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We propose a description of nonequilibrium systems via a simple protocol that combines exchange-
correlation potentials from density functional theory with self-energies of many-body perturbation theory.
The approach, aimed to avoid double counting of interactions, is tested against exact results in Hubbard-
type systems, with respect to interaction strength, perturbation speed and inhomogeneity, and system
dimensionality and size. In many regimes, we find significant improvement over adiabatic time dependent
density functional theory or second Born nonequilibrium Green’s function approximations. We briefly
discuss the reasons for the residual discrepancies, and directions for future work.
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Hybrid methods are a valuable option in physics, to
merge concepts and perspectives into a more general and
effective level of description. This Letter adds an item
from condensed matter physics to the list; we propose a
hybrid method that combines nonperturbative exchange-
correlation (XC) potentials from time dependent density
functional theory (TDDFT) [1–3] with many-body pertur-
bative self-energy schemes from nonequilibrium Green’s
functions (NEGF) [4–7], to deal with systems with strong
electronic correlations and out of equilibrium.
An accurate first-principles description of the real-time

dynamics of systems with strong electronic correlations is
an important, difficult, and basically unsolved problem of
condensed matter research. General frameworks like
TDDFT and NEGF do indeed allow for an in-principle-
exact treatment of strong electronic correlations. However,
they both rely on key ingredients (the XC potential for
TDDFT and the self-energy Σ for the NEGF) that in
general are only approximately known. For TDDFT, a
systematic and general way to include nonlocal, non-
adiabatic effects in the XC potential is lacking, while for
NEGF a main hindrance is that self-energies based on
many-body perturbation theory, already computationally
demanding, are usually inadequate for strong electronic
correlations. While considerable progress has been
made for model systems far away from equilibrium (see,
e.g., [8–14]) or for the ab initio description of near-
equilibrium situations (see, e.g., [15,16]), a reliable first-
principles treatment of the far-from-equilibrium regime is
still lacking.
Here, we suggest a step towards the solution of this

problem, by a novel combination of TDDFT and NEGF,
where perturbative (but systematic) memory-effect correc-
tions augment a nonperturbative local adiabatic treatment
of electronic correlations. The approach is fully conserving
in the Kadanoff-Baym sense [17] and, using the so-called

generalized Kadanoff-Baym ansatz [18] (see below), can be
made viable for realistic systems.
Putting in practice our proposal at the ab initio level

requires access to continuum nonperturbative XC poten-
tials, and this point is addressed at the end of the paper.
However, the scope of our method can already be illustrated
here using simple lattice models. This has the advantage of
avoiding complex implementations and technicalities that,
indispensable to deal with real-world systems, are usually
unnecessary (possibly even unwanted) for an explorative
assessment of a new methodology. Our results show that in
many situations (see also Supplemental Material [19]) the
hybrid method provides significant progress over adiabatic-
TDDFT and perturbative schemes for NEGF, thus holding
promise for an improved treatment of the nonequilibrium
dynamics of realistic correlated systems.
Model systems.—We consider small Hubbard-type one-

dimensional (1D) and three-dimensional (3D) clusters,
isolated or coupled to two 1D semi-infinite noninteracting
leads. In the latter case, the cluster consists of one site
(single impurity). These systems are exposed to time
dependent local perturbations and/or (where applicable)
to electric biases in the leads. The Hamiltonian for the
above setups is

Ĥ ¼ Ĥc þ Ĥl þ Ĥcl; ð1Þ

which has contributions from the cluster, the leads, and the
cluster-leads couplings. In standard notation,

Ĥc ¼ −V 0 X
hiji∈C;σ

ĉ†iσ ĉjσ þ
X
i∈C

ϵiðtÞn̂i þ
X
i∈C

Uin̂i↑n̂i↓; ð2Þ

where hiji labels nearest-neighbor sites in the cluster
C, V0 > 0 is the tunneling amplitude, ϵiðtÞ are time
dependent on-site energies in the cluster, and Ui are
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contact-interaction strengths. Further, n̂i ¼ n̂i↑ þ n̂i↓. For
the lead Hamiltonian, Ĥl ¼

