
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Networking Media Abstraction, Device Discovery, and Routing for the Pervasive
Middleware PalCom

Ergawy, Amr

2016

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Ergawy, A. (2016). Networking Media Abstraction, Device Discovery, and Routing for the Pervasive Middleware
PalCom.

Total number of authors:
1

Creative Commons License:
Unspecified

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/7901bd58-cbbe-41b1-9a2c-bcd04957a11e

Networking Media
Abstraction, Device

Discovery, and Routing for
the Pervasive Middleware

PalCom

Amr Ergawy

Doctoral Dissertation, 2016

Department of Computer Science
Lund University

ISSN 1404-1219
ISBN 978-91-7623-960-5 (printed)
ISBN 978-91-7623-961-2 (electronic version)
Dissertation 51, 2016
LU-CS-DISS: 2016-03

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: amr.ergawy@cs.lth.se
WWW: http://www.cs.lth.se/amr_ergawy

Printed in Sweden by Tryckeriet i E-huset, Lund.

© 2016 Amr Ergawy

Abstract

PalCom is a pervasive middleware that can be used to assemble services

provided by networked devices into configurations, called assemblies, for

specific use cases by the user. In this dissertation, we present the

development of a networking media abstraction framework for PalCom that

abstracts different network interfaces in a PalCom device to upper layers of

PalCom. The media abstraction framework is documented in paper I. Over

the media abstraction layer, we define a device discovery mechanism that

enables a PalCom device to discover other devices on its local networks,

where it has network interfaces, as well as across interconnected networks.

The device discovery mechanism is documented in paper II. On top of the

device discovery layer, we implemented support for distance vector routing

that enables routing data among discovered devices via the least cost routes.

The routing layer is documented in paper III. In the last phase of our work, we

refined our device discovery mechanism for PalCom to include a distributed

synchronization algorithm that two PalCom nodes can utilize to re-sync their

exchanged views of the network to overcome possible loss of device

discovery and undiscovery notifications over unreliable channels. The

synchronization algorithm is documented in paper IV.

iii

Acknowledgments

I thank Prof. Boris Magnusson for giving me the chance to work on

challenging tasks for the PalCom middleware. I also thank him for his help

and valuable inputs during different stages of my work. I thank Prof. Görel

Hedin for her support during different courses that were part of my studies

and that helped as a background study for this dissertation.

I thank my colleague Mattias Nordahl for the valuable discussions and

feedback as a PalCom-developer who used the components that I added to

PalCom. I thank my colleague Björn A. Johnsson for his valuable inputs while

testing PalCom against real world application scenarios.

I thank all administrative and technical support personnel at the CS

department for their professional and friendly performance that helped me a

lot to focus on my work.

I thank the Swedish research funding agencies SSF and VINNOVA that

supported our group during my work. I thank the EU for my Erasmus Mundus

MSc scholarship that definitely formed the foundation of the work in this

dissertation. I thank Egypt for my free-of-charge education from 1
st
 grade to

BSc level.

Last but not least, I thank my wife Amira and my kids Reem and Ismail for

their patience and support during the stressful times of my work on this

dissertation and the system behind it. And before all, I thank my parents who

made me what I am.

iv

Table of Contents

© 2016 Amr Ergawy ... i

Abstract .. ii

Acknowledgments ... iii

Table of Contents ... iv

Preface ... ix
List of Included Papers ... ix
Contribution Statement ... x

Introduction ... 1

1 Background .. 1

2 Pervasive Computing and the Internet-of-Things 2

3 Communication and Discovery in Pervasive Systems and
the Pervasive Middleware PalCom ... 4

3.1 Communication Support for Device and Service Discovery
in Pervasive Systems ... 5
3.2 Device and Service Discovery in the Pervasive Middleware
PalCom .. 7
3.3 Example Application Scenarios of PalCom 11

