
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Self-Reconfiguring IEEE 1687 Network for Fault Monitoring

Ghani Zadegan, Farrokh; Nikolov, Dimitar; Larsson, Erik

Published in:
21th IEEE European Test Symposium (ETS), 2016

DOI:
10.1109/ETS.2016.7519288

2016

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Ghani Zadegan, F., Nikolov, D., & Larsson, E. (2016). A Self-Reconfiguring IEEE 1687 Network for Fault
Monitoring. In 21th IEEE European Test Symposium (ETS), 2016 IEEE - Institute of Electrical and Electronics
Engineers Inc.. https://doi.org/10.1109/ETS.2016.7519288

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ETS.2016.7519288
https://portal.research.lu.se/en/publications/67230b79-9192-45c4-9f82-f5915b6c19da
https://doi.org/10.1109/ETS.2016.7519288

A Self-Reconfiguring IEEE 1687 Network for Fault
Monitoring

Farrokh Ghani Zadegan
Lund University, Lund, Sweden

Dimitar Nikolov
Lund University, Lund, Sweden

Erik Larsson
Lund University, Lund, Sweden

Abstract—Efficient handling of faults during operation is highly
dependent on the interval (latency) from the time embedded
instruments detect errors to the time when the fault manager
localizes the errors. In this paper, we propose a self-reconfiguring
IEEE 1687 network in which all instruments that have detected
errors are automatically included in the scan path. To enable
self-reconfiguration, we propose a modified segment insertion bit
(SIB) compliant to IEEE 1687. We provide time analyses on
error detection and fault localization for single and multiple
faults, and we suggest how the self-reconfiguring IEEE 1687
network should be designed such that time for error detection and
fault localization is kept low and deterministic. For validation,
we implemented and performed post-layout simulations for one
self-reconfiguring network. We show that compared to previous
schemes, our proposed network significantly reduces the fault
localization time.
Keywords—IEEE 1687, fault monitoring, self-reconfiguration, time
analysis

I. INTRODUCTION

While the semiconductor technology development enables
integrated circuits (ICs) with increasing transistor count and
decreasing features sizes, it has become crucial to address
reliability to handle errors that occur when the IC is in operation
[1]. One way to address reliability issues is to embed on-chip
instruments capable of detecting errors [2]. Such instruments
can be connected to a fault manager that makes decisions
based on the collected error statuses. The fault manager can be
implemented in an on-chip or off-chip processor. To avoid that
the fault monitoring network, which connects the monitoring
instruments and the fault manager, becomes the bottleneck,
the network must be designed such that the interval (latency)
from when instruments detect errors to when the fault manager
gets aware of the errors is low and deterministic. It is also
important that the fault manager localizes errors in a short and
deterministic time (fault localization time) in order to launch
suitable recovery actions.

A fault monitoring network can be either stand-alone, or part
of an existing functional infrastructure such as network-on-chip
or system bus. The advantage of using the functional network
is that no additional hardware cost is needed. One drawback
is that adding traffic to transport fault monitoring information
may impact the performance of the system. It is difficult at
design time to know the amount of traffic information that is
to be generated from errors as the traffic depends on when the
errors occur. Another drawback is that the predictability of the
system is reduced, as the traffic on the functional network might
also affect the latency of the fault monitoring information. To
be on the safe side, the network might be over-designed to
ensure that performance is kept high. This is however costly.
The advantage with a stand-alone network is twofold: it does not
impact the performance of the system, and simplifies achieving
a deterministic fault localization time. The downside of using a
stand-alone network is adding extra hardware cost, if it is added

only for the purpose of fault management. However, most ICs
have stand-alone networks, such as IEEE 1149.1 (JTAG) [3]
or IEEE 1687 [4], to enable test, diagnosis, configuration,
etc., which makes it attractive to reuse such network for fault
monitoring and error handling during operation.

There have been a number of works on networks for
transporting monitoring data (for transient faults, timing errors,
power estimation, etc.) using a dedicated infrastructure [5]–[9].
The works in [7]–[9] stand out as they rely on reusing the
existing IEEE 1687 network for monitoring purposes.

In this paper, for the hardware platform, we assume an IC
equipped with embedded monitoring instruments that can detect
errors and produce error codes accordingly. Additionally, we
assume these on-chip monitoring instruments to be interfaced to
an IEEE 1687 network. We propose a scheme where the IEEE
1687 network is self-reconfigured (while maintaining standard
compliance) to automatically include the instrument registers
containing error codes in its scan-path. The proposed scheme
enables very fast error detection, and achieves significantly
faster fault localization compared to similar IEEE 1687-based
fault monitoring approaches.

