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Abstract—Two different projection operators are found, projecting the state space of a continuous
stirred tank reactor (C.S.T.R.) dynamic model on the space of asymptotically invariant states (or on
the space of true invariant states for a batch reactor). The first projection gives an explicit expression
for the invariants, but it requires a certain partitioning of the stoichiometric matrix. The other
projection avoids this difficulty, but gives a description of the invariants by a set of equations which do
not have full rank. Concerning the observability of the dynamical modes, it turns our that the
invariants put certain restrictions on the observation matrix for the system to be observable. The
corresponding conditions for the system to be controllable by feed composition control are briefly
outlined. Certain properties of the solution of the linearized system are also analyzed.

1. INTRODUCTION

The study of chemical reactor dynamics becomes
more and more important in the attempts to
improve the production, the selectivity and the
dynamic control of the reactors. The basic ther-
modynamic variables like composition and en-
thalpy are important state variables in the analysis
of these phenomena.

A subset of reaction invariant variables may be
found by a simple partitioning of the reactor equa-
tions. These variables are linear combinations of
the basic concentrations and the temperature, even
if the differential state equations are strongly non-
linear due to the reaction rates. The motion of these
variables is linear and constrained to a subset or-
thogonal to the remaining state space. For a
C.S.T.R., these variables may be called asymptotic
invariants[1]. In a batch reactor, they are true
invariants[2]. Hence, the dimensionality of such a
state space description can be reduced, as has been
realized for a long time for closed systems. Re-
cently, conditions for such a reduction to be valid in

open, continuous flow reactors have been analyzed
by Asbjgrnsen and Fjeld[3], Fjeld[1] and
Asbjgrnsen [4]. For global stability analysis, all the
states are necessary, unless special conditions are
met. However, for stability analysis in the small,
only a reduced number of state variables needs to
be considered. In this paper, a closer study of the
projection of the state space on the set of
asymptotically invariants (eigenmodes) is made.

The concepts of observability and controllability
are both very important for the control of dynami-
cal systems. State observability is important also in
parameter estimation schemes. It turns out that
invariant states of chemical reactors are of interest
in the analysis of state observability of such proces-
ses, and this is the topic studied in the last part of
the paper.

2. INVARIANTS AND EIGENVECTORS
Consider a nonlinear system described by the
differential equation

(1) = #(x(t), u(t), t) M
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where fort 20,x€ X CE,,u€ UCE, and x(0) =xo
€ X. Furthermore, u(-)E %, F is a given class of
integrable functions. The solution of Eq. (1) is
assumed to exist for all £ >0 and all x,€ X. The
notion of invariance is introduced as follows.

Definition 2.1

A true invariant of the solution Eq. (1) is a
function h(x) of the state vector x(f) such that
h =dh/dt ={grad h, x) = {grad h,f) = 0.

If (grad h, £) is neither a constant nor equal to
zero, but its limit as f — is zero, then h is an
asymptotic invariant of the solution of Eq. (1).

If x is the state vector of a chemical reactor and
h(t) does not explicitely depend on any reaction
parameter, such as stoichiometric coeflicients,
kinetic parameters or heats of reactions, then an
invariant, true or asymptotic, is called a true or
asymptotic reaction invariant.

Linear systems

For linear autonomous systems, i.e. f = Ax, it is
easily seen that the projection on the nullspace of A
is an invariant. Similarly it is found that the
projection on the space spanned by the eigenvec-
tors corresponding to stable eigenvalues is an
asymptotic invariant.

