et al., 2010].

A flash-crowd is another way a service can be temporarily under-provisioned.
A flash-crowd is when a sudden burst of traffic comes to a certain service. Flash
crowds can have many different causes, but typically it happens when the victim
service is mentioned or linked to in some other relatively popular channel, gener-
ating a flood of visitors. A special case of flash-crowd is referred to the Slashdot
effect, which got its name from the website Slashdot which posts news about sci-
ence and technology. The effect is the overload that happens to small independent
websites when they get linked to in a post on Slashdot.

One attempt to remedy temporary under-provisioning was introduced in brown-
out [Klein et al., 2014; Maggio et al., 2014]. The essence of brownout is that a
service is extended with capabilities to serve content in two different modes. In one
mode it serves only service content which is marked as mandatory while in the sec-
ond mode it serves both the mandatory and some content marked as optional. The

15

Chapter 2. Resource management of computer systems

system then measures the response times of the users and adjusts what percentage
of the requests should be served both mandatory and optional content. The idea is
that the system should be able to greatly lower its resource requirement by serving
less optional content, and thereby handling a temporary capacity shortage.

As an example we can consider the product page on an e-commerce website.
Here, the product description would have to be considered mandatory content, since
a visitor wouldn’t consider the response complete and useful without the description
of the product. However, a section describing related products would be part of
the optional content. The user doesn’t necessarily need it, but it makes the other
products on the web site more accessible to the user and increases revenue [Fleder
et al., 2010].

The previous work done on brownout was focused on the single server case,
where we only have one computer working to service users. When a service re-
quires more resources than can be provided by a single server, you typically deploy
multiple worker computers and use a load balancer to spread the load evenly among
the servers. Many load balancing algorithms base their decision on the response
times of the workers. Since the aim of brownout is to keep the response times at or
below a certain set point, response time-based load balancers would not be able to
see any difference between an overloaded worker, only serving mandatory content,
and a fully loaded worker serving full content.

In Paper IV and Paper V load balancing algorithms for brownout-enabled appli-
cations are investigated.

16

3
Publications

This licentiate thesis is based on the following six papers. They are listed below
with a description of their contribution to the research field and a description of the
contributions of the author. The formatting of the papers have been adapted to the
print format of the thesis.

Paper I

Dellkrantz, M., M. Kihl, and A. Robertsson (2012). “Performance modeling and
analysis of a database server with write-heavy workload”. In: 2nd European
Conference on Service-Oriented and Cloud Computing. Bertinoro, Italy.

In this paper we investigate the performance dynamics of a MySQL/InnoDB
database server with write-heavy workload. The main objective of our investigation
was to understand the system dynamics due to the buffering of disk operations that
occurs in database servers with write-heavy workload. We characterize the traffic
and its periodic anomalies caused by flushing of the buffer. Further, we present a
performance model for the response time of the requests and show how this model
can be configured to fit with actual database measurements.

The author came up with the model and how to find its parameters, set up the
test bed, performed the experiments and was the main author of the manuscript.

Paper II

Amani, P., B. Aspernäs, K. J. Åström, M. Dellkrantz, M. Kihl, G. Radu, A. Roberts-
son, and A. Torstensson (2012). “Application of control theory to a commer-
cial mobile service support system”. International Journal On Advances in
Telecommunications 5:3&4. URL: http : / / www . iariajournals . org /
telecommunications/.

17

Chapter 3. Publications

In this paper we identify and explore some important control challenges for the
Ericsson Mobile Service Support System which handles setup of new subscribers
and services in a mobile network. Further, we present analysis and experiments
showing some advantages of proposed solutions. First, we develop a load-dependent
server model for the system, which is validated in testbed experiments. Further, we
propose a control design based on the model, and a method for estimation of re-
sponse times and arrival rates. The main contribution of this paper is that we show
how control theory methods and analysis can be used for commercial telecom sys-
tems. Parts of our results have been implemented in commercial products, validating
the strength of our work.

The author set up and operated the test bed on which the load-adaptive controller
was tested. The author also ran simulations and collected data for the event-based
state estimator.

Paper III

Dellkrantz, M., M. Kihl, A. Robertsson, and K. J. Åström (2012). “Event-based
response time estimation”. In: 7th International Workshop on Feedback Com-
puting. San Jose, California, USA.

In this paper estimation techniques, suitable for support systems for mobile
phone systems, are explored. These systems are complex queueing systems with
large databases. The traffic generated by users and system administrators changes
rapidly, some loads can be measured while others cannot. Attempts to capture all the
details of the system give models that are not suitable for on-line control. Estima-
tors based on continuous flow models with event based measurements are designed
using an EKF. The estimators are compared with simple-data based estimators.

The author ran the simulations and came up with the idea to consider the funda-
mental limitations of the estimation.

Paper IV

Dürango, J., M. Dellkrantz, M. Maggio, C. Klein, A. V. Papadopoulos, F.
Hernández-Rodriguez, E. Elmroth, and K.-E. Årzén (2014). “Control-
theoretical load-balancing for cloud applications with brownout”. In: 53rd
IEEE Conference on Decision and Control. Los Angeles, CA.

In this paper, we present novel load-balancing strategies, specifically designed
to support brownout-enabled workers. They base their decision not on response
time, but on user experience degradation. We implemented our strategies in a self-
adaptive application simulator, together with some state-of-the-art solutions. Re-
sults obtained in multiple scenarios show that the proposed strategies bring signifi-
cant improvements when compared to the state-of-the-art ones.

18

Chapter 3. Publications

The author implemented the equal-thetas algorithm and contributed equally to
its idea and tuning together with J. Dürango.

Paper V

Klein, C., A. V. Papadopoulos, M. Dellkrantz, J. Dürango, M. Maggio, K.-E. Årzén,
F. Hernández-Rodriguez, and E. Elmroth (2014). “Improving cloud service re-
silience using brownout-aware load-balancing”. In: 33rd IEEE International
Symposium on Reliable Distributed Systems. Nara, Japan.

In this paper we propose two novel brownout-aware load balancing algorithms.
To test their practical applicability, we extended the popular lighttpd web server
and load-balancer, thus obtaining a production-ready implementation. Experimen-
tal evaluation shows that the approach enables cloud services to remain responsive
despite cascading failures. Moreover, when compared to Shortest Queue First, be-
lieved to be near-optimal in the non-adaptive case, our algorithms improve user
experience by 5%, with high statistical significance, while preserving response time
predictability.

The author contributed equally to the idea of making the controllers event-based
and queue-based together with J. Dürango. The author also implemented the equal-
thetas algorithm in the lighttpd load balancer used in the conducted experiments.

Paper VI

Dellkrantz, M., J. Dürango, A. Robertsson, and M. Kihl (2015). “Model-based
deadtime compensation of virtual machine startup times”. In: 10th International
Workshop on Feedback Computing. Seattle, WA, USA.

This paper presents a delay-compensator inspired by the Smith predictor. The
compensator allows one to close a simple feedback loop around a cloud application
with a large, time-varying delay, preserving the stability of the controlled system.
It also makes it possible for the closed-loop system to converge to a steady-state,
even in presence of resource quantization. The presented approach is compared to
a threshold-based controller with a cooldown period, that is typically adopted in
industrial applications.

The author came up with the idea for the compensator structure, both for delay
compensation and quantization compensation, wrote the simulation and was the
main author of the manuscript.

19

Chapter 3. Publications

Not included

The following publications co-authored by the author of this thesis covers related
work but are not included in this thesis.

Kihl, M., P. Amani, A. Robertsson, G. Radu, M. Dellkrantz, and B. Aspernäs
(2012). “Performance modeling of database servers in a telecommunication ser-
vice management system”. In: 7th International Conference on Digital Telecom-
munications, pp. 124–129.

Papadopoulos, A. V., C. Klein, M. Maggio, J. Dürango, M. Dellkrantz, F.
Hernández-Rodriguez, E. Elmroth, and K.-E. Årzén (2016). “Control-based
load-balancing techniques: analysis and performance evaluation via a random-
ized optimization approach”. Control Engineering Practice. Accepted for pub-
lication.

20

Bibliography

Here follows the bibliography for Chapter 2. The bibliographies of the included
papers can be found at the end of their respective re-print.

Agnew, C. E. (1976). “Dynamic modeling and control of congestion-prone sys-
tems”. Operations research 24:3, pp. 400–419.

Amazon (2014). Auto scaling concepts — Amazon Web Services documenta-
tion. Accessed: 2014-08-27. URL: https : / / web . archive . org / web /
20140729191545 / http : / / docs . aws . amazon . com / AutoScaling /
latest/DeveloperGuide/AS_Concepts.html.

Fleder, D. M., K. Hosanagar, and A. Buja (2010). “Recommender systems and their
effects on consumers: the fragmentation debate”. EC 229, p. 230.

Gallet, M., N. Yigitbasi, B. Javadi, D. Kondo, A. Iosup, and D. H. J. Epema (2010).
“A model for space-correlated failures in large-scale distributed systems”. In:
Euro-Par. DOI: 10.1007/978-3-642-15277-1_10.

Google (2014). Google compute engine autoscaler — Google Cloud Platform Doc-
umentation. Accessed: 2014-12-01. URL: https : / / web . archive . org /
web/20141201094332/https://cloud.google.com/compute/docs/
autoscaler/.

Hamilton, J. R. et al. (2007). “On designing and deploying Internet-scale services.”
In: LISA. Vol. 7, pp. 1–12.

Klein, C., M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez (2014). “Brown-
out: building more robust cloud applications”. In: 36th International Conference
on Software Engineering (ICSE). Hyderabad, India.

Kleinrock, L. (1975). Theory, Volume 1, Queueing Systems. Wiley-Interscience.
ISBN: 0471491101.

Maggio, M., C. Klein, and K.-E. Årzén (2014). “Control strategies for predictable
brownouts in cloud computing”. In: 19th IFAC World Congress. Cape Town,
South Africa.

21

Chapter 3. Publications

Mao, M. and M. Humphrey (2012). “A performance study on the VM startup
time in the cloud”. In: IEEE 5th International Conference on Cloud Comput-
ing (CLOUD). IEEE, pp. 423–430.

Mell, P. and T. Grance (2009). “The NIST definition of cloud computing”. National
Institute of Standards and Technology 53:6, p. 50.

Nah, F. F.-H. (2004). “A study on tolerable waiting time: how long are web users
willing to wait?” Behaviour & Information Technology 23:3, pp. 153–163.

Rackspace (2014). How auto scale cooldowns work — Rackspace Knowledge Cen-
ter. Accessed: 2014-11-17. URL: https : / / web . archive . org / web /
20141117122211/http://www.rackspace.com/knowledge_center/
article/how-auto-scale-cooldowns-work.

Rider, K. L. (1976). “A simple approximation to the average queue size in the time-
dependent M/M/1 queue”. Journal of the ACM (JACM) 23:2, pp. 361–367.

Wang, W.-P., D. Tipper, and S. Banerjee (1996). “A simple approximation for mod-
eling nonstationary queues”. In: 15th Annual Joint Conference of the IEEE
Computer Societies. Networking the Next Generation. Vol. 1. IEEE, pp. 255–
262.

Yigitbasi, N., M. Gallet, D. Kondo, A. Iosup, and D. H. J. Epema (2010). “Analysis
and modeling of time-correlated failures in large-scale distributed systems”. In:
GRID. DOI: 10.1109/GRID.2010.5697961.

22

Paper I

Performance Modeling and Analysis of a
Database Server with Write-Heavy

Workload

Manfred Dellkrantz Maria Kihl Anders Robertsson

Abstract

Resource-optimization of the infrastructure for service oriented applica-
tions require accurate performance models. In this paper we investigate the
performance dynamics of a MySQL/InnoDB database server with write-heavy
workload. The main objective of our investigation was to understand the sys-
tem dynamics due to the buffering of disk operations that occurs in database
servers with write-heavy workload. In the paper, we characterize the traffic and
its periodic anomalies caused by flushing of the buffer. Further, we present a
performance model for the response time of the requests and show how this
model can be configured to fit with actual database measurements.

Originally published in 2nd European Conference on Service-Oriented and Cloud
Computing, Bertinoro, Italy, 2012. Reprinted with permission of Springer.

23

Paper I. Performance Modeling and Analysis . . . with Write-Heavy Workload

1. Introduction

The processing and control of service-oriented applications, as web applications,
mobile service management systems, media distribution applications, etc., are usu-
ally deployed on an infrastructure of server clusters. The rate at which the requests
arrive can vary heavily both during a single day and during longer periods, due to
user behavior patterns. Scaling for the worst traffic peaks can be expensive though
and will result in most of the capacity being unused most of the time. Capacity
planning and resource optimization is therefore needed, which require the design of
accurate performance models that capture the system dynamics in high loads.

Previous work on control systems for service-oriented applications and systems
has mainly focused on applications with CPU-intensive workload, for example web
server systems and databases with read-only requests. For CPU-intensive workloads
previous work has shown that the performance dynamics are accurately captured by
a single server queue model, see for example, [Cao et al., 2003] and [Kihl et al.,
2011]. However, for applications including large databases (too large to store in
main memory), hard drive dynamics will influence the performance dynamics in
high loads. Typically the application will need to read data from disk on every data-
base read. Write operations are however often buffered in the server to make them
more efficient. For example, in [Rago et al., 2013] the authors examine different
buffering/caching techniques for use with NFS (Network File System).

Writing to persistent media is often a slow process which should be avoided if
possible. Further, writing performance is also affected by certain rules of locality.
For example, writing sequential data to a hard drive can be many times faster than
writing to random sectors. By buffering writes and completing them in sequential
order, the writes are executed more efficiently. However, when the buffered writes
are actually flushed to disk, the response times of the normal flow of traffic are
heavily influenced. The server becomes occupied by work other than that of the
normal flow of requests. Therefore, the system dynamics of server systems with
write-heavy workload cannot be captured with the single server queueing models
proposed for CPU-intensive workload.

In this paper we examine write-heavy workload on a MySQL database server
using the engine InnoDB. The database is stored on a magnetic hard drive which re-
sults in the database server having to employ heavy buffering to speed up the writes.
In the paper, the characteristics of write-heavy workload is examined. We develop
a model and configure the model parameters using experiments in our testbed. We
show in experiments that the model accurately captures the periodic anomalies that
occur when the system needs to empty the buffer.

In Section 2 we present the lab environment used for the database measure-
ments. In Section 3 we characterize the database traffic. In Section 4 we present the
model developed for the traffic and discuss how to configure it. We also validate the
model with lab measurements.

24

2 System Description

2. System Description

In this paper, we investigate the dynamics of database servers with write-heavy
workload. The models and methods proposed in the paper are based on the results
from experiments in our testbed. In this section, we first give an introduction to
dirty page caching, which is used in many operative systems and database systems
to improve the latencies when writing to disk. Further, we describe our testbed.

2.1 Page Cache
One common way to implement write-buffering is using a page cache. The storage
is divided into fixed size pages. When data is written, the page being written to
is first read from storage and then changed in memory and marked as dirty. Dirty
pages are then kept in memory for some time before it is written back to disk and
marked clean.

MySQL has several different storage engines, among them MyISAM and
InnoDB. MyISAM has no built in cache for data. Instead it relies on the page
caching features of the operating system. In this paper, we have used the storage
engine InnoDB, which has its own system of pages which are buffered in the so
called buffer pool. Pages are written to and read from disk directly using one of
several methods for directly accessing the block storage device, bypassing the oper-
ating system page cache. The InnoDB engine tries to estimate the speed of the block
device and the rate at which new pages are made dirty and from that it calculates
how often and how many dirty pages need to be written to disk.

2.2 Testbed
We have used an experimental testbed. The testbed consists of one computer acting
as traffic generator, and one database server. The computers were connected with a
standard Ethernet switch.

The traffic generator was executed on an AMD Phenom II X6 1055T at 2.8 GHz
with 4 GB main memory. The operating system was 64-bit Ubuntu 10.04.4 LTS. The
traffic generator was implemented in Java, using the JDBC MySQL connector. The
traffic generator used 200 working threads and generated MySQL queries according
to a Poisson process with average rate λ queries per second. The behavior of the
traffic generator was validated in order to guarantee that it was not a bottleneck in
the experiments.

The database server had a 2.0 GHz Celeron processor and 256 MB main mem-
ory. The database files are on the system disk which is a standard 3.5" hard drive.
It runs the 32-bit version of Ubuntu 10.04.4 LTS (Linux 2.6) and MySQL Server
5.1.41. The InnoDB engine was configured with 16 MB of buffer pool.

The structure of the relations in the database comes from the scalable Wisconsin
Benchmark [DeWitt, 1991] and it has n = 107 tuples. The structure of the queries
used all follow the following pattern:

25

Paper I. Performance Modeling and Analysis . . . with Write-Heavy Workload

UPDATE <relation> SET unique3=? WHERE unique1=?;

The question marks are replaced with uniformly distributed pseudo-random integers
in the interval [0,n[. This query changes the value of one of the integer attributes of
a random tuple.

3. Performance Characterization

In order to investigate the dynamics of a database server with write-heavy workload,
we performed a series of experiments in our testbed presented in Section 2. In all the
experiments, all requests included a MySQL UPDATE query, causing the system to
write one database element to disk. Figure 1 illustrates the system behavior during
an experiment where the average arrival rate, λ , was 25 requests per second. The
figure shows that the system periodically have to pause the normal work and instead
focus on the buffered dirty pages for some time. While the normal response times
are below 0.2 seconds, response times of up to one second occur, because of these
pauses. The number of requests that have these high response times are affected by
the fact that requests are sent and queued up, even when the server is busy with the
dirty pages.

The average response time as a function of the number of concurrent jobs is
from now on referred to as the N/T graph. The throughput as a function of the
number of concurrent jobs inside the server at all times is from now on referred to
as the N/P graph. The N/T and N/P graphs for our system are shown in Figure 2.

It can be seen in the N/P graph that for a very small number of concurrent
requests (up to 10), the throughput is much lower than for a higher number of con-
current requests. This is likely (to some extent, at least) because of network delays
and buffering in lower protocol layers.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time (s)

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

pause flushing period

Figure 1. Response time graph of the InnoDB system, UPDATEs only, with con-
stant Poisson-traffic, 25/s

26

4 Performance Model

0 20 40 60 80 100
24

25

26

27

28

29

30

31

32

33

Concurrent jobs

T
h

ro
u

g
h

p
u

t
(/

s
)

0 20 40 60 80 100
0

1

2

3

4

5

Concurrent jobs

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

s
)

Figure 2. N/P graph (left) and N/T graph (right) of the InnoDB system, UP-
DATEs only. Every point was run for 900 seconds.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time (s)

R
e
s
p
o

n
s
e

 t
im

e
 (

s
)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Time (s)

Figure 3. Response time graph of the InnoDB system, UPDATEs only, with con-
stant Poisson-traffic, 12.5/s (left), 18.75/s (right)

During high loads, the dirty page cache will be written to disk periodically. The
period between two occurrences of disk writing, called the flushing period, depends
on the arrival rate. As can be seen in Figure 1, an arrival rate of 25 requests per
second results in a flushing period of approximately 5 seconds. Figure 3 shows the
response times during an experiment with an average arrival rate of 12.5 requests
per second, which results in a flushing period of approximately 10 seconds and an
experiment with an average arrival rate of 18.75 requests per second, which results
in a flushing period of approximately 7 seconds. These experiments show that the
period between flushes of the buffer is inversely proportional to the arrival rate,
since

25 ·5≈ 12.5 ·10≈ 18.75 ·7 (1)

4. Performance Model

In this section, we describe our proposed performance model, which captures the
dynamics of our system.

27

Paper I. Performance Modeling and Analysis . . . with Write-Heavy Workload

4.1 Model Description
We propose a queuing network model shown in Figure 4. The model consists of
three parts, a Network delay (ND), a Job queue (JQ), and a Dirty page buffer (DPB).
The ND is used to model the reduced throughput at very low numbers of concurrent
requests. After passing the ND, requests enter the JQ. As requests are processed
by the server, the user is acknowledged and one dirty page equivalent is placed in
the DPB. The DPB has a fixed maximum size and when that is reached the server
stops processing requests in the JQ and starts to process dirty pages from the DPB
instead until the DPB is empty. When the DPB is empty, the server switches back
and continues to work on the JQ.

As a request enters the server it is assigned a processing time. Our experiments
have shown that the processing time for a request in the JQ and the processing time
for one dirty page equivalent (Tproc and Td p, respectively) can be modeled by an
exponential distribution. Further, the time each request spends in the ND (Tnd) can
be modeled as a sum of a constant and an exponentially distributed random number.

Further, the maximum size of the DPB is denoted DPBmax and it is a constant
integer number. The maximum length of the DPB and one dirty page equivalent per
request determine the inverse proportionality between flush period time and arrival
rate shown in Equation (1).

4.2 Parameter Configuration
The model has the following parameters which must be configured:

Tnd distribution,E [Tproc] ,E
[
Td p
]
,DPBmax

The maximum capacity of the DPB can be determined by measuring the period
of flushes, p, for some high traffic with throughput P. Since p determines how often
the DPB needs to be flushed and P determines how fast new dirty pages are put into
the DPB, the max length of the DPB is DPBmax = P · p.

By examining some experiment with high number of concurrent requests, a
lower limit on the duration of the pause in processing (min(Tpause)) can be deter-
mined. By measuring the time between request departures and filtering out those
that are > min(Tpause), an average on the pause duration (Tpause) can be esti-
mated. From these results, the mean of the dirty page processing time is given by
E
[
Td p
]
= Tpause ·DPBmax

−1.

JQ

DPB

ND

Figure 4. The Model

28

4 Performance Model

Table 1. Fitted model parameters

Tproc Exp(0.0269)
Tnd 0.0025+Exp(0.00049)

DPBmax 111
Td p Exp(0.00433)

With the knowledge of Td p and the throughput (P) when keeping high num-
ber of concurrent requests, the average processing time Tproc can be determined.
By assuming that the server is always busy, the throughput can be assumed to be
inversely proportional to the total processing time spent on every request. Since
the server spends a total of Tproc + Td p time on every request, the average for the
processing time is given by E [Tproc] = P−1−E

[
Td p
]
.

The distributions used for the network delay (Tnd) are determined by performing
an experiment keeping one concurrent request in the system. The response times T
are measured. Since the total response time of one single request is the sum of the
network delay, the processing time plus that it has a probability of DPBmax

−1 to
get DPBmax · Td p added, the average network delay is given by E [Tnd] = E [T]−
E [Tproc]−E

[
Td p
]
.

4.3 Model Validation
In order to validate the proposed model, we developed a discrete-event simula-
tion program, written in Java. By using the configuration method described in Sec-
tion 4.2, we can conclude that the values in Table 1 make a good fit for our database
server described in Section 2.

In Figure 5, the cumulative distribution function of the response times from
an experiment with arrivals following the Poisson process with an average rate of

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Response time (s)

P
ro

b
a
b
ili

ty

Real database

Simulation

Figure 5. Cumulative distribution function of response times from InnoDB data-
base system, and the proposed model. Traffic is generated with a Poisson process
with average 28 requests per second.

29

Paper I. Performance Modeling and Analysis . . . with Write-Heavy Workload

0 20 40 60 80 100
24

25

26

27

28

29

30

31

32

33

Concurrent jobs

T
h

ro
u

g
h

p
u

t
(/

s
)

0 20 40 60 80 100
0

1

2

3

4

5

Concurrent jobs

A
v
e

ra
g

e
 R

e
s
p
o

n
s
e

 T
im

e
 (

s
)

Figure 6. N/T (top) and N/P (bottom) graph from the simulation of the model.
Every number of parallel jobs was run for 900 seconds.

28 requests per second, are shown. One graph shows the results from a testbed
experiment and one graph shows the results from the discrete-event simulation of
the model. As can be seen in the graphs, the distribution of response times in the
model fits accurately with the database experiment.

Further, the N/T and N/P graphs for the simulation is shown in Figure 6. These
graphs can be compared with the graphs of the corresponding experiments, shown
in Figure 2. The graphs show that the proposed model fits well with the real system.

5. Conclusions

Many service-oriented applications use database servers for storing data. When
the applications have a workload that writes to a database stored on hard drives,
disk writing optimizations introduce performance dynamics that may be difficult to
monitor and control. Traditional queuing system models do not suffice when the
response times show these periodic anomalies. In this paper, we have developed
a performance model based on queueing systems for database servers with write-
heavy workload. We validate our model using experiments in a testbed.

Acknowledgment

This work has been partly funded by the Lund Center for Control of Complex Engi-
neering Systems (LCCC) and the Swedish Research Council grant VR 2010-5864.

References

Cao, J., M. Andersson, C. Nyberg, and M. Kihl (2003). “Web server performance
modeling using an M/G/1/K* PS queue”. In: 10th International Conference on
Telecommunications. Vol. 2. IEEE, pp. 1501–1506.

30

References

DeWitt, D. J. (1991). “The Wisconsin benchmark: past, present, and future”. In:
The Benchmark Handbook, pp. 119–165.

Hsu, W. W., A. J. Smith, and H. C. Young (2001). “I/O reference behavior of produc-
tion database workloads and the TPC benchmarks — an analysis at the logical
level”. ACM Transactions on Database Systems 26:1, pp. 96–143.

Kamra, A., V. Misra, and E. M. Nahum (2004). “Yaksha: a self-tuning controller for
managing the performance of 3-tiered web sites”. In: 12th IEEE International
Workshop on Quality of Service. IEEE, pp. 47–56.

Kihl, M., A. Robertsson, M. Andersson, and B. Wittenmark (2008). “Control-
theoretic analysis of admission control mechanisms for web server systems”.
World Wide Web 11:1, pp. 93–116.

Kihl, M., G. Cedersjö, A. Robertsson, and B. Aspernäs (2011). “Performance mea-
surements and modeling of database servers”. In: 6th International Workshop
on Feedback Control Implementation and Design in Computing Systems and
Networks.

Kleinrock, L. (1975). Theory, Volume 1, Queueing Systems. Wiley-Interscience.
ISBN: 0471491101.

Liu, X., J. Heo, L. Sha, and X. Zhu (2006). “Adaptive control of multi-tiered web
applications using queueing predictor”. In: 10th IEEE/IFIP Network Operations
and Management Symposium, pp. 106–114.

Rago, S., A. Bohra, and C. Ungureanu (2013). “Using eager strategies to improve
NFS I/O performance”. International Journal of Parallel, Emergent and Dis-
tributed Systems 28:2, pp. 134–158.