The main contributions of the paper are as follows:

• a modified Segment Insertion Bit (SIB) which can be
configured not only in the standard way but also by an
embedded fault monitoring instrument

• time analysis on the time needed to detect and localize
an arbitrary number of errors

• design guidance for the self-reconfiguring IEEE 1687
network such that the error detection and localization
time for a single fault is minimized

To validate our proposed self-reconfiguring networks, we
implemented one such network and performed post-layout sim-
ulations in 65nm technology. To evaluate the efficiency in terms
of time we compare the proposed self-reconfiguring scheme
against previous IEEE 1687-based fault management schemes.

II. BACKGROUND AND PRIOR WORK

In this section, basics of IEEE 1687 are detailed, and
prior work on fault management using IEEE 1687 as the fault
monitoring infrastructure is discussed.

The key feature of IEEE 1687 networks is the reconfigura-
bility, i.e., the possibility to switch segments of the network on
and off the scan-path. One way to add such reconfigurability
is by using SIBs. Fig. 1(a) shows a simplified schematic of a
(possible implementation of a) SIB, in which select and control
signals (namely, capture, shift, and update) are not shown. The
SIB has a shift (S) flip-flop, an update (U) flip-flop, and a two-
input scan multiplexer. SIBs in the network are programmed by
shifting a bit into their S flip-flop and latching that bit into the
parallel U flip-flop. If the latched bit is a “0”, the SIB is closed
and the scan-path is from the si (scan-in) terminal, to the so

S

0

1

si

tsi fso so

U

(a)

SIBsi so

tsi fso

(b)
Fig. 1. SIB: (a) simplified schematic, and (b) symbol

SIB0

SIB1 SIB2

Monitor 1 Monitor 2

TDI TDO

(a)

SIB0

SIB1 SIB2

Monitor 1 Monitor 2

Fault
Manager

ErrorFlag ErrorFlag

ErrorFlag

(b)
Fig. 2. (a) Example of IEEE 1687 network, and (b) a simplified representation
of the basic idea in [7]

(scan-out) terminal via the S flip-flop, bypassing the segment
between the tsi (to scan-in) and fso (from scan-out) terminals.
If the latched bit is a “1”, the SIB is opened and the scan-path
includes the segment connected between tsi and fso terminals
of the SIB—referred to as the hierarchical port of a SIB in this
paper. The symbol shown in Fig. 1(b) will be used in the rest
of this paper to represent a SIB.

Using SIBs makes it possible to design hierarchical IEEE
1687 networks. Fig. 2(a) shows a hierarchical IEEE 1687
network consisting of three SIBs and two 3-bit instrument
shift-registers, named Monitor 1 and Monitor 2. To access the
network via the JTAG TAP, the top (highest) hierarchical level
of the network (SIB0 in this example) is connected as a custom
test data register (TDR) between the test-data-in (TDI) and test-
data-out (TDO) terminals of the JTAG TAP. In the network
shown in Fig. 2(a), initially, only SIB0 is on the active scan-
path. To access, e.g., Monitor 1, SIB0 should be programmed
to be opened, which requires going through Shift and Update
states of the JTAG TAP finite state machine (FSM)—referred
to as a capture-shift-update (CSU) cycle. Next, SIB1 should be
opened while keeping SIB0 opened and SIB2 closed—which
requires performing another CSU. At this point, the register for
Monitor 1 is placed on the scan-path and can be read from
or written to. It can be seen from this example that accessing
instruments in an IEEE 1687 network produces two types of
overhead: (1) the clock cycles needed to operate the JTAG
FSM and (2) the clock cycles needed to shift SIB programming
data. It has been shown that the JTAG TAP FSM overhead is
negligible compared to the SIB programming overhead [10],
and that using a hierarchical design (such as those in Fig. 2)
can reduce the SIB programming overhead significantly [11].

Hierarchical IEEE 1687 networks have been used in fault
management schemes to connect instruments to a fault man-
ager [7]–[9]. In [7], methods for optimized design and calcula-
tion of error localization time are presented for the proposed
fault management scheme. The work in [8] extends [7] by
elaborating on how the fault manager can react faster to new
faults while the instrument access network is in use for other
purposes and how multiple faults can be addressed, but presents
no time analysis method or experimental results for such cases.
In [9], a simulation-based platform for experimenting with
fault injection and fault management is elaborated, but no time
analysis or network optimization method is presented.

Along with the IEEE 1687 network, [7]–[9] use a fully
combinational error propagation network which propagates error
flags to the highest hierarchical level of the IEEE 1687 network.
A simplified representation of the hierarchical networks used

in [7] is shown in Fig. 2(b) where the error propagation network
is marked by the dashed lines. The advantage is that by reading
the ErrorFlag register in the highest level the fault manager
gets informed of any error in the system without checking
each and every instrument. To guide fault localization, [7]–[9]
added ErrorFlags at every level, resulting in dramatic increase
in fault localization time. Also, fault localization in [7]–[9]
involves a number of CSUs to open hierarchical levels, each
CSU performed over a scan-path longer than the scan-path for
the previous CSU, increasing the fault localization time.