Nonlinear systems

In attempting to extend this idea to the nonlinear
case the deviation Ax = x —x, is introduced; here x;
is a singular point at which f (xs, us) =0. Then

Ax = f(x. + Ax) = h(Ax) £ F(Ax) Ax 2)

where the matrix F has elements F; = h; (Ax)/Ax;.
These are assumed to be uniformly bounded for
finite Ax; as the other Ax; —0. For any fixed Ax, the
eigenvalue problem for F is

[AI — F(Ax)]e = 0. 3)

At x =x,, i.e. as Ax— 0, F becomes the Jacobian of
the functions f with respect to the variables x
evaluated at the critical point. For the problem (3)
the eigenvectors and eigenvalues will depend on Ax
unless Eq. (1) is linear. However certain nonlinear
systems, including chemical reactors in general,
may have a subset of state space where linear
motions take place. Certain eigenvalues and the
corresponding eigenvectors will then be indepen-
dent of Ax. For an absolute invariant to be present
there must be a zero eigenvalue. An asymptotic
reaction invariant implies that an eigenmode be-
comes constant as t—« independently .of the
reaction.
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3. STIRRED TANK REACTOR EQUATIONS

The dynamic mass and enthalpy balances for a
stirred tank reactor has been studied in details by
Asbjgrnsen and Fjeld[3] and Asbjgrnsen[4, 10]
under isothermal and adiabatic operation, and
under operation with heat exchange.

Provided all physical properties as well as the
heat of reactions are constant, the enthalpy and
species balances are combined in one single vector
differential equation|3, 4]

£ = (=)~ AT @

where A for isothermal operation is the transpose
of the stoichiometric matrix. For truly adiabatic op-
eration, the adiabatic temperature rises for each
reaction is added as an extra row, as a consequence
of the inclusion of the temperature in state vector x.
This vector then comprises the temperature and the
molar concentrations of the n participants of n,
truly independent chemical reactions|[3, 4].

The characteristic feature of the differential
equation describing the C.S.T.R. is that the non-
linear term at the right hand side of Eq. (4) maps as
follows

ArE,5E, 5E, )

This particular property of the stirred tank reactor
equations is the basis for the analysis presented in
this paper.

Provided the reactions are truly independent, the
matrix A will have full rank n, and a square
submatrix A,, with rank n, can always be found.

In this case, Asbjdérnsen and Fjeld[3] showed by
a partitioning procedure that a reaction invariant
z(t) is obtained

Z:X:_A:A1—1X1 (6)

where A, contains the remaining n — i, rows of A
and dim (z) = n — n.

This variable is described by the differential equ-
ation for a stirred tank without any reactions

i= (2 ). )
T

The solution for the reaction invariant is simply
7(t) = exp <- Lt du/q-)z(O)
+ J’ﬂl exp (— Lt du/*r)z,(@) de ®
which allows the parameter T to be dependent of

time [11].
Provided z, is constant, then z(t) is an asymptotic
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reaction invariant, since:
lim[z(t)] =z (C)]
o
If 1/r=0, i.e. for a batch reactor, z is a true
invariant z(0). This leads to the following
theorem[3, 4]:
Theorem 1. For a C.S.T.R. with n, reactions be-
tween n species and with a stoichiometric matrix of
full rank n,, an asymptotic invariant exists, which is

z(t) :xl(t)_AlAl‘lxl(t) (10)
provided the feed is such that
Zi = Xoy — AlAl‘le! a 1)

is constant. For a batch reactor, z(t) = z(0) is a true
invariant.

Note that all concentrations and the temperature
have to be positive

x=0.x,=0,i=12,..... , . (12)

This constrains the states to a certain subset of E,
in the positive orthant E,”. This means that the state
space is not a linear space, and therefore the term
“subspace” should not be used for certain subsets
of E,..

The deviation from a steady state x, is intro-
duced as Ax=x —x,. A new set of state variables
may be chosen, as Ax, and Az. For a given x; =
constant, the n-dimensional non-linear reactor
equation then becomes

Ax_ 1 [__Al‘l.] _ [_ALL] 13
[Ai } T orlAz 0 Ar (13)
where
Ar 2 r(x) — r(x,). (14)
Furthermore
N _A_X_n] - [ _I___iﬁ} <
Ax—[AZ and Ax AATT Ax (15)

4. INVARIANT SUBSETS AND STATE VARIABLES
4.1 The partitioning procedure
It is now seen that the subset on which Az=0
defines a n,-dimensional subset R, of the state
space X CE,” which is invariant[5] under the non-
linear transformation F(AX), since Egs. (18)-(19)
may be written as

I
~%I#A1 R(A%)] - 4 R.(4%)
A%

i

(16)
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where
Ar 2[R, (A%) | R, (A%)] Ax
dim(R)=n, Xn, dim(R:;)=n, X(n—n,).