P
αĤα, where α ¼ RðLÞ refers

to the right (left) lead, and

Ĥα ¼ −V
X

hiji∈α;σ
ĉ†iσ ĉjσ þ

X
α

bαðtÞN̂α: ð3Þ

Here, bαðtÞ is the (site-independent) bias in lead α, V > 0 is
the tunneling amplitude, and N̂α ¼

P
i∈αn̂i. The coupling

between the leads and the cluster (impurity) is given by

Ĥcl ¼ −V link

X
σ

ðĉ†1L;σ ĉ1C;σ þ ĉ†1R;σ ĉ1C;σÞ þ H:c: ð4Þ

All energy units are expressed in terms of the hopping
parameter V 0 (for the one-site impurity cluster we use V
instead), and time is measured in the units of the inverse
hopping parameter (assuming atomic units). We now
switch to continuum variables for generality and notational
convenience, and provide some elements of TDDFT and
NEGF relevant to our approach.
NEGF.—The nonequilibrium propagator Gð1; 2Þ≡

Gðt1; r1; t2; r2Þ satisfies the equation of motion ½i∂t1 −
hð1Þ�Gð1; 2Þ ¼ δð1; 2Þ þ R

γ Σð1; 3ÞGð3; 2Þd3 (and a sim-
ilar one for t2). Here, h ¼ T þ vH þ vext is the single-
particle Hamiltonian, with kinetic energy T, Hartree
potential vH, and external potential vext. Σ ¼ Σemb þ
ΣXC½G� is the self-energy, which introduces a memory
dependence. We integrate over the Keldysh contour γ [4,5].
Σemb is an embedding self-energy that accounts for the
leads (if present), while ΣXC accounts for XC effects [20].
Standard approximations for ΣXC are the second Born
(2BA), T matrix (TMA), and screened interaction (GW)
[6,7,21]. For real time, the lesser part of G (denoted G<)
gives the density nðt; rÞ ¼ −iG<ðt; r; t; rÞ and the current.
TDDFT.—The time dependent density nKS is obtained in

terms of the Kohn-Sham (KS) orbitals ϕκðt; rÞ. These obey
the KS equation ½T þ vKSðt; rÞ�ϕκðt; rÞ ¼ i∂tϕκðt; rÞ,
where vKS ¼ vH þ vext þ vXC, and vXC accounts for XC
effects. Then, nKSðt; rÞ ¼

P
occ
κ jϕκðt; rÞj2. Within a NEGF

treatment, the KS density can be obtained from
½i∂t1 −hð1Þ−vXCð1Þ�GKSð1;2Þ¼δð1;2Þ, with nKSðt; rÞ ¼
−iG<

KSðt; r; t; rÞ. In practical implementations, the func-
tional dependence of vXC on n is often replaced by an
adiabatic local density approximation (ALDA), i.e.,
vXCð½n�; t; rÞ ≈ vrefXC(nðt; rÞ).
A hybrid TDDFT-NEGF approach.—Our proposal is to

augment a perturbative self-energy ΣPT
XC from a conserving

many-body scheme with a nonperturbative XC potential
vNPXC, local in space and time. Alternatively, this prescription
can be seen as recasting an ALDA-TDDFT approach based
on vNPXC in a NEGF approach, but augmenting it with a
nonlocal, nonadiabatic perturbative self-energy ΣPT

XC. To
avoid double counting we subtract an ALDA potential vPTXC
obtained from the same approximation as was used for
ΣPT
XC. The basic equation of our approach is

fi∂t1 − hð1Þ − vNPXC(nð1Þ)þ vPTXC(nð1Þ)gGð1; 2Þ

¼ δð1; 2Þ þ
Z
γ
ΣPT
XCð1; 3ÞGð3; 2Þd3: ð5Þ

To actually proceed with Eq. (5), at t ¼ 0we solve forG;
i.e., we find vNPXC½G�, vPTXC½G�, and ΣPT