31

Paper II

Application of Control Theory to a
Commercial Mobile Service Support System

Payam Amani Bertil Aspernäs Karl Johan Åström
Manfred Dellkrantz Maria Kihl Gabriela Radu

Anders Robertsson Andreas Torstensson

Abstract

The Mobile Service Support system (MSS), which Ericsson AB develops,
handles the setup of new subscribers and services into a mobile network. Ex-
perience from deployed systems show that traffic monitoring and control of the
system will be crucial for handling overload situations that may occur at sud-
den traffic surges. In this paper we identify and explore some important control
challenges for this type of systems. Further, we present analysis and exper-
iments showing some advantages of proposed solutions. First, we develop a
load-dependent server model for the system, which is validated in testbed ex-
periments. Further, we propose a control design based on the model, and a
method for estimation of response times and arrival rates. The main contribu-
tion of this paper is that we show how control theory methods and analysis
can be used for commercial telecom systems. Parts of our results have been
implemented in commercial products, validating the strength of our work.

Originally published in International Journal On Advances in Telecommunications,
vol.5, no. 3 & 4, pp. 204-215, Dec. 2012. Reprinted with permission.

33

Paper II. Application of Control Theory . . . Mobile Service Support System

1. Introduction

Resource management of computer systems, which has gained increased attention
during recent years, was explored already in the late 60’s [Brawn and Gustavson,
1968; Crocus, 1975]. It is an essential mechanism to handle load disturbances
such as traffic surges and changes in user behavior. Poorly managed resources can
severely degrade the performance of a system with potentially large financial con-
sequences.

The work presented in this paper is motivated by a commercial Mobile Service
Support System (MSS), developed and produced by Ericsson AB. Mobile Service
Support Systems are used by the network operators for all processing regarding new
subscribers and services in the network. Each new subscriber or service requires
processing and data storage in several network nodes. The systems are in general
multi-tier systems, implemented as distributed server clusters, where web and ap-
plication servers process the incoming requests and database servers are used for
data storage. The resource management of these systems, based on measurements
of the system states such as actual utilization and response times, is crucial for the
optimization of operation cost and the guarantee of service level agreements during
load surges, for example during marketing campaigns or various events.

Therefore, the challenge is how to control system performance while provid-
ing guarantees on convergence and disturbance rejection. The solution is based on
dynamic control schemes, which monitors the systems and provides actions when
needed. Several types of resource–management mechanisms have been proposed
and evaluated in the literature. In larger computer systems, load balancing is per-
formed in order to distribute the demand for resources uniformly over a number of
resource units (computers, CPUs, memory, etc.), thus avoiding the case that among
the nodes with similar functionalities some are under-utilized while others are over-
loaded [Diao et al., 2005; Fu et al., 2006]. During overload periods, when more
resources are requested than are available, admission control mechanisms reduce
the load to the system by blocking or delaying some of the requests [Kihl et al.,
2008; Chen et al., 2003; Liu et al., 2006; Liu et al., 2006]. For Internet applications,
virtualized server systems can be used to divide physical resources into a num-
ber of separated platforms where different web applications are allowed to operate
without affecting one another. Dynamic resource allocation between the virtual-
ized platforms serves as a new and easy way to perform resource optimization on
web server systems [Kjær et al., 2009; Xu et al., 2006; Wang et al., 2007]. In the last
years, the field of power and energy management has become important. Large soft-
ware systems have high energy consumption, which means that dynamic resource
optimization of these systems may considerably lower the operating costs for the
network operators [Bianchini and Rajamony, 2004; Claussen et al., 2009; Horvath
et al., 2007; Elnozahy et al., 2003].

However, all optimization techniques require accurate performance models of
the involved computing systems. The operation region is mainly high traffic load

34

2 System and Problem Description

scenarios, which means that the computing systems show non-linear dynamics that
needs to be characterized accurately [Kihl et al., 2003]. A software system is basi-
cally a network of queues, as examples, the CPU ready queue, semaphore queues,
socket queues, and I/O device queues, which store requests in waiting of service
in the processors. Therefore, queuing models can be used when describing the dy-
namic behavior of server systems [Brawn and Gustavson, 1968; Dilley et al., 1998;
Menascé and Almeida, 2002; Mei et al., 2001].

The concept of Load-Dependent Server (LDS) models, in which the response
time of the jobs in the system is a function of the service time of the jobs and
current number of jobs waiting to be served has, to the best of our knowledge,
firstly been introduced in [Perros et al., 1992]. In [Perros et al., 1992; Rak and
Sgueglia, 2010; Curiel and Puigjaner, 2001], standard benchmarks were used for
workload generation and also regression models to capture the system dynamics.
In [Mathur and Apte, 2004], a queuing network model which represents the load
dependent behavior of the LDS was presented and validated with simulations. In
[Leung, 2002], a theoretical analysis of the D/G/1 and M/G/1 models with load
dependency assumptions was presented.

In this paper, we investigate solutions to some important control challenges
identified for the commercial MSS developed by Ericsson AB. We present a load-
dependent server model, which is validated in experiments. The model has been
previously published in [Kihl et al., 2012]. Further, we extend [Kihl et al., 2012] by
proposing and validating an admission control mechanism based on a load-adaptive
controller. A modified version of the controller has been implemented in the Erics-
son product. Finally, we show how extended Kalman filters can be used for estimat-
ing the response times and arrival rates in the system.

The paper is organized as follows. In Section 2, the Ericsson product is described
and the control challenges identified for the system are presented. In Section 3,
the testbed used for some of the experiments is described. In Section 4, the load-
dependent server model is presented and validated. In Section 5, the load-adaptive
controller is presented and experiments validating its performance are described. In
Section 6, our work on response time estimation based on extended Kalman filters
is presented. Finally, in Section 7, some conclusions are presented.

2. System and Problem Description

The Mobile Service Support system (MSS), which Ericsson AB develops, handles
the setup of new subscribers and services into a mobile network. It presents to
the operator and its business support systems a unified middleware where complex
functions, such as setting up a new subscriber or modifying services for an existing
subscriber, can be easily invoked. The software architecture is complex with several
layers and distributed infrastructures, which means that specific parts of the sys-
tem will not have complete knowledge of the interactions among other parts of the
system.

35

Paper II. Application of Control Theory . . . Mobile Service Support System

2.1 System architecture
The system architecture is illustrated in Figure 1. One request to the MSS from an
upstream system normally results in a number of requests downstream out on the
mobile network to several different network elements (NEs). A network element
is usually a database storing subscriber and service data, for example, the Home
Location Register (HLR). A user id, which needs to be fetched from one database,
needs to be supplied in a query to another database to get the system consistent.

Customer administration
system

Mobile service support
system (MSS)

Network elements (NE)

Mobile phone
users

Figure 1. Mobile service support system (MSS).

In parallel to the changes and setups that the MSS performs, the network is
also used by the end users. Services being set up by the MSS are queried by base
stations and other systems requiring that information. In respect to the MSS, this
traffic can be considered as unknown background traffic, in contrast to the known
traffic flowing through the MSS.

2.2 Control challenges
The experience from deployed Ericsson systems shows that there can be problems
with overload in the NEs. The measurable load arriving from the MSS and the un-
known (not directly measurable) load arriving from mobile users may interfere with
each other, creating a race for resources that may lead to overload in a NE. When

36

2 System and Problem Description

Figure 2. M/M/1 model.

one NE becomes overloaded and unresponsive, this may result in the entire trans-
action requiring rollback to avoid in-consistencies in the network. Such a rollback
may require manual work which is of course costly for the operator.

To protect against such situations, traffic monitoring and control are crucial. In
cooperation with Ericsson AB, some important control challenges have been identi-
fied for this type of system. These challenges are described below. In the following
sections our collaborative work on these challenges will be presented. The models
and control designs are based on response times, as this metric is rather easily mea-
surable in the real system and because the response times can be mapped to the load
status of the controlled system using the proposed model.

Performance models The first challenge is to design a performance model for the
NEs, since good control designs are based on sufficiently accurate system models.
The model should capture the dominant load dynamics of the NEs. Most service
performance metrics such as response times and service rates depend on queue state
dynamics, which means that queue models are suitable for these systems.

For the objective of performance control, simple models, such as single server
queues, are often preferred. The model should only capture the dominating load
dynamics of the system, since a well-designed control system can handle many
model uncertainties [Åström and Wittenmark, 1997].

The classical M/M/1 model, where a single-server queue processes requests that
arrive according to a Poisson process with exponential distributed service times, see
Figure 2, has been shown to accurately capture the response time dynamics of a web
server system [Cao et al., 2003]. However, experience from deployed systems and
lab measurements have shown that databases may not have M/M/1 dynamics [Kihl
et al., 2011]. Therefore, other models are required that more accurately captures the
dynamics of database servers.

Admission control in MSS The NEs are loaded by two traffic sources, the mea-
surable traffic coming to the MSS and the unknown (unmeasurable) traffic coming
from the mobile users, as illustrated in Figure 3. The average arrival rates can be de-
noted as λ for the measurable traffic and λu for the unknown traffic. Overload in the
NEs can be detected by monitoring the response time of requests sent to each node.
When the average requests’ response times exceed some threshold, the MSS can
classify the involved NE as overloaded and thereby start actions to lower the arrival
rate to that particular NE, in order to achieve an acceptable arrival rate, denoted
as λc. Therefore, the second control challenge is to design an admission control
scheme that can handle the unknown traffic at the NEs and further can handle the

37

Paper II. Application of Control Theory . . . Mobile Service Support System

time varying mean measured traffic rates experienced in the systems.

Monitoring and estimation One of the problems when designing control mech-
anisms in these types of systems is the lack of performance information. The de-
signed protocols basically provide no means of control communication between the
MSS and the NEs that can be used by a control system. Therefore, the third control
challenge that has been identified is the design of monitoring and estimation mech-
anisms that could help in the design of, for example, an admission control scheme.
The estimation scheme can be used as feed-forward control in the control system,
and thereby improving the performance of the control system compared to when
only using feedback control. In collaboration with Ericsson AB, some preliminary
work on the application of extended Kalman filters for load estimation have been
started for systems as in Figure 3.

MSS NE

c

Rejected
requests

u

Figure 3. Load at the NEs.

3. Testbed

To validate some of the proposed solutions, we have performed a series of exper-
iments in our server lab. We developed a MSS testbed with two traffic generators,
one for the measurable traffic and one for the unknown traffic, and a MySQL 5.1.41
database server as depicted in Figure 4. The computers were connected to a local
100 Mbit/s Ethernet network.

The traffic generators were implemented in Java, using the JDBC MySQL con-
nector, and they were executed on computers with an AMD Phenom II X6 1055T
Processor at 2.8 GHz and 4 GB main memory. The operating system was Ubuntu
10.04.2 LTS. The traffic generators use 200 working threads and generate MySQL
queries according to a Poisson process with average rate λ and λu queries per sec-
ond. Both traffic generators were validated in order to guarantee that they were not
a bottleneck in the experiments.

The database server has several relations with the same structure but with differ-
ent number of tuples. The maximum number of allowed concurrent connections is

38

4 Performance Models

Measurable traffic
generator (MSS)

MySQL server

Unknown traffic generator
(mobile users)

Figure 4. Testbed for the experiment.

set to 100. The structure of the relations comes from the Scalable Wisconsin Bench-
mark [DeWitt, 1991] with 10 million tuples. Two basic types of queries are used,
SELECT (read) and UPDATE (write).

The queries look like this:
SELECT * FROM <relation> WHERE unique1=?;
UPDATE <relation> SET unique2=? WHERE unique1=?;
The question marks are replaced with uniformly distributed random numbers

from zero to ten million.

4. Performance Models

In this section, we focus on the modeling aspects of database servers. The objective
is to develop a performance model for the database server that captures the dynamics
during high loads. The performance model can be used in resource optimization
schemes, as admission control systems, in order to maximize the throughput of the
database server, while keeping some latency constraints. One of the challenges for
these database servers is that they have a write-heavy workload, which means that
the CPU is not the bottleneck during high loads. This means that previous work on
performance modeling of server systems may not be applicable since they assume
CPU-intensive workload.

4.1 M/M/m model with load dependency (M/M/m-LDS)
We propose to add load-dependency to an M/M/m system. In all load-dependent
server models, the service time for a request will be dependent on the number of
concurrent requests in the system. This load-dependency will model effects of the
operating system, memory use, etc., which may cause service degradation when

39

Paper II. Application of Control Theory . . . Mobile Service Support System

there are many concurrent jobs in a computing system [Curiel and Puigjaner, 2001].
In the experiment section, we will show that the M/M/m-LDS model accurately
captures the behavior of various database workload.

The properties of the load dependent M/M/m model (M/M/m-LDS) are set by an
exponential distributed base processing time, xbase = 1/µ and a dependency factor,
f . When a request enters the system, it gets the base processing time xbase assigned
to it. A single request in the system will always have a processing time of xbase.
Each additional request inside the system increases the residual work for all requests
inside the system (including itself) by a percentage equal to the dependency factor
f . When a request leaves the system all other requests have their residual work
decreased by f percent again. This means that if n concurrent requests enter the
system at the same point, they will all have a processing time of

xs(n) = xbase · (1+ f)n−1 (1)

A special case is when f = 0. It means that there is no load dependency, and all
requests will have processing time xbase.

The system can process a maximum of m concurrent requests at each time in-
stance. Any additional request will have to wait in the queue. New requests arrive
according to a Poisson process with average rate λ .

Therefore, the system can be modeled as a Markov chain as illustrated in Fig-
ure 5.

Figure 5. Illustration of M/M/m-LDS model as a Markov chain.

The average service rate of the system depends on the number of concurrent
requests in the system, k, derived as follows:

µk =

kµ

(1+ f)k−1 if 0 < k < m

mµ
(1+ f)m−1 if k ≥ m

(2)

By solving the balance equations, stationary probability distribution of existence
of k concurrent requests in the system is calculated as below:

40

4 Performance Models

πk =

(
λ
µ

)k

k!
(1+ f)

k(k−1)
2 π0 if 0 < k < m(

λ
µ

)k

mk−m ·m!
(1+ f)(m−1)(k−m

2)π0 if k ≥ m

(3)

As the sum of the probabilities of all possible states equals to one, π0 can be
derived as follows:

∑∞
k=0 πk = 1→

π0 =
1

1+
m−1
∑

k=1

(
λ
µ

)k

k!
(1+ f)

k(k−1)
2 +

µ
(

λ
µ

)m
(1+ f)

m(m−1)
2

(m−1)!(µm−λ (1+ f)m−1)

(4)

The stability condition in this case is:

λ
µm

(1+ f)m−1 < 1 (5)

The average number of requests in the system, N, can be calculated as below:

N =
∞

∑
k=1

k ·πk = N1 +N2

N1 =
m−1

∑
k=0

(
λ
µ

)k
(1+ f)

k(k−1)
2

(k−1)!
π0

N2 =

(
λ
µ

)m
(1+ f)

m(m−1)
2 (µm2−λ (m−1)(1+ f)m−1)µ

(m−1)!(mµ−λ (1+ f)m−1)
2 π0

(6)

Finally by means of Little’s theorem [Kleinrock, 1975], the average time each
request spends in the system, T , can be derived as follows.

T =
N
λ

(7)

4.2 M/M/m/n model with load dependency (M/M/m/n-LDS)
In case that the queue is limited to n positions, the probability for an empty system,
π0, can be determined as follows. This queuing system is named as M/M/m/n-LDS.

41

Paper II. Application of Control Theory . . . Mobile Service Support System

π0 =
1

I + II + III

I = 1+
m−1

∑
k=1

(
λ
µ

)k
(1+ f)

1
2 k(k−1)

k!

II =
(1+ f)

1
2 m2+ 1

2 m+mn−n−1λ n+m+1

mnµn+mm!(λ (1+ f)m−1−µm)

III =− (1+ f)
1
2 m(m−1)λ m

µm−1(m−1)!(λ (1+ f)m−1−µm)

(8)

Further, the average number of requests in the system is as follows:

N = N1−N2

N1 =
m−1

∑
k=0

k
(

λ
µ

)k
(1+ f)

1
2 k(k−1) ·π0

k!

N2 =
µ(1+ f)

1
2 m2− 1

2 m−1

mm−1
(
−λ (1+ f)m−1 +µm

) · N2n1 +N2n2 −N2n3

N2D1 +N2D2 +N2D3

N2n1 =−λ (n+m)(1+ f)(
1
2 `m2+ 3

2 m+mn−n−1)
(

λ
µ

)n+m+1(1
m

)n+1

N2n2 =
(

m(1+ f)mµ (n+m+1)(1+ f)(
1
2 `m2+ 1

2 m+mn−n)
)(λ

µ

)n+m+1(1
m

)n+1

N2n3 =
(
−λ (1+ f)mµ (m−1)+(1+ f)µm2)(λ

µ

)m

(1+ f)
1
2 m(m−1)

N2D1 =

(
1
m

)m

(1+ f)
1
2 m(m−1)m!

(
−λ (1+ f)m−1 +µm

)m−1

∑
k=1

(
λ
µ

)k
(1+ f)

1
2 k(k−1)

k!

N2D2 =

(
−λ (1+ f)m2+mn−n−1

(µm)n+m

)
+

(
1
m

)m

(1+ f)
1
2 m(m−1)m!

(
−λ (1+ f)m−1 +µm

)
N2D3 = µm

(
λ (1+ f)m−1

µm

)m

(9)
Finally, the average response time for a request can be derived using Little’s

theorem.

42

4 Performance Models

4.3 Parameter tuning
In a telecom system with latency constraints, the dominant dynamic of the system
is often characterized by the average response time, T , when varying the average
arrival rate, λ . Tuning of the parameters of the LDS model in a way that it fits the
measured data from the actual server system is a necessary step in modeling of such
systems. Assuming that λ and T are measureable, there are three main parameters
for the M/M/m-LDS model, m, f and µ to tune in order to fit the model on the
measured data. Further, for the M/M/m/n-LDS there is an extra parameter, n, to
tune.

Therefore, in Figures 6-10, the effects of changing model parameters on dynam-
ics of average response time versus mean arrival rate of queries are illustrated. In
the rest of the paper, this graph will be called the λ/T graph. In each figure, it is
assumed that two (three) of the parameters are fixed and the one that is mentioned
is the variable. As the equations for calculating the mean response times are rather
complex and the parameters are interdependent, more than one set of parameters
can be fit on the measured data. Thus using these figures, a heuristic rule for tuning
the parameters of the LDS model can be achieved.

In the cases where the M/M/m-LDS model is used, the first parameter to be
tuned is the number of servers, m. As it can be seen in Figure 6, by increasing the
maximum number of concurrent requests that can be processed in the system, the
linear part of the λ/T graph will be shorter and the exponential rising rate of the
graph is increased. In this case it is assumed that (f ,µ) = (0.6,22).

Figure 6. Variations of the λ/T graph for a special scenario with m as variable
when (f ,µ) = (0.7,22).

43

Paper II. Application of Control Theory . . . Mobile Service Support System

Figure 7. Variations of λ/T graph for a special scenario with f as variable when
(m,µ) = (3,22).

The second parameter to be tuned is the dependency factor, f . As shown in
Figure 7, by decreasing the dependency factor, the linear part of the λ/T graph is
increased, however, the change is slower than in the case where m is decreased. On
the other hand the exponential rising rate of the graph is increased in comparison
with the case where m is decreased. Here, it is assumed that (m,µ) = (3,22).

The effects of changing µ on the λ/T graph while fixing the two other param-
eters is illustrated in Figure 8. As shown in the figure, by increasing µ in equal
steps, the λ/T graph will be shifted to the right in equal steps. In this case, where
(m, f) = (3,0.6), the rate of rising of the graph is decreased.

In cases where the M/M/m/n-LDS model is used, there will be a saturation of
the response times when the load is high enough to overload the queue. Here, it
is assumed that the default values are (m,n, f ,µ) = (4,15,0.6,22). Figure 9 and
Figure 10 show the effects when varying m and f respectively. In each case, the
values of the other three parameters are constant. The general effect of changing the
parameters is similar as for the case with the infinite queue, with the difference that
the response times saturate when the load is high.

4.4 Experiments
In order to validate the model, we have performed a series of experiments in our
testbed, as described in Section 3. In this case, the arrival rate of the unknown traffic
was set to zero. The dynamics of the database server highly depends on the mix of
requests, since SELECT and UPDATE queries require different amount of server
capacity. Therefore, experiments with varying workload mix have been performed.

44

4 Performance Models

Figure 8. Variations of λ/T graph for a special scenario with µ as variable when
(m, f) = (3,0.6).

Figure 9. Variations of λ/T graph for a special scenario with m as variable when
(n, f ,µ) = (15,0.6,22).

45

Paper II. Application of Control Theory . . . Mobile Service Support System

Figure 10. Variations of λ/T graph for a special scenario with f as variable when
(m,n,µ) = (4,15,22).

Figure 11, Figure 12, and Figure 13 show the results from experiments where
the arrival rate is varied from low load to high load. The graphs show the average
response times of queries as a function of the arrival rate. We have fitted M/M/m/n-
LDS models for the data using the tuning steps described in the previous section. In
both scenarios, the CPU utilization was very low, also for high loads. The maximum
CPU load was about 5%.

In order to model the network delays, we have added a bias of 0.023 seconds in
the average response times of the proposed models.

In Figure 11, the workload is based on 100% UPDATE queries. The fitted model
in this case has the following parameters (m,n, f ,µ) = (3,81,0.75,37.1). Figure 12
depicts the same experiment setup when using a mix of 25% SELECT queries and
75% UPDATE queries. The fitted M/M/m/n-LDS model in this case has the follow-
ing parameters (m,n, f ,µ) = (6,73,0.44,35.2). In Figure 13 only SELECT queries
are used. In this case the model parameters are (m,n, f ,µ) = (6,240,1.39,38).

The results verify that the proposed model can represent the average dynamics
of a database server with various workloads very well.

5. Admission Control

As part of the collaboration with Ericsson AB, we have designed an admission con-
trol mechanism for the measurable traffic to the NEs, as illustrated previously in
Figure 3. As a direct effect of this work, a modified version of the control mecha-
nism has been implemented in the Ericsson product. In this section, the controller
design and its validation are described.

46

5 Admission Control

Figure 11. Performance of the M/M/m/n-LDS queuing model in modeling steady
state dynamics of a MySQL database server using UPDATE queries.

Figure 12. Performance of the M/M/m/n-LDS queuing model in modeling steady
state dynamics of a MySQL database server using mixed queries.

47

Paper II. Application of Control Theory . . . Mobile Service Support System

Figure 13. Performance of the M/M/m/n-LDS queuing model in modeling steady
state dynamics of a MySQL database server using SELECT queries.

5.1 Control structure
The MSS includes a control system, as illustrated in Figure 14, which should ensure
that the load on a specific NE is kept at an acceptable level. The control objective
is to keep the mean response times of the NE queries below a desired value while
maximizing the throughput. The control actions must be based on a limited amount
of control information, due to the standardized protocols and the layered software
architecture. The control system includes a controller and a gate.

The controller uses a response time reference value, Tre f , and measurements to
determine an acceptable workload to the database server. The acceptable workload
is defined by the normalized rate of admitted queries, λA, which corresponds to the
ratio of the average arrival rate of the admitted requests over the higher bound of
the average arrival rate of the requests. It is desired that the control system performs
robustly in presence of fluctuations in the average arrival rate of the queries sent to
the database. Therefore, the controller design is crucial for guaranteeing the control
objectives.

The gate ensures the ratio λA of arriving queries is admitted to the database.
In the experiments, the gate rejects requests that cannot be admitted. However, in
the real product, this is not feasible. Instead, the real product has a traffic shaping
mechanism that adds delays to the responses to the customer administration system.

48

5 Admission Control

Controller

Gate

A

T
ref

Queries
To database

Measurements

Reject

Figure 14. Control system.

Since the communication with the customer administration system is synchronous,
adding delays to the responses will lower the arrival rate of requests.

In this paper, we focus on the controller performance. Therefore, the implemen-
tation of the gate is not the main focus as long as it can be assumed that the gate
actuates the control signal accurately.

5.2 Controller design
We have designed a controller that can guarantee the control objectives for the sys-
tem. The controller, called the Load-Adaptive Controller (LAC), only uses mea-
surements of the query response times. A classical PID controller [Åström and Wit-
tenmark, 1997] includes one Proportional part (P), one Integral part (I), and one
Derivative part (D) that determines the control signal based on the deviation of the
input signal from the reference value. For stochastic systems, the derivative part
will amplify the effect of high frequency noise in the response time error and thus
deteriorate the overall performance of the system.

Therefore, the LAC is based on a modified PI controller with anti-windup. The
LAC adapts its proportional gain with the variations in the mean arrival rates of
queries sent to the database. The structure of the modified PI controller is illustrated
in Figure 15.

The total load of the NE is determined by the aggregated arrival rates of the

49

Paper II. Application of Control Theory . . . Mobile Service Support System

-

i

i

K

T
()dt

-

1

tT

+
T
ref Load

adaptive
Low pass

filter

+

+

A

+

T

-

Figure 15. Load-adaptive controller (LAC).

T
ref

T

A

(
low
,T

low
)

(
high
,T

high
)

Figure 16. An illustration of the LAC calculations.

measurable and the unknown traffic streams. However, assuming that the unknown
traffic is stationary during a limited time period and that the database server behaves
as a conservative queuing system [Kleinrock, 1975], a specific admitted ratio of the
traffic will correspond to a specific mean response time, as illustrated in Figure 16.

The controller continuously keeps track of two points in this graph, one low
point, (λlow,Tlow), which is situated below the reference response time, Tre f , and
one high point, (λhigh,Thigh), which is situated above Tre f . As the control system
operates only based on measured response times of NE queries, λlow guarantees
that those measurements exist for all sampling intervals. The upper limit for mean
arrival rates of the queries processed by the NE while not overloading the database
is represented by λhigh. The starting values for λlow and λhigh are set to 5% and
100% respectively.

The admittance rate of the incoming queries is iteratively updated so that its
corresponding response time meets the desired value. Every sampling time, the
controller calculates the average response time, T , over the last period. If the av-

50

5 Admission Control

erage response time during sampling period k, Tk, is too high, (Tk > Tre f), the high
point is updated as (λhigh,Thigh) = (λk,Tk) where λk is the normalized admitted ar-
rival rate during interval k. If the average response time during interval k is too low,
(Tk < Tre f), the low point is updated as (λlow,Tlow) = (λk,Tk). It is now assumed
that the optimal normalized arrival rate, λo, which gives a response time of exactly
Tre f is in the interval [λlow,λhigh]. Therefore, the next normalized admitted arrival
rate, λk+1, can be interpolated from these points using classic geometry:

λk+1 = λk +
λhigh−λlow

Thigh−Tlow
(Tre f −Tk) (10)

Therefore, the quotient (λhigh−λlow)/(Thigh−Tlow) is used as proportional gain
in the P-part of the controller. The algorithm will converge to the desired response
time value assuming that the arrival process is stationary or slowly changing. It is
obvious that the control gate cannot admit more queries than the incoming ones.
This upper limit will be noted in the calculations and treated as a saturation limit of
the control signal.