To address the fault localization time, we consider a fault
management scheme similar to those in [7]–[9] and propose self-
reconfiguration. We show that by adding self-reconfiguration
it is possible to reduce the fault localization time significantly
while keeping conformity to the IEEE 1687 rules.

In this work, we use the terms fault and error interchangeably
even though in practice these two concepts are different, i.e., an
error is a manifestation of a fault.

III. SELF-RECONFIGURING NETWORK

In this section, we describe the hardware structure of the self-
reconfiguring networks, as well as how to detect and localize
errors in the proposed structure.

The basic idea in self-reconfiguration is that when a fault
is detected by a fault monitor, the corresponding error code
register is automatically included in the active scan-path so
that its contents can be readily shifted out and analyzed. Such
scheme, improves the speed of fault localization via (1) avoiding
to open layers of hierarchy one layer at a time, and (2) using
only one single-bit ErrorFlag register instead of placing multiple
such registers at each hierarchical level.

A. Hardware Structure
In this work, we assume a hierarchical IEEE 1687 network

interfacing all embedded instruments (test, debug, fault moni-
tors, etc.) in a system to a Fault Manager, which has the purpose
of detecting and localizing errors that may occur in different
components of the system over time, such that it can initiate
necessary fault handling actions. The novelty of this work relies
on the fact that part of the hierarchical IEEE 1687 has the feature
of self-reconfiguration.

Fig. 3(b) shows an example of a self-reconfiguring network.
Among all the instruments, we assume that there is a set of
fault monitoring instruments. In the top level of the hierarchical
network, the fault monitoring instruments are connected through
a dedicated SIB, denoted with SIB0, while all the other instru-
ments (test, debug, etc.) are connected through another SIB,
denoted with SIBins. The top level also includes a one bit shift-
register (ErrorFlag) to indicate if any errors are detected by any
of the fault monitoring instruments.

We assume that a fault monitoring instrument has a fault
flag output terminal that is set to logic “1” in case a fault is
detected. The fault flag stays active until it is acknowledged via
a clear flag input terminal. The fault flag signal will be used as
an input to reconfigure the network, such that an access to the
fault monitoring instrument is enabled. Furthermore, the fault
flag signal is propagated across the hierarchical levels and is
finally captured by the ErrorFlag register in the top level of the
hierarchical network.

Additionally, we assume that a fault monitoring instrument
produces an error-code which is parallel-loaded during the
capture phase into an error-code/mask shift-register (EMR)
interfacing the instrument to the IEEE 1687 network. An EMR is
assumed to have capture and update features (similar to standard

SIBsi so

open
tsi fso

toOpen

(a)

Other
instruments

SIB0

SIB1 SIB2

Monitor 1 Monitor 2

ErrorFlagSIBins

Fault Manager

EMR1 EMR2

(b)
Fig. 3. (a) Symbol for the modified SIB, and (b) An example self-reconfiguring
network (the dashed line represents the fault propagation network)

JTAG TDRs) and it contains an error-code field (written by the
fault monitor) and a mask field (written by the Fault Manager).
Error masking is used to stop a permanent fault from constantly
raising the fault flag. To be compliant with the IEEE 1687
standard, error masking should be enabled by default at reset
to disable self-reconfiguration of the network. When the EMR
of a fault monitoring instrument is selected and data is shifted
through it, the clear flag is asserted to indicate that the fault
from the fault monitor has been acknowledged. In Fig. 3(b),
the 3-bit registers, namely EMR1 and EMR2, are the EMRs
associated to Monitor 1 and Monitor 2, respectively.

To enable self-reconfiguration, we propose a modified SIB,
which is the core component in a self-reconfiguring network.
A modified SIB, while being IEEE 1687 compliant, can ad-
ditionally be opened asynchronously via a dedicated terminal.
The symbol shown in Fig. 3(a) will be used in the rest of this
paper to represent a modified SIB. In Section VII, we detail the
circuitry of the proposed modified SIB.

All fault monitoring instruments in the network are con-
nected to the top-level SIB0 through a network of modified SIBs.
The main difference between a regular SIB and a modified SIB is
the pair of terminals “open” and “toOpen”. The “open” terminal
of a modified SIB is connected either to (1) the fault flag of
the monitoring instrument—see SIB1 and SIB2 in Fig. 3(b)—or
(2) the ORed output of the “toOpen” terminals of all modified
SIBs attached to it (placed one hierarchical level below). When
the “open” terminal is asserted (pulled high), it changes the
state of the SIB to opened only if the SIB is not already part
of an active-scan path. The signal from the “open” terminal is
gated internally using (an inverted copy of) the select signal
to make sure that the state of the SIB does not change (from
closed to opened) when it is part of an active scan-path (see
Fig. 8 for details on the modified SIB). The “toOpen” terminal
propagates the internally gated signal (from the “open” terminal)
via an OR gate either to (1) the modified SIB in the hierarchical
level above, or (2) the ErrorFlag register in the top level—
see Fig. 3(b). Note that when the fault flag has managed to
propagate to the ErrorFlag register, all the modified SIBs on the
path from the fault monitor raising the flag to the top level SIB0