XC½G� self-consistently
on the imaginary-time track; then we propagate G self-
consistently on the Keldysh contour, thus fulfilling the
conservations laws of Kadanoff and Baym [17]. The hybrid
scheme involves no additional computational costs com-
pared to standard NEGF time propagation. Since the
augmentation vNPXCðtÞ − vPTXCðtÞ is of the form of a time-
local potential, our scheme can similarly be implemented in
a density matrix formalism. This means that a generalized
Kadanoff-Baym ansatz (GKBA) [18,22,23] can be
employed to reduce computational costs allowing for
first-principles calculations of realistic systems.
The nonperturbative XC potentials.—For lattice systems,

vNPXC depends on the system’s dimensionality. In 1D, we
describe the nonperturbative, adiabatic local correlations in
terms of vNPXCðt; rÞ ≈ vBALDAXC (nðt; rÞ) [24], and in 3D in
terms of vNPXCðt; rÞ ≈ vDMFT

XC (nðt; rÞ) [25]. vBALDAXC is com-
puted with the Bethe ansatz from the 1D Hubbard model
[26,27], and vDMFT

XC with dynamical mean field theory
(DMFT) [28,29] from the 3D homogeneous Hubbard
model [25].
The vPTXC correction.—For concreteness, in this Letter

ΣPT
XC and vPTXC are computed in the 2BA (some results in the

TMA are also shown). The calculation and use of Σ2B
XC for

Hubbard-type interactions in a NEGF time evolution has
been discussed before (see, e.g., [30]) and is not repeated
here. Rather, we provide additional details of the perturba-
tive correction v2BXC. For the homogeneous (Hubbard)
reference system, we use v2BXCðnÞ ¼ ð∂E2B

XCðnÞ=∂nÞ, where
E2B
XCðnÞ¼E2B

tot ðnÞ−T0ðnÞ−EHðnÞ, and the three terms on
the rhs are respectively the total energy in the 2BA, the
noninteracting kinetic energy, and the Hartree energy for
the 1D (or 3D) homogeneous Hubbard model. We compute
E2B
tot ðnÞ in ðω;qÞ space,

E2B
tot ¼

−1
ð2πÞDþ1

Z
∞

−∞
dω

Z
BZ

dqImGRðω;qÞfðωÞðωþ ϵqÞ;

with GR being the retarded propagator, f the statistical
Fermi factor (we consider zero temperature), ϵq the
single-particle energies, and n ¼ ð−2=ð2πÞDþ1Þ R∞

−∞ dω×R
BZ dqImGRðω;qÞfðωÞ. In Fig. 1 we plot v2BXC for the 1D
and 3D Hubbard model, for different interaction values. We
also show the nonperturbative potentials vBALDAXC , vDMFT

XC
used in Eq. (2). They exhibit a discontinuity at half filling,
which is always present in 1D but only for largeU values in
3D, reflecting the Mott-Hubbard metal-insulator transition
[25]. The discontinuity is absent in the 2BA. Note that, at
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exactly half filling, vNPXC and vPTXC are both zero. Finally, vPTXC
from the TMA is shown. The discontinuity is absent also in
this case, and at low and high filling vTMA

XC approaches vNPXC.
Closed systems: the 3D case.—We start our analysis with

a 3D cubic cluster with 53 sites, open boundary conditions,
and a single interacting (and perturbed) site at the cluster
center [Fig. 2(c)]. We compare time dependent densities
from the hybrid approach, 2BA, and ALDA against exact
results. The system is highly inhomogeneous, and despite
the local character of the interaction and external pertur-
bation, nonlocal effects are important: the exact vXC (not
shown) can have large nonzero components at all sites [25].
Using symmetry, we map the cluster to a 10-site one
[Fig. 2(d)], as in [25]. We consider both weak (U ¼ 8,
panels a and b) and strong (U ¼ 24, panels c and d)
correlations. The temporal shape of the external fields we
use is Gaussian (bottom-row panels, red curves), with a
slower or faster onset or offset (in the following referred to
as fast or slow perturbations). For additional time profiles
we refer the reader to Supplemental Material [19].
For the weakly correlated, slowly perturbed case (panel

a), all approximations follow the exact solution. For the
fast perturbation (panel b), nonadiabatic effects emerge,
and this leads to the failure of the ALDA; the remaining