The integral I-part of the controller is used when the P-part is not enough for
keeping the steady state error to zero. The integral part uses a controller parameter,
Ki, which in conventional PI controllers are equal to the proportional gain. However,
in this case, as the proportional gain changes drastically due to the load-adaptive
algorithm, using the conventional PI structure will lead to a reduced phase margin
which will drive the system to unstable region. Therefore, Ki is chosen as a static
gain and its suitable value is determined in tuning phase of the controller.

Further, the parameter Ti is the integration time constant and Tt is the integrator‘s
reset time constant in the anti-windup mechanism. Anti-windup is added to avoid
building up of the integration part when the control gate is saturated or completely
open. It is desired to choose small values for Tt so that the integrator resets quickly.
Generally, Tt is chosen to be less than Ti.

A low pass filter is added after the proportional gain to smoothen the response
time error signal as it is very noisy. The bandwidth of this filter should be suitably
chosen so that its effect on the in-band characteristics of the response time errors is
minor while attenuating high frequency components of that signal.

5.3 Experiments
To investigate the controller performance, a Java implementation of the controller
was deployed as a web application to a Glassfish application server, placed on the
server acting as traffic generator in Figure 4. The web application also included the
traffic generator that generated requests for the web application. For each request,
the admission control decides whether to allow the request to be sent to the database
or rejected. The traffic generator for unknown traffic did not have an admission
control, and was set to a specific average arrival rate that could be altered during
run time. All requests sent to the database server were SELECT queries (according

51

Paper II. Application of Control Theory . . . Mobile Service Support System

to the query structure described earlier). The λ/T graph for this particular scenario
setting is shown in Figure 17. The saturation of the system is not shown in the graph

Figure 17. λ/T graph for the admission control experiments.

for clarity reasons, since the operation region is around the “knee”.
To test the performance of the controller, a scenario was chosen where the load

changed from slight overload to high overload. The reference response time, Tre f ,
was set to 0.2 seconds. According to the λ/T graph in Figure 17., this corresponds
to a total arrival rate of approximately 40 queries per second.

In this paper, two experiments are shown, one with a step in the unknown traffic
and one with a step in the measurable traffic. The controller parameters were set to
Ti = 4, Ki = 0.5, Tr = 1, and the sampling time h= 0.5 seconds. Ti was determined as
a multiple of the sampling time, chosen so that the controller was able to maximize
the throughput while keeping the mean response times below Tre f . Ki was set equal
to the sampling time. To give the controller time to settle this state was kept for 100
seconds after which a step in the traffic was performed. The resulting graphs are
shown in Figure 18 and Figure 19. The graphs show the average dynamics from
100 runs.

In the first experiment, shown in Figure 18, the starting arrival rate was set to
23 requests per second for the measured traffic and 22 requests per second for the
unknown traffic. The step increased the arrival rate of the unknown traffic by 10 (to
32) requests per second, resulting in a more severe overload situation.

The second experiment, shown in Figure 19, was similar to the first experiment.
However, the arrival rate step was in the measurable traffic instead. To obtain a
similar control signal response as in the first experiment, the step in the controllable
traffic had to be larger. Therefore, the observable arrival rate was increased from 23
requests per second to 51 requests per second.

52

5 Admission Control

Figure 18. Performance of the LAC with step in unknown traffic.

Figure 19. Performance of the LAC with step in observable traffic.

53

Paper II. Application of Control Theory . . . Mobile Service Support System

Controller and
Estimator

c

u

T

x
max

Figure 20. Schematic diagram of an abstraction of the MSS in Figure 1 with a
controller and estimator.

Both experiments show a well-behaved controller, with a reasonable settling
time and smooth dynamics after the step.

6. Monitoring and Estimation

The system in Figure 1 is complicated with many different queues, caches and
databases. Attempting to capture all details gives models that are too complex for
on-line control. Extensive experience in the field of control has clearly demonstrated
that simple models that capture essential behavior can be very beneficial [Åström
and Murray, 2008]. One aspect of the collaboration with Ericsson has been to ex-
plore if benefits can also be obtained for monitoring and control of the MSS. A
crucial issue is what complexity of the models is required for estimation and con-
trol of the MSS.

Response time and arrival rates are variables of prime concern. The variables
have strong variations, which can be reduced by averaging. A more effective way is
to construct estimators that exploit the dynamic behavior of the system. Exploration
of such estimators has been one of the goals of the project.

A key feature of the system shown in Figure 1 is that there are two traffic
streams. The measured traffic, generated by the customer administration system has
a known arrival rate λc, can be controlled. The unknown stream, which is created by
the mobile phone users, has an arrival rate λu that cannot be controlled. Monitoring
and control of the system can be improved if good estimates of the average service
time are available.

An abstraction of the system in Figure 1 is shown in Figure 20, where an esti-
mator and the controller have been included. In this section, we will focus on the
estimator, which only has access to measurements of the measured arrival stream λ
and the response time T . All actions by the NEs and the MSS have been represented
by one queue that represents the aggregated behaviors.

The queue length is represented by the variable x, which captures the aggregated
behavior of many different queues in the real system. The variable x can be inter-

54

6 Monitoring and Estimation

preted as a virtual queue length. The queue length cannot be measured. The actual
response time T and the actual arrival times can, however, be measured. Variations
in x reflect changes in the system‘s load.

6.1 Flow Model
To model the system, we will make an additional abstraction by assuming that the
variables x and T are continuous and that they vary continuously in time. The be-
havior of the system can then be captured by the simple flow model:

dx
dt

= λ −µmax f (x) (11)

where x is the virtual queue length, λc is the known arrival rate, λu is the unknown
arrival rate, µmax is the maximum service rate and f is a monotone function with
the range [0, 1]. The response time is given by:

T = t0(1+ x) = t0(1+ f−(ρ)) (12)

where t0 = 1/µmax is the average time to serve one job when the queue is empty and
ρ is the normalized service rate or the utility ρ = λ/µmax.

The response time goes to infinity as λ approaches µmax if the range of the func-
tion f is [0, 1]. The function f gives significant freedom in adjusting the behavior
to real queue behavior.

The model (11), (12) has been used extensively to model queuing systems [Ag-
new, 1976]. The simple M/M/1 queue can be represented by (12) with f = x/(x+1)
[Tipper and Sundareshan, 1990].

Even if the model (11), (12) is simple it captures some important features of
real queuing systems, for example the fact that response time increases with queue
length. The model also captures the behavior that the rate of change of the response
time increases with increasing arrival rate. The behavior of the system can be shaped
by the function f .

In the project, we have investigated simulated models with servers and we have
demonstrated that it is possible to find functions f which matches the steady state
behavior of simulated systems. An illustration is given in Figure 21.

6.2 Estimation Algorithm
There are significant variations in the arrival and response times due to their discrete
nature. To monitor and control the system it is necessary to smooth these variations.
For example, the average arrival rate of the controlled stream can be estimated the
simple exponential smoother

t̂+i = t̂i + k3(ha− t̂i)

λ̂+
c = 1/t̂+i

(13)

55

Paper II. Application of Control Theory . . . Mobile Service Support System

Figure 21. Service times for the operations SELECT (left) and UPDATE on an
SQL server and predictions based on the model (12) with f (x) = (1/(1+ x))n, n =
1.5 and µmax = 880 for SELECT and n = 0.15 and µmax = 132 for UPDATE.

where ti is the arrival time and ha is the time since the last arrival update.
One advantage with the model (11), (12) is that it is possible to use Kalman

filtering [Åström and Murray, 2008] to combine the model, which captures the gross
behavior of the queuing system, with measured data.

If continuous data was available, an extended Kalman filter for the service time
is given by:

dx̂
dt

= λc +λu−µmax f (x̂)+ k1(T − t0(1+ x̂))

dλu

dt
= k2(T − t0(1+ x̂))

(14)

This filter will capture the behavior that response time increases with increasing
queue length and arrival rate. The detailed behavior can be shaped by the function
f .

It must be considered that the real measurements are events that represent arrival
of a request or a completed response. To deal with this, we have developed an event-
based Kalman filter. At arrivals, the queue length is updated according to the flow
model:

x̂+ = x̂+ha(λ̂c + λ̂u−µmax f (x̂)) (15)

This difference equation is simply a forward Euler approximation of (11). Equation
(15) is simply a prediction of x based on the model (11). Information about x is
obtained when a service is completed. The queue length and the unknown arrival
rate are then updated as:

x̂+ = x̂+hd(λc +λu−µmax f (x̂)+ k1(T − T̂))

λ̂+
u = λ̂u +hdk2(T − T̂)

(16)

where hd is the time since the last departure update. The arrival rate can be estimated
because it results from the model (11) and (12) that the arrival rate is observable
from a measurement of service time [Åström and Murray, 2008].

56

7 Conclusion

6.3 Experiment
The Kalman filter estimator was evaluated using a discrete-event simulation pro-
gram written in Java, The program simulates a single server queue with exponen-
tially distributed service times with mean µmax = 100 requests per second. The
queue has two arrival processes, representing the measurable and unknown traf-
fic. The Kalman filter has been evaluated for a number of scenarios validating its
performance. However, in this paper we show the results of one specific scenario.

In this scenario, the unknown arrival process was a stationary Poisson process
with mean 42.5 requests per second. The measurable arrival process was basically a
Poisson process with changing average rate. The arrival rate, λ , was the sum of one
constant part and one part represented by a sine function as given by:

λ (t) =C+a · sin(kt) (17)

The parameters were chosen so that the system can handle the workload over
long time but with periodic overloads, hence:

µmax−a <C < µmax (18)

Therefore, the numerical values used in the simulations are C = 42.5 and a = 20
requests per second.

The differential equations describing the behavior of the estimates between
events were approximated using first order forward Euler discretization.

Figure 22 shows the response times and the arrival rate, both real values and
estimates for a time period of 20 seconds during the simulation. The estimate error
is shown in Figure 23. It can be seen how the Kalman filter manages to follow
the real system during the quick rises in response time around time 424 and 427.
Here the mean square error is σ = 7.4 · 10−4 for the period 415 < t < 420 and
σ = 1.1 · 10−2 for the period 425 < t < 430. The mean square error for the entire
experiment is σ = 1.9 ·10−2 .

7. Conclusion

Accurate control designs using control theory are essential for resource manage-
ment in computer systems. In this paper we have presented work performed in col-
laboration with Ericsson AB, investigating how control theory can improve the per-
formance of a commercial mobile service support system. Together with Ericsson
AB, we have identified three major control challenges, and investigated solutions.
The first challenge is to find accurate performance models for the system, with the
objective to capture the system dynamics. The second challenge is to develop an
admission control scheme that can handle unknown traffic and load surges. The fi-
nal challenge is to develop estimation methods for accurate prediction of response
times and arrival rates in systems with unknown traffic.

57

Paper II. Application of Control Theory . . . Mobile Service Support System

Figure 22. Kalman filter estimates of response times and estimation of arrival rate.

Figure 23. Proposed Kalman filter‘s response time prediction error.

In this paper, the challenges have been treated rather independent of each other.
However, the future goal is to be able to use all solutions together, in order to im-
prove the system performance and speed up the development process. The perfor-
mance model could be tuned using real data and then used for validating control
designs, which is much easier than implementing the designs in testbeds or the real
system. Also, in the future, the estimation algorithms should be incorporated in the
control system, improving the control decisions.

Acknowledgment

The authors at Lund University are members of the Lund Center for Control of
Complex Engineering Systems (LCCC). Maria Kihl and Anders Robertsson are
members of the Excellence Center at Linköping-Lund in Information Technology

58

References

(eLLIIT). The work is partly funded by the Swedish Research Council, grant VR
2010-5864.

References

Agnew, C. E. (1976). “Dynamic modeling and control of congestion-prone sys-
tems”. Operations research 24:3, pp. 400–419.

Åström, K. J. and B. Wittenmark (1997). Computer-Controlled Systems. Prentice
Hall. ISBN: 9780133148992.

Åström, K. and R. Murray (2008). Feedback Systems: An Introduction for Scientists
and Engineers. Princeton University Press. ISBN: 9780691135762.

Bianchini, R. and R. Rajamony (2004). “Power and energy management for server
systems”. Computer 11, pp. 68–74.

Brawn, B. S. and F. G. Gustavson (1968). “Program behavior in a paging environ-
ment”. In: Proceedings of the December 9-11, 1968, fall joint computer confer-
ence, part II. ACM, pp. 1019–1032.

Cao, J., M. Andersson, C. Nyberg, and M. Kihl (2003). “Web server performance
modeling using an M/G/1/K*PS queue”. In: 10th International Conference on
Telecommunications.

Chen, X., H. Chen, and P. Mohapatra (2003). “Aces: an efficient admission con-
trol scheme for QoS-aware web servers”. Computer Communications 26:14,
pp. 1581–1593.

Claussen, H., L. T. Ho, and F. Pivit (2009). “Leveraging advances in mobile broad-
band technology to improve environmental sustainability”. Telecommunications
Journal of Australia 59:1, pp. 4–1.

Crocus (1975). Systemes d‘Exploitation des Ordinateurs. Dunod, Paris.
Curiel, M. and R. Puigjaner (2001). “Using load dependent servers to reduce the

complexity of large client-server simulation models”. In: Performance Engi-
neering. Springer, pp. 131–147.

DeWitt, D. J. (1991). “The Wisconsin benchmark: past, present, and future”. In:
The Benchmark Handbook, pp. 119–165.

Diao, Y., C. W. Wu, J. L. Hellerstein, A. J. Storm, M. Surendra, S. Lightstone, S.
Parekh, C. Garcia-Arellano, M. Carroll, L. Chu, et al. (2005). “Comparative
studies of load balancing with control and optimization techniques”. In: Ameri-
can Control Conference. IEEE, pp. 1484–1490.

Dilley, J., R. Friedrich, T. Jin, and J. Rolia (1998). “Web server performance mea-
surement and modeling techniques”. Performance evaluation 33:1, pp. 5–26.

Elnozahy, E. M., M. Kistler, and R. Rajamony (2003). “Energy-efficient server clus-
ters”. In: Power-Aware Computer Systems. Springer, pp. 179–197.

59

Paper II. Application of Control Theory . . . Mobile Service Support System

Fu, Y., H. Wang, C. Lu, and R. S. Chandra (2006). “Distributed utilization control
for real-time clusters with load balancing”. In: 27th IEEE International Real-
Time Systems Symposium. IEEE, pp. 137–146.

Horvath, T., T. Abdelzaher, K. Skadron, and X. Liu (2007). “Dynamic voltage scal-
ing in multitier web servers with end-to-end delay control”. IEEE Transactions
on Computers 56:4, pp. 444–458.

Kihl, M., A. Robertsson, and B. Wittenmark (2003). “Performance modelling and
control of server systems using non-linear control theory”. Teletraffic Science
and Engineering 5, pp. 1151–1160.

Kihl, M., A. Robertsson, M. Andersson, and B. Wittenmark (2008). “Control-
theoretic analysis of admission control mechanisms for web server systems”.
World Wide Web 11:1, pp. 93–116.

Kihl, M., G. Cedersjö, A. Robertsson, and B. Aspernäs (2011). “Performance mea-
surements and modeling of database servers”. In: 6th International Workshop
on Feedback Control Implementation and Design in Computing Systems and
Networks.

Kihl, M., P. Amani, A. Robertsson, G. Radu, M. Dellkrantz, and B. Aspernäs
(2012). “Performance modeling of database servers in a telecommunication ser-
vice management system”. In: 7th International Conference on Digital Telecom-
munications, pp. 124–129.

Kjær, M. A., M. Kihl, and A. Robertsson (2009). “Resource allocation and distur-
bance rejection in web servers using SLAs and virtualized servers”. Network
and Service Management, IEEE Transactions on 6:4, pp. 226–239.

Kleinrock, L. (1975). Theory, Volume 1, Queueing Systems. Wiley-Interscience.
ISBN: 0471491101.

Leung, K. K. (2002). “Load-dependent service queues with application to conges-
tion control in broadband networks”. Performance Evaluation 50:1, pp. 27–40.

Liu, X., J. Heo, L. Sha, and X. Zhu (2006). “Adaptive control of multi-tiered web
applications using queueing predictor”. In: 10th IEEE/IFIP Network Operations
and Management Symposium, pp. 106–114.

Mathur, V. and V. Apte (2004). “A computational complexity-aware model for per-
formance analysis of software servers”. In: 12th Annual International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tions Systems. IEEE, pp. 537–544.

Mei, R. D. van der, R. Hariharan, and P. Reeser (2001). “Web server performance
modeling”. Telecommunication Systems 16:3-4, pp. 361–378.

Menascé, D. and V. Almeida (2002). Capacity Planning for Web Services: Metrics,
Models, and Methods. Prentice Hall. ISBN: 9780130659033.

60

References

Perros, H. G., Y. Dallery, and G. Pujolle (1992). “Analysis of a queueing network
model with class dependent window flow control”. In: 11th Annual Joint Con-
ference of the IEEE Computer and Communications Societies. IEEE, pp. 968–
977.

Rak, M. and A. Sgueglia (2010). “Instantaneous load dependent servers (iLDS)
model for web services”. In: International Conference on Complex, Intelligent
and Software Intensive Systems. IEEE, pp. 1075–1080.

Tipper, D. and M. K. Sundareshan (1990). “Numerical methods for modeling com-
puter networks under nonstationary conditions”. IEEE Journal on Selected Ar-
eas in Communications 8:9, pp. 1682–1695.

Wang, Z., X. Liu, A. Zhang, C. Stewart, X. Zhu, T. Kelly, S. Singhal, et al. (2007).
“Autoparam: automated control of application-level performance in virtualized
server environments”. In: 2nd International Workshop on Feedback Control Im-
plementation in Computing Systems and Networks. IEEE.

Xu, W., X. Zhu, S. Singhal, and Z. Wang (2006). “Predictive control for dynamic
resource allocation in enterprise data centers”. In: 10th IEEE/IFIP Network Op-
erations and Management Symposium. IEEE, pp. 115–126.

61

Paper III

Event-Based Response Time Estimation

Manfred Dellkrantz Maria Kihl Anders Robertsson
Karl Johan Åström

Abstract

Response time is a measure of quality of service in computer systems. Esti-
mation techniques, suitable for support systems for mobile phone systems, are
explored. These systems are complex queueing systems with large databases.
The traffic generated by users and system administrators changes rapidly, some
loads can be measured other cannot. Attempts to capture all details give models
that are not suitable for on-line control. Estimators based on continuous flow
models with event based measurements are designed using extended Kalman
filtering. The estimators are compared with simple-data based estimators.

Originally published in 7th International Workshop on Feedback Computing, San
Jose, California, USA, 2012.

63

Paper III. Event-Based Response Time Estimation

1. Introduction

Resource management of computer systems, which has gained increased attention
during recent years, was explored already in the late 60’s [Brawn and Gustavson,
1968; Crocus, 1975]. It is an essential mechanism to handle load disturbances
such as traffic surges and changes in user behavior. Poorly managed resources can
severely degrade the performance of a system with potentially large economical
consequences.

This paper is motivated by mobile service activation systems, i.e., the systems
which the network operators utilize for all processing regarding new subscribers
and services in the network. Each new subscriber or service requires processing and
data storage in several network nodes. The systems are in general multi-tier sys-
tems, implemented as distributed server clusters, where web and application servers
process the incoming requests and database servers are used for data storage. The
resource management of these systems, based of measurements and feedback of the
actual utilization, is crucial for optimization of operation costs and the guarantee of
service level agreements during load surges, for example during market campaigns
or various events.

Any server system with software that processes requests can basically be mod-
eled as a network of queues which store requests in waiting of service in the proces-
sors. Therefore, queuing models can be used to describe the dynamic behavior of
server systems [Cao et al., 2003; Dilley et al., 1998; Menascé and Almeida, 2002;
Mei et al., 2001]. Further, tools from control theory has emerged for both analysis
and design of control of these systems [Hellerstein et al., 2005].

Previous work on resource management for server systems has mainly been fo-
cused on the web and application servers. Large software systems have high energy
consumption, and therefore, dynamic resource optimization of these systems may
considerably lower the operating costs for the network operators [Bianchini and Ra-
jamony, 2004; Claussen et al., 2009; Horvath et al., 2007; Elnozahy et al., 2003].
These types of servers has mainly CPU-intensive workload, which can rather easily
be modeled as single server queuing systems [Cao et al., 2003].

Resource management solutions for server systems are usually based on dy-
namic control schemes, which monitor the systems, and provide actions when
needed. Several types of resource management mechanisms have been proposed
and evaluated. In larger server systems, load balancing is performed to distribute
resources uniformly over computers, CPUs, memory, etc. to avoid that some units
are overloaded while others are idle [Fu et al., 2006; Diao et al., 2005]. During
overload periods, when more resources are requested than are available, admission
control mechanisms reduce the amount of work by blocking some of the requests
[Chen et al., 2003; Liu et al., 2006; Kihl et al., 2008]. Prediction based control have
been shown to improve the performance compared to control systems only includ-
ing feedback [Henriksson et al., 2004; Kjaer et al., 2009; Gilly et al., 2009].

64

2 Mobile service support system

Customer Administration System

Mobile Service
Support System

Network
Element 2

Network
Element 1

. . . Network
Element n

Mobile Phone Users

Figure 1. Schematic diagram of a support system for mobile service providers.

2. Mobile service support system

A Mobile Service Support system (MSS) handles the setup of new subscribers and
services into a mobile network (illustration in Figure 1). It presents to the operator
and its business support systems a unified middleware where complex functions,
such as setting up a new subscriber or modifying services for an existing subscriber,
can be easily invoked.

One request to the MSA from an upstream system normally results in a num-
ber of requests downstream out on the mobile network to several different network
elements (NEs). A network element is usually a database storing subscriber and ser-
vice data, for example, the Home Location Register (HLR). A user id which needs
to be fetched from one database needs to be supplied in a query to another database
to get the system consistent.

In parallel to the changes and setups that the MSA performs, the network is also
used by the end users. Services being set up by the MSA are queried by base stations
and other systems requiring that information. In respect to the MSA, this traffic can
be considered as an unknown background traffic, in contrast to the known traffic
flowing through the MSA. These two loads may interfere with each other, creating
a race for resources and may put a too high load on an NE.

One NE that becomes overloaded and unresponsive may result in the entire
transaction requiring rollback to avoid inconsistencies in the network. Such a roll-
back may require manual work which is of course costly for the operator. To protect
against such situations, traffic monitoring and control is crucial.

65

Paper III. Event-Based Response Time Estimation

3. Modeling

The system in Figure 1 is complicated with many different queues, caches and
databases. Attempting to capture all details give models that are too complex for
on-line control. Therefore we will develop simpler models that capture the gross
input-output behavior. The models will be evaluated based on the quality of the
estimates of the response times.

The input-output behavior of the system can be captured by the response times
for each individual request. Since such a model is by nature event based we will
make a further simplification by attempting to capture the gross behavior by a con-
tinuous flow model. We will recover the event-based behavior in the design of the
estimators.

A simple flow model of a queue is given by [Agnew, 1976]

dx
dt

= λ −µmax f (x) (1)

where λ is the arrival rate, µmax is the service rate and f a monotone function with
the range [0,1], [Agnew, 1976]. The response time is

T = t0(1+ x) = t0
(
1+ f−(ρ)

)
, (2)

where t0 = µmax
−1 is the average time to serve one customer when the queue is

empty and ρ is the normalized service rate or the utility ρ = λ/µmax. For the simple
M/M/1 queue we have f = x/(x+1) [Tipper and Sundareshan, 1990].

If the function f in (1) is monotone the general behavior is that the response
time increases with increasing arrival rate. The response time goes to infinity as λ
approaches µmax if the function f has the range [0,1]. Since the parameter µmax is
uncertain it may be desirable to have models where response rates increase signifi-
cantly but that they do not go to infinity for finite λ , which can be accomplished by
other choices of the function f .

When (1) is used to model an NE in Figure 1 the variable x accounts for the
aggregated effect of the storage. Therefore x and T should be interpreted as apparent
queue length and response time, they represent the aggregated behavior of many
different queues in the real system. It is not possible to measure the apparent queue
length directly but the response time can be measured. Requests that enter in a
known way can also be used as an inputs.

Linearizing the model around the equilibrium xe gives a first order system with
the time constant

τ =
1

µmax f ′(xe)
≥ 1

µmax
. (3)

The inequality follows from f being monotone and f (0) = 1. Notice that the time
constant increases significantly with increasing queue length.

66

4 Estimation

4. Estimation

Different ways to estimate the response time from available measurements will now
be discussed. There are significant variations in the arrival rate. The response time
increases dramatically when the admission rate approaches the capacity of the sys-
tem. The queue length x in the model (1) cannot be measured directly because it
represents an aggregate effect of many queues as discussed in Section 3. It follows
from (2) that a measurement of the response time T directly gives the queue length.

4.1 Exponential Smoothing
A simple way to estimate both response time and arrival rate is to use a moving
average estimate. Since this estimator does not require a mathematical model it is
used as a reference case. The estimator is given by

x̂+ = x̂+ k(xm− x̂) (4)

where xm is the measured quantity, x̂, and x̂+ is the estimates before and after an
event, and k is the filter gain. The filter can be used to estimate both response time
and arrival rate. The filter coefficient can be chosen to minimize some measure of
the error. The filter has the advantage that it does not require any model.

4.2 Kalman Filtering - Known Arrival Rate
In this case it is assumed that the arrival rate is measured and that the arrival time
of each request and the time it takes to serve it are measured. There are significant
variations in the response time. For a Poisson process the mean value and the vari-
ance are the same. A smoothed estimate is required to obtain information that is
useful for control.

If the arrival rate λ is known, the apparent queue length can be predicted by the
model (1) when there are no events. Hence

dx̂
dt

= λ −µmax f (x̂)+ k (T − t0(1+ x̂)) , T̂ = t0(1+ x̂), (5)

where the initial condition is taken as the estimate obtained at the most recent event.
When an event occurs the estimate is updated as

x̂+ = x̂+ k(T − T̂) (6)

where T is the measured response time, x̂ and x̂+ are estimates before and after an
event, and k is a filter gain. The filter gain k can be computed if the statistics of x̂
and T are known. Since it is unrealistic to assume that this information is available
we will instead determine the filter gain from simulation and experiments.

67

Paper III. Event-Based Response Time Estimation

4.3 Kalman Filtering - Unknown Arrival Rate
It is not always the case that all traffic can be controlled, so here we investigate
if both arrival rate λ and queue length x can be estimated from measurements of
response time. For simplicity we will assume that the arrival rate is constant but
unknown or a random walk. Both assumptions lead to the same filter. Linearization
of (1) and (2) around the equilibrium xe, λe gives a dynamical system with

A =

[
−µmax f ′(xe) 1

0 0

]
, C =

[
t0 0

]
. (7)

Estimation is possible because the system is observable. If the measurements were
continuous the extended Kalman filter is

dx̂
dt

= λ̂ −µmax f (x̂)+ k1 (T − t0(1+ x̂))

dλ̂
dt

= k2 (T − t0(1+ x̂)) .