4 Problem Statement ...11

5 Contributions overview ...13

6 Design Principles ...16
6.1 Design Principles of the Media Abstraction Framework.. 17
6.2 Design Principles of the Device Discovery Mechanism 19
6.3 Design Principles of Supporting Distance Vector Routing
in PalCom ... 21
6.4 Design Principles of Synchronizing Device Discovery
Information on Loss of Update Message over Unreliable Channels
 22

v

7 Design Details ... 23
7.1 Design Details of the Media Abstraction Framework 23
7.2 Design Details of the Device Discovery Mechanism 29
7.3 Design Details of Supporting Distance Vector Routing in
PalCom .. 34
7.4 Design Details of the Synchronization Algorithm of Device
Discovery Information on Loss of Update Message over
Unreliable Channels ... 35

8 Evaluation .. 37
8.1 Evaluation of the Media Abstraction Framework 38
8.2 Evaluation of the Device Discovery Mechanism 41
8.3 Evaluation of Supporting Distance Vector Routing in
PalCom .. 42
8.4 Evaluation of the Synchronization Algorithm of Device
Discovery Information on Loss of Update Message over
Unreliable Channels ... 45

9 Future Work .. 46

10 Conclusions ... 47

References .. 49

Paper I: Media Abstraction Framework for the Pervasive
Middleware PalCom .. 53

1 Introduction .. 53

2 Diversity of Media Interfaces in Pervasive Systems 55
2.1 Diversity of Media Interfaces in Healthcare 55
2.2 Diversity of Media Interfaces in Vehicular Ad-hoc
Networks .. 56

3 Previous Work: Service Oriented Abstraction vs. Media
Independence Abstraction .. 56

3.1 Service Oriented Architecture based Media Abstraction. 57
3.2 Media Abstraction for Seamless Handover 57

4 Proposed Media Abstraction Framework for PalCom 57
4.1 Solution Basis and Approach .. 58
4.2 Design Principles and Features ... 59

vi

4.3 Framework Structure and Activities 60

5 Framework implementation ...64

6 Testing and Evaluation ..65
6.1 Integration Effort .. 66
6.2 Messaging Time Overhead .. 66

7 Conclusion and Future work..67

Acknowledgment ..68

References...68

Paper II: Device discovery for the Pervasive Middleware
PalCom with Eliminated Cross-networks Heart-beat Messages
 ...71

1 Introduction ..71

2 Communication support for service discovery: challenges
and design ...73

2.1 Communication support vs. dynamism and heterogeneity
 73
2.2 Designing device discovery for dynamism and
heterogeneity ... 74

3 The proposed device discovery mechanism75
3.1 Structure of the routing table ... 75
3.2 Device discovery in local networks .. 76
3.3 Discovery forwarding on a router node 77
3.4 Handling routing loops ... 79
3.5 Cross-networks device discovery ... 79
3.6 Aligning a remote-route to its introducer-local-route 80
3.7 Implementation and evaluation .. 81

4 Conclusions and future work...82

References...82

Paper III: Supporting Distance Vector Routing over Device
Discovery Flows in the Pervasive Middleware PalCom85

1 Introduction ..85

vii

2 Previous Work .. 86
2.1 Device Discovery over Media Abstraction in PalCom 86
2.2 Challenges and Design Options for Routing in Ad-hoc
Networks vs. PalCom Stack Implications ... 88

3 The Proposed Support For Distance Vector Routing in
PalCom ... 90

3.1 Design Options... 91
3.2 Design Principles and Properties ... 93
3.3 Design Details .. 95

4 Implementation And Evaluation .. 99

5 Conclusion and Future Work.. 100

References ... 101

Paper IV: Synchronizing device discovery on loss of update
messages in the pervasive middleware PalCom 104

1 Introduction ... 104

2 Previous work and problem statement 105
2.1 Cross networks communication support in PalCom 105
2.2 Device discovery in PalCom ... 106
2.3 The problem of once-sent device discovery notifications
over unreliable channels .. 106

3 Reliability in distributed systems and design options .. 107
3.1 Reliability requirements in distributed systems vs.
communication/networking faults ... 107
3.2 Requests redirection reliability vs. architectural based
reliability .. 108
3.3 Time-out based failure detection vs. sequence number
based failure detection .. 108

4 The proposed algorithm for synchronizing device
discovery on lost update messages ... 109

5 Model-based performance evaluation 111

6 Conclusion and future work ... 112

viii

ix

Preface

This dissertation consists of two parts. The first part introduces the field of

pervasive middleware and PalCom as a pervasive middleware. Then it

summarizes the three layers that this dissertation has added to the PalCom

stack, their design principles, and their evaluation. Finally, the first part of the

dissertation discusses the planned future work.