(17)

The transformation projecting Ax(t) on the space of
asymptotical invariants Az(t) is given by Eq. (14) or
Az(t)=[— A A" | I Ax(2). (18)

Therefore, the invariant subset R, is described
through all those Ax satisfying the constraints (12)
and the n — n, equations

VAX2 [~ AA " [ T1Ax =0 (19)
from which the simple relation follows:
R, = N (V)" 20)

The" reminds about the restrictions corresponding
to Eq. (12). It is observed that the rows of V are
linearly independent, and span a space R,_, or-
thogonal to R,,.

The relation above may be expressed by the
projection operator P;. When X = R,, @ R,_,, [care
should be taken in the use the direct sum symbol @
since the spaces are not linear because of Eq. (12)],
Ax may be expressed as

Ax =P Ax+({I—P) Ax @n
where
P[AX e R"ﬂ\, and (I - P[)AX S R"r

P, is a projection operator on R,-,, along R, if and
only if P,=P’ when R,., =%R(P,) and R, =
N(P)[5]. Itis seen that the conditions are satisfied

with
_ ___0___i9.]
P“{—AZA;' NIl
0 0
Pax= (—aain) (35)
_ - _-_A_&___.> <___A_>s__>
(I - Pyax= (A;A(‘Axl Ax, — Az 24
Note that neither P,Ax nor (I —P,)Ax are state
vectors, but Az and Ax, are. The asymptotic in-

variants are explicitly given by the last n — n, com-
ponents of P Ax as expressed by Eq. (2)

(22)
Then
(23)

4.2 Finding invariants through direct use of projec-
tions

The problem of finding the reaction invariants
has so far been solved through a particular choice
of state variables. To get further insight into the
problem another coordinate free solution is pre-
sented. The analysis will also result in a different
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representation of the asymptotic invariants. This
approach is motivated by the corresponding de-
scription of a batch reaction. i.e. r=qt)/V=0:

x(t) = — Ar[x(1)] 25)

From matrix algebra, it is known that if A is alinear
matrix transformation from E, to E,, then

E.=R(A)DNAT) (26)
and
NAT) =[RA)]

Let wE N(AT), i.e. w satisfies A w = 0, any vector
x in E, given by the solution of (25) can be
expressed as

@n

X=w+s=w+ Av (28)

where s € R(A). The latter may simply be taken as
s= Ay, where v is a n,-dimensional vector, in
general with nonzero entries. The projection
operator for the projection from E, to N(AT) is

P.=1-AAT 29

Where A is a pseudo-inverse of A. Since A has full
rank, AT is simply:

At=(ATAY'AT (30)

1t is observed that P, satisfies all the conditions for
P. to be a projection operator. Applying P- to Eq.
(25),

Px(t)=w(t)=0 31
i.e.
w(t) = constant = w. (32)
Further, the projection onto R(A) =
N(ATY is AAT, ie.
(I - P)x(t)= — Ar(w, + Av) 33
that is
Av(t)= — Ar(w,+ Av). (34)

Projecting again AV on R, by multiplying Eq. (34)
with AT from the left (this projects Av onto
RATY = N(A), i.e. R,)

ATAV() =v(t) = —r[wy+ Av(D)]. (35

This result shows that the variable v is equivalent to
the ‘extent of reaction’ so frequently referred to in
the chemical engineering literature. To conclude, an
arbitrary x(t) satisfying Eq. (25) can be expressed
as

x(t) = Pox(t) + (I — P)x(t) = wo + Av(t) (36)

where P. is an orthogonal projection operator.
Note that rank (P:) = n — n.