are properly configured, i.e. the network has self-reconfigured.
A requirement for a modified SIB (as well as for SIB0

and SIBins) is to have its shift (S) flip-flop placed after the
hierarchical mux (similar to what is shown in Fig. 1(a)). Such
placement, while being fully standard compliant, ensures that
during shifting, the state of the SIB is always shifted out first.
This is required by the fault-localization method to determine
the current configuration of the network.

B. Fault Detection and Localization Method
In this section, we explain the fault detection and localization

method with the help of the example network shown in Fig. 3(b)

Time

S... C S E U St SC S E U St

t0 t3t1

...

t2

S S

Polling loop

(a) C: Capture, S: Shift, E: Exit, U: Update, St: Select

Time

S... C S E U St SC S E U St

t0 t2
dworst

t1 t3

SC S S S S S S E ...

SI
B
0

E
rr
o
rF
la
g

SI
B
2

SI
B
1

E
M
R
1

t4
tloc

U St

t5

S S S

SI
B
in
s

SI
B
0

E
rr
o
rF
la
g

SI
B
in
s

SI
B
0

E
rr
o
rF
la
g

SI
B
in
s

(b)

Time

E U St SC S S S S S S E...

t4

U St C S S E ...

t7t6 t8t5

S S

(c)

Time

S... C S E U St SC S E U St

t0 t2
dworst

t1 t3

SC S S SS S S E ...

SI
B
0

E
rr
o
rF
la
g

SI
B
2

SI
B
1

E
M
R
2

t4
tloc

S S S

E
M
R
1

U St

t5

S S S

SI
B
in
s

SI
B
0

E
rr
o
rF
la
g

SI
B
in
s

SI
B
0

E
rr
o
rF
la
g

SI
B
in
s

(d)
Fig. 4. The detection and localization method: (a) constant polling to detect a
fault, (b) an error is detected and localized, (c) another error happens when the
previous one is being localized, and (d) when two faults are detected together.

and the timelines shown in Fig. 4. The following scenarios are
considered: (1) no error has occurred, (2) an error occurs when
the Fault Manager is not localizing another error, (3) an error
occurs when the Fault Manager is localizing another error, and
(4) two errors occur in a short span of time when the Fault
Manager is not localizing another error.

For the first scenario, when no error is reported, the Fault
Manager constantly checks the status of the system by polling
the value captured by the ErrorFlag register. The Fault Manager
does the polling via looping constantly through the Capture,
Shift, Exit1, Update, and Select states in the DR branch of
the TAP FSM. Since SIB0 is closed when no errors are being
localized, the polling takes seven test clock cycles (TCK)—
the interval between t0 and t3 in Fig. 4(a)—as three shifts are
required: for SIBins, SIB0, and ErrorFlag. The value of the
fault flag raised by monitoring instruments is captured at t1 into
ErrorFlag register and can be observed at t2 (see Fig. 4(a)). The
polling continues as long as the shifted out bit corresponding to
the ErrorFlag register is a “0”. During polling, zeros are shifted
in to keep SIB0 and SIBins closed.

For the second scenario (see Fig. 4(b)), consider that a fault
happens at the interval between t0 and t1 and is reported by
Monitor 1. The reason we chose this interval is that no matter
when in this interval a fault occurs, it will not be captured until t1
and will therefore not be detected until shifted out at t2. We refer
to the interval between t0 and t2 (which is eight TCKs long) as
the worst-case fault detection time (when no other error is being
localized) and denote it by dworst. When the value shifted out
at t2 (which belongs to the ErrorFlag) is a “1”, the localization
procedure is launched by shifting a “1” into SIB0 at t3 which
takes effect at the following Update phase (t4). Once SIB0 is
open, as the rest of the network is already self-reconfigured, the
Fault Manager starts shifting out data from the network (while
shifting in zeros to close the SIBs and reset EMRs on the active
scan-path) to localize the fault: The first two bits shifted out are
the contents of ErrorFlag and SIB0. The third bit is the contents
of SIB2 for which a value of zero indicates that SIB2 is closed
and the fault is not reported from the network segment connected
to the hierarchical port of SIB2. The next bit is the contents of
SIB1 which is “1” meaning that SIB1 is open and the fault is

reported from the segment connected to it, i.e., Monitor 1 in this
example. The next three bits are the contents of the 3-bit EMR1

which interfaces Monitor 1 to the IEEE 1687 network. At this
point, i.e., at t5, the error is localized and the error information
is retrieved. In this work, however, we include in the localization
time (denoted by tloc) the next four TCKs needed to shift-in one
more zero for SIBins and take the TAP FSM back to the capture
phase. The worst-case error detection and localization time can
then be written as

tworst = dworst + tloc (1)
In practice, for the above scenario, dworst should be extended to
include the time that it takes a fault flag signal to propagate from
the fault monitoring instrument to the ErrorFlag. We denote this
propagation delay by δ and note that if the fault monitor signals
the error later than t0-δ, it is not captured at t0. Therefore, dworst

should be written as t2-t0+δ which is equal to 8/fTCK+δ where
fTCK is the maximum frequency that the JTAG TAP can be
operated at.