 The second part of this dissertation lists the four research papers that

detail the discussion in the first part.

List of Included Papers
1. Media Abstraction Framework for the Pervasive Middleware PalCom,

Amr Ergawy and Boris Magnusson,

Published in Proceedings of the 2nd International Conference on Future

Internet of Things and Cloud, FiCloud-2014, Barcelona, Spain, 2014.

IEEE.

2. Device Discovery for the PalCom Pervasive Middleware with

Eliminated Cross-networks Periodic Heart-beat Messages,

Amr Ergawy and Boris Magnusson,

Published in proceedings of the 5th International Conference on Emerging

Ubiquitous Systems and Pervasive Networks (EUSPN-2014), Halifax,

Nova Scotia, Canada, 2014, Procedia Computer Science, Volume 37,

2014, Pages 64-71.

3. Distance Vector Routing over Device Discovery Forwarding Flows in

the Pervasive Middleware PalCom

Amr Ergawy and Boris Magnusson,

Published in Proceedings of the 6th International Conference on Ambient

Systems, Networks and Technologies, ANT-2015, London, UK. Procedia

Computer Science, volume 52, 2015, p. 153-160.

4. Synchronizing device discovery on loss of update messages in the

pervasive middleware PalCom

Amr Ergawy and Boris Magnusson,

 Published in Proceedings of the 11th International Conference on Future
Networks and Communications (FNC 2016). Montreal, Canada, 2016.

http://www.sciencedirect.com/science/journal/18770509/94/supp/C
http://www.sciencedirect.com/science/journal/18770509/94/supp/C

x

Procedia Computer Science, Volume 94, 2016, Pages 347-352.

Contribution Statement
Prof. Boris Magnusson specified the requirements for the media

abstraction layer, the state machines design of the device discovery

mechanism in local-networks and cross-networks, and the requirements for

the distance vector routing. Moreover, Prof. Boris Magnusson was

continuously providing valuable comments for the design and implementation

improvement. For the text in this dissertation, Prof. Boris Magnusson

provided valuable reviewing comments.

Amr Ergawy designed, tested and implemented the media abstraction

layer, the device discovery implementation, and the distance vector routing

support. He also modified the design of the device discovery mechanism to

align the discovery state of remotely discovered devices, via cross-networks

discovery, to the discovery state of the router nodes that introduced these

nodes.

Amr Ergawy designed the algorithm for synchronizing device discovery

information between two neighbor PalCom nodes on the loss of device

appearance/disappearance notifications over an unreliable channel. He also

designed, implemented, validated, and tested the algorithm implementation.

For the included papers, Amr Ergawy is their main idea/structure designer

and author while Prof. Boris Magnusson provided comments, modifications,

and reviews. Amr Ergawy presented the first and the third papers while Prof.

Boris Magnusson presented the second and the fourth papers.

1

Introduction

In section 1 of this introduction, we introduce the background of the

PalCom pervasive middleware. In section 2 of this introduction, we

summarize the background of the required communication in pervasive

systems for service discovery and data exchange. Moreover, in section 3, we

introduce PalCom, including its service discovery and composition features.

In section 4, we introduce our problem statement while in section 5 we

discuss our contributions. Continuing this introduction in sections 6, 7, and 8,

we summarize the design principles, details, and evaluation of the networking

media abstraction framework that we proposed for PalCom, our proposed

device discovery mechanism for PalCom, and our solution for supporting

distance vector routing in PalCom. Finally in section 9, we discuss our future

work.

1 Background

PalCom is a pervasive middleware that was originally developed as an

EU project between 2004 and 2007. We mean by pervasive middleware that

PalCom aims to enable embedding continuously available computing in

different devices that surround users in their living and working environments.

This enables system developers and end users to combine the services of

such devices into assemblies of useful usage scenarios. A more recent and

practical alternative term to pervasive computing is the Internet-of-Things,

IoT. David Fors’s dissertation (1) details the original design, implementation,

and possible usages of PalCom.