M. FiELD, O. A. AsBiprNSEN and K. J. AsTROM

Theorem 2. For a stirred tank batch reactor with
n, reactions between n species and with a
stoichiometric matrix of rank n,, the function

wit)=[T-AATA)'ATIx(1) 37D
is a true reaction invariant.
Furthermore, the function
v()=(ATAY ' ATx(t) (38

is the extent of reaction in the batch reactor.
The projection operator P, is applied to the
C.S.T.R. equation, Eq. (4), which becomes

Px = % (Px; — Px) — P.Ar. (39)

Since the properties of the pseudo-inverse AT is
such that ATA =1 the following equation is
obtained

sz( = % (P:Xf — PZX)- (40)

Defining as before w = Px and w; = Pax,, it follows
that
W= % (w; —w). “n
Furthermore
(I—P)x=AATx = % AAT(x;—x)— Ar. (42)
Since Eq. (28) implies that v= A fx and v, = ATx, it
follows that

AV=%A(Vf—v)~Ar. (43)

With Av € R(A), a projection of this vector on to
R(AT) as in Eq. (35), gives

=L -v-r (4%)
T

Observe that w(0) € N(AT) and w; € N (A7) implies
that w(t) is invariant in this respect under the
solution of Eq. (41) so w(t) € N¥(AT). The solution
is equivalent to Eq. (8), but with z replaced by w

w(t) =exp (— for dv/1->w(0)
+ J:]r exp <* f; do/m)w;(0)de. (45)

Finally, x(t) is given by

x(t) = w(t) + Av(t). (46)
If the feed is such that w; = P,x; = constant, then
Eq. (41) implies that

lim w(t) = wy.

ta%

47
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In analogy to Egs. (11), (12) and (13), this leads to
the following theorem:

Theorem 3. For a C.S.T.R. with n, reactions be-
tween n species, and with a stoichiometric matrix
of full rank n,, an asymptotic reaction invariant ex-
ists, which is

w(t)=[I~AATA'AT]x() (48)
provided the feed is such that
w;=[I-AATAY'ATIx 49)

is constant.

Remark. Theorem 3 includes Theorem 1 as a
special case, which is demonstrated by the intro-
duction of the partitioned forms of A and x. Then

[I-AATA)'A"Ix
= [ X~ A;(A,TAI + AzTAzY1 (AITXI + AZTXZ) :‘

—AATA+ AAY)T (A% + AT x0) + %,
(50

and it follows from Theorem 3 that for large ¢, the
two vectors

X, — A(ATA + AA) T [ATx, + A, x;] = constant
(51
x(A(ATA + A,"A) 7 [A, x4+ A,"x,] - constant

are asymptotic reaction invariants. Eliminating the
expression within the square brackets, gives

x, — A,A,7'x, - constant

which is equivalent to Theorem 1.

5. EXAMPLE

Some of the relationships in the previous sec-
tions is illustrated by a simple example, given by
the stoichiometric matrix

-1 210 0
ATz[ 0 —212 1] 52

From Eq. (19), the subset R, =R, is obtained
through

_[2 1110 _
VAx = [2 110 1] Ax =10 (53)
P, is given by
00 00
70 0 0 0
P= 2110 (34)
{2 1 01

From Eq. (29), P, is given by

20 10 8 4
_1110 s 4 2

P2‘29 8 4 9 —10 (55)
4 2 —10 24

which has a rank equal two. P,Ax=0 can be
reduced to Eq. (53), but the form P,Ax is not
dependent on the condition that A, is nonsingular:
Any rearrangement of the columns of A” does not
change the result.

6. LINEARIZED SOLUTION
The use of Eq. (53) leads to a particular simple
form of the autonomous (Ax; =0) solution of a
C.S.T.R. The linearized description can be found
from Eq. (44) where Ax; = 0 and hence Av; =0

Av =~ Av-ar 56)
where Ar is replaced by (3r/av)Av

dAr

8ar | _drox
dAv

T ax ov

w=wg X=Xy
v=vg v=vg

At steady state, one has from Eqs. (28), (41) and
(44)

= RA. (57)

X, =W, + Av,
W, =W, (58
v, =v; — 7r(X;).