When the measurements are event-based the model (1) is used to update the estimate
when there are no events. The estimates are given by

dx̂
dt

= λ̂ −µmax f (x̂),
dλ̂
dt

= 0, (8)

where the initial conditions are the estimates x = x̂+ and λ = λ̂+ obtained after a
request has been serviced.

When a measurement of response time T is available the estimates are updated
by

x̂+ = x̂+ k1(T − T̂)

λ̂+ = λ̂ + k2(T − T̂)
(9)

where T̂ = t0(1+ x̂) from the time at which the request entered the system.

4.4 Kalman Filtering - Two Arrival Streams
A characteristic feature of the system in Figure 1 is that there are two different input
streams to the network elements. The stream coming from the service provider side
is known but the traffic generated by the users enters the system in many different
ways and cannot be measured. To capture this situation we will assume that there
are two input streams. One stream is measured and the other is unknown, manifested
only through variations in response time. The corresponding flow model is

dx
dt

= λc +λu−µmax f (x)

T̂ = t0(1+ x),
(10)

68

5 Simulation

where λc is a controllable/known arrival rate and and λu is an uncontrollable/un-
known arrival rate. Assuming that λu is a constant it follows that both x and λu
are observable from measurements of T and λc. The event-based extended Kalman
filter is obtained as a simple extension of the filter in Section 4.3.

5. Simulation

5.1 Introduction
To test the the estimators we will apply them to a known situation with an M/M/1
queue where many quantities can be evaluated analytically.

The simulated queue server system is a one-server, infinite queue system with
exponentially distributed process times with mean µmax

−1. Jobs arrive at the queue,
are finished in FIFO order and are acknowledged upon completion. The jobs were
generated as a Poisson processes, with exponentially distributed inter-arrival times.

The arrival rate for the controllable stream coming from the service provider
side in Figure 1, ratec(t), is a combination of a constant and a sine function variation.
The arrival rate for the uncontrollable stream coming from the user side, rateu(t) was
set as constant.

ratec(t) =Cc +asin(kt)

rateu(t) =Cu
(11)

The parameters were chosen so that the system can handle the workload over long
time but with periodic overloads, hence

µmax−a <Cc +Cu < µmax.

The numerical values used in the simulations are

µmax = 100, Cc = 42.5, Cu = 42.5, a = 20. (12)

The same realizations were used in all simulations. For experiments with only one
fully controllable stream, requests from both streams were directed to the control-
lable side.

The differential equations describing the behavior of the estimates between
events were approximated using first order forward Euler discretization.

5.2 Exponential Smoothing
A simple way to estimate both response time and arrival rate is to use a moving
average estimate. Since this estimator does not require a mathematical model it is
used as a reference case. The estimator is given by (4). At the departure of a job the
estimated queue length is updated as

x̂+ = x̂+ k1

(
T
t0
− T̂

t0

)
(13)

69

Paper III. Event-Based Response Time Estimation

415 420 425 430 435
0

0.1

0.2

0.3

0.4

0.5

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

415 420 425 430 435
50

100

150

A
rr

iv
a
l
R

a
te

 (
/s

)

Time (s)

Intensity

Rate

Real

Estimate

Figure 2. Estimation of response time by exponential smoothing.

415 420 425 430 435
−0.5

0

0.5

E
rr

o
r

(s
)

Time (s)

Figure 3. Error of the estimates in Figure 2. The mean square error is σ = 0.018.
Notice the time variability of the error.

where T is the measured response time of the request and T̂ is the response time
estimation from when the request arrived at the system.

The choice of filter gain is a compromise, large values give a fast response with
large fluctuations, small values give smoother estimates with slower response. After
some experimentation the gain was chosen as k = 0.03, which corresponds to a time
constant of about 30 events. Figure 2 shows that the simple exponential smoothing
estimator gives reasonable results. It gives an efficient smoothing when the response
times are small. There is however a lag in the response when the response times
are changing significantly for example around times 424 and 427. The arrival rate
is around 100 and the time delay is approximately 0.3 s, which matches the time
constant of the estimator. The magnitude of the estimation error is very different at
different periods the mean square error is σ = 8.4 ·10−4 in the interval 415< t < 420

70

5 Simulation

415 420 425 430 435
0

0.1

0.2

0.3

0.4

0.5

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

415 420 425 430 435
50

100

150

A
rr

iv
a
l
R

a
te

 (
/s

)

Time (s)

Real

Estimate

Intensity

Real

Estimate

Figure 4. Estimates with known arrival rate. Arrival rates are smoothed and the
response time is estimated using an event-based Kalman filter.

and σ = 1.5 ·10−2 in the interval 425< t < 430. The mean square error for the entire
600 second experiment is σ = 1.8 ·10−2. The different behaviors for different queue
lengths indicate that it may be useful to schedule the estimator gains.

5.3 Known Arrival Rate
Since all traffic passes through the filter, exponential smoothing can be used to es-
timate the mean inter-arrival time which is the inverse of the arrival rate. This rate
is used with the flow model (1) to estimate the response time using an extended
Kalman filter. The estimates used on arrival are

î+ = î+ k3(ha− î)

λ̂+ = (î+)−1

x̂+ = x̂+ha

(
λ̂+−µ f (x̂)

) (14)

where î is the estimate of the mean inter-arrival time, λ̂ is the estimate of the arrival
rate, x̂ is the estimate of the effective queue length, and ha is the time from the last
arrival.

On departure the queue length is updated as

x̂+ = x̂+ k1

(
T
t0
− T̂

t0

)
(15)

Figure 4 shows the arrival rate and the response time and their estimate. The
error of the response time estimate is shown in Figure 5. A comparison with Fig-

71

Paper III. Event-Based Response Time Estimation

415 420 425 430 435
−0.5

0

0.5

E
rr

o
r

(s
)

Time (s)

Figure 5. Error of the estimates in Figure 4. The mean square error is σ = 0.0069.
Notice the time variability of the error.

ure 2 shows that a significant improvement is obtained at the times when the re-
sponse times changes rapidly. Compare the behaviors around times 424 and 427.
The improvement is particularly important to avoid overload during rapid increases
in traffic. The magnitude of the estimation error is different at different periods the
mean square error is σ = 6.3 ·10−4 in the interval 415 < t < 420 and σ = 4.5 ·10−3

in the interval 425 < t < 430. The total mean square error is σ = 6.9 ·10−3 which
is significantly smaller that the error obtained by the simple exponential smoothing
estimate which had σ = 1.8 ·10−2.

5.4 Two Arrival Streams
In this experiment we separate the two streams of traffic to simulate the two sides
of the NEs in Figure 1. One stream passes the observer and one stream enters the
shared resource in the background, only showing itself as an added load on the
system.

Running this scenario with the simple exponential smoothing estimator pre-
sented in section 5.2 results in the response times and estimations shown in Figure 6.
The estimation error is shown in Figure 7. Since the filter gets only half the amount
of measurements, this situation is not identical to Figure 2. Here the mean square
error is σ = 8.6 ·10−4 for the period 415 < t < 420 and σ = 1.1 ·10−2 for the period
425 < t < 430. The mean square error for the entire experiment is σ = 9.9 ·10−3.

To try the Kalman filter we use the parameters shown in table 1. The ob-
server follows the inter-arrival times of the controllable traffic using the exponential
smoothing described in Section 5.3 and equation (14). The controllable arrival rate
is then

λ̂+
c = î−1. (16)

Table 1. Parameters used in this experiment

k1 k2 k3
250 110 0.031

72

5 Simulation

415 420 425 430 435
0

0.1

0.2

0.3

0.4

0.5

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

Real

Estimate

415 420 425 430 435
50

100

150

Time (s)

A
rr

iv
a
l
R

a
te

 (
/s

)

Intensity

Real

Figure 6. Exponential smoothing response times with estimate, arrival rate has no
estimate.

415 420 425 430 435
−0.5

0

0.5

Time (s)

E
rr

o
r

(s
)

Figure 7. Exponential smoothing prediction error.

On every departure we get a response time measurement and update the estimation
of the queue length and uncontrollable arrival rate as

x̂+ = x̂+hd

(
λ̂c + λ̂u−µ f (x̂)+ k1(T − T̂)

)
λ̂+

u = λ̂u +hdk2(T − T̂)
(17)

where hd is the time since the last departure. Figure 8 shows the response times
and the arrival rate, both real values and estimates. The estimate error is shown in
Figure 9. Once again we can see how the Kalman filter manages to follow the real
system during the quick rises in response time around time 424 and 427. Here the
mean square error is σ = 7.4 ·10−4 for the period 415 < t < 420 and σ = 1.1 ·10−2

for the period 425 < t < 430. The mean square error for the entire experiment is
σ = 1.9 ·10−2.

73

Paper III. Event-Based Response Time Estimation

415 420 425 430 435
50

100

150

Time (s)

A
rr

iv
a
l
R

a
te

 (
/s

)

415 420 425 430 435
0

0.1

0.2

0.3

0.4

0.5

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

Real

Estimate

Intensity

Real

Estimate

Figure 8. Kalman filter response times with estimate, arrival rate with estimate.

415 420 425 430 435
−0.5

0

0.5

Time (s)

E
rr

o
r

(s
)

Figure 9. Kalman filter prediction error.

6. Fundamental Limitations

It is useful to know the factors that fundamentally limits how accurate the response
time can be estimated. Since response times are stochastic, our best guess is the
expected value. If there are n jobs in the system, our best guess will be that the
next job will take t0 · (1+ n), where t0 = E [X] ,X ∼ Exp(µmax). However, it will
actually take ∑n+1

i=1 Xi,Xi ∼ Exp(µmax) which is a stochastic variable. Since the sum
of several exponentially distributed variables follows the Erlang distribution the
expected value of the error as a function of queue length will be

Eerr(n) = E [|E [Y]−Y |]

74

7 Summary

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

Already in system, n

M
in

im
a
l
p
re

d
ic

ti
o
n
 e

rr
o
r

(s
)

Figure 10. Minimal prediction error for a M/M/1 queue system with µmax = 100.

where Y ∼Erlang(n+1,µmax) and n is the number of requests already in the system.
This gives us the following calculations for the minimal error:

Eerr(n) =
µmax

n+1

n!

∫ ∞

0

∣∣∣∣n+1
µmax

− x
∣∣∣∣xne−µmaxxdx =

2(n+1)n+1

n!µmaxen+1 .

The smallest value is obtained for n = 0.
Figure 10 shows the minimal prediction error as a function of queue length with

µmax = 100.

7. Summary

Feedback control is essential for resource management in computer systems. We
have investigated several ways of estimating response time which is a key measure
of service quality. Simple estimators that do not require models as well as more
sophisticated model based schemes have been investigated. The model-based esti-
mators use flow models of the queuing systems and provide event-based estimates
using extended Kalman filtering. The estimators have been tested by simulation
for scenarios for resource management for mobile telephone operators. The simple
model-free estimators give reasonable estimates but the estimates are delayed when
the the queue length increases due to system overload. The delay can be reduced by
using model-based estimators both in the case of a measured incoming traffic and
when the incoming traffic is a mix of known and unknown background traffic.

8. Acknowledgment

This work has been partly funded by the Lund Center for Control of Complex Engi-
neering Systems (LCCC) and the Swedish Research Council grant VR 2010-5864.

75

Paper III. Event-Based Response Time Estimation

References

Agnew, C. E. (1976). “Dynamic modeling and control of congestion-prone sys-
tems”. Operations Research 24:3, pp. 400–419.

Bianchini, R. and R. Rajamony (2004). “Power and energy management for server
systems”. IEEE Computer 37:11.

Brawn, B. and F. Gustavson (1968). “Program behavior in a paging environment”.
Proceedings of the AFIPS Fall Joint Computer Conference, pp. 1019–1032.

Cao, J., M. Andersson, C. Nyberg, and M. Kihl (2003). “Web server performance
modeling using an M/G/1/K*PS queue”. In: 10th International Conference on
Telecommunications.

Chen, X., H. Chen, and P. Mohapatra (2003). “Aces: an efficient admission control
scheme for QoS-aware web servers”. Computer Communication 26:14.

Claussen, H., L. Ho, and F. Pivit (2009). “Leveraging advances in mobile broad-
band technology to improve environmental sustainability”. Telecommunications
Journal of Australia 59:1.

Crocus (1975). Systemes d’Exploitation des Ordinateurs. Dunod, Paris.
Diao, Y., C. Wu, J. Hellerstein, A. Storm, M. Surendra, S. Lightstone, S. Parekh, C.

Garcia-Arellano, M. Carroll, L. Chu, and J. Colaco (2005). “Comparative stud-
ies of load balancing with control and optimization techniques”. In: American
Control Conference.

Dilley, J., R. Friedrich, T. Jin, and J. Rolia (1998). “Web server performance mea-
surement and modeling techniques”. Performance Evaluation 33:1.

Elnozahy, E., M. Kistler, and R. Rajamony (2003). “Energy-efficient server clus-
ters”. In: Lecture Notes in Computer Science 2325. Springer-Verlag Berlin Hei-
delberg.

Fu, Y., H. Wang, C. Lu, and R. Chandra (2006). “Distributed utilization control
for real-time clusters with load balancing”. In: IEEE International Real-Time
Systems Symposium.

Gilly, K., C. Juiz, S. Alcaraz, and R. Puigjaner (2009). “Adaptive admission control
algorithm in a QoS-aware web system”. In: IEEE International Symposium on
Modeling, Analysis & Simulation of Computer and Telecommunication Systems.

Hellerstein, J., Y. Diao, S. Parekh, and D. Tilbury (2005). “Control engineering for
computing systems”. IEEE Control System Magazine 25:6.

Henriksson, D., Y. Lu, and T. Abdelzaher (2004). “Improved prediction for web
server delay control”. In: 16th Euromicro Conference on Real-Time Systems.

Horvath, T., T. Abdelzaher, K. Skadron, and X. Liu (2007). “Dynamic voltage scal-
ing in multitier web servers with end-to-end delay control”. IEEE Transactions
on Computers 56:4.

76

References

Kihl, M., A. Robertsson, M. Andersson, and B. Wittenmark (2008). “Control the-
oretic analysis of admission control mechanisms for web server systems”. The
World Wide Web Journal 11:1.

Kjaer, M., M. Kihl, and A. Robertsson (2009). “Resource allocation and disturbance
rejection in web servers using SLAs and virtualized servers”. IEEE Transaction
on Network and Service Management 6:4.

Liu, X., J. Heo, L. Sha, and X. Zhu (2006). “Adaptive control of multi-tiered web
applications using queuing predictor”. In: 10th IEEE/IFIP Network Operation
Mangement Symposium.

Mei, R. D. van der, R. Hariharan, and P. K. Reeser (2001). “Web server performance
modeling”. Telecommunication Systems 16:3.

Menascé, D. A. and V. A. F. Almeida (2002). Capacity Planning for Web Services.
Prentice Hall.

Tipper, D. and M. Sundareshan (1990). “Numerical methods for modeling computer
networks under nonstationary conditions”. IEEE Journal on Selected Areas in
Communications 8:9, pp. 1682 –1695.

77

Paper IV

Control-Theoretical Load-Balancing for
Cloud Applications with Brownout

Jonas Dürango1 Manfred Dellkrantz1 Martina Maggio1

Cristian Klein2 Alessandro Vittorio Papadopoulos1

Francisco Hernández-Rodriguez2 Erik Elmroth2 Karl-Erik Årzén1

Abstract

Cloud applications are often subject to unexpected events like flash crowds
and hardware failures. Without a predictable behaviour, users may abandon
an unresponsive application. This problem has been partially solved on two
separate fronts: first, by adding a self-adaptive feature called brownout inside
cloud applications to bound response times by modulating user experience,
and, second, by introducing replicas — copies of the applications having the
same functionalities — for redundancy and adding a load-balancer to direct
incoming traffic.

However, existing load-balancing strategies interfere with brownout self-
adaptivity. Load-balancers are often based on response times, that are already
controlled by the self-adaptive features of the application, hence they are not a
good indicator of how well a replica is performing.

In this paper, we present novel load-balancing strategies, specifically de-
signed to support brownout applications. They base their decision not on re-
sponse time, but on user experience degradation. We implemented our strate-
gies in a self-adaptive application simulator, together with some state-of-the-
art solutions. Results obtained in multiple scenarios show that the proposed
strategies bring significant improvements when compared to the state-of-the-
art ones.

© 2014 IEEE. Originally published in 53rd IEEE Conference of Decision and Con-
trol, Los Angeles, California, USA, December 2014. Reprinted with permission.

79

Paper IV. Control-Theoretical Load-Balancing . . . with Brownout

1. Introduction

Cloud computing has dramatically changed the management of computing infras-
tructures. On one hand, public infrastructure providers, such as Amazon EC2, allow
service providers, such as Dropbox and Netflix, to deploy their services on large
infrastructures with no upfront cost [Buyya et al., 2009], by simply leasing comput-
ing capacity in the form of VMs. On the other hand, the flexibility offered by cloud
technologies, which allow VMs to be hosted by any Physical Machine (PM) (or
server), favors the adoption of private clouds [Gulati et al., 2011]. Therefore, self-
hosting service providers themselves are converting their computing infrastructures
into small clouds.

One of the main issues with cloud computing infrastructures is application ro-
bustness to unexpected events. For example, flash-crowds are sudden increments of
end-users, that may raise the required capacity up to five times [Bodik et al., 2010].
Similarly, hardware failures may temporarily reduce the capacity of the infrastruc-
ture, while the failure is repaired [Barroso and Hölzle, 2009]. Also, unexpected
performance degradations may arise due to workload consolidation and the result-
ing interference among co-located applications [Mars et al., 2011]. Due to the large
magnitude and short duration of such events, it may be economically too costly
to keep enough spare capacity to properly deal with them. As a result, unexpected
events may lead to infrastructure overload, that translates to unresponsive services,
leading to dissatisfied end-users and revenue loss.

Cloud services therefore greatly benefit from self-adaptation techniques [Sale-
hie and Tahvildari, 2009], such as brownout [Klein et al., 2014; Maggio et al.,
2014]. A brownout service adapts itself by reducing the amount of computations it
executes to serve a request, so as to maintain response time around a given setpoint.
In essence, some computations are marked as mandatory — for example, display-
ing product information in an e-commerce website — while others are optional —
for example, recommending similar products. Whenever an end-user request is re-
ceived, the service can choose to execute the optional code or not according to its
available capacity, and to the previously measured response times. Note that exe-
cuting optional code directly translates into a better service for the end-user and
more revenue for the service provider. This approach has proved to be successful
for dealing with unexpected events [Klein et al., 2014]. However, there, brownout
services were composed of a single replica, i.e., a single copy of the application,
running inside a single VM.

In this paper, we extend the brownout paradigm to services featuring multiple
replicas — i.e., multiple, independent copies of the same application, serving the
user the same data — hosted inside individual VMs. Since each VM can be hosted
by different PMs, this enhances brownout services in two directions. First, scala-
bility of a brownout application — the ability for an application to deal with more
users by adding more computing resources — is improved, since applications are no
longer limited to using the resources of a single PM. Second, resilience is improved:

80

2 Related Work

in case a PM fails, taking down a replica, other replicas whose VMs are hosted on
different PMs can seamlessly take over.

The component that decides which replica should serve a particular end-user
request is called a load-balancer. Despite the fact that load-balancing techniques
have been widely studied [Barroso and Hölzle, 2009; Lu et al., 2011; Lin et al.,
2012; Nakrani and Tovey, 2004], state-of-the-art load-balancers forward requests
based on metrics that cannot discriminate between a replica that is avoiding over-
load by not executing the optional code and a replica that is not subject to overload.
Therefore, the novelty of our problem consists in finding a brownout-compliant
load-balancing technique that is aware of each replica’s self-adaptation mechanism.

The contribution of this paper is summarized as follows.

• We present extensions to load-balancing architectures and the required en-
hancements to the replicas that convey information about served optional
content and allow to deal with brownout services efficiently (Section 3).

• We propose novel load-balancing algorithms that, by receiving information
about the adaptation happening at the replica level, try to maximize the per-
formance of brownout services, in terms of frequency of execution of the
optional code (Section 4).

• We show through simulations that our brownout-aware load-balancing algo-
rithms outperform state-of-the-art techniques (Section 5).

2. Related Work

Load-balancers are standard components of Internet-scale services [Wang et al.,
2002], allowing applications to achieve scalability and resilience [Barroso and Höl-
zle, 2009; Hamilton, 2007; Wolf and Yu, 2001]. Many load-balancing policies have
been proposed, aiming at different optimizations, spanning from equalizing proces-
sor load [Stankovic, 1985] to managing memory pools [Patterson et al., 1995; Diao
et al., 2005], to specific optimizations for iterative algorithms [Bahi et al., 2005]. Of-
ten load-balancing policies consider web server systems as a target [Manfredi et al.,
2013; Cardellini et al., 2003], where one of the most important result is to bound
the maximum response time that the clients are exposed to [Huang and Abdelza-
her, 2005]. Load-balancing strategies can be guided by many different purposes,
for example geographical [Andreolini et al., 2008; Ranjan et al., 2004], driven by
the electricity price to reduce the datacenter operation cost [Doyle et al., 2013], or
specifically designed for cloud applications [Barroso and Hölzle, 2009; Lu et al.,
2011; Lin et al., 2012].

Load-balancing solutions can be divided into two different types: static and
dynamic. Static load-balancing refers to a fixed, non-adaptive strategy to select a
replica to direct traffic to [Ni and Hwang, 1985; Tantawi and Towsley, 1985]. The

81

Paper IV. Control-Theoretical Load-Balancing . . . with Brownout

most commonly used technique is based on selecting each replica in turn, called
Round Robin (RR). It can be either deterministic, storing the last selected replica,
or probabilistic, picking a replica at Random. However, due to their static nature,
such techniques would not have good performance when applied to brownout-
compliant applications as they do not take into account the inherent fluctuations
of a cloud environment and the control strategy at the replica level, which leads to
changing capabilities of replicas.

On the contrary, dynamic load-balancing is based on measurements of the cur-
rent system’s state. One popular option is to choose the replica which had the lowest
response time in the past. We refer to this algorithm as Fastest Replica First (FRF)
if the choice is based on the last measured response time of each replica, and FRF-
EWMA if the choice is based on an Exponentially Weighted Moving Average over
the past response times of each replica. A variation of this algorithm is Two Ran-
dom Choices (2RC) [Mitzenmacher, 2001], that randomly chooses two replicas
and assigns the request to the fastest one, i.e., the one with the lowest maximum
response time.

Through experimental results, we determined that FRF, FRF-EWMA and 2RC
are unsuitable for brownout applications. They base their decision on response times
alone, which leads to inefficient decisions for brownout services. Indeed, such ser-
vices already keep their response-time at a given setpoint, at the expense of reducing
the ratio of optional content served. Hence, by measuring response-time alone, it is
not possible to discriminate between a replica that is avoiding overload by not ex-
ecuting the optional code and a replica that is not subject to overload executing all
optional code, both achieving the desired response times.

Another adopted strategy is based on the pending request count and generally
called Shortest Queue First (SQF), where the load-balancer tracks the pending
requests and select the replicas with the least number of requests waiting for com-
pletion. This strategy pays off in architectures where the replicas have similar capac-
ities and the requests are homogeneous. To account for non-homogeneity, Pao and
Chen proposed a load balancing solution using the remaining capacity of the repli-
cas to determine how the next request should be managed [Pao and Chen, 2006].
The capacity is determined through a combination of factors like the remaining
available CPU and memory, the network transmission and the current pending re-
quest count. Other approaches have been proposed that base their decision on re-
maining capacity. However, due to the fact that brownout applications indirectly
control CPU utilization, by adjusting the execution of optional content, so as to
prepare for possible request bursts, deciding on remaining capacity alone is not an
indicator of how a brownout replica is performing.

A merge of the fastest replica and the pending request count approach was im-
plemented in the BIG-IP Local Traffic Manager [BIG-IP Local Traffic Manager],
where the replicas are ranked based on a linear combination of response times and
number of routed requests. Since the exact specification of this algorithm is not
open, we tried to mimic as follows: A Predictive load balancer would rank the

82

3 Problem Statement

clients load-balancer ...

replica1

replican

...

controller1

controllern

λ
λ1

λn

t1

θ1

tn

θn
Figure 1. Architecture of a brownout-compliant cloud application featuring multi-
ple replicas.

replicas based on the difference between the past metrics and the current ones. One
of the solutions proposed in this paper extends the idea of looking at the differ-
ence between the past behavior and the current one, although our solution observes
the changes in the ratio of optional code served and tries to maximize the requests
served enabling the full computation.

Dynamic solutions can be control-theoretical [Zhang et al., 2002; Kameda et
al., 2000] and also account for the cost of applying the control action [Diao et
al., 2004] or for the load trend [Casolari et al., 2009]. This is especially necessary
when the load balancer also acts as a resource allocator deciding not only where
to route the current request but also how much resources it would have to execute,
like in [Ardagna et al., 2012]. In these cases, the induced sudden lack of resources
can result in poor performance. However, we focus only on load-balancing solu-
tions, since brownout applications are already taking care of the potential lack of
resources [Klein et al., 2014].

3. Problem Statement

Load-balancing problems can be formulated in many ways. This is especially true
for the case addressed in this paper where the load-balancer should distribute the
load to adaptive entities, that play a role by themselves in adjusting to the current
situation. This section discusses the characteristics of the considered infrastructure
and clearly formulates the problem under analysis.

Figure 1 illustrates the software architecture that is deployed to execute a
brownout-compliant application composed of multiple replicas. Despite the modifi-
cations needed to make it brownout-compliant, the architecture is widely accepted
as the reference one for cloud applications [Barroso and Hölzle, 2009].

Given the generic cloud application architecture, access can only be done
through the load-balancer. The clients are assumed to be closed-loop: They first
send a request, wait for the reply, then think by waiting for an exponentially dis-
tributed time interval, and repeat. This client model is a fairly good approximation
for users that interact with web-sites requiring a pre-defined number of requests to
complete a goal, such as buying a product [García and García, 2003] or booking a
flight. The resulting traffic has an unknown but measurable rate λ .

83

Paper IV. Control-Theoretical Load-Balancing . . . with Brownout

Each client request is received by the load-balancer, that sends it to one of the
n replicas. The chosen replica produces the response and sends it back to the load-
balancer, which forwards it to the original client. We measure the response time of
the request as the time spent within the replica, assuming negligible time is taken
for the load-balancer execution and for the routing itself. Since the responses are
routed back to the load-balancer, it is possible to attach information to be routed
back to aid balancing decisions to it.