For the third scenario, when an error happens while the
Fault Manager is localizing a previous error, consider Fig. 4(c)
as continuation of the timeline in Fig. 4(b). As discussed for
the second scenario above, at t4 SIB0 is opened which puts
SIB1 and SIB2 on the active scan-path. SIB0 is closed at t6
meaning that between t4 and t6 SIB2 is selected (though closed)
and, therefore, cannot be opened by a fault flag signal from
Monitor 2. That is, any fault reported by Monitor 2 after t4, is
captured at t7 and detected at t8. Since SIB2 is closed, the fault
flag from Monitor 2 is not acknowledged and therefore remains
active until SIB2 is opened and the error code from Monitor 2
is captured into EMR2.

For the last scenario, consider the timeline in Fig. 4(d),
where both monitors detect faults in the interval between t0 and
t1. In this case, both faults are detected at t2. In comparison
to the scenario for one fault (see Fig. 4(b)), the localization
procedure takes a longer time as this time SIB2 is also opened
and EMR2 is also included in the scan-path.

As a final note in this section, we observe from Fig. 4(b)
and Fig. 4(d) that the shaded states are traversed no matter how
many faults are being detected and localized. We denote this
constant overhead of 18 TCKs by JOH, and write Eq. (1) as

tworst = JOH + ts (2)
where ts denotes the number of shift cycles in tloc and varies
by the number of faults being localized.

IV. TIME ANALYSIS

In this section, we present analyses for the worst-case error
detection and localization time (tworst) in a self-reconfiguring
network, for two cases: when a single fault occurs, and when
multiple faults occur such that they are all detected by the Fault
Manager at the same time (see the discussion on Fig. 4(d)).

As shown in Eq. (2), tworst has a constant part JOH and a
variable part ts. For the analyses we focus on calculating ts.

We present time analyses for balanced tree networks such as
the network shown in Fig. 5. In such networks, each SIB, except
for the ones in the lowest level, has k SIBs connected to its
hierarchical port. The SIBs in the lowest level are interfaced to
the instruments. For N = kh instruments, the network resembles
a balanced k-ary tree whose root is SIB0.

A. In Case of a Single Fault
Given the network in Fig. 5, assuming that only one monitor

has raised a fault flag causing all SIBs on its hierarchy to change
state to open, there are s = 2+ k× h SIBs on the path to each

level h-1

level h

level 2

level 1

level 0
SIB0

SIB SIB

Fault
Manager

SIB SIB

k

SIB SIB

SIB SIB

SIB SIB

k k

...

k

k

h

...

... ...

...

...

ErrorFlagSIBins

Fig. 5. A balanced tree hierarchical network

instrument, where 2 represents SIB0 and SIBins. The total shift
time ts is therefore the sum of s and the length of the EMR
(denoted by L) plus one for ErrorFlag:

ts = 2 + k × h+ L+ 1 = 3 + k × logkN + L (3)

B. In Case of Multiple Faults
Assume that F faults (F ≤ N) are to be localized at the

same time. To calculate ts, we consider monitors detecting these
faults to be spread in the network such they cause maximum
possible number of SIBs to be opened (maximizing the length
of the active scan-path, thus leading to the longest localization
time). As an example, when F = k faults happen in the system
monitored via the network in Fig. 5, the localization time is
maximized when each of these k faults happen in the subtree
of each of the k SIBs in level 1. Another observation is that for
localization of F ≥ 1 faults, the SIB at level 0 is opened, for
F ≥ k, all SIBs in level 1 are opened, for F ≥ k2, all SIBs
in level 2 are opened, and so on. The number of these SIBs,
which are on the scan-path to all F monitors (i.e., shared by
all of them), is captured by

∑r
i=0 k

i where r = dlogk F e is the
number of upper levels in which all the SIBs are open. Next,
to calculate the number of SIBs exclusively on the path to each
of the F monitors, we note that h − r remaining lower levels
are open exclusively for each fault, each having k SIBs—thus
F × k× (h− r) is the total number of SIBs exclusively opened
for the F monitors. To sum up, the total number of SIBs on the
scan-path for the F faults is s = 1+