approximations perform well, with the hybrid method
being marginally better than the 2BA. In contrast, for
the slow perturbation and stronger correlations (panel c),
the agreement of the 2BA is poor, while the other treat-
ments still follow the exact solution. For the most unfav-
orable and extreme regime of strong correlations and fast
perturbations (panel d), the ALDA and 2BA are largely out
of phase, and only the hybrid approximation reproduces the
main structures of the exact solution with the correct phase.
Overall, the hybrid approximation exhibits a fairly good
agreement in all regimes, and is superior to the others in the
most extreme regime.
Closed systems: the 1D case.—We next consider when

all sites are interacting and exposed to a space and time
dependent perturbation. A 3D system for this situation that
is also an exactly solvable benchmark is not easily
accessible, due to the unfavorable scaling of the configu-
ration space. We thus turn to a numerically more convenient
1D test case (this also makes it possible to assess the hybrid
approach at low dimensionality), choosing a 1D ring with
eight interacting sites (Fig. 3). To explore the role of space
inhomogeneity, we resort to a (rather artificial) perturbation
sinusoidally modulated in space: Vextðl; tÞ ¼ sin½ð2π=
λkÞlþ ϕk�F½ðt − t0=σÞ�, where λk ¼ 2k (k ¼ 1; 2;…; 4)
and F is the temporal profile. The phase ϕk guarantees
that the sine nodes are between sites and the amplitude at
site l ¼ 3 has always the same sign. For the time profile,
FðtÞ≡ θðtÞ (step, s), FðtÞ≡ 1=ð1þ e−tÞ (ramp, r) or
FðtÞ≡ expð−t2Þ (Gaussian, g). Results are shown in
Fig. 3 (for a more systematic study see Supplemental
Material [19]).
With highly inhomogeneous fields (λ1, λ2) no approxi-

mation reproduces the exact dynamics. Moreover, for rk¼1

the hybrid method shows artificial density oscillations. The
latter, also present in the TDDFT-ALDA approach based on
vBALDAXC , are induced by the sharp discontinuity in vBALDAXC
and are not removed by the 2BA self-energy (thus, non-
local, nonadiabatic effects beyond the 2BA should also be

FIG. 1. XC potentials from the 1D (left) and 3D (right)
homogeneous Hubbard model.

FIG. 2. Time dependent density at the central site of a 53-site
cluster (panel c) for U ¼ 8 (top row) and U ¼ 24 (middle row),
for slow (left column) and fast regime (right column). The
effective cluster is displayed in panel d. The interacting and
perturbed site of the cluster is colored in orange. The perturba-
tions Vext are shown in the bottom row.

FIG. 3. Time evolution of the density n3 at site 3 in a L ¼ 8
Hubbard ring with U ¼ 4, under the perturbation Vextðl; tÞ. The
parameters for the perturbation profile are t0 ¼ 0, σ ¼ 1 for the
step (s), t0 ¼ 5.5, σ ¼ 0.5 for the ramp (r), and t0 ¼ 2.5,
σ ¼ ffiffiffiffiffiffi

0.4
p

for the Gaussian (g).
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taken into account). For more homogeneous fields (λ3) the
different approximations compare more favorably to the
exact dynamics with superiority of the hybrid method.
Looking at sk¼3, the hybrid approximation is in phase with
the exact curve but, for densities changing across half
filling, it still exhibits the artificial oscillations (see
Supplemental Material [19]). Further, the ALDA does
not perform well, and the 2BA tends to be out of phase
with the exact solution. Finally, for a slowly varying-in-
space perturbation (λ4) the hybrid approach (in contrast to
the other approximations) is in excellent agreement with
exact results. This applies for all time profiles g, s, r.
Open systems.—Finally, we test the hybrid method in

open systems (Fig. 4). Specifically, using a single-orbital
Anderson impurity coupled to two 1D semi-infinite leads
[31] [system shown in Fig. 4(e)], we consider (i) the
conductance G in the wide-band limit (WBL),
Fig. 4(a); and (ii) the finite-bias, finite-lead-width regime,
Figs. 4(b)–4(e). Starting with (i), we find the exact density
(and thereby the exact linear conductance via the Friedel
sum rule) in the WBL [32–35]. Figure 4(a) displays for