Each replica i receives a fraction λi of the incoming traffic and is a stand-alone
version of the application. More specifically, each replica receives requests at a rate
λi = wi ·λ , such that wi ≥ 0, and ∑i wi = 1. In this case, the load balancer simply
computes the replica weights wi according to its load-balancing policy.

Special to our case is the presence of a controller within each replica [Klein
et al., 2014]. This controller receives periodic measurements of the response time
ti of the requests served by the replica, and adjusts the percentage of requests θi
served with optional components. Here ti is the 95-th percentile of the response
times for a control period. Following the approach of [Klein et al., 2014], we model
the response times from a replica as

tk+1
i = αk

i ·θ k
i

where αk
i is an unknown parameter estimated online (details omitted here). The

control loop is then closed using the PI controller

θ k+1
i = θ k

i +
1− p1

α̂k
i
· ek+1

i

where ek+1
i is the control error and p1 the closed-loop pole. As the controller output

is restricted, anti-windup measures are employed. In our experiments, p1 is set to
0.99, the replica control period is to 0.5s, while the load-balancer acts every second.

As given by the brownout paradigm, a replica i responds to requests either par-
tially, where only mandatory content is included in the reply, or fully, where both
mandatory and optional content is included. This decision is taken independently
for each request with a probability θi for success. The service rate for a partial re-
sponse is µi while a full response is generated with a rate Mi. Obviously, partial
replies are faster to compute than full ones, hence, µi ≥Mi. Assuming the replica is
not saturated, it serves requests fully at a rate λiθi and partially at a rate λi(1−θi).

Many alternatives can be envisioned on how to extend existing load balancers
to deal with brownout-compliant applications. In our choice, the load-balancer re-
ceives information about θi from the replicas. This solution results in less compu-
tationally intensive load-balancers with respect to the case where the load-balancer
should somehow estimate the probability of executing the optional components, but
requires additional communication. The overhead, however, is very limited, since
only one value would be reported per replica. For the purpose of this paper, we
assume that to aid load-balancing decisions, each replica piggy-backs the current

84

4 Solution

value of θi through the reply, so that this value can be observed by the load-balancer,
limiting the overhead. The load-balancer does not have any knowledge on how each
replica controller adjusts the percentage θi, it only knows the reported value. This
allows to completely separate the action of the load- balancer from the one of the
self-adaptive application.

Given this last architecture, we want to solve the problem of designing a load-
balancer policy. Knowing the values of θi for each replica i∈ [1,n], a load-balancer
should compute the values of the weights wi such that

∞

∑
k=0

∑
i

wi(k)θi(k) (1)

is maximized, where k denotes the discrete time. Given that we have no knowledge
of the evolution in time of the involved quantities, we aim to maximize the quantity
∑i wiθi in every time instant, assuming that this will maximize the quantity defined
in Equation (1). In other words, the load-balancer should maximize the ratio of
requests served with the optional part enabled. For that, the aim is to maximize the
ratio of optional components served in any time instant. In practice, this would also
maximize the application owner’s revenue [Klein et al., 2014].

4. Solution

This section describes three different solutions for balancing the load directed to
self-adaptive brownout-compliant applications composed of multiple replicas. The
first two strategies are heuristic solutions that take into account the self-adaptivity of
the replicas. The third alternative is based on optimization, with the aim of providing
guarantees on the best possible behavior.

4.1 Variational principle-based heuristic (VPBH)
Our first solution is inspired by the predictive approach described in Section 2. The
core of the predictive solution is to examine the variation of the involved quantities.
While in its classical form, this solution relies on variations of response times or
pending request count per replica, our solution is based on how the control variables
θi are changing.

If the percentage θi of optional content served is increasing, the replica is as-
sumed to be less loaded, and more traffic can be sent to it. On the contrary, when
the optional content decreases, the replica will receive less traffic, to decrease its
load and allow it to increase θi.

The replica weights wi are initialized to 1/n where n is the number of replicas.
The load-balancer periodically updates the values of the weights based on the values
of θi received by the replicas. At time k, denoting with ∆θi(k) the variation θi(k)−
θi(k−1), the solution computes a potential weight w̃i(k+1) according to

w̃i(k+1) = wi(k) · [1+ γP ∆θi(k)+ γI θi(k)] , (2)

85

Paper IV. Control-Theoretical Load-Balancing . . . with Brownout

where γP and γI are constant gains, respectively related to a proportional and an
integral load-balancing action. As calculated, w̃i values can be negative. This is
clearly not feasible, therefore negative values are truncated to a small but still posi-
tive weight ε . Using a positive weight instead of zero allows us to probe the replica
and see whether it is favorably responding to new incoming requests or not. More-
over, the computed values do not respect the constraint that their sum is equal to 1,
so they are then re-scaled according to

wi(k) =
max(w̃i(k),ε)

∑i max(w̃i(k),ε)
. (3)

We selected γP = 0.5 based on experimental results. Once γP is fixed to a se-
lected value, increasing the integral gain γI calls for a stronger action on the load-
balancing side, which means that the load-balancer would take decisions very much
influenced by the current values of θi, therefore greatly improving performance at
the cost of a more aggressive control action. On the contrary, decreasing γI would
smoothen the control signal, possibly resulting in performance loss due to a slower
reaction time. The choice of the integral gain allows to exploit the trade-off between
performance and robustness. For the experiments we chose γI = 5.0.

4.2 Equality principle-based heuristic (EPBH)
The second policy is based on the heuristic that a near-optimal situation is when all
replica serves the same percentage optional content. Based on this assumption, the
control variables θi should be as close as possible to one another. If the values of θi
converge to a single value, this means that the traffic is routed so that each replica
can serve the same percentage of optional content, i.e., a more powerful replica re-
ceives more traffic then a less powerful one. This approach therefore selects weights
that encourages the control variables θi to converge towards the mean 1

n ∑ j θ j.
The policy computes a potential weight w̃i(k+1)

w̃i(k+1) = wi(k)+ γe

(
θi(k)−

1
n∑

j
θ j(k)

)
(4)

where γe is a strictly positive parameter which accounts for how fast the algorithm
should converge. For the experiments we chose γe = 0.025. The weights are sim-
ply modified proportionally to the difference between the current control value and
the average control value set by the replicas. Clearly, the same saturation and nor-
malization described in Equation (3) has to be applied to the proposed solution, to
ensure that the sum of the weights is equal to one and that they have positive values
— i.e., that all the incoming traffic is directed to the replicas and that each replica
receives at least some requests.

86

4 Solution

4.3 Convex optimization based load-balancing (COBLB)
The third approach is to update the replica weights based on the solution of an
optimization problem, where the objective is to maximize the quantity ∑i wiθi.

In this solution, each replica is modeled as a queuing system using a Processor
Sharing (PS) discipline. The clients are assumed to arrive according to a Poisson
process with intensity λi, and will upon arrival enter the queue where they will re-
ceive a share of the replicas processing capability. The simplest queueing models
assume the required time for serving a request to be exponentially distributed with
rate µ̃ . However, in the case of brownout, the requests are served either with or with-
out optional content with rates Mi and µi, respectively. Therefore the distribution of
service times Si for the replicas can be modelled as a mixture of two exponential
distributions with a probability density function fSi(t) according to

fSi(t) = (1−θi) ·µi · e−µi·t +θi ·Mi · e−Mi·t , (5)

where t represents the continuous time and θi is the probability of activating the
optional components. Thus, a request entering the queue of replica i will receive
an exponentially distributed service time with a rate with probability θi being
Mi, and probability 1− θi being µi. The resulting queueing system model is of
type M/G/1/PS and has been proven suitable to simulate the behavior of web
servers [Cao et al., 2003].

It is known that for M/G/1 queueing systems adopting the PS discipline, the
mean response times will depend on the service time distribution only through its
mean [Kleinrock, 1967; Sakata et al., 1971], here given for each replica by

µ∗i =
1

E[Si]
=

[
1−θi

µi
+

θi

Mi

]−1

. (6)

The mean response times for a M/G/1/PS system themselves are given by

τi =
1

µ∗i −λwi
. (7)

The required service rates µ∗i needed to ensure that there is no stationary error can
be obtained by inverting Equation (7)

µ∗i =
1+ τ∗i λwi

τ∗i
(8)

with τ∗i being the set point for the response time of replica i.
Combining Equation (6) and (8), it is then possible to calculate the steady-state

control variables θ ∗i that gives the desired behavior

θ ∗i =
Mi · (µiτ∗i −1−λwiτ∗i)
(1+λwiτ∗i) · (µi−Mi)

=
Ai−Biwi

Ci +Diwi
. (9)

87

Paper IV. Control-Theoretical Load-Balancing . . . with Brownout

with Ai, Bi, Ci and Di all positive. Note that the values of θ ∗i are not used in the
replicas and are simply computed by the optimization based load-balancer as the
optimal stationary conditions for the control variables θi. Clearly, one could also
think of using these values within the replicas but in this investigation we want
to completely separate the load-balancing policy and the replicas internal control
loops.

Recalling that θi is the probability of executing the optional components when
producing the response, the values θ ∗i should be constrained to belong to the interval
[0,1], yielding the following inequalities (under the reasonable assumptions that
τ∗i > 1/Mi and µi ≥Mi)

Ai−Ci

Bi +Di
≤ wi ≤

Ai

Bi
. (10)

Using these inequalities as constraints, it is possible to formally state the optimiza-
tion problem as

maxwi J = ∑i wiθi = ∑
i

wi
Ai−Biwi

Ci +Diwi

s.t. ∑i wi = 1,
Ai−Ci

Bi +Di
≤ wi ≤

Ai

Bi
.

(11)

Since the objective function J is concave and the constraints linear in wi, the en-
tire problem is concave and can be solved using efficient methods [Boyd and Van-
denberghe, 2004]. We use an interior point algorithm, implemented in CVXOPT1,
a Python library for convex optimization problems, to obtain the values of the
weights.

Notice that solving optimization problem (11) guarantees that the best possible
solution is found for the single time instant problem, but requires a lot of knowledge
about the single replicas. In fact, while other solutions require knowledge only about
the incoming traffic and the control variables for each replica, the optimization-
based solution relies on knowledge of the service time of requests with and without
optional content Mi and µi that might not be available and could require additional
computations to be estimated correctly.

5. Evaluation

In this section we describe our experimental evaluation, discussing the performance
indicators used to compare different strategies, the simulator developed and used to
emulate the behavior of brownout-compliant replicas driven by the load-balancer,
and our case studies.

1 http://cvxopt.org/

88

5 Evaluation

5.1 Performance indicators
Performance measures are necessary to objectively compare different algorithms.
Our first performance indicator is defined as the percentage %oc of the total requests
served with the optional content enabled, which is a reasonable metric given that we
assume that users perform a certain number of clicks to use the application.

We also would like to introduce some other performance metrics to compare
the implemented load-balancing techniques. For this, we use the user-perceived
stability σu [Andreolini et al., 2008]. This metric refers to the variation of per-
formance as observed by the users, and it is measured as the standard deviation
of response times. Its purpose is to measure the ability of the replicas to respond
timely to the client requests. The entire brownout framework aims at stabilizing the
response times, therefore it should achieve better user-perceived stability, regardless
of the presence of the load-balancer. However, the load-balancing algorithm clearly
influences the perceived response times, therefore it is logical to check whether
the newly developed algorithms achieve a better perceived stability than the clas-
sical ones. Together with the value of the user-perceived stability, we also report
the average response time µu to distinguish between algorithms that achieve a low
response time with possibly high fluctuations from solutions that achieve a higher
but more stable response time.

5.2 Simulator
To test the load-balancing strategies, a Python-based simulator for brownout-
compliant applications is used. In the simulator, it is easy to plug-in new load-
balancing algorithms. The simulator is based on the concepts of Client, Request,
LoadBalancer and Replica.

When a new client is defined, it can behave according to the open-loop client
model, where it simply issues a certain number of unrelated requests (as it is true
for clients that respect the Markovian assumption), or according to the closed-loop
one [Schroeder et al., 2006; Alomari and Menascé, 2013]. Closed-loop clients issue
a request and wait for the response, when they receive the response they think for
some time (in the simulations this time is exponentially distributed with mean 1s)
and subsequently continue sending another request to the application. While this
second model is more realistic, the first one is still useful to simulate the behavior
of a large number of clients. The simulator implements both models, to allow for
complete tests, but we will evaluate our results with closed-loop clients given the
nature of the applications, that requires users to perform a certain number of clicks.

Requests are received by the load-balancer, that directs them towards different
replicas. The load-balancer can work on a per-request basis or based on weights.
The first case is used to simulate policies like Round Robin, Random, Shortest
Queue First and so on, that do not rely on the concept of weights. The weighted
load-balancer is used to simulate the strategies proposed in this paper.

Each replica simulates the computation necessary to serve the request and

89

Paper IV. Control-Theoretical Load-Balancing . . . with Brownout

chooses if it should be executed with or without the optional components activated.
If the optional content is served the service time is a random number from a gaus-
sian distribution with mean φi and variance 0.01, while if the optional content is
not served, the mean is ψi and the variance is 0.001. The parameters φi and ψi are
specified when replicas are created and can be changed during the execution. The
service rate of requests with the optional component is Mi = 1/φi while for serving
only the mandatory part of the request the service rate is µi = 1/ψi. The replicas
are also executing an internal control loop to select their control variables θi [Klein
et al., 2014]. The replicas use PS to process the requests in the queue, meaning that
each of the n active requests will get 1/n of the processing capability of the replica.

The simulator receives as input a Scenario, which describes what can happen
during the simulation. The scenario definition supports the insertion of new clients
and the removal of existing ones. It also allows to turn on and off replicas at specific
times during the execution and to change the service times for every replica, both for
the optional components and for the mandatory ones. This simulates a change in the
amount of resources given to the machine hosting the replica and it is based on the
assumption that these changes are unpredictable and can happen at the architecture
level, for example due to the cloud provider co-locating more applications onto the
same physical hardware, therefore reducing their computation capability [Tomás
and Tordsson, 2013].

With the scenarios, it is easy to simulate different working conditions and
to have a complete overview of the changes that might happen during the load-
balancing and replica execution. In the following, we describe two experiments
conducted to compare the load-balancing strategies when subject to different ex-
ecution conditions.

5.3 Reacting to client behavior
The aim of the first test is to evaluate the performance of different algorithms when
new clients arrive and existing clients disconnect.

In the experiment the infrastructure is composed of four replicas. The first
replica is the fastest one and has φ1 = 0.05s (average time to execute both the
mandatory and the optional components) and ψ1 = 0.005s (average time to com-
pute only the mandatory part of the response). The second replica is slower, with
φ2 = 0.25s and ψ2 = 0.025s. The third and fourth replicas are the slowest ones,
having φ3,4 = 0.5s and ψ3,4 = 0.05s.

Clients adhere to the closed-loop model. 50 clients are accessing the system at
time 0s, and 10 of them are removed after 200s. At time 400s, 25 more clients query
the application and 25 more arrives again at 600s. 40 clients disconnect at time 800s
and the simulation is ended at time 1000s.

The right column in Figure 2 shows the control variable θi for each replica,
while the left column shows the effective weights wi, i.e., the weights that have been
assigned by the load-balancing strategies computed a posteriori. Since solutions like

90

5 Evaluation

0

0.5

1
E

PB
H

81
.9

%

w θ

0

0.5

1

V
PB

H
78
.9

%

0

0.5

1

C
O

B
L

B
78
.0

%

0

0.5

1

SQ
F

67
.0

%

0

0.5

1

FR
F-

E
W

M
A

60
.8

%

0

0.5

1

2R
C

51
.4

%

0

0.5

1

FR
F

47
.9

%

0

0.5

1

R
an

do
m

41
.2

%

0

0.5

1

R
R

40
.0

%

0 200 400 600 800 1,000
0

0.5

1

t [sec]

Pr
ed

ic
tiv

e
26
.9

%

0 200 400 600 800 1,000
t [sec]

Figure 2. Results of a simulation with four replicas and clients entering and leaving
the system at different time instants. The left column shows the effective weights
while the right column shows the control variables for each replica. The first replica
is shown in black solid lines, the second in blue dashed lines, the third in green
dash-dotted lines, and the fourth in red dotted lines.

91

Paper IV. Control-Theoretical Load-Balancing . . . with Brownout

EPBH, 8
1.9

%

VPBH, 7
8.9

%

COBLB, 7
8.0

%

SQF,
67
.0%

FRF-E
W

M
A, 6

0.8
%

2R
C, 5

1.4
%

FRF,
47
.9%

Ran
do

m, 4
1.2

%

RR, 4
0.0

%

Pred
ict

ive
, 2

6.9
%

0

10

20

30

Figure 3. Box plots of the maximum response time in all the replicas for every
control interval. Each box shows from the first quartile to the third. The red line
shows the median; outliers are represented with red crosses while the black dots
indicate the average value (also considering the outliers).

RR do not assign directly the weights, we decided to compute the effective values
that can be found after the load-balancing assignments.

The algorithms are ordered by decreasing percentage %oc of optional content
served, where EPBH achieves the best percentage overall, followed by VPBH and
by COBLB.

For this scenario, the strategies that are brownout-aware achieve better results in
terms of percentage of optional content served. The SQF algorithm is the only ex-
isting one capable of achieving similar (yet lower) performance in terms of optional
content delivered. The scenario also illustrates the benefit of using a brownout-
aware strategy, as there is a constant underutilization of replica 1 for SQF.

To analyze the effect of the load-balancing strategies on the replicas response
times, Figure 3 shows box plots of the maximum response time experienced by the
replicas. The load-balancing strategies are ordered from left to right based on the
percentage of optional code %oc achieved. The bottom line of each box represents
the first quartile, the top line the third and the red line is the median. The red crosses
show the outliers. In addition to the classical box plot information, the black dots
show for each algorithm the average value of the maximum response time measured
during the experiment, also considering the outliers.

The box plots clearly show that all the solutions presented in this paper achieve
distributions that have outliers, as well as almost all the literature ones. The only

92

5 Evaluation

Table 1. Performance with variable infrastructure resources

Algorithm %oc µu σu
COBLB 90.9% 0.78 0.97
EPBH 89.5% 1.06 1.95
VPBH 87.7% 1.02 1.90
SQF 83.3% 0.55 0.40
RR 75.5% 1.11 2.42
Random 72.9% 0.86 2.23
2RC 72.2% 0.74 1.64
FRF 70.4% 1.27 2.03
FRF-EWMA 51.4% 1.44 3.41
Predictive 47.4% 1.66 3.48

exception seems to be SQF, that achieves very few outliers, predictable maximum
response time, with a median that is just slightly higher than the one achieved by
VPBH. EPBH offers the highest percentage of optional content served, by sacri-
ficing the response time bound. From this additional information one can conclude
that the solutions presented in this paper should be tuned carefully if response time
requirements are hard. For example, for certain tasks, users prefer a very responsive
applications instead of many features, hence the revenue of the application owner
may be increased through lower response times. Notice that the proposed heuristics
(EPBH and VPBH) have tunable parameters that can be used to exploit the trade-off
between response time bounds and optional content.

This case study features only a limited number of replicas. However, we have
conducted additional tests, also in more complex scenarios, featuring up to 20 repli-
cas, reporting results similar to the ones presented herein. In the next section we test
the effect of infrastructural changes to load-balancing solutions and response times.

5.4 Reacting to infrastructure resources
In the second case study the architecture is composed of five replicas. At time 0s,
the first replica has φ1 = 0.07s, ψ1 = 0.001s. The second and third replicas are
medium fast, with φ2,3 = 0.14s and ψ2,3 = 0.002s. The fourth and fifth replicas are
the slowest with φ4,5 = 0.7s and ψ4,5 = 0.01s.

At time 250s the amount of resources assigned to the first replica is decreased,
therefore φ1 = 0.35s and ψ1 = 0.005s. At time 500s, the fifth replica receives more
resources, achieving φ5 = 0.07s and ψ5 = 0.001s. The same happens at time 750 to
the fourth replica.

Table 1 reports the percentage %oc, the average response time and the user-
perceived stability for the different algorithms. It should be noted again that our
strategies obtain better optional content served at the expense of slightly higher re-
sponse times. However, COBLB is capable of obtaining both low response times
and high percentage of optional content served. This is due to the amount of in-

93

Paper IV. Control-Theoretical Load-Balancing . . . with Brownout

formation that it uses, since we assume that the computation times for mandatory
and optional part are known. The optimization-based strategy is capable of reacting
fast to changes and achieves predictability in the application behavior. Again, if one
does not have all the necessary information available, it is possible to implement
strategies that would better exploit the trade-off between bounded response time
and optional content.

6. Conclusion

We have revisited the problem of load-balancing different replicas in the presence
of self-adaptivity inside the application. This is motivated by the need of cloud
applications to withstand unexpected events like flash crowds, resource variations
or hardware changes. To fully address these issues, load-balancing solutions need
to be combined with self-adaptive applications, such as brownout. However, simply
combining them without special support leads to poor performance.

Three load-balancing strategies are described, specifically designed to support
brownout-compliant cloud applications. The experimental results clearly show that
incorporating the application adaptation in the design of load balancing strategies
pay off in terms of predictable behavior and maximized performance. They also
demonstrated that the SQF algorithm is the best non-brownout-aware solution and
therefore it should be used whenever it is not possible to adopt one of our proposed
solution. The granularity of the actuation of the SQF load-balancing strategy is on a
per-request based and the used information are much more updated with respect to
the current infrastructure status, which is an advantage compared to weight-based
solutions and helps SQF to serve requests faster. In future work we plan to investi-
gate brownout-aware per-request solutions.

Finally, the application model used in this paper assumes a finite number of
clicks per user, therefore the developed load-balancer strategies maximize the per-
centage of optional content served. However, when a different application model is
taken into account, optimizing the absolute number of requests served with optional
content is another possible goal, that should be investigated in future work.

References

Alomari, F. and D. Menascé (2013). “Efficient response time approximations for
multiclass fork and join queues in open and closed queuing networks”. IEEE
Transactions on Parallel and Distributed Systems 99, pp. 1–6.

Andreolini, M., S. Casolari, and M. Colajanni (2008). “Autonomic request man-
agement algorithms for geographically distributed internet-based systems”. In:
SASO.

94

References

Ardagna, D., S. Casolari, M. Colajanni, and B. Panicucci (2012). “Dual time-scale
distributed capacity allocation and load redirect algorithms for clouds”. J. Par-
allel Distrib. Comput. 72:6.

Bahi, J. M., S. Contassot-Vivier, and R. Couturier (2005). “Dynamic load balanc-
ing and efficient load estimators for asynchronous iterative algorithms”. IEEE
Trans. Parallel Distrib. Syst. 16:4.

Barroso, L. A. and U. Hölzle (2009). The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines. Synthesis Lectures on Com-
puter Architecture. Morgan & Claypool.

BIG-IP Local Traffic Manager. http://www.f5.com/products/big-ip/big-
ip-local-traffic-manager/. Accessed: 2013-12-31.

Bodik, P., A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson (2010). “Char-
acterizing, modeling, and generating workload spikes for stateful services”. In:
SOCC.

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge University
Press, New York, NY, USA. ISBN: 0521833787.

Buyya, R., C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic (2009). “Cloud
computing and emerging IT platforms: vision, hype, and reality for delivering
computing as the 5th utility”. Future Generation Computer Systems 25:6.

Cao, J., M. Andersson, C. Nyberg, and M. Kihl (2003). “Web server performance
modeling using an M/G/1/K*PS queue”. In: 10th International Conference on
Telecommunications ICT 2003. Vol. 2, pp. 1501–1506.

Cardellini, V., M. Colajanni, and P. S. Yu (2003). “Request redirection algorithms
for distributed web systems”. IEEE Trans. Parallel Distrib. Syst. 14:4.

Casolari, S., M. Colajanni, and S. Tosi (2009). “Self-adaptive techniques for the
load trend evaluation of internal system resources”. In: ICAS.

Diao, Y., J. Hellerstein, A. Storm, M. Surendra, S. Lightstone, S. Parekh, and C.
Garcia-Arellano (2004). “Incorporating cost of control into the design of a load
balancing controller”. In: RTAS.

Diao, Y., C. W. Wu, J. Hellerstein, A. Storm, M. Surenda, S. Lightstone, S. Parekh,
C. Garcia-Arellano, M. Carroll, L. Chu, and J. Colaco (2005). “Comparative
studies of load balancing with control and optimization techniques”. In: ACC.

Doyle, J., R. Shorten, and D. O’Mahony (2013). “Stratus: load balancing the cloud
for carbon emissions control”. IEEE Transactions on Cloud Computing 1:1.

García, D. F. and J. García (2003). “TPC-W e-commerce benchmark evaluation”.
Computer 36:2, pp. 42–48.

Gulati, A., G. Shanmuganathan, A. Holler, and I. Ahmad (2011). “Cloud-scale re-
source management: challenges and techniques”. In: HotCloud.

Hamilton, J. (2007). “On designing and deploying internet-scale services”. In: LISA.

95

Paper IV. Control-Theoretical Load-Balancing . . . with Brownout

Huang, C. and T. Abdelzaher (2005). “Bounded-latency content distribution feasi-
bility and evaluation”. IEEE Transactions on Computers 54:11.

Kameda, H., E.-Z. Fathy, I. Ryu, and J. Li (2000). “A performance comparison of
dynamic vs. static load balancing policies in a mainframe-personal computer
network model”. In: CDC.

Klein, C., M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez (2014). “Brown-
out: building more robust cloud applications”. In: ICSE.

Kleinrock, L. (1967). “Time–shared systems: a theoretical treatment”. Journal of
the ACM 14:242-261.

Lin, M., Z. Liu, A. Wierman, and L. L. H. Andrew (2012). “Online algorithms for
geographical load balancing”. In: IGCC.

Lu, Y., Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg (2011). “Join-idle-
queue: a novel load balancing algorithm for dynamically scalable web services”.
Perform. Eval. 68:11.

Maggio, M., C. Klein, and K.-E. Årzén (2014). “Control strategies for predictable
brownout in cloud computing”. In: IFAC WC.

Manfredi, S., F. Oliviero, and S. Romano (2013). “A distributed control law for load
balancing in content delivery networks”. IEEE/ACM Transactions on Network-
ing 21:1.

Mars, J., L. Tang, R. Hundt, K. Skadron, and M. L. Soffa (2011). “Bubble-up:
increasing utilization in modern warehouse scale computers via sensible co-
locations”. In: MICRO, pp. 248–259.

Mitzenmacher, M. (2001). “The power of two choices in randomized load balanc-
ing”. IEEE Trans. Parallel Distrib. Syst. 12:10.

Nakrani, S. and C. Tovey (2004). “On honey bees and dynamic server allocation
in internet hosting centers”. Adaptive Behavior - Animals, Animats, Software
Agents, Robots, Adaptive Systems 12:3-4.