∑r
i=0 k

i+F ×k× (h−r),
where 1 is for SIBins. To calculate ts, we need to add to this
number of SIBs, the total length of EMRs on the scan-path (i.e.,
F × L) as well as one for the ErrorFlag, as follows:

ts = 1 +

r∑
i=0

ki + F × k × (h− r) + F × L+ 1 (4)

V. NETWORK DESIGN

In this section, we describe a design method for the proposed
self-reconfiguring networks such that tworst for a single fault is
minimized. As tworst has a constant part JOH and a variable part
ts (see Eq. (2)), minimizing tworst reduces to minimizing ts. For
a single fault, ts is calculated using Eq. (3). Assuming that the
number of instruments N is given, to find k which minimizes
ts, we set the first derivative of ts w.r.t. k to zero:

ts = 3 + lnN × k

ln k
+ L ⇒ t′s = lnN

ln k − 1

(ln k)2
(5)

t′s = 0 ⇒ ln k = 1 ⇒ k = e (6)

SIB0

SIB2SIB1

(a)

0

1 2

3 4 5 6

(b)

0

1
2

3 4 5

(c)
Fig. 6. Alternative representation of networks, where filled circles represent the
SIBs which are not directly connected to instruments, empty circles represent
SIBs connected to instruments, and edges represent the hierarchical relations: (a)
representation of network in Fig. 3(b), (b) and (c) networks for four instruments

1 2 3 4 65 7 8 9 10 11

Fig. 7. Representation of a self-reconfiguring network for 11 instruments

Since e u 2.72, we should either choose k = 2 or k = 3 to
minimize ts. However, given an arbitrary number of instruments
N where N is not a power of two or three, it is not possible to
construct a balanced tree. In such cases, a straightforward way to
construct the network is to create a balanced tree for kdlogk Ne

instruments, where k = 2 results in a binary tree and k = 3
results in a ternary tree, and prune the tree (after placing the N
instruments at the leaf nodes). Pruning can be done by removing
the internal nodes to which one or no instrument is connected.
After pruning, one can compare the results from the pruned
binary and ternary trees and pick the better one. In the following,
we present a network construction method that by mixing binary
and ternary subtrees yields similar or better results compared
with each of the pruned binary and ternary tree alternatives.

Let us now switch to a simpler network representation which
is more suitable for the discussion in this section. The tree in
Fig. 6(a) captures the hierarchical relation (and not the data
connections) between the SIB components in the network shown
in Fig. 3(b). The instruments are not shown (as the length
of instruments’ shift-registers has no effect on SIB shifting
overhead) and those SIBs directly connected to instruments are
represented by empty circles. In Fig. 6(a), node SIB0 is parent to
sibling leaf nodes SIB1 and SIB2. When a parent SIB is opened,
its children are on the scan-path no matter if they are opened
or closed. In other words, when a node is on the scan-path, all
its siblings are also on the scan-path.

As the proposed network construction method is based on
bundling instruments in groups of three, we would first like
to make an observation for when the remaining number of
instruments is one, i.e., when N mod 3 = 1. Fig. 6(b) and
Fig. 6(c) show two networks constructed for four instruments.
When in the network in Fig. 6(b) a fault is detected at instrument
connected to the SIB at node 3, that SIB (node 3) as well
as the SIB at node 1 are opened. This means that in total
five SIBs are on the path (namely, nodes 0–4) and it therefore
takes five clock cycles to read their status. In this case, as all
instruments have the same number of SIBs on their scan-path,
the average-case and the worst-case fault localization time is
the same for all of them. This, however, is not the case for
the network represented in Fig. 6(c) in which for the instrument
connected to node 2 three shift clocks are needed while for those
connected to nodes 3–5 six shift clocks are needed—averaging
to (3× 6 + 1× 3)/4 = 5.25 clock cycles. It can be seen from
this example that the network represented by Fig. 6(b) results
in both better average-case and worst-case shifting time.

Based on the above observation, we propose the following
construction algorithm. For given N instruments, we bundle the
instruments into clusters of three instruments each. When N is
a multiple of three, we will have c = N/3 clusters. If N is
not a multiple of three, one or two instruments will remain.

TABLE I. tworst FOR A SINGLE FAULT (IN TCKS)

Number of [7] Self-reconfigurable networks
instruments tree from [11] binary tree ternary tree this work
25 90 35 34 33 33
50 118 37 36 35 35
100 158 39 38 38 37
200 206 42 40 39 39
500 266 52 42 42 42
1000 326 53 44 44 44

Following the observation made for Fig. 6(b), when the number
of remaining instruments is one, we make c = bN/3c − 1
three-instrument clusters plus two two-instrument clusters. If,
however, the number of remaining instruments is two, we make
c = bN/3c three-instrument clusters plus one two-instrument
cluster. Assuming each cluster to be an instrument, the same
procedure described above can be applied to the created clusters,
creating clusters of clusters until the network is complete. Fig. 7
shows this procedure for 11 instruments.