This leads to a linearized approximation to the
n, — dimensional differential equation for the vector
Av:

Av= —%Avﬂ RAAv. (59)

The solution for Ax = £(t) is

E(t) = Aw(t)+ AAv(t) (60)
that is:

£(1) = exp (— t/m)Aw(0)
+exp [(—%I—RA)t} AAv(0) (61)

7. EIGENVECTORS
7.1 The nonlinear system
Considering the non-linear system, the deviations
in the reaction rate from its steady state value
r, =r(x,) are defined by

Ar(x.+ Ax) £ R (x)Ax. (62)

Then the autonomous balance equations become

Ak(t) = ——; AX(t) — AR ()AX(1) (63)
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applying Eq. (3), the right column eigenvectors e,
satisfy (for given Ax) the equation
[()\j + %) I+AR (x):le!. =0 (64)

Similarly, the left row eigenvectors v, satisfy the
equation:

v{()\j + %)I +AR (x)} =0. (65)

For A, = — 1/7, Eq. (65) may be written as a matrix
equation:

VAR (x) = {0] (66)

where V is the matrix of the n—n. left row

eigenvectors belonging to the n —n, eigenvalues

—~1/7. Equation (66) is satisfied by
V={-AA" I_1

. ©67)
independently of the matrix R(x). Here I.-,, is the
identity matrix of dimension [n—n)x(n—n)l
Hence, it follows

Theorem 4. The n — n, left eigenvectors of the
non-linear C.S.T.R. equation belonging to the n - n,
‘uncoupled’ eigenvalues — 1/ are linearly indepen-
dent and equal to the rows of the matrix V in Eq.
(67). ‘Uncoupled’ eigenvalues meaning that the
algebraic multiplicity is equal to the geometrical
multiplicity, since the system matrix is diagonaliza-
ble in the n —n, eigenvalues —1/7, due to the
properties of the reaction invariants.

The right column eigenvectors e; corresponding
to the n —n, left row eigenvectors above, can be
found from the orthogonality condition

vie; = 5," (68)

7.2 The linearized system

The variable v in the partitioningx = w+ Av, was
shown by Eq. (41) to be described by a set of n,
non-linear equations which were given a linearised
approximation in Eq. (59). This equation has #n,
eigenvalues, which are assumed to be distinct. Cor-
respondingly, there are n, eigenvectors of this
equation.

The basic balance equations, Eq. (4), in the
variable x may be linearised in a similar way|[3, 4]
by defining as in Eq. (57)

dAr

m = R(X;)

X=X

(69)

Then the linearised approximation to Eq. (4) may
be written for an autonomous system (Ax; = 0[3, 4],

M. T3ELD, O. A. AsBIgRNSEN and K. J. ASTROM

Ak = —le—AR Ax.

T

(70)

Tt may be of interest to see how the eigenvectors of
Eq. (59) (the Av-system) are related to the eigenvec-
tors of Eq. (70) (the Ax-system). The right eigenvec-
tors of the Ax-system are given by

(1) 1+ 4R] e =0

where dim(e;) = n. Similarly, the right eigenvectors
of the Av-system are given by

)

[()\,. +1> I+ RA] f=oN% L (72
T T

where dim(&,) = n,. Multiplying Eq. (71) from the

left with R, it follows that

[()\i + %)1 + RA] (Re)) =0, A+ % (73)

Hence, if e; is a right eigenvector of the Ax-system,
e; belonging to an eigenvalue A;# — 1/, then the
corresponding right eigenvector of the Av-system,

& belonging to the same eigenvalue, is given by
& =Re,i=12,....,1. (74)

The left row eigenvectors in the Ax-system satisfy
the equation:

\ [()\i +%> I + AR} =0.