Ni, L. and K. Hwang (1985). “Optimal load balancing in a multiple processor sys-
tem with many job classes”. IEEE Transactions on Software Engineering 11:5.

Pao, T.-L. and J.-B. Chen (2006). “The scalability of heterogeneous dispatcher-
based web server load balancing architecture”. In: PDCAT.

Patterson, R. H., G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka (1995).
“Informed prefetching and caching”. In: SOSP.

Ranjan, S., R. Karrer, and E. Knightly (2004). “Wide area redirection of dynamic
content by internet data centers”. In: INFOCOM.

Sakata, M., S. Noguchi, and J. Oizumi (1971). “An analysis of the M/G/1 queue
under round-robin scheduling”. Operations Research 19:2, pp. 371–385.

Salehie, M. and L. Tahvildari (2009). “Self-adaptive software: landscape and re-
search challenges”. ACM Trans. Auton. Adapt. Syst. 4:2.

96

References

Schroeder, B., A. Wierman, and M. Harchol-Balter (2006). “Open versus closed: a
cautionary tale”. In: NSDI.

Stankovic, J. A. (1985). “An application of bayesian decision theory to decentral-
ized control of job scheduling”. IEEE Trans. Comput. 34:2.

Tantawi, A. N. and D. Towsley (1985). “Optimal static load balancing in distributed
computer systems”. J. ACM 32:2.

Tomás, L. and J. Tordsson (2013). “Improving cloud infrastructure utilization
through overbooking”. In: CAC, pp. 1–10.

Wang, L., V. Pai, and L. Peterson (2002). “The effectiveness of request redirection
on CDN robustness”. In: OSDI.

Wolf, J. L. and P. S. Yu (2001). “On balancing the load in a clustered web farm”.
ACM Trans. Internet Technol. 1:2.

Zhang, L., Z. Zhao, Y. Shu, L. Wang, and O. W. W. Yang (2002). “Load balancing
of multipath source routing in ad hoc networks”. In: ICC.

97

Paper V

Improving Cloud Service Resilience using
Brownout-Aware Load-Balancing

Cristian Klein1 Alessandro Vittorio Papadopoulos2

Manfred Dellkrantz2 Jonas Dürango2

Martina Maggio2 Karl-Erik Årzén2

Francisco Hernández-Rodriguez1 Erik Elmroth1

Abstract

We focus on improving resilience of cloud services (e.g., e-commerce web-
site), when correlated or cascading failures lead to computing capacity short-
age. We study how to extend the classical cloud service architecture composed
of a load-balancer and replicas with a recently proposed self-adaptive paradigm
called brownout. Such services are able to reduce their capacity requirements
by degrading user experience (e.g., disabling recommendations).

Combining resilience with the brownout paradigm is to date an open prac-
tical problem. The issue is to ensure that replica self-adaptivity would not con-
fuse the load-balancing algorithm, overloading replicas that are already strug-
gling with capacity shortage. For example, load-balancing strategies based on
response times are not able to decide which replicas should be selected, since
the response times are already controlled by the brownout paradigm.

In this paper we propose two novel brownout-aware load-balancing algo-
rithms. To test their practical applicability, we extended the popular lighttpd
web server and load-balancer, thus obtaining a production-ready implementa-
tion. Experimental evaluation shows that the approach enables cloud services
to remain responsive despite cascading failures. Moreover, when compared to
Shortest Queue First (SQF), believed to be near-optimal in the non-adaptive
case, our algorithms improve user experience by 5%, with high statistical sig-
nificance, while preserving response time predictability.

© 2014 IEEE. Originally published in 33rd IEEE Symposium on Reliable Dis-
tributed Systems, Nara, Japan, 2014. Reprinted with permission.

99

Paper V. Improving Cloud Service Resilience using Brownout-Aware . . .

1. Introduction

Due to their ever-increasing scale and complexity, hardware failures in cloud com-
puting infrastructures are the norm rather than the exception [Barroso and Hölzle,
2009; Guan and Fu, 2013]. This is why Internet-scale interactive applications – also
called services – such as e-commerce websites, include replication early in their
design [Hamilton, 2007]. This makes the service not only more scalable, i.e., more
users can be served by adding more replicas, but also more resilient to failures: In
case a replica fails, other replicas can take over. In a replicated setup, a single or
replicated load-balancer is responsible for monitoring replicas’ health and directing
requests as appropriate. Indeed, this practice is well established and can successfully
deal with failures as long as computing capacity is sufficient [Hamilton, 2007].

However, failures in cloud infrastructures are often correlated in time and
space [Gallet et al., 2010; Yigitbasi et al., 2010]. Therefore, it may be economically
inefficient for the service provider to provision enough spare capacity for dealing
with all failures in a satisfactory manner. This means that, in case correlated failures
occur, the service may saturate, i.e., it can no longer serve users in a timely manner.
This in turn leads to dissatisfied users, that may abandon the service, thus incurring
long-term revenue loss to the service provider. Note that the saturated service causes
infrastructure overload, which by itself may trigger additional failures [Chuah et al.,
2013], thus aggravating the initial situation. Hence, a mechanism is required to deal
with rare, cascading failures, that feature temporary capacity shortage.

A promising self-adaptation technique that would allow dealing with this is-
sue is brownout [Klein et al., 2014]. In essence, a service is extended to serve re-
quests in two modes: with mandatory content only, such as product description in
an e-commerce website, and with both mandatory and optional content, such as
recommendations of similar products. Serving more requests with optional content,
increases the revenue of the provider [Fleder et al., 2010], but also the capacity
requirements of the service. A carefully designed controller decides the ratio of re-
quests to serve with optional content, so as to keep the response time below the
user’s tolerable waiting time [Nah, 2004]. From the data-center’s point-of-view, the
service modulates its capacity requirements to match available capacity.

Brownout has been successfully applied to services featuring a single replica.
Extending it to multiple replicas needs to be done carefully: The self-adaptation of
each replica may confuse commonly used load-balancing algorithms (Section 2).

In this paper we enhance the resilience of replicated services through brown-
out. In other words, the service performs better at hiding failures from the user,
as measured in the number of timeouts a user would observe. As a first step, a
commonly-used load-balancing algorithm, Shortest Queue First (SQF), proved ad-
equate for most scenarios. However, we found a few corner cases where the perfor-
mance of the load-balancer could be improved using two novel, queue-length-based,
brownout-aware algorithms that are fully event-driven.

100

2 Background and Motivation

Our contribution is three-fold:

1. We present two novel load-balancing algorithms, specifically designed for
brownout services (Section 3.1).

2. We provide a production-ready brownout-aware load-balancer (Section 3.2).

3. We compare fault-tolerance without and with brownout, and existing load-
balancing algorithms to our novel ones (Section 4).

Results show that the resulting service can tolerate more replica failures and
that the novel load-balancing algorithms improve the number of requests served
with optional content, and thus the revenue of the provider by up to 5%, with high
statistical significance. Note that SQF is thought to be near-optimal, in the sense that
it minimizes average response time for non-adaptive services [Gupta et al., 2007].

To make our results reproducible and foster further research on improved re-
silience through brownout, we make all source code available online1.

2. Background and Motivation

In this section we provide the relevant background and define the challenge to ad-
dress with respect to previous contributions.

2.1 Single Replica Brownout Services
To provide predictable performance in cloud services, the brownout paradigm
[Klein et al., 2014] relies on a few, minimally intrusive code changes (e.g., 8 lines of
code) and an online adaptation strategy that controls the response time of a single-
replica based service. The service programmer builds a brownout-compliant cloud
service breaking the service code into two distinct subsets: Some functions are
marked as mandatory, while others as optional. For example, in an e-commerce
website, retrieving the characteristics of a product from the database can be seen as
mandatory – a user would not consider the response useful without this information
– while obtaining comments and recommendations of similar products can be seen
as optional – this information enhances the quality of experience of the user, but the
response is useful without them.

For a brownout-compliant service, whenever a request is received, the manda-
tory part of the response is always computed, whereas the optional part of the re-
sponse is produced only with a certain probability given by a control variable, called
the dimmer value. Not executing the optional code reduces the computing capac-
ity requirements of the service, but also degrades user experience. Clearly, the user
would have a better experience seeing optional content, such as related products
and comments from other users. However, in case of overload and transient failure

1 https://github.com/cloud-control/brownout-lb-lighttpd

101

Paper V. Improving Cloud Service Resilience using Brownout-Aware . . .

conditions, it is better to obtain partial information than to have increased response
times or no response, due to insufficient capacity.

Keeping the service responsive is done by adjusting the probability of execut-
ing the optional components [Klein et al., 2014]. Specifically, a controller monitors
response times and adjusts the dimmer value to keep the 95th percentile response
time observed by the users around a certain setpoint. Focusing on 95th percentile
instead of average, allows more users to receive a timely response, hence improve
their satisfaction [DeCandia et al., 2007]. A setpoint of 1 second can be used, to
leave a safety margin to the user’s tolerable waiting time, estimated to be around
4 seconds [Nah, 2004]. While the initial purpose of the brownout control was to en-
hance the service’s tolerance to a sudden increase in popularity, it also significantly
improves responsiveness during infrastructure overload phases, when the service is
not allocated enough capacity to manage the amount of incoming requests without
degrading the user experience. However, the brownout approach was used only in
services composed of a single replica, thus the service could not tolerate hardware
failures.

Let us briefly describe the design of the controller. Denoting the dimmer value
with Θ and using a simple and useful model, we assume that the 95th percentile
response time of the service, measured at regular time intervals, follows the equation

t(k+1) = α(k) ·Θ(k)+δ t(k), (1)

i.e., the 95th percentile response time t(k + 1) of all the requests that are served
between time index k and time index k + 1 depends on a time varying unknown
parameter α(k) and can have some disturbance δ t(k) that is a priori unmeasurable.
α(k) takes into account how the dimmer Θaffects the response time, while δ t(k) is
an additive correction term that models variations that do not depend on the dimmer
choice — for example, variation in retrieval time of data due to cache hit or miss.
Notice that the used model ignores the time needed to compute the mandatory part
of the response, but it captures the service behavior enough for the control action
to be useful. The controller design aims for canceling the disturbance δ t(k) and
selecting the value of Θ(k) so that the 95th percentile response time would be equal
to the setpoint value.

With a control-theoretical analysis [Klein et al., 2014], it is possible to select the
dimmer value to provide some guarantees on the service behavior. The selection is
based on the adaptive proportional and integral controller

Θ(k+1) = Θ(k)+
1− p1

α̃(k)
· e(k), (2)

where the value α̃(k) is an estimate of the unknown parameter α(k) computed with
a Recursive Least Square (RLS) filter. The error e(k) is the difference measured at
time index k between the setpoint for the response time and its measured value, p1 is
a parameter of the controller, that allows to trade reactivity for robustness. A formal

102

2 Background and Motivation

clients load-balancer ...

replica1

replican

...

controller1

controllern

λ
λ1

λn

t1

θ1

tn

θn
Figure 1. Architecture of a brownout cloud service featuring multiple replicas.

analysis of the guarantees provided by the controller and the effect of the value of
p1 can be found in [Klein et al., 2014].

Besides computing a new dimmer value, the model parameter α is re-estimated
as α̃(k), which is computed using the last estimation α̃(k− 1), the measured re-
sponse time t(k) and the current dimmer θ(k), as illustrated in the following RLS
filter equations

ε(k) = t(k)−Θ(k)α̃(k−1)

g(k) = P(k−1)Θ(k)
[

f +Θ(k)2P(k−1)
]−1

P(k) = f−1 [P(k−1)−g(k)Θ(k)P(k−1)]
α̃(k) = α(k−1)+ ε(k)g(k),

(3)

where ε is the so called “prediction error”, g is a gain factor, f is a “forgetting
factor” and P is the covariance matrix of the prediction error.

Through empirical testing on two popular cloud applications, RUBiS [Rice Uni-
versity Bidding System 2014] and RUBBoS, we found the following values to give
a good trade-off between reactivity and stability: p1 = 0.9 and f = 0.95. In the end,
making a single-replica cloud service brownout-compliant improves its robustness
to sudden increases in popularity and infrastructure overload.

2.2 Multiple Replica Brownout-Compliant Services
For fault tolerance, cloud services should feature multiple replicas. Figure 1 illus-
trates the software architecture that is deployed to execute a brownout-compliant
service composed of multiple replicas. Besides the addition of replica controllers
to make it brownout-compliant, the architecture is widely accepted as the reference
one for replicated cloud services [Barroso and Hölzle, 2009].

In the given cloud service architecture, access can only happen through the load-
balancer. The client requests are assumed to arrive at an unknown but measurable
rate λ . Each client request is received by the load-balancer, that forwards it to one
of the n replicas. Each replica independently decides if the request should be served
with or without the optional part. The chosen replica produces the response and
sends it back to the load-balancer, which forwards it to the original client. Since all
responses of the replicas go through the load-balancer, it is possible to piggy-back
the current value of the dimmer Θi of each replica i through the response, so that
this value can be observed by the load-balancer.

103

Paper V. Improving Cloud Service Resilience using Brownout-Aware . . .

For better decoupling and redundancy, the load-balancer does not have any
knowledge on how each replica controller adjusts Θi. Hence, the load-balancer only
stores soft state, reducing impact in case of failover to a backup load-balancer. Also,
operators can deploy our solution incrementally, first adding brownout to replicas,
then upgrading the load-balancer.

In the end, each replica i receives a fraction λi of the incoming traffic and serves
requests with a 95th percentile response time around the same setpoint of 1 second.
Each replica i chooses a dimmer Θi that depends on the amount of traffic it receives
and the computing capacity available to it. Noteworthy is the fact that by directing
too many requests to a certain replica the load-balancer may indirectly decrease the
amount of optional requests served by that replica.

Preliminary simulation results [Dürango et al., 2014] compared different load-
balancing algorithms for this architecture, such as round-robin, fastest replica first,
random and two random choices. The main result of this comparison is that load-
balancing algorithms that are based on measurements of the response times of the
single replicas are not suited to be used with brownout-compliant services, since
the replica controllers already keep the response times close to the setpoint. The
only existing algorithm that proved to work adequately with brownout-compliant
services is Shortest Queue First (SQF) [Gupta et al., 2007; Dürango et al., 2014]. It
works by tracking the number of queued requests qi on each replica and directing
the next request to the replica with the lowest qi.

However, SQF proved to be inadequate for maximizing the optional content
served, such as recommendations, hence producing lower revenues for the service
provider [Fleder et al., 2010]. Brownout-aware load-balancers do better in maximiz-
ing the optional component served. However, to date, only weight-based algorithms
were considered, where each replica gets a fraction of the incoming traffic propor-
tional to a dynamic weight. A controller periodically adjusts the weights based on
the dimmer values of each replica [Dürango et al., 2014]. Results suggested that
deciding periodically gives good results in steady-state, however, the resulting ser-
vice is not reactive enough to sudden capacity changes, as would be the case when
a replica fails.

2.3 Problem Statement
The main objective is to improve resilience of cloud services. On one hand, the ser-
vice should serve requests with a 95th percentile response time as close as possible
to the setpoint. On the other hand, the service should maximize the optional content
served.

In this paper we propose novel brownout-aware load-balancers that are event-
based, for better reactivity. We limit the comparison to SQF, since it was shown to
be the only reasonable choice to maximize optional content in brownout-compliant
services.

104

3 Design and Implementation

3. Design and Implementation

This section describes the core of our contribution, two load-balancing algorithms
and a production-ready implementation.

3.1 Brownout-Compliant Load-Balancing Algorithms
Here we discuss two brownout-compliant control-based load-balancing algorithms.
Those are based on some ideas presented in [Dürango et al., 2014], but with two
major modifications. First, all the techniques proposed in [Dürango et al., 2014] are
trying to maximize the optional content served by acting on the fraction of incoming
traffic sent to a specific replica, while here the algorithms are acting in an SQF-like
way but with queue-offsets that are dynamically changed in time. The queue-offsets
ui take into account the measured performance of each replica i in terms of dimmers,
and are subtracted from the actual value of the queue length qi so as to send the
request to the replica with the lowest qi−ui.

The second and most important modification is that in [Dürango et al., 2014]
all the algorithms run periodically, independently of the incoming traffic, while in
this paper we are considering algorithms that are fully event-driven, updating the
queue-offsets and taking a decision for each request. Therefore all gains in the two
following algorithms need to be scaled by the time elapsed since the last queue-
offsets update.

These two modifications highly improve the achieved performance, both in
terms of optional content served and response time, rendering the service more re-
active to sudden capacity changes, as is the case with failures. Let us now present
two algorithms for computing the queue-offsets ui.

PI-Based Heuristic (PIBH) Our first algorithm is based on a variant of the PI
(Proportional and Integral) controller on incremental form, which is typical in digi-
tal control theory [Landau et al., 2006]. In principle, the PI control action in incre-
mental form is based both on the variation of the dimmers value (which is related to
the proportional part), and their actual values (which is related to the integral part).

As presented above, the values of the queue offsets ui are updated every time a
new request is received by the service, according to the last values of the dimmers
Θi, piggy-backed by each replica i through a previous response, and on the queue
lengths qi, using the formula

ui(k+1) = (1− γ) [ui(k)+ γP ∆Θi(k)+ γI Θi(k)]+ γqi(k), (4)

where γ ∈ (0,1) is a filtering constant, γP and γI are constant gains related to the
proportional and integral action of the classical PI controller.

We selected γ = 0.01 and γP = 0.5 based on empirical testing. Once γ and γP are
fixed to a selected value, increasing the integral gain γI calls for a stronger action on
the load-balancing side, which means that the load-balancer would take decisions

105

Paper V. Improving Cloud Service Resilience using Brownout-Aware . . .

very much influenced by the current values of Θi, therefore greatly improving per-
formance at the cost of a more aggressive control action. On the contrary, decreasing
γI would smooths the control action, possibly resulting in performance loss due to a
slower reaction time. The choice of the integral gain allows to exploit the trade-off
between performance and robustness. For the experiments we chose γI = 5.0.

Equality Principle-Based Heuristic (EPBH) The second algorithm is based on
the heuristic that the system will perform well in a situation when all replicas have
the same dimmer value. By comparing Θi for each replica i with the mean dimmer
of all replicas, a carefully designed update rule can deduce which replica should
receive more load, in order to drive all dimmer to equality. The queue offsets can
thus be updated as

ui(k+1) = ui(k)+ γe

(
Θi(k)−

1
n

n

∑
j=1

Θ j(k)

)
, (5)

where γe is a constant gain. The gain decides how fast the controller should act.
Based on empirical tuning we chose γe = 0.1.

Since the implementation only updates the dimmer measurements in the load
balancer when responses are sent, EPBH risks ending up in a situation where a
replica gets completely starved. To remedy this, the algorithm first chooses a ran-
dom empty replica (qi = 0) if there are any, otherwise chooses the replica with the
lowest qi−ui, as described above.

3.2 Implementation
In order to show the practical applicability of the two algorithms and evaluate their
performance, we decided to implement them in an existing load-balancing software.
We chose lighttpd2, a popular open-source web server and load-balancing soft-
ware, that features good scalability, thanks to an event-driven design. lighttpd
already included all necessary prerequisites, such as HTTP request forwarding,
HTTP response header parsing, replica failure detection and the state-of-the-art
queue-length-based SQF algorithm. HTTP response header parsing allowed us to
easily implement dimmer piggy-backing through the custom X-Dimmer HTTP re-
sponse header, with a small overhead of only 20 bytes. In the end, we obtained a
production-ready brownout-aware load-balancer implementation featuring the two
algorithms, with less than 180 source lines of C code3.

4. Empirical Evaluation

In this section we show through real experiments the benefits in terms of resilience
that can be obtained through our contribution. First, we describe our experimental

2 http://www.lighttpd.net/
3 https://github.com/cloud-control/brownout-lb-lighttpd

106

4 Empirical Evaluation

setup. Next, we show the benefits that brownout can add to a replicated cloud service
which uses the state-of-the-art load-balancing algorithm, SQF. Finally, we show the
improvements that can be made using our brownout-specific load-balancing algo-
rithms.

4.1 Experimental Setup
Experiments were conducted on a single physical machine equipped with two AMD
Opteron™ 6272 processors4 and 56GB of memory. To simulate a typical cloud en-
vironment and allow us to easily fail and restart replicas, we use the Xen hypervi-
sor [Barham et al., 2003]. Each replica is deployed with all its tiers – web server
and database server – inside its own VM, as is commonly done in practice [Sri-
panidkulchai et al., 2010], e.g., using a LAMP stack [Tutorial: Installing a LAMP
Web Server 2013]. Each VM was configured with a static amount of memory, 6GB,
enough to hold all processes and the database in-memory, and a number of virtual
cores depending on the experiment.

Inside each replica we deployed an identical copy of RUBiS [Rice University
Bidding System 2014], an eBay-like e-commerce prototype, that is widely-used for
cloud benchmarking [Gong et al., 2010; Shen et al., 2011; Zheng et al., 2009; Stew-
art and Shen, 2005; Vasić et al., 2012; Stewart et al., 2007; Chen et al., 2007].
RUBiS was already brownout-compliant, thanks to a previous contribution [Klein
et al., 2014] and adding piggy-backing of the dimmer value was trivial5. The replica
controllers are configured the same, with a target 95th percentile response time of
1 second. To avoid having to deal with synchronization or consistency issues, we
only used a read-only workload. However, adding consistency to replicated services
is well-understood [Diegues and Romano, 2013; Cooper et al., 2010; Ardekani et
al., 2013] and, in case of RUBiS, would only require an engineering effort. The
load-balancer, i.e., lighttpd extended with our brownout-aware algorithms, was
deployed inside the privileged VM in Xen, i.e., Dom0, pinned to a dedicated core.

To generate the workload, we had to choose between three system models:
open, closed or partly-open [Schroeder et al., 2006]. In an open system model,
typically modeled as Poisson process, requests are issued with an exponentially-
random inter-arrival time, characterized by a rate parameter, without waiting for
requests to actually complete. In contrast, in a closed system model, a number of
users access the service, each executing the following loop: issue a request, wait
for the request to complete, “think” for a random time interval, repeat. The result-
ing average request inter-arrival time is the sum of the average think-time and the
average response time of the service, hence dependent on the performance of the
evaluated service. A partly-open system model is a mixture between the two: Users
arrive according to a Poisson process and leave after some time, but behave closed

4 2100MHz, 16 cores per processor, no hyper-threading.
5 https://github.com/cloud-control/brownout-lb-rubis

107

Paper V. Improving Cloud Service Resilience using Brownout-Aware . . .

while in the system. As with the closed model, the inter-arrival time depends on the
performance of the evaluated system.

We chose to use an open system model workload generator. Since its behavior
does not depend on the performance of the service, this allows us to eliminate a fac-
tor potentially contributing to noise when comparing our contribution to competing
approaches. We extended this model to include timeouts, as required to emulated
users’ tolerable waiting time of 4 seconds [Nah, 2004].

Given our chosen model and the need to measure brownout-specific behavior,
the workload generator provided with RUBiS was insufficient for three reasons.
First, RUBiS’s workload generator uses a closed system model, without timeouts.
Second, it only reports statistics for the whole experiment and does not export the
time series data, preventing us from observing the service’s behavior during tran-
sient phases. Finally, the tool cannot measure the number of requests served with
optional content, which represents the quality of the user-experience and the rev-
enue of the service provider. Therefore, we extended our own workload generator,
httpmon6, as required.

We made sure that the results are reliable and unbiased as follows:

• replicas were warmed up before each experiment, i.e., all virtual disk content
was cached in the VM’s kernel;

• replicas were isolated performance-wise by pinning each virtual core to its
own physical core;

• experiments were terminated after the workload generator issued the same
number of requests;

• httpmon and the lighttpd were each executed on a dedicated core;

• no non-essential processes nor cron scripts were running at the time of the
experiments.

To qualify the resilience of the service, we chose two metrics that measure how
well the service is performing in hiding failures, or, otherwise put, how strongly
the user is affected by failures. The timeout rate represents the number of requests
per second that were not served by the service within 4 seconds, due to overload.
In production, a request that timed out will make a user unhappy. She may leave
the service to join other competitors, thus incurring long-term losses to the ser-
vice provider. The optional content ratio represents the percentage of requests
served with optional content. Serving a request with optional content, such as rec-
ommendations of similar products, may increase the service provider’s revenue by
50% [Fleder et al., 2010]. Therefore, a request served without optional content also
represents a revenue loss to the provider, albeit, a smaller one than the long-term

6 https://github.com/cloud-control/httpmon

108

4 Empirical Evaluation

0
50

100
150
200
250

Replica 4
fails

Replica 3
fails

Replica 2
fails

Replica 1
fails

Replica 1
restored

Replica 2
restored

Replica 3
restored

Replica 4
restored

Only replica 0 during this interval

no
n-

br
ow

no
ut

Ti
m

eo
ut

s
[r

eq
/s

]

25
50
75
100

O
pt

io
na

lC
on

te
nt

R
at

io
[%

]

100 200 300 400 500 600 700 800 900
0

50
100
150
200
250

Time [s]

br
ow

no
ut

Ti
m

eo
ut

s
[r

eq
/s

]

timeouts [req/s] 25
50
75
100

O
pt

io
na

lC
on

te
nt

R
at

io
[%

]

optional content ratio [%]

Figure 2. Experimental results comparing resilience without and with brownout.
Configuration: 5 replicas, each having 4 cores.

loss incurred by a timeout. Ideally, the service should strive to maximize the op-
tional content ratio, without causing timeouts. Finally, to give insight into the sys-
tem’s behavior, we also report the response time, i.e., the time it took to serve a
request from the user’s perspective, including the time required to traverse the load-
balancer.

4.2 Resilience without and with Brownout
In this section, we show through experiments how brownout can increase resilience,
even if used with a brownout-unaware load-balancing algorithm, such as SQF. To
this end, we expose both a non-brownout and a brownout service to cascading fail-
ures and their recovery. The experiment starts with 5 replicas, each being allocated
4 cores, i.e., the service is allocated a total computing capacity of 20 cores. Every
100 seconds a replica crashes until only a single one is active. Then, every 100 sec-
onds a replica is restored. Crashing and restoring replicas are done by respectively
killing and restarting both the web server and the database server of the replica.

We plot the timeout ratio and the optional content ratio. Note that, for the service
without brownout, the ratio of optional content is fixed at 100%, whereas the service
featuring brownout this quantity is adapted based on the available capacity, i.e., the
number of available replicas. To focus on the behavior of the service due to failure,
we kept the request-rate constant at 200 requests per second. Note that, the replicas

109

Paper V. Improving Cloud Service Resilience using Brownout-Aware . . .

were configured with enough soft resources (file descriptors, sockets, etc.) to deal
with 2500 simultaneous requests. We ran several experiments in different conditions
and always obtained similar results. Therefore, to better highlight the behavior of the
service as a function of time, we present the results of a single experiment instance
as time series.