VI. COMPARISON WITH SIMILAR APPROACHES

We have compared our proposed self-reconfiguring IEEE
1687 network with the work presented in [7] (which uses a
regular IEEE 1687 network for monitoring) with regards to
tworst (see Eq. (1)). In this section, we present the results of
the comparison for the case (1) one fault occurs (discussed in
Section IV-A), and the case (2) multiple faults detected by the
Fault Manager at the same time (discussed in Section IV-B).

A. For a Single Fault
Table I shows the results of comparison with the approach

proposed in [7]. For the construction of the proposed self-
reconfiguring network, we compared four alternatives: (1) using
the network construction method for regular IEEE 1687 net-
works presented in [11], (2) a binary tree with pruning, (3)
a ternary tree with pruning, and (4) the construction method
proposed in Section V. To calculate the number of SIBs on
the scan-path for the self-reconfiguring networks, pre-order tree
traversal is employed. A fixed number of JOH+2 = 18+2 TCKs
is added to the calculated shift time to account for the constant
overhead (see Section III-B), ErrorFlag, and SIBins. Moreover,
another three TCKs are added to account for the length of the
fault monitor’s EMR (i.e., L = 3).

From the results, it can be seen that by using the pro-
posed self-reconfiguration scheme (regardless of the considered
network tree construction method), at least 2.6x reduction in
localization time is achieved compared to [7]. The reason for
this improvement can be attributed to opening many hierarchical
levels in a single CSU and having only one single-bit ErrorFlag
register directly on the scan-path.

Among the construction methods examined for the self-
reconfiguring network, the one described in Section V performs
up to 17% better than the method in [11] and results in better
or equal tworst compared to binary and ternary trees.

B. For Multiple Faults
The work in [7] has not presented analysis and results on

multiple faults. On the other hand, our calculations for multiple
faults (see Section IV-B) are for balanced k-ary trees, and cannot
be directly used for the network structures presented in [7].
Therefore, to perform the comparison, we (1) used constraint
programming (by using the constraints formulation in [7]) to
get the optimal network structure for the number of instruments
suitable for our analysis (see below), and (2) developed time
analysis for multiple faults for the networks presented in [7]
based on their time analysis for a single fault and our analysis
for multiple faults.

TABLE II. tworst FOR MULTIPLE FAULTS (IN TCKS)

instruments Number of faults
1 2 3 4 5 6 7 8 9 10

27 33 42 51 57 63 69 75 81 87 90
90 126 162 162 162 162 162 162 162 162

81 36 48 60 69 78 87 96 105 114 120
146 202 258 314 370 426 426 426 426 426

243 39 54 69 81 93 105 117 129 141 150
334 538 742 946 1150 1150 1150 1150 1150 1150

729 42 60 78 93 108 123 138 153 168 180
298 486 674 862 954 1046 1138 1230 1322 1414

2187 45 66 87 105 123 141 159 177 195 210
394 662 930 1118 1306 1494 1682 1870 2058 2246

Average ratio 6.2 7.1 7.5 7.8 7.8 7.5 7.1 6.7 6.4 6.3

The shaded numbers are calculated based on the approach in [7].

As for the number of instruments, we chose numbers which
are powers of three resulting in networks resembling balanced
ternary trees. For each of these networks, we calculated tworst

for 1 to 10 faults. For each pair of network and number of
faults, we calculated tworst using Eq. (2) where JOH = 18
and ts is calculated using Eq. (4). The results are presented in
Table II where the shaded rows present the numbers obtained
for the network structure type proposed in [7]. The last row,
presents the average improvement ratio achieved over [7] in
case of multiple concurrent faults which ranges between 6.2
to 7.8 times improvement. As was the case for single faults,
the reason for this improvement can be attributed to opening
many hierarchical levels at once and having only one ErrorFlag
register directly on the scan-path.

VII. PRACTICAL ISSUES

To validate our proposed self-reconfiguring networks, we
implemented one such network and performed post-layout sim-
ulations (in 65nm technology) for the scenarios discussed in
Section III-B. Fig. 8 shows our implementation of the proposed
modified SIB. Before discussing Fig. 8, we should mention
that depending on the available standard cell library, simpler
designs with the same functionality are possible, and that our
implementation is affected by our ASIC vendor’s library.

In Fig. 8, the clock signal is not shown to avoid clutter. The
Reset signal is the synchronous active-low reset from Test-Logic-
Reset state in the JTAG TAP FSM. The self-reconfigurability
revolves around the U′ flip-flop which is D-type with asyn-
chronous active-high set. The set input of U′ is connected to a
gated copy of the Open terminal of the SIB. The Open signal
is gated via the Select signal so that the self-reconfiguration
only happens when the SIB is not selected (i.e., not part of
the active scan-path). The Q output of U′ is used to open
the SIB—i.e, include the segment connected between TSI and
FSO terminals in the scan-path. The output of U′ is captured
into the S flip-flop (as required by the localization method
described in Section III-B) when the TAP FSM goes through the
capture phase. U′ is cleared when the TAP FSM goes through
the Update phase or through the Test-Logic-Reset state during
initialization.