U ¼ 2 the absolute deviation Δ from the exact G as a
function of Vgate and for different approximate treatments.
We consider stronger correlations (ΓWBL ¼ V2

link=V ¼
0.09; see the plateau in the conductance); here, except
for 0.15 < n=2 < 0.28, the hybrid method performs as the
best compared to the 2BA or ALDA, and it is significantly
better in the range 0.28 < n=2 < 0.42 (symmetrical con-
siderations apply above half filling). (ii) Next, we consider
1D tight-binding leads (of bandwidth 4V). We fix a static
Vgate to be away from the particle-hole symmetric ground
state (where vNPXC ¼ vPTXC ¼ 0). As a benchmark, we use
open-ended, Anderson-impurity finite chains with up to
L ¼ 96 sites treated with time dependent density matrix
renormalization group (tDMRG) [36,37]. When V link ¼
0.5 (panels b and d), the agreement between hybrid and
tDMRG densities or currents is fairly good, especially in
the transients (n and j from tDMRG never fully reach a
steady state within the simulation time, in contrast to the
hybrid, 2BA, and ALDA ones). However, for stronger
correlations and lower transparency U=V link ¼ 2=0.3
(panels c and e), the impurity density from the hybrid
scheme is closest to the tDMRG one than other schemes,
while for the currents the ALDA performs best. The
unconvincing performance of the hybrid approximation
for U=V link ¼ 2=0.3 comes probably from multiple-
scattering processes, neglected by the 2BA. To corroborate
this conjecture we have tested the hybrid method also using
the TMA, which includes such processes. In Figs. 4(c) and
4(e) the TMA hybrid method shows an improvement over
the ALDA and the pure TMA calculation and thus supports
the conjecture (for an expanded discussion and additional
results, see the Supplemental Material [19]).
Conclusions and outlook.—By merging elements of

TDDFT and NEGF, we proposed a simple, easy to imple-
ment, nonequilibrium scheme aimed to improve the treat-
ment of local nonperturbative correlation effects and, at the
same time, incorporate nonlocal, nonadiabatic effects.
Results from Hubbard-type systems are quite encouraging.
Taking a mildly optimistic stand, we can argue that our
approach extends the applicability of the ALDA-TDDFT
approach and NEGF based on perturbation theory, thus
providing a way forward to merge (strong) correlations and
memory effects in general. On the other hand, one can
certainly envisage situations where nonperturbative and
nonlocal correlations are very important, and this is where
perhaps corrections beyond the 2BA (e.g., GWA or TMA,
mixed, or other) could be employed. We note that Hubbard-
type systems usually are challenging benchmarks to per-
turbative approximations such as the 2BA, TMA or GWA.
The latter generally perform much better for continuum
systems with long-range interactions. Thus, we specula-
tively suggest that our hybrid method could perform even
better for realistic systems. This is where the real merits of
our proposal could possibly be: Using continuum XC
potentials tailored for strong correlations (obtained from,

FIG. 4. Single-impurity, one-orbital Anderson model with
U ¼ 2 (shown in panel e). a): Linear conductance G in the
wide-band-limit for ΓWBL ¼ 0.09 (strong correlations). The exact
G is displayed, together with the Hartree-Fock (HF), 2BA, ALDA
and hybrid-method results. The density/spin-channel n=2 at the
impurity is also shown (dashed line). n=2 and G share the same
vertical scale (in different units). b-e): Time dependent density n
(b, c) and average current ¼ ðjL þ jRÞ=2 (d, e) for the Anderson
impurity with constant impurity gate voltage Vgate ¼ ϵ0 ¼ 0.25
and bias bLðtÞ ¼ 0.5θðtÞ. The hopping parameter in the
leads is V ¼ 1, the impurity-lead coupling is V link ¼ 0.5 (b,d)
and V link ¼ 0.3 (c,e).
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e.g., the strictly correlated approach [38–40], where the
discontinuities in vXC manifest in a different way) and
simplifications for perturbative self-energies (such as the
GKBA [18,22,23]), our approach would be a leeway to an
improved first-principles treatments of realistic systems in
nonequilibrium when strong local electronic correlations
and memory effects play a role.

We wish to acknowledge M. Puig von Friesen for
discussions in the early stages of this work.
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