Figure 2 show the results. One can observe that the non-brownout service per-
forms well even with 2 failed replicas, from time 0 to 300. Indeed, there are no
timeouts and all requests are served with optional content. lighttpd already in-
cludes code to retry a failing requests on a different replica, hence hiding the failure
from the user. During this time interval, the brownout service performs almost iden-
tically, except negligible reductions in optional content ratio at start-up and when a
replica fails, until the replica controller adapts to the new conditions.

However, starting with time 300, when the third replica fails, the non-brownout
service behaves poorly. Computing capacity is insufficient to serve the incoming
requests fast enough and response time starts increasing. A few seconds later the
service is saturated and almost all incoming requests time out. The small oscillations
and spikes on the timeout per second plot are due to the randomness of the request
inter-arrival time in the open client model.

Even worse, when enough replicas are restored to make capacity sufficient,
the non-brownout service still does not recover. This finding may seem counter-
intuitive, but repeating the experiments also in different conditions (number of al-
located cores, different workloads, etc.) gave similar results. In our experiments, as
common practice in production environments, user timeouts are not propagating to
the service, i.e., they do not cancel pending web requests or database transactions.
Thus, the database server is essentially filled with transactions that will time out,
or that may have already timed out on the user-side. Hence, all computing capacity
is wasted on “rotten” requests, instead of striving to serve new requests. The data-
base server continues to waste computing capacity on “rotten” requests, even after
enough replicas are restored. The non-brownout service does recover eventually,
but this takes significant time, at least 10 minutes in our experiments. Of course, in
production environments the service operator or a self-healing mechanism would
likely disable the service, kill all pending transactions on the database servers and
re-enable the service. Nevertheless, this behavior is still undesirable.

In contrast, the brownout service performs well even with few active replicas. At
time 300, when the third replica fails leading the service into capacity insufficiency,
the replica controllers detect the increase in response time and quickly reacts by
reducing the optional content ratio to around 55%. As a results, the service does not
saturate and users can continue enjoying a responsive service. At time 400 when
the fourth replica fails, capacity available to the service is barely sufficient to serve
any requests, even with zero optional content ratio. However, even in this case, the
brownout service significantly reduces the number of timeouts by keeping the op-
tional content ratio low, around 10%. Finally, when replicas are restored, the service
recovers fairly quickly. Thanks to the action of the replica controllers, the database

110

4 Empirical Evaluation

Table 1. Summary of non-brownout vs. brownout results.

Scenario Metric Non-brownout Brownout
4 cores Requests served 31.2% 99.3%
200 requests/s With optional content 31.2% 81.0%
2 cores Requests served 31.6% 99.3%
100 requests/s With optional content 31.6% 82.0%
heterogeneous Requests served 68.8% 99.5%
166 requests/s With optional content 68.8% 90.2%

servers do not fill up with “rotten” requests.
On the downside, the brownout service features some oscillations of optional

content while dealing with capacity shortage. This is due to the fact that the replica
controllers attempt to maximize the number of optional content served, risking short
increases in response time. These increases in response time are detected by the
controllers, which adapt by reducing the number of optional content served. This
process repeats, thus causing the oscillations. Except when capacity is close to being
insufficient even with optional content completely disabled, these oscillations are
harmless. Nevertheless, we are currently investigating several research directions to
mitigate them, so as to allow brownout services to function well even in extreme
capacity shortage situations.

In addition to the 4-core scenario above, we devised two other experimental sce-
narios to confirm our findings, as summarized in Table 1. In the 2-core scenario, we
configured each replica with 2 cores, while in the heterogeneous scenario the num-
ber of cores for each replica is 8, 8, 1, 1, 1, respectively. In both scenarios, we scaled
down the request-rate to maintain the same request-rate per core as in the 4-core sce-
nario. Noteworthy is that in the heterogeneous scenario, the non-brownout service
recovered faster than in the 4-core and 2-core scenarios. This can be observed by
comparing the difference between the percentage of requests served by the brown-
out service and the non-brownout service among the three scenarios. Nevertheless,
the key findings still hold.

In summary, adding brownout to a replicated service improves its resilience,
even when using a brownout-unaware load-balancing algorithm. The increase in
resilience that can be obtained is specific to each service and depends on the ratio
between the maximum throughput with optional content disabled and the one with
optional content enabled. Hence, by measuring these two values a cloud service
provider can either estimate the increase in resilience during capacity shortages
given the current version of the service, or may decide to develop a new version
of the service, with more content marked as optional, so as to reach the desired
level of resilience.

111

Paper V. Improving Cloud Service Resilience using Brownout-Aware . . .

4.3 SQF vs. Brownout-Aware Load-Balancers
In this section, we compare the two brownout-aware load-balancing algorithms
proposed herein, i.e., PIBH and EPBH, to the best brownout-unaware one,
SQF [Dürango et al., 2014]. We shall use the word better in the sense that we
have statistical evidence that the average performance is significantly higher with a
p-value smaller than 0.01, by performing a Welch two sample t-test [Welch, 1947]
on the optional component served and on the response time. In other words, the
probability that the difference is due to chance is less than 1%. Analogously, we
use the word similarly to denote that the difference is not statistically significant.

For thorough comparison, we tested the three algorithms using a series of sce-
narios, each having a certain pattern of request rate over time and amount of cores
allocated to each replica. Each scenario was executed several times, to collect
enough results to draw statistically significant conclusions. We were unable to find
any scenario in which SQF would perform better, which supports the hypothesis
that our algorithms are at least as good as SQF. In fact, in most scenarios, such as
those featuring high request rate variability or many replicas failing at once, SQF
performed similarly to our brownout-aware load-balancers (not shown for brief-
ness). However, we observed that in scenarios featuring capacity heterogeneity, our
algorithms performed better than SQF with respect to the optional content ratio.

As a matter of fact, in cloud computing environments, replicas may end up be-
ing allocated heterogeneous capacity, e.g., one replica is allocated 2 cores, while
another replica is allocated 8 cores. This may happen due to several factors. For ex-
ample, the cloud infrastructure provider may practice overbooking and the machine
on which a replica is hosted becomes overloaded [Tomás and Tordsson, 2013]. As
another example, previous elasticity (auto-scaling) decisions may have resulted in
heterogeneously sized replicas [Sedaghat et al., 2013]. Hence, it is of uttermost im-
portance that a load-balancing algorithm is able to deal efficiently with such cases.
As illustrated below on two scenarios, both PIBH and EPBH perform better than
SQF.

“2×1+3×8 cores” Scenario The first scenario consists of a constant request rate
of 400 requests per second. The service consists of 5 replicas, two of which are
allocated 1 core, while the other three are allocated 8 cores. This scenario leaves
the service with insufficient capacity to serve all requests with optional content.
Furthermore, the constant workload and capacity allows us to eliminate sources
of noise and obtain statistically significant results with 30 experiments for each
algorithm, a total of 90 experiments.

Figure 3 presents the results of the first scenario as scatter plots: The x-axis rep-
resents response time (average and 95th percentile respectively in the top and the
bottom graph), while the y-axis represents optional content ratio, each experiment
being associated with a point. The results of the paired t-test comparing the optional
content ratio of the three algorithms are presented in Table 2. As can be observed,
when compared to SQF, the novel brownout-aware algorithms PIBH and EPBH

112

4 Empirical Evaluation

Table 2. Improvement in amount of optional content served, after 120000 requests
(summary of Figure 3, “2×1+3×8 cores” scenario).

Algorithms (# Optional Content) Impr. Statistical Conclusion
PIBH (105646) SQF (100273) 5.34% PIBH significantly

better (p < 10−15)
EPBH (104816) SQF (100273) 4.52% EPBH significantly

better (p < 10−15)

improve optional content ratio by 5.34% and 4.52%, respectively, with a high sig-
nificance (low p-value). This is due to the fact that the brownout-aware algorithms
are able to exploit the replicas with a higher optional content ratio, at the expense
of somewhat higher response times. Slightly increasing the average response time
(Figure 3 top) yet improving the optional content served to the end user is an ac-
ceptable tradeoff, also considering that we have control on the target 95th percentile
of the response time (Figure 3 bottom).

Recall that the replica controllers are configured with a target response time of
1 second. Furthermore, improved optional content ratio does not interfere with the
self-adaptation of the replicas. As can be seen in Figure 3, all three algorithms obtain
a similar distribution of response times. In Table 3 the paired t-test is applied also to
the 95th percentile of the response time. The results confirm that PIBH behaves in
a similar way with respect to the SQF, but producing better performance in terms of
optional content served. When comparing EPBH to SQF, the average 95th percentile
is 42ms higher in the former with quite a low p-value. However, it is to be noticed
that the setpoint for the 95th percentile is set to 1 second, which is way higher than
all of the presented results. Thus, the higher 95th percentile response time is not a
concern.

“3×1+2×8 cores” Scenario For the second scenario, we maintain the same re-
quest rate, but configure three replicas with 1 core and two replicas with 8 cores.
This means that the service has even less capacity available than in the first sce-
nario, thus being forced to further reduce the optional content ratio. Scatter plots
of response time and optional content ratio are presented in Figure 4, analogously
to the previous scenario, while pair-wise comparison of algorithms is presented in

Table 3. Improvement in amount of 95th percentile of the response time (summary
of Figure 3, “2×1+3×8 cores” scenario).

Algorithms (95th perc. [ms]) Impr. Statistical Conclusion
PIBH (637ms) SQF (648ms) -1.7% PIBH and SQF similar

(p = 0.992)
EPBH (690ms) SQF (648ms) 6.4% SQF significantly better

(p < 10−9)

113

Paper V. Improving Cloud Service Resilience using Brownout-Aware . . .

140 160 180 200 220 240 260 280 300
80

82

84

86

88

90

Average response time [ms]

O
pt

io
na

lc
on

te
nt

ra
tio

[%
]

SQF
PIBH
EPBH

600 700 800 900 1,000 1,100 1,200
80

82

84

86

88

90

95th percentile of the response time [ms]

O
pt

io
na

lc
on

te
nt

ra
tio

[%
]

SQF
PIBH
EPBH
Target

Figure 3. Comparison of SQF and brownout-aware load-balancing algorithms
when two replicas have 1 core and three replicas have 8 cores.

Table 4. PIBH and EPBH outperform SQF with respect to optional content ratio by
5.17% and 3.13%, respectively.

Again, this is achieved without interfering with the self-adaptation of the repli-
cas: 95th percentile response times are distributed similarly for all three algorithms
close to the target. This is also proven by the paired t-test presented in Table 5,
where both PIBH and EPBH appear to be comparable with SQF in terms of 95th
percentile of the response time. In this case, since the capacity of the system is re-
duced, this quantity is increased, but on average still lower than the setpoint (set to
1 second). The same holds for the average response time, which is slightly increased
with respect to the previous scenario.

4.4 Discussion
To sum up, our novel brownout-aware load-balancing algorithms perform at least
as well as or outperform SQF by up to 5% in terms of optional content served,
with a high statistical significance. This improvement translates into better quality

114

4 Empirical Evaluation

140 160 180 200 220 240 260 280 300
60

65

70

75

Average response time [ms]

O
pt

io
na

lc
on

te
nt

ra
tio

[%
]

SQF
PIBH
EPBH

600 700 800 900 1,000 1,100 1,200
60

65

70

75

95th percentile of the response time [ms]

O
pt

io
na

lc
on

te
nt

ra
tio

[%
]

SQF
PIBH
EPBH
Target

Figure 4. Comparison of SQF and brownout-aware load-balancing algorithms
when three replicas have 1 core and two replicas have 8 cores.

Table 4. Improvement in amount of optional content served, after 120000 requests
(summary of Figure 4, “3×1+2×8 cores” scenario).

Algorithms (# Optional Content) Impr. Statistical Conclusion
PIBH (83360) SQF (79244) 5.17% PIBH significantly

better (p < 10−15)
EPBH (81735) SQF (79244) 3.13% EPBH significantly

better (p < 10−15)

of experience for users and increased revenue for the service provider. Hence, our
contribution helps cloud services to better hide failures leading to capacity short-
ages, in other words, services are more resilient.

Noteworthy is that the competitor, SQF has been found to be near-optimal with
respect to response time for non-adaptive services [Gupta et al., 2007]. Thus, be-
sides improving resilience of cloud services, our contribution may be of interest

115

Paper V. Improving Cloud Service Resilience using Brownout-Aware . . .

Table 5. Improvement in amount of 95th percentile of the response time
(summary of Figure 4, “3×1+2×8 cores” scenario).

Algorithms (95th perc. [ms]) Impr. Statistical Conclusion
PIBH (963ms) SQF (959ms) 0.4% PIBH and SQF similar

(p = 0.3778)
EPBH (969ms) SQF (959ms) 1.0% EPBH and SQF similar

(p = 0.2265)

to other communities, to discover the limits of SQF, and sketch a possible way to
design new dynamic load-balancing algorithms.

5. Related Work

The challenge of building reliable distributed systems consists in providing various
safety and liveness guarantees while the system is subject to certain classes of fail-
ures. Our contribution closely relates to multi-graceful degradation [Lin and Kulka-
rni, 2013], in which the requirements that the service guarantees vary depending on
the magnitude of the failure. However, due to the conflicting nature of requirements
– maintaining maximum response time and maximizing optional content served, in
the presence of noisy request servicing times – brownout does not provide formal
guarantees. Instead, thanks to control-theoretical tools, the service is driven to a
state to increase likelihood of meeting its requirements.

Brownout can be seen as a model revision, i.e., an existing service is ex-
tended to provide new guarantees. Specifically, we deal with crashes but also with
limplocks [Do et al., 2013], the latter implying that a machine is working, but slower
than expected.

In the context of self-stabilization, a new metric has been proposed to mea-
sure the recovery performance of an algorithm, the expected number of recovery
steps [Fallahi et al., 2013]. An equivalent metric, the number of control decisions to
recovery, could be used by a service operator for tuning the service to the expected
capacity drop and the request servicing time of the replicas.

Our contribution is designed to deal with failures reactively. Failure predic-
tion [Guan and Fu, 2013], if accurate enough, could be used as a feed-forward
signal to improve reactivity and reduce the number of timeouts after a sudden drop
in computing capacity.

Since the service’s data has to be replicated an important issue is ensuring con-
sistency. Various algorithms have been proposed, each offering a different trade-off
between performance and guarantees [Diegues and Romano, 2013; Cooper et al.,
2010; Ardekani et al., 2013]. Our contribution is orthogonal to consistency issues,
hence our methodology can readily be applied no matter what consistency the ser-
vice requires. However, a future extension of brownout could consist in avoiding

116

6 Conclusion and Future Work

service saturation by reducing consistency.
In replicated cloud services, load-balancers have a crucial role for ensuring re-

silience but also maintain performance [Barroso and Hölzle, 2009; Hamilton, 2007].
Load-balancing algorithm can either be global (inter-data-center) or local (intra-
data-center or cluster-level). Global load-balancing decides what data-center to di-
rect a user to, depending on geographic proximity [Lin et al., 2012] or price of
energy [Doyle et al., 2013]. Once a data-center has been selected a local algorithm
directs the request to a machine in the data-center. Our contribution is of the local
type.

Various local load-balancing algorithms have been proposed. For non-adapting
replicas, Shortest Queue First (SQF) has shown to be very close to optimal, de-
spite it using little information about the state of the replicas [Gupta et al., 2007].
Our previous simulation results [Dürango et al., 2014] show that for self-adaptive,
brownout replicas, SQF performs quite well, but can be outperformed by weight-
based, brownout-aware solutions. In this article, we combine the two approaches
and produce queue-length-based, brownout-aware load-balancing algorithms and
show that they are practically applicable for improving resilience in the case of
failures leading to service capacity shortage.

6. Conclusion and Future Work

We present a novel approach for improving resilience, the ability to hide failures,
in cloud services using a combination of brownout and load-balancing algorithms.
The adoption of the brownout paradigm allows the service to autonomously reduce
computing capacity requirements by degrading user experience in order to guar-
antee that response times are bounded. Thus, it provides a natural candidate for
resilience improvement when failures lead to capacity shortages. However, state-
of-the-art load-balancers are generally not designed for self-adaptive cloud services.
The self-adaptivity embedded in the brownout service interferes with the actions of
load-balancers that route requests based on measurements of the response times of
the replicas.

In order to investigate how brownout can be used for improving resilience, we
extended the popular lighttpd web server with two new brownout-aware load-
balancers. A first set of experiments showed that brownout provides substantial ad-
vantages in terms of resilience to cascading failures, even when employing SQF, a
state-of-the-art, yet brownout-unaware, load-balancer. A second set of experiments
compared SQF to the novel brownout-aware load-balancers, specifically designed
to act on a per-request basis. The obtained results indicate that, with high statistical
significance, our proposed solutions consistently outperform the current standards:
They reduce the user experience degradation, thus perform better at hiding failures.
While designed with brownout in mind, PIBH and EPBH may be useful to load-
balance other self-adaptive cloud services, whose performance is not reflected in

117

Paper V. Improving Cloud Service Resilience using Brownout-Aware . . .

the response time or queue length.
During this investigation, we highlighted the difference between load-balancers

that act whenever a new request is received and algorithms that periodically update
the routing weights, finding out that the formers are far more effective than the latter
ones. However, the brownout paradigm periodically updates the dimmer values to
match specific requirements. A future improvement is to react faster also to events
happening at the replica level, therefore redesigning the local replica controller to be
event based. In the future, we would also like to design a holistic approach to replica
control and load-balancing, extending our replica controllers with auto-scaling fea-
tures [Ali-Eldin et al., 2012], that would allow to autonomously manage the number
of replicas, together with the traffic routing, to obtain a cloud service that is both
resilient and cost-effective. Finally, some control parameters were chosen empiri-
cally based on the many tests we have conducted. Ongoing work will quality the
robustness of the system given the chosen parameters in a more systematic way and
for a larger scenario space.

Acknowledgment

This work was partially supported by the Swedish Research Council (VR) for the
projects “Cloud Control” and “Power and temperature control for large-scale com-
puting infrastructures”, and through the LCCC Linnaeus and ELLIIT Excellence
Centers.

References

Ali-Eldin, A., J. Tordsson, and E. Elmroth (2012). “An adaptive hybrid elasticity
controller for cloud infrastructures”. In: NOMS. IEEE. DOI: 10.1109/NOMS.
2012.6211900.

Ardekani, M. S., P. Sutra, and M. Shapiro (2013). “Non-monotonic snapshot isola-
tion: scalable and strong consistency for geo-replicated transactional systems”.
In: SRDS. IEEE. DOI: 10.1109/SRDS.2013.25.

Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, and A. Warfield (2003). “Xen and the art of virtualization”. In: SOSP.
ACM. DOI: 10.1145/945445.945462.

Barroso, L. A. and U. Hölzle (2009). The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines. Morgan & Claypool.

Chen, Y., S. Iyer, X. Liu, D. Milojicic, and A. Sahai (2007). “SLA decomposition:
translating service level objectives to system level thresholds”. In: ICAC. IEEE.
DOI: 10.1109/ICAC.2007.36.

118

References

Chuah, E., A. Jhumka, S. Narasimhamurthy, J. Hammond, J. C. Browne, and B.
Barth (2013). “Linking resource usage anomalies with system failures from
cluster log data”. In: SRDS. DOI: 10.1109/SRDS.2013.20.

Cooper, B. F., A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears (2010).
“Benchmarking cloud serving systems with YCSB”. In: SoCC. ACM. DOI:
10.1145/1807128.1807152.

DeCandia, G., D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels (2007). “Dynamo: Amazon’s
highly available key-value store”. SIGOPS Oper. Syst. Rev. 41:6. DOI: 10 .
1145/1323293.1294281.

Diegues, N. L. and P. Romano (2013). “Bumper: sheltering transactions from con-
flicts”. In: SRDS. IEEE. DOI: 10.1109/SRDS.2013.27.

Do, T., M. Hao, T. Leesatapornwongsa, T. Patana-anake, and H. S. Gunawi (2013).
“Limplock: understanding the impact of limpware on scale-out cloud systems”.
In: SoCC. DOI: 10.1145/2523616.2523627.

Doyle, J., R. Shorten, and D. O’Mahony (2013). “Stratus: load balancing the cloud
for carbon emissions control”. TCC 1:1. DOI: 10.1109/TCC.2013.4.

Dürango, J., M. Dellkrantz, M. Maggio, C. Klein, A. V. Papadopoulos, F.
Hernández-Rodriguez, E. Elmroth, and K.-E. Årzén (2014). “Control-
theoretical load-balancing for cloud applications with brownout”. In: Con-
ference on Decision and Control (CDC). IEEE.

Fallahi, N., B. Bonakdarpour, and S. Tixeuil (2013). “Rigorous performance evalu-
ation of self-stabilization using probabilistic model checking”. In: SRDS. DOI:
10.1109/SRDS.2013.24.

Fleder, D., K. Hosanagar, and A. Buja (2010). “Recommender systems and their
effects on consumers”. In: Electronic Commerce. DOI: 10.1145/1807342.
1807378.

Gallet, M., N. Yigitbasi, B. Javadi, D. Kondo, A. Iosup, and D. H. J. Epema (2010).
“A model for space-correlated failures in large-scale distributed systems”. In:
Euro-Par. DOI: 10.1007/978-3-642-15277-1_10.

Gong, Z., X. Gu, and J. Wilkes (2010). “PRESS: predictive elastic resource scaling
for cloud systems”. In: CNSM. IEEE. DOI: 10.1109/CNSM.2010.5691343.

Guan, Q. and S. Fu (2013). “Adaptive anomaly identification by exploring metric
subspace in cloud computing infrastructures”. In: SRDS. DOI: 10.1109/SRDS.
2013.29.

Gupta, V., M. Harchol Balter, K. Sigman, and W. Whitt (2007). “Analysis of join-
the-shortest-queue routing for web server farms”. Perform. Eval. 64:9-12. DOI:
10.1016/j.peva.2007.06.012.

Hamilton, J. (2007). “On designing and deploying internet-scale services”. In: LISA.
USENIX, 18:1–18:12.

119

Paper V. Improving Cloud Service Resilience using Brownout-Aware . . .

Klein, C., M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez (2014). “Brown-
out: building more robust cloud applications”. In: ICSE. DOI: 10 . 1145 /
2568225.2568227.

Landau, I. D., Y. D. Landau, and G. Zito (2006). Digital control systems: design,
identification and implementation. Springer.

Lin, M., Z. Liu, A. Wierman, and L. L. H. Andrew (2012). “Online algorithms for
geographical load balancing”. In: IGCC. IEEE. DOI: 10.1109/IGCC.2012.
6322266.

Lin, Y. and S. S. Kulkarni (2013). “Automated multi-graceful degradation: a case
study”. In: SRDS. DOI: 10.1109/SRDS.2013.17.

Nah, F. F.-H. (2004). “A study on tolerable waiting time: how long are web users
willing to wait?” Behaviour and Information Technology 23:3.

Rice University Bidding System (2014). URL: http://rubis.ow2.org.
Schroeder, B., A. Wierman, and M. Harchol-Balter (2006). “Open versus closed: a

cautionary tale”. In: NSDI. USENIX.
Sedaghat, M., F. Hernandez-Rodriguez, and E. Elmroth (2013). “A virtual machine

re-packing approach to the horizontal vs. vertical elasticity trade-off for cloud
autoscaling”. In: CAC. ACM. DOI: 10.1145/2494621.2494628.

Shen, Z., S. Subbiah, X. Gu, and J. Wilkes (2011). “CloudScale: elastic resource
scaling for multi-tenant cloud systems”. In: SoCC. ACM. DOI: 10 . 1145 /
2038916.2038921.

Sripanidkulchai, K., S. Sahu, Y. Ruan, A. Shaikh, and C. Dorai (2010). “Are clouds
ready for large distributed applications?” SIGOPS Oper. Syst. Rev. 44:2. DOI:
10.1145/1773912.1773918.

Stewart, C. and K. Shen (2005). “Performance modeling and system management
for multi-component online services”. In: NSDI. USENIX, pp. 71–84.

Stewart, C., T. Kelly, and A. Zhang (2007). “Exploiting nonstationarity for perfor-
mance prediction”. In: EuroSys. ACM. DOI: 10.1145/1272998.1273002.

Tomás, L. and J. Tordsson (2013). “Improving cloud infrastructure utilization
through overbooking”. In: CAC. ACM. DOI: 10.1145/2494621.2494627.

Tutorial: Installing a LAMP Web Server (2013). URL: http : / / docs . aws .
amazon.com/AWSEC2/latest/UserGuide/install-LAMP.html.

Vasić, N., D. Novaković, S. Miučin, D. Kostić, and R. Bianchini (2012). “De-
jaVu: accelerating resource allocation in virtualized environments”. In: ASP-
LOS. ACM. DOI: 10.1145/2189750.2151021.

Welch, B. (1947). “The generalization of ‘student’s’ problem when several differ-
ent population variances are involved”. Biometrika 34:1-2. DOI: 10 . 1093 /
biomet/34.1-2.28.

120

References

Yigitbasi, N., M. Gallet, D. Kondo, A. Iosup, and D. H. J. Epema (2010). “Analysis
and modeling of time-correlated failures in large-scale distributed systems”. In:
GRID. DOI: 10.1109/GRID.2010.5697961.

Zheng, W., R. Bianchini, G. J. Janakiraman, J. R. Santos, and Y. Turner (2009). “Jus-
tRunIt: experiment-based management of virtualized data centers”. In: ATC.
USENIX, pp. 18–28.

121

Paper VI

Model-Based Deadtime Compensation of
Virtual Machine Startup Times

Manfred Dellkrantz Jonas Dürango Anders Robertsson
Maria Kihl

Abstract

Scaling the amount of resources allocated to an application according to
the actual load is a challenging problem in cloud computing. The emergence
of autoscaling techniques allows for autonomous decisions to be taken when
to acquire or release resources. The actuation of these decisions is however
affected by time delays. Therefore, it becomes critical for the autoscaler to
account for this phenomenon, in order to avoid over- or under-provisioning.

This paper presents a delay-compensator inspired by the Smith predictor.
The compensator allows one to close a simple feedback loop around a cloud
application with a large, time-varying delay, preserving the stability of the con-
trolled system. It also makes it possible for the closed-loop system to converge
to a steady-state, even in presence of resource quantization. The presented ap-
proach is compared to a threshold-based controller with a cooldown period,
that is typically adopted in industrial applications.

Originally published in 10th International Workshop on Feedback Computing, Seat-
tle, Washington, USA, 2015.