To give an idea of the propagation delay (denoted earlier
by δ) in a large network, we constructed a network with 2187
instruments (which is a balanced ternary tree with seven layers)
and performed synthesis and place & route (optimized for a
100MHz TCK) using a 65nm technology. The reported delay
between each of the 2187 instrument fault flags and the parallel
input of the ErrorFlag register (i.e., through all seven layers)
shows a minimum delay of 1.73ns, average delay of 2.1ns and
maximum delay of 2.62ns (still shorter than one TCK period).

As an example, assuming an on-chip Fault Monitor which
can operate the network at 100MHz, the worst-case localization
time (in seconds) for the case of one fault happening in a
network with 2187 instruments (see Table II) is calculated as
45× 1

100×106 + 2.62× 10−9 which is 452.62ns.

UpdateEn

Reset

Select

D

ShiftEn

CaptureEn

SI

T
o
S
e
l

T
S
I

F
S
O

1

0

SO

Open

D Q

CLR

S

D Q

CLR

U

ToOpen

0

D Q

SET

Uˊ

H

1

0

K

0

1

K

0

1

K

0

1

Gated-open

Fig. 8. Schematic of the proposed modified SIB

VIII. CONCLUSION

In this paper, fault localization time is reduced by in-
troducing a segment insertion bit (SIB) that enables self-
reconfiguration of IEEE 1687 networks. We presented timing
analysis for single and multiple concurrent faults, as well
as a construction method for the proposed self-reconfiguring
network. We validated the idea of self-reconfiguring networks
through post-layout simulations of one such network. We com-
pared the proposed scheme with a previous similar work and
observed at least 2.6 times reduction in localization time for a
single fault and 6.2 times reduction in case of multiple faults.

ACKNOWLEDGMENTS

This work is supported by the European Commission
through the FP7 STREP Project no. 619871 (BASTION), as
well as by the Royal Physiographic Society of Lund.

REFERENCES
[1] S. Borkar, “Designing Reliable Systems from Unreliable Components:

the Challenges of Transistor Variability and Degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, 2005.

[2] Sun Microsystems, Inc. (2016, Mar.), “UltraSPARC T2TM Sup-
plement to the UltraSPARC Architecture 2007.” [Online].
Available: http://www.oracle.com/technetwork/systems/opensparc/t2-14-
ust2-uasuppl-draft-hp-ext-1537761.html

[3] IEEE Association, “IEEE Std 1149.1-2001, IEEE Standard Test Access
Port and Boundary-Scan Architecture,” 2001.

[4] “IEEE Standard for Access and Control of Instrumentation Embedded
within a Semiconductor Device,” IEEE Std 1687-2014, Dec 2014.

[5] A. Bouajila, A. Lakhtel, J. Zeppenfeld, W. Stechele, and A. Herkersdorf,
“A Low-Overhead Monitoring Ring Interconnect for MPSoC Parameter
Optimization,” in Proc. IEEE International Symposium on Design and
Diagnostics of Electronic Circuits Systems (DDECS), April 2012.

[6] S. Madduri, R. Vadlamani, W. Burleson, and R. Tessier, “A Monitor
Interconnect and Support Subsystem for Multicore Processors,” in Proc.
Design, Automation & Test in Europe Conference, April 2009.

[7] A. Jutman, S. Devadze, and K. Shibin, “Effective Scalable IEEE 1687
Instrumentation Network for Fault Management,” IEEE Design & Test,
vol. 30, no. 5, pp. 26–35, Oct 2013.

[8] K. Shibin, S. Devadze, and A. Jutman, “Asynchronous Fault Detection
in IEEE P1687 Instrument Network,” in Proc. IEEE North Atlantic Test
Workshop (NATW), May 2014, pp. 73–78.

[9] K. Petersen, D. Nikolov, U. Ingelsson, G. Carlsson, F. Zadegan, and
E. Larsson, “Fault Injection and Fault Handling: An MPSoC Demon-
strator using IEEE P1687,” in Proc. IEEE International On-Line Testing
Symposium (IOLTS), 2014, July 2014, pp. 170–175.

[10] F. G. Zadegan et al., “Access Time Analysis for IEEE P1687,” IEEE
Transactions on Computers, vol. 61, no. 10, pp. 1459–1472, Oct. 2012.

[11] ——, “Design Automation for IEEE P1687,” in Proc. Design, Automation
& Test in Europe Conference (DATE), March 2011.