Similarly, the left row eigenvectors of the Av-
system satisfy the equation

A

7 [()\, -\—l> I + RA} =0 A# —l. (76)
T T
Multiplying Eq. (76) with R from the right, it

follows

F:R) [()\,- +%> I+ AR] -0, A# #%. 77

In analogy to Eq. (73), it is clear that if ¥; is a left
row eigenvector of the Av-system, ¥; belonging to
an eigenvalue A;# — 1/7, then the corresponding
left row eigenvector of the Ax-system, v; belonging
to the same eigenvalue, is given by

VR=v,i=12,.... 1. (78)

Note that e N(R) (> Re#0, VR #0) is implied
by A # — 1/r. Therefore, only n, eigenvalues come
into this discussion. Furthermore, neither Re; nor
V.R are zero, when rank (R) = n,.

This is true, however, only when the Jacobian of
the reaction rate expressions indicates true inde-
pendence between the expressions.
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8. INVARIANTS AND OBSERVABILITY
Consider the linearized system given by Eq. (63),

k=] -Lr-ar) |- FE). @9

Lemma 1. Given (63), let y; be an observation of
the form y; = v;x, i.e.

Vi =vilx, + ) = vix, + Ay (80)
ie.

Ay, = v

where v; is a left row eigenvector of F. The rank of
the observability matrix Q[6] is equal to one, and
the system Eq. (63) is not locally observable at the
point x, [6].

Proof. To prove this, we do not need to consider
the term v;x, in y; since this is a constant for each
chosen x,. The observability matrix is then

(81)

0 = [V!’T FTV)'T ______ (FT)nvlva]‘
(32)
Since v; is a left eigenvector,
VJ'F = AJ‘VJ'
or
FTvi" = \v])
that is,
(FT)k VjT — )\jkV,’T. (83)

This means that all v; is contained in an F’-
invariant subset of E,. For the observability matrix
we have

0= [VjT AjVjT /\j”*]V,‘T]

which obviously has rank equal to one, and the
system is not locally observable[6].

Remark. In particular, if y= Vx, then y is an
asymptotic reaction invariant vector of the non-

linear system, and the system is neither locally nor

globally observable.

Theorem 6. For the nonlinear system Eq. (4),
given an observation in the neighbourhood of a
steady state x,, such that

y=da"x=d"[x, + £(t)] 34
i.e.
y=d'¢ 85

where £(t) is given by the solution of Eq. (79). If d”
is contained in an FT-invariant subspace of dimen-
sion less than n, then the system is not locally
observable at x..

Proof. The proof follows easily from Lemma 1.
y =d"£ yields an observability matrix of rank less
than n: since v; is a basis, there exists numbers 3,
not all equal to zero, j =1,2,....,q, such that

1923

dT = i B,‘V,‘ (86)

where q < n. Therefore the rank of

0=

4 g n
[21 Bivi" FTZ By’ ——-—- (F)"! 21 .B)'VJ‘T]
i= 1= =
obviously has rank g <n at most. @7

9. THE MINIMAL POLYNOMIAL OF F AND THE
SOLUTION OF THE LINEARIZED SYSTEM

From matrix algebra it is known, if a matrix F is
semisimple[7], the minimal polynomial of F is

Cr) =" — &) (88)

where II' denotes the product of all distinct factors.
The direct solution of Eq. (79)

g(t) — eFlg(o) — e-(l/-r I+AR}t§(0) (89)
may be expressed as
£)=3, pFEO) 90)

by means of the theorem of Cayley-Hamilton. As-
suming that F is semi-simple, F is diagonizable with
eigenvalues A;, Az, ..... A, plus (n —n,) eigen-
values equal to — 1/7. The minimal polynomial is
hence at most of order n, + 1. For a matrix function
f(F) we obtain