123

Paper VI. Model-Based Deadtime Compensation of . . . Startup Times

1. Introduction

1.1 Background
Cloud computing has in the recent years become the standard for quickly deploying
and scaling Internet applications and services, as it gives customers access to com-
putational resources without the need for capital investments. In the Infrastructure
as a Service (IaaS) service model, cloud providers rent resources to customers in
the form of physical or virtual machines (VMs), which can then be configured by
the customers to run their specific application. For a cloud customer aiming at pro-
viding a service available to the public, this poses the challenge of renting enough
resources for the service to remain available and provide high quality of service
(QoS), and the cost of allocating too much resources. Pair this with a workload that
is time-varying due to trends, weekly and diurnal access patterns and the challenge
becomes more complex.

For this reason, to cope with varying load, cloud services often make use of
autoscaling, where decisions to adjust resource allocation are made autonomously
based on measurements of relevant metrics. There is currently a plethora of different
autoscaling solutions available, reaching from simple threshold-based to highly so-
phisticated based on for example control theory or machine learning. The solutions
are commonly categorized as either reactive or proactive to their nature. In the for-
mer case, decisions are based on current metric measurements relevant to the load
of the cloud service, while in the latter case on a prediction of where the metrics are
heading.

Both approaches have in common that they usually do not distinguish between
cases where the metrics are only indirectly related to the actual QoS of the cloud
service, such as the arrival rate, or metrics that are directly coupled to the QoS,
such as response times. From a control theoretical point of view, we could therefore
further categorize the first case as feedforward approaches and the second case as
feedback approaches. Feedforward control schemes can in many cases give good
performance, but generally requires excellent apriori knowledge of the system to be
controlled, and lack the ability to detect any changes or disturbances that affect the
system. Feedback solutions on the other hand are generally more forgiving when it
comes to system knowledge requirements. They can also compensate for unforeseen
changes since they base their decisions on metrics directly related to the QoS.

For cloud services, decisions to add more resources usually requires starting up
a new VM. This in turn means that the cloud provider needs to place the machine,
transfer the OS data it needs and boot it up. Overall, the time from decision to a VM
to get fully booted typically ranges from a few tens of seconds up to several minutes
[Mao and Humphrey, 2012]. The long time delays this leads to are an inherently
destabilizing factor in feedback control. The key reason is the following: long time
delays from a scale up decision to a full actuation prompts the feedback controller to
continue commanding increased resource provisioning due to the fact that it cannot

124

1 Introduction

yet see the effect of its earlier decisions.
In practice, these time delays need to be considered when designing feedback

based autoscaling solutions in order to avoid destabilizing the closed loop system.
Possible existing solution include having a low gain in the feedback loop, essen-
tially making the autoscaler very careful with continuing adding more resources be-
fore the effect of past decisions start showing up. Another solution is to implement
a so-called cooldown period, as implemented in [Amazon, 2014; Google, 2014;
Rackspace, 2014]. In autoscalers employing cooldown, any decision to scale re-
sources activates the cooldown period, during which subsequent scaling attempts
are ignored.

In the current paper, we take a different approach and adopt a solution that has
similarities to the Smith predictor, a technique commonly used in control theory for
controlling systems with long time delays. In essence, the Smith predictor works by
running a model-based simulation of the controlled system without the delays, and
use the outputs from this simulation for feedback control. Only if there is a deviation
between the true system output and a delayed version of the simulated output are
actual measurements from the real system used for control.

1.2 Related work
As cloud computing has grown more popular, the autoscaling challenge has at-
tracted attention and resulted in numerous proposed solutions, for example [Ur-
gaonkar et al., 2008; Gong et al., 2010; Shen et al., 2011]. A thorough review of
existing autoscaling solutions can be found in [Lorido-Botrán et al., 2012]. The
level at which reconfiguration delays are explicitly considered in existing autoscal-
ing solutions varies depending on the underlying assumption of the magnitude of
the delays and choice between feedforward and feedback control structures. Ali-
Eldin et al [Ali-Eldin et al., 2012] use an approach where scaling down is done
reactively and scaling up proactively, but otherwise assumes that any reconfigura-
tion decision is actuated immediately. Similarly, Lim et al [Lim et al., 2009] design
a proportional thresholding controller with hysteresis where a feedback loop from
response times to the number of allocated VMs is closed. Also here the assumption
is that VMs can be started instantaneously.

Berekmeri et al [Berekmeri et al., 2014] use an empirically identified linear
time-invariant model with a time delay to design a controller for deploying resources
in a MapReduce cluster to handle incoming work. The time delay corresponds to the
reconfiguration delay and is assumed to be constant. As shown by Mao et al [Mao
and Humphrey, 2012], VM startup times can vary heavily, both depending on ap-
plication and infrastructure.

In Gandhi et al [Gandhi et al., 2012] the authors identify reconfiguration delays
as the main reason for poor performance in many reactive and proactive approaches.
In their proposed solution, a feedback scheme from the number of concurrently run-
ning jobs in a key-value based cloud application is used for scaling up the number

125

Paper VI. Model-Based Deadtime Compensation of . . . Startup Times

of allocated physical servers. Since starting servers usually takes longer time than
shutting them off, they then pack the incoming work on as few servers as possible
and equip each server with a timer. If no requests arrive at an empty server during
the timer duration, the server is shut down.

1.3 Contribution
In this paper, we present an autoscaling solution using inspiration from the Smith
predictor. The result is a feedback controller for cloud services that can quickly
reconfigure allocated resources when faced with load variations that leads to a low-
ered QoS. It also avoids the low controller gains and cooldown solutions otherwise
commonly used in feedback autoscalers.

In section 2 we present how a cloud application can be seen as a dynamic
mapping from resources to a set of performance metrics, and the proposed delay-
compensator. In section 3 we focus on a specific case where we apply our proposed
solution to control response times. Simulation results from this scenario are shown
in section 4. Section 5 concludes the paper.

2. Delays in cloud applications

2.1 Dynamic mapping
Cloud applications can generally be regarded as software executing on a set of vir-
tualized resources. Their purpose is often to compute a response to requests made to
them. This arrival of requests, usually time-varying in its nature, generates a load on
the cloud application, which affects the performance and QoS of a cloud application
and can be quantified by a number of relevant metrics, such as response times. In
order to keep the performance metrics close to some specific value, as specified by
a service level objective (SLO), when facing time-varying load, cloud applications
are required to be reconfigurable in terms of resources allocated. We have already
outlined how a main challenge for this is the long delays when reconfiguring the de-
ployed amount of resources. Further complicating is the fact that virtual resources
usually only can be provisioned in a quantized fashion or are available in preset con-
figurations. For example, the number of VMs provisioned must be integer, memory
might only be configured in whole gigabytes, etc.

With this in mind, we view a cloud application as a dynamic mapping from
deployed resources and incoming load to a set of performance metrics. This gives
us the setup shown in Figure 1. Input is the desired amount of resources m and
outputs are the actual deployed resources mr, the metric denoted T , and also we
assume that we can measure the incoming load λ . The amount of resources also
needs quantization before being actuated.

126

2 Delays in cloud applications

Cloud
Application

Reconf.
delay

mrm

mr

T

λ

λ

Figure 1. Schematic diagram of the cloud application as a dynamic mapping from
desired amount of resources m via deployed resources mr to the performance metric
T . λ is the incoming load of the application and is assumed to measurable. The signal
m is also subject to quantization before being sent to the infrastructure.

2.2 Delay compensation
The Smith predictor [Smith, 1957] is commonly used for controlling processes with
long time delays, and was originally intended for stable, linear, time-invariant SISO
systems with a well-known constant time delay. A key assumption for the Smith
predictor is the availability of a delay-free model of the system to be controlled. Us-
ing this model, the system’s response to a given input can be predicted by running a
simulation. An identical, but delayed, simulation is also done using the model. Fi-
nally, an aggregated measurement signal T̂ that adds the output of the real system T
and the delay-free model output T2 and subtracts the delayed model output T1 can be
formed and used for designing a feedback controller. The result is a situation where
the feedback only consists of the delay-free model output if the delayed model and
system output perfectly matches each other, allowing for higher control gains. Only
when there is a mismatch between model and system is the actual system output
used for feedback control.

The Smith predictor usually assumes the actuation delays to be constant, which
however, as already mentioned, is generally not true for cloud services. For cloud
applications, the delays when reconfiguring the deployed resources are stochastic
and may even vary during the day [Mao and Humphrey, 2012]. For this reason we
modify the original formulation of the Smith predictor so that the delayed model
instead uses mr, the amount of actually deployed resources, as it is not problematic
to measure. This gives the setup shown in Figure 2.

As previously mentioned, resources can usually only be deployed in a quantized
fashion. But assuming the delay-free model can handle non-quantized amount of
resources (m), our setup also comes with the benefit that even changes in m too small
to change the output of the quantization actually has an impact on the compensated
response time T̂ through the delay-free model.

For the remainder of this paper, we focus on applying our solution to a case
where we scale the number of homogeneous VMs allocated to a cloud application
to ensure that response times are kept bounded. Note that the key assumption in
our approach is that we can model the application. Therefore the compensation

127

Paper VI. Model-Based Deadtime Compensation of . . . Startup Times

Reconf.
delay

Cloud Ap-
plication

Model
(mr,λ) 7→ T1

Model
(m,λ) 7→ T2

Σ

λ

T

+

−
T1

+

T2

T̂

m
mr

Figure 2. Smith-inspired delay-compensator for cloud applications. The delayed
model uses the measured mr from the cloud application instead using an implemen-
tation of a estimate of the delay.

should be applicable also to other types of resources and applications than the one
considered here, such as heterogeneous VMs or MapReduce jobs.

3. Response time control

In this section we present a case where the delay compensation described in 2.2
is used. The application under consideration is stateless and the VMs are assumed
to be homogeneous. A continuous time dynamic model is derived using queueing
theory and the feedback loop for controlling the mean response time is closed using
a PI controller. For comparison we also implement a threshold-based autoscaler
with cooldown based on [Amazon, 2014].

3.1 Queueing model
Queueing theory is a commonly used approach for modeling servers. For example,
in [Cao et al., 2003] measurements from web servers were found to be consistent
with an M/G/1 queueing system. In this paper we model each VM as an M/M/1
queueing system with service rate µ . Traffic is assumed to arrive to the applica-
tion according to a Poisson process with intensity λ . A load balancer is then used to
spread the traffic randomly over mr currently running VMs, leading to an arrival rate
of λ

mr
per VM. A schematic diagram of the model is shown in Figure 3. Response

times are recorded and sent to the feedback controller, responsible for reconfigura-
tion decisions. Decisions to scale up come with a stochastic startup delay for each
VM. Decisions to scale down are effective immediately, as it can be carried out by
simply reconfiguring the load balancer and terminating the VM. The quantization
effect in this case consists of a ceiling function to make sure that we get the lowest
integer value greater than the desired number of VMs.

128

3 Response time control

Load
Balancer

µλ
mr

µ
λ
mr

µ

λ
mr

T

...
λ

mr

Figure 3. Schematic diagram of the load balancing of mr running VMs.

3.2 Continuous dynamic approximation
Queueing models are generally mostly concerned with the stationary behavior of a
system. However in our case, we are also interested in the cloud application dynam-
ics. By viewing the queueing models considered here as systems of flow, we can
use the results from [Agnew, 1976; Rider, 1976; Wang et al., 1996] to formulate the
following approximative model of the dynamics of a M/M/1 queueing system:

ẋ = f (x,m,λ) = α
(

λ
m
−µ

x
x+1

)
T = g(x,m,λ) = µ−1(x+1)

(1)

where x corresponds to the queue length, λ/m the arrival rate per running VM, µ
the service rate of each VM, T the mean response time and α is a constant used
in [Rider, 1976] to better fit the transients of the model to experimental data. It
is easy to verify that the equilibrium points of the system (1) for any 0 ≤ λ < µ
coincide with the results from a stationary analysis of a M/M/1 system. In [Tipper
and Sundareshan, 1990], Tipper et al show how system (1) in the case α = 1 pro-
vides a reasonable approximation to the exact behavior of the non-stationary M/M/1
queue as found by numerically solving the corresponding Chapman-Kolmogorov
equations under certain conditions. Based on the stationary queue length and the
stationary response time of the M/M/1 we can find the output response time T of the
flow model.

From now on we will be using the system (1) and its state variable x as the
average state of all VMs. Since all virtual machines are equal it is straight-forward
to show that

˙̄x =
1
m

m

∑
i=1

ẋ≈ f (x̄,m,λ)

if we assume all xi (the states of the individual virtual machine) are the same. This
is not true for transients in newly started machines, but as an approximation it is
good enough.

Note that system (1) is not dependent on m being integer.

129

Paper VI. Model-Based Deadtime Compensation of . . . Startup Times

3.3 Control analysis
For control synthesis purposes, we linearize the system equations (1) around the
stationary point corresponding to a traffic level λ0 and response time reference Tre f ,
where we can make use of the fact that stationary queue length x0 and the stationary
number of machines m0 can be uniquely determined through the other variables as

x0 = Tre f µ−1

m0 =
Tre f λ0

Tre f µ−1

The linearization yields the following system:

∆ẋ =− α
µ Tre f

2 ∆x−α
(Tre f µ−1)2

Tre f
2 λ0

∆m+α
Tre f µ−1

Tre f λ0
∆λ

∆T = µ−1∆x

Note that the dynamics of the linearized system does not change with varying
load, while the input gains do. The transfer function from number of machines m to
response time T becomes

Gp(s) =
∂g
∂x

(
s− ∂ f

∂x

)−1 ∂ f
∂m

∣∣∣∣∣ x=x0m=m0
λ=λ0

=− A
s+a

(2)

with A = α(Tre f µ−1)2/(Tre f
2 λ0 µ) and a = α/(µ Tre f

2) both greater than zero.
Since the system is of order one, we conclude that a PI controller of the form

Gc(s) = Kp +
Ki

s
(3)

should suffice, leading us to the following closed loop dynamics from Tre f to T :

G1(s) =
Gc Gp

1+Gc Gp
=

A(Kps+Ki)

s2 + s(a−AKp)−AKi
. (4)

The closed loop dynamics from λ to T is given by the transfer function

G2(s) =
Gp

1+Gc Gp
=− As

s2 + s(a−AKp)−AKi
. (5)

We require of the controller that G1 and G2 are asymptotically stable. Furthermore
we require that the zero in G1 is not non-minimum phase. Since this zero also shows
up in the transfer function from ∆λ to ∆m this would otherwise lead to the controller
responding to a step increase in traffic by transiently turning off VMs. Lastly, we
require that the transfer functions be fully damped, i.e. that all closed loop poles are

130

4 Experimental Results

real. This is because we want to avoid overshoots in the control signal when faced
with a step shaped disturbance or reference change, as it would lead us to starting up
VMs that are almost immediately turned off again. Combining these requirements
puts the following constraints on the controller parameters:

Ki < 0, Kp ≤ 0, −4AKi ≤ (a−AKp)
2

In order to simplify controller design, we can reparameterize the closed loop poles
in the following way:

s =−a−AKp

2
±
√

(a−AKp)2

4
+AKi =−ϕ±ξ , ϕ ≥ ξ ≥ 0

allowing us to find the following expression for the controller parameters:

Kp =
a−2ϕ

A
, ϕ ≥ a

2

Ki =
ξ 2−ϕ2

A

where the condition on ϕ makes sure that the zero in G1(s) is minimum phase.

3.4 Threshold-based controller
For comparison we also implement a threshold-based controller with cooldown,
based on the autoscaling solution used in Amazon Web Services [Amazon, 2014].
The controller measures the average response times over a time period h, and com-
pares it to two given thresholds, one upper Tupper and one lower Tlower. Whenever
ht measurements in a row are either above the upper or below the lower threshold,
an autoscaling event is triggered, either trying to start or shut down one VM.

Successfully executing an autoscaling event (shutting down or starting up a VM)
also starts a cooldown period, with length hcooldown. Whenever a cooldown period
is running no new autoscaling events are triggered.

4. Experimental Results

4.1 Delay-compensated control
To evaluate the delay-compensator described in Section 2.2 we run a set of discrete
event-based simulation experiments. The cloud application is an implementation
of the model described in Section 3.1. The PI controller derived in section 3.3 is
implemented in discrete time as such:

ek = Tre f − T̂k

ik = ik−1 +Ki hek

mk = Kp ek + ik

(6)

131

Paper VI. Model-Based Deadtime Compensation of . . . Startup Times

0 50 100 150 200 250 300 350 400
0

1

2

Time [s]

R
es

po
ns

e
tim

e
[s

]

Reference, Tre f

Delay-free, T2

Delayed, T1

Compensated, T̂
Response time, T

Figure 4. Response time results from simulation of step up. The compensated re-
sponse times reach the reference much before the actual response times.

0 50 100 150 200 250 300 350 400

32

33

34

35

Time [s]

M
ac

hi
ne

s
[1

]

Control signal, m
Running VMs, mr

Figure 5. Control signals from simulation of step up. The controller manages to
respond to the change in load with little overshoot, which is important.

where mk is the control signal, ik is the integrator state and T̂k is the mean of all
delay-compensated response times between sampling points k− 1 and k. For this
implementation we omit anti-windup since the only saturation in the system is m >
0, and all experiments are designed to stay far away from that point. The VMs
have a service rate µ = 22 and uniformly distributed startup delays in the interval
[80,120] seconds, while shutting down a VM is immediate. The linearization point
is chosen as λ0 = 630 and Tre f = 0.5 s, and the controller parameters are chosen so
that ϕ = 0.0545, ξ = 0.0432. The controller runs every h = 2 s. Experimental trial
showed that using α = 0.5 in our cases provided a reasonable transient fit.

The delay compensator updates the state of the delayed and the delay-free model
on every request leaving the cloud application. The continuous models are dis-
cretized using the Runge-Kutta method.

In the first experiment, the incoming traffic to the application is changed as a

132

4 Experimental Results

0 50 100 150 200 250 300 350 400
0

0.2

0.4

Time [s]

R
es

po
ns

e
tim

e
[s

]

Reference, Tre f

Delay-free, T2

Delayed, T1

Compensated, T̂
Response time, T

Figure 6. Response time results from simulation of step down. The difference be-
tween delayed and delay-free is that the delay-free model has no quantization.

0 50 100 150 200 250 300 350 400

32

33

34

35

Time [s]

M
ac

hi
ne

s
[1

]

Control signal, m
Running VMs, mr

Figure 7. Control signals from simulation of step down. The controller gradually
turns off machines to find the equilibrium.

0 50 100 150 200 250 300 350 400
0

0.2

0.4

Time [s]

R
es

po
ns

e
tim

e
[s

]

Reference, Tre f

Compensated, T̂
Response time, T

Figure 8. Steady state with λ = 630. The controller finds the lowest number of
machines to come below Tre f and then compensates for the difference.

133

Paper VI. Model-Based Deadtime Compensation of . . . Startup Times

0 50 100 150 200 250 300 350 400
0

1

2

Time [s]

R
es

po
ns

e
tim

e
[s

]

Reference, Tre f

Response time, T

Figure 9. Response times for the step up scenario when using the threshold con-
troller with cooldown

0 50 100 150 200 250 300 350 400

32

33

34

35

Time [s]

M
ac

hi
ne

s
[1

]

Control signal, m
Running VMs, mr

Figure 10. Number of machines for the step up scenario when using the threshold
controller with cooldown

step from 630 to 690 requests per second. We perform a set of 25 step response
experiments, and aggregate the results to calculate the average response times and
number of VMs over a window of 4 seconds. The results are shown in Figures 4
and 5.

As we can see in Figure 4 the real response times reach its highest point about
the same time as the first newly started VM becomes active. Figure 5 shows the av-
erage control signal (m) and running VMs (mr). The controller manages to respond
to the change in load, without significant overshoot, which is the typical problem
caused by actuation delays.

Plots of simulations of the step down from 690 to 630 per second is shown in
Figure 6 and 7. The difference between delayed and delay-free model while scaling
down is that the delay-free model has no quantization. In less than 300 seconds we
reach the theoretical stationary value mr = 32.

134

5 Conclusions

Shown in Figure 8 is a plot of the average behavior when the system is approach-
ing steady state with λ = 630. As can be seen, response times are not varying around
Tre f , but slightly below. This is because m0 = Tre f λ0/(Tre f µ−1) = 31.5 is not an
integer. Since we can only run integer number of machines and the ideal number is
a fraction, an uncompensated PI controller would oscillate between the two values
31 and 32 for mr. The compensated controller on the other hand finds the smallest
integer mr larger than m0 and compensates away the part of the error that can not be
removed without exceeding Tre f . T approaches T0 = µ−1(λ0

µ dm0e−λ0
+ 1) ≈ 0.43 s

instead of Tre f = 0.5 s.
With this controller, for all 25 experiments, we use on average 33.7 machine

hours per hour. The mean response time during scale-up is 0.804 seconds and during
scale-down 0.373 seconds.

4.2 Threshold-based controller
For comparison we also run the same experiment as previously described with
the threshold controller described in 3.4. The controller is run with the parameters
Tlower = 0.35 s, Tupper = 0.6 s, ht =

20 s
h , hcooldown = 120 s.

The mean response times and number of running VMs are shown in Figures 9
and 9 respectively. As we can see the controller does not even manage to get the
response times back to the reference value before 400 seconds have passed. Due to
the fact that the controller cannot act while in a cooldown period, we respond too
slowly to the increase in traffic.

With this controller, for the full experiment, we use 33.3 machine hours per
hour. Mean response time during scale-up is 1.224 seconds and during scale-down
0.327 seconds.

4.3 Discussion
As can be seen in Figures 4, 5, 9 and 10 the delay-compensated controller manages
to quickly respond to changes in the incoming load. The control signal m reaches
its final value of 34 < m < 35 before the first actual machine has even started. Since
the threshold controller needs to wait for its cooldown to pass it is slow to respond.
This is also why the delay-compensated controller uses more resources on average.

In Figure 8 we see how we are left with a stationary offset between the response
times T and Tre f . Since no integer number of virtual machines will result in sta-
tionary response times at Tre f , the controller finds the lowest amount of machines
needed to stay below Tre f and then compensates away the error which can’t be con-
trolled away.

5. Conclusions

In this paper we have extended the, in the control community, commonly used Smith
predictor for compensating for VM startup delay. The classic Smith predictor needs

135

Paper VI. Model-Based Deadtime Compensation of . . . Startup Times

knowledge about the length of the time delay, but since it is reasonable to assume
that we can at all times know the number of currently running VMs we don’t need
to know or implement the delay. The only thing we need is a model of the behavior
of the cloud application after the delay.

Through simulations we show that the compensator can compensate for the
startup delay of VMs and that the resource management can be solved using a sim-
ple PI controller. Thanks to the delay-compensation the controller can reach the fi-
nal number of machines before the first machine has even started. The compensator
picks the lowest number of VMs which gives response times below the reference.

6. Acknowledgments

This work was supported by the Swedish Research Council (VR) for the project
“Cloud Control”, and through the LCCC Linnaeus and ELLIIT Excellence Centers.

References

Agnew, C. E. (1976). “Dynamic modeling and control of congestion-prone sys-
tems”. Operations research 24:3, pp. 400–419.

Ali-Eldin, A., J. Tordsson, and E. Elmroth (2012). “An adaptive hybrid elasticity
controller for cloud infrastructures”. In: IEEE/IFIP Network Operations and
Management Symposium. IEEE, pp. 204–212.

Amazon (2014). Auto scaling concepts — Amazon Web Services documenta-
tion. Accessed: 2014-08-27. URL: https : / / web . archive . org / web /
20140729191545 / http : / / docs . aws . amazon . com / AutoScaling /
latest/DeveloperGuide/AS_Concepts.html.

Berekmeri, M., D. Serrano, S. Bouchenak, N. Marchand, B. Robu, et al. (2014).
“A control approach for performance of big data systems”. In: IFAC World
Congress.

Cao, J., M. Andersson, C. Nyberg, and M. Kihl (2003). “Web server performance
modeling using an M/G/1/K* PS queue”. In: 10th International Conference on
Telecommunications. Vol. 2. IEEE, pp. 1501–1506.

Gandhi, A., M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch (2012). “Au-
toscale: dynamic, robust capacity management for multi-tier data centers”. ACM
Transactions on Computer Systems (TOCS) 30:4, p. 14.

Gong, Z., X. Gu, and J. Wilkes (2010). “Press: predictive elastic resource scaling
for cloud systems”. In: International Conference on Network and Service Man-
agement. IEEE, pp. 9–16.

136

References

Google (2014). Google compute engine autoscaler — Google Cloud Platform Doc-
umentation. Accessed: 2014-12-01. URL: https : / / web . archive . org /
web/20141201094332/https://cloud.google.com/compute/docs/
autoscaler/.

Lim, H. C., S. Babu, J. S. Chase, and S. S. Parekh (2009). “Automated control in
cloud computing: challenges and opportunities”. In: 1st Workshop on Automated
control for datacenters and clouds. ACM, pp. 13–18.

Lorido-Botrán, T., J. Miguel-Alonso, and J. A. Lozano (2012). “Auto-scaling tech-
niques for elastic applications in cloud environments”. Department of Computer
Architecture and Technology, University of Basque Country, Tech. Rep. EHU-
KAT-IK-09 12, p. 2012.

Mao, M. and M. Humphrey (2012). “A performance study on the VM startup
time in the cloud”. In: IEEE 5th International Conference on Cloud Comput-
ing (CLOUD). IEEE, pp. 423–430.

Rackspace (2014). How auto scale cooldowns work — Rackspace Knowledge Cen-
ter. Accessed: 2014-11-17. URL: https : / / web . archive . org / web /
20141117122211/http://www.rackspace.com/knowledge_center/
article/how-auto-scale-cooldowns-work.

Rider, K. L. (1976). “A simple approximation to the average queue size in the time-
dependent M/M/1 queue”. Journal of the ACM (JACM) 23:2, pp. 361–367.

Shen, Z., S. Subbiah, X. Gu, and J. Wilkes (2011). “Cloudscale: elastic resource
scaling for multi-tenant cloud systems”. In: 2nd ACM Symposium on Cloud
Computing. ACM, p. 5.

Smith, O. J. M. (1957). “Closer control of loops with dead time”. In: Chem. Eng.
Progr. Vol. 53, pp. 217–219.

Tipper, D. and M. K. Sundareshan (1990). “Numerical methods for modeling com-
puter networks under nonstationary conditions”. IEEE Journal on Selected Ar-
eas in Communications 8:9, pp. 1682–1695.

Urgaonkar, B., P. Shenoy, A. Chandra, P. Goyal, and T. Wood (2008). “Agile dy-
namic provisioning of multi-tier internet applications”. ACM Transactions on
Autonomous and Adaptive Systems (TAAS) 3:1, p. 1.

Wang, W.-P., D. Tipper, and S. Banerjee (1996). “A simple approximation for mod-
eling nonstationary queues”. In: 15th Annual Joint Conference of the IEEE
Computer Societies. Networking the Next Generation. Vol. 1. IEEE, pp. 255–
262.

137