As part of the early development of PalCom, it was concluded that

devices need to network via different types of networking interfaces, e.g. an

IP interface or a Bluetooth interface. Such devices need to maintain their

overlay PalCom network over whatever available underlying networks.

However, the original PalCom design did not provide a framework that

enables developers to easily develop and integrate new network interfaces

into PalCom. The first addressed problem in this dissertation is to design an

architecture that enables PalCom developers to easily and quickly develop

new abstraction objects, i.e. drivers, to support more network interfaces.

 Another conclusion from the early development of PalCom was the need

to enabled devices to autonomously detect the appearance and

2

disappearance of each other, in a timely manner. The original PalCom

implementation uses a device-discovery mechanism that enables a device to

periodically broadcast heart-beat messages via its various network interfaces.

This approach enables other devices on the reachable local networks to

discover and keep track of the availability of the sender device of the periodic

heart-beat messages they receive.

As part of the original PalCom implementation, the device discovery

mechanism was developed so that heart-beat periods are configurable per

device. This configuration parameter can be used to optimize PalCom

devices for a specific use case. Moreover, the original PalCom

implementation provides the possibility of preventing a PalCom device form

broadcasting heart-beat messages via a specific network interface as long as

it broadcasts heart-beat-reply messages via that interface, where another

device with a shorter heart-beat period initiates the heart-beats sequence.

This key optimization in the original PalCom device benefits device discovery

within local network.

However, the original PalCom implementation does not provide an

optimal way to handle device discovery across multiple interconnected

networks, i.e. cross-network device discovery. For example, if three local

networks are connected in a line and there is only one device between each

two consequent networks, then those two devices will forward periodic heart-

beats between these networks. This is a network performance problem.

As a result, the second addressed problem in this dissertation is to

improve the PalCom device discovery mechanism to replace the forwarding

of cross-network heart-beats with once-sent device appearance and

disappearance notifications. Moreover, the third problem that we address in

this dissertation is to support shortest path routing over the resulting overlay

network from the new device discovery mechanism. Finally, the fourth

addressed problem in this dissertation is to design a synchronization

mechanism that recovers devices discovery status after possible loss of

once-sent notifications over unreliable channels.

2 Pervasive Computing and the
Internet-of-Things

Pervasive computing is defined by Wieser's vision to embed computing

technologies into different aspects of life so that user do not need to be aware

of the existence of the computing platforms (2) (3).The vision of pervasive

3

computing was revised by different industry and research communities to

identify challenges and approaches that may be used to address them (2).

That revision was more oriented towards the technologies that we have today

that differ from Wriser’s time.

Even a decade after Weiser’s vision, pervasive computing was still define

as embedding computing devices and infrastructure in spaces where people

live (4), producing smart spaces. This enables home and work places to

sense different inputs and opens the door for an endless array of undefined

use cases.

In its original version, Weiser’s vision of pervasive computing ideally

defined that users shall be minimally distracted by the computing

infrastructures in their smart spaces (2). User may get distracted to fix minor

issues and systems may learn for the user actions so that they can make

automated decisions in the future (3) (4). However, it is not preferred to

involve users in fixing networking issues in a pervasive environment that may

contain a large number of interconnected devices (3).

In turn, enabling communication among a large number of interconnected

devices in a pervasive environment was a main challenge to Wesier’s

research (2), where scalability was defined as the main challenge to enable

interaction among devices. They focused on the density of connections that a

device has to handle as its user approaches a pervasive environment.

During the years after Weiser’s vision, many other technologies have

evolved to support communication among interconnected devices (2) (3),

including distributed computing, mobile computing, and sensor networks.

These technologies provide foundations to communication support in

pervasive computing.

Distributed computing provides the foundations of interconnecting devices

whether they are in the same local network or in different remotely connected

networks and regardless of the type of networking media of these devices (2)

(3). These technological foundations were generic enough to be employed in

pervasive systems.

The first of these foundation provided by distributed computing is defining

layered network protocols and end-to-end quality of service (2) (3). It

provided communication substrate to pervasive devices. Another

technological foundation, of distributed computing, is fault tolerance

techniques, e.g. atomic transaction, that enable a pervasive device to survive

error-prone environments (2) (3). Distributed computing provides a third

technological foundation for replicating control