ﬂm=§ﬂMH o1)

where g =n, +1 and

4 — .
B =15 (©92)
el i

)\i - A]
JE
(Sylvester’s Theorem). For the matrix exponential
we then obtain

q
eFr — z e)\‘JH (93)
i=1
or more specifically
E(t)=[eMH +e"H,+ .... +eH,
+e“"H, ] £(0). (94)

10. CONTROLLABILITY
10.1 Feed flow rate control, constant feed composi-
tion

When flow rate control is applied, the mean resi-
dence time will change, and Eqgs. (7) or (40) may be
written
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1) = L8 2, (0) — (),

95)
It is a well-known feature of a stirred tank without
any chemical reactions, that the thermodynamic
states are insensitive to flow rate changes when the
balance equation takes the form of Eq. (95)[11].
This is so, if the system operates at a steady state in
z, as then z(t) = z, = z; and 2 = (. Consequently, the
subset R,* is uncontrollable for all t.

If, however, z(0)# z, then a certain transient
control is possible, via z(0) initially, but gradually
R, becomes uncontrollable as t approaches in-
finity.

10.2 Feed composition control, constant flow rate
From Egs. (7) or (40)
. 1
2(t) = [2,(1) = 2(V)] (96)
where the parameter 7 is constant, it is seen that the
state z is controllable only via the input variable z.
Consequently, if the feed is such that z; =0, i.e.

x;(t) € N(V)", then R, is an uncontrollable subset
for all t.

11. THE STOICHIOMETRIX DOES NOT HAVE
FULL RANK

A general model for a set of chemical reactions
involves parallel and consequtive mechanisms.
Parallel reactions are in principle indicating differ-
ent possible reaction paths to form the same pro-
ducts from the same original reactants. The
stoichiometry along such parallel paths are linear
combinations of each other, provided the reactants
at the start and the final products at the end of a
path are the same for the parallel paths. The rank of
the stoichiometric matrix will in this case be less
than the number of reactions. For example, the
steam reforming of methane may be considered in
the first approximation as two apparent parallel
reactions.

(1) CH.+2H:0-4H.—CO=0
97
(2) CH.,+H,0—-3H,—-CO=0

as far as methane, water vapour and hydrogen is
concerned. However, they have linearly indepen-
dent stoichiometry due to the formation of carbon
monoxide and dioxide. If however, the water shift

reaction takes place at the same time:
3) H.0+CO-CO,-H=0 (98)

The stoichiometric conditions for this reaction is
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just the difference between the other two. This is
due to the fact that the shift reaction acts as an
intermediate, consecutive reaction in two parallel
paths both using methane and water to produce
hydrogen and carbondioxide. The introduction of
the shift reaction does not alter the rank of the
stoichiometric matrix from 2, as it was before.
Another example on reaction models with sev-
eral parallel paths, is the hydrogenation of fatty oils
from soybeans. The stoichiometry along these
paths is shown to be linear combinations of each
other. The mechanism is best illustrated by a graph:

99)

1 /CX
i U e
\D/

as shown by Hertzberg and Asbjgrnsen{9]. Here A
is linolenic, B linoleic, C trans-oleic, D cis-oleic
and E stearic acid.

As it is stoichiometric there are seven reactions
suggested, five components, while the stoichiomet-
ric matrix in the equation:

{ =1 0 0 0]
0O 1 -1 0 ol|[A
o 1 0 -1 ol|B
Nm=|0o 1 0 0 -1]|C|-0
o 0o 1 -1 ol|D
o 0 1 0 —-1|lE
LO 0 0 1 -1 (100)

is seen to have the rank four. Let the rows in N be
a, and the columns b:. By developing the echelon
matrix, the following relationships appear: as=
a;— a, 2, = a;— a, a;=a,— a; and b, =
(b;+b;+b;+hbs). The graph contains three basic
elements with parallel paths of linearly dependent
stoichiometry. Those are

BZSE B/._>C\D

As shown by Asbjérnsen[10], an asymptotic reac-
tion invariant may be found also in this case, by the
procedure of partitioning the material balance equ-
ations, as well as the linearly dependent reactions:

C/_D>E

(101)

.1 :
XI:;(XIJ'XI)““[AH ' Al I:‘E‘]
A=N"

. 1 . !
%= (o ~x) ~ [An | An m (102)




Reaction invariants

Here, A, is a square p X p matrix of rank p, which
is also the rank of A. Since all rows in the matrix
[As; Ax] are linear combinations of the rows in
the matrix [A,, Al it follows that

AsAL T AL A =0, (103)

Hence, the asymptotic reaction invariant z is as
before in Eq. (6)

Z2=X— Ay AL TX. (104)
The projection matrix P, is then:
0 :
e wmas ! (105)

For the hydrogenation model, let the matrix A be
partitioned:

1.0 0 0 0 0i 0
171 1 1 0 060
A=l 0 -1t o o 1 1! 0
0 0 -1 0 -1 o0} 1
0 0 0 -1 0 —1i-1

(106)

Then the reaction invariant z is seen to be a scalar
and expressed through

z=x—[-1-1-1-1]

=x+x+xs+Hx,+xs (107)
This equation expresses z as the sum of all the mole
numbers, which naturally has to be reaction in-
variant in the elementary first order reactions
suggested. The projection operator P, is:

0
Pi= [1 111 J‘
For the projection operator P,, the procedures in
the previous Section 4.2 may still be applied, with
some minor modifications in the computation of the
pseudoinverse. Of course, the matrix A,™' in
Sections 3-4.1 does not exist now, since rank
(A) <n, with n <n,.
Suppose that A has rank p < n. Suppose that we
know areal n X p matrix B and a real p X n. matrix
C, both of rank p, having the property

(108)

A = BC. (109)
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Then the pseudoinverse of A may be expressed
as[5],
At=C™(CC"Y'(B'B)'B” (110)

The pseudoinverse AT is unique.

Considering now x(t) as given by Eq. (25), the
projection from E, onto N(AT) [= R(A)'] is
Px(ty=(I—-AADX(t)= — Ar+ AATATr. ai
A general property of the pseudo-inverse is that[5]:

AATA=A (112)

such that for a batch reaction, we still have

w(t) 2 Pk(t) =0

where w & N(AT).
The orthogonal projection on R(A) is still
(I—Px(t)= A¥(t) = AATX(t) = — AATAr

(113)

) (114)
ie.
Av(t)= — Ar. (115)
Projecting again on R(AT) [ = N(A)],
v=—r(w+ Av). (116)

This procedure may be illustrated by the
hydrogenation model, as introduced above. Let the
matrix B be the first 5 X 4 part of matrix A. Then the
rank of B is four (p), and the matrix C follows such
that A = BC:

~1 0 0 0
—1 11
B = -1 0 0
0 0 -1 0
L0 0 0 —1
000 0 0 0
o100 -1 -1 0
C”0010 1 0 -1 arm
Lo 001 0 1 —1

The pseudo-inverse of A is computed from Eq. (30),
and found to be:

16 —4 —4 —4 —4]

4 4 -6 —1 —1

4 4 -1 —6 —1]
AT:% 4 4 -1 -1 —6| (118

0 0 5 -5 0

0 0 5 0 -5

Lo 0 0 5 —5]
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Furthermore:

4 -1 -1 -1 —1
-1 4 -1 -1 —1

AAT=% -1 -1 4 -1 -1 (119)
-1 -1 -1 4 -1
-1 -1 -1 -1 4
giving the projection operator P,
T 1111
| 111 11
p,= 3 111 11 (120)
111 11
11111

which has rank one. As shown before, the rank of
P, corresponds to the dimension of the reaction in-
variant z, which in this case is one. Hence, it is
shown by this simple illustration how the concepts
of reaction rate invariants apply equally well to
systems where the stoichiometric matrix does not
have full rank. If too many parallel reactions occur
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with linearly related stoichiometry, a reaction in-
variant subset may still be found by the two
projection methods suggested.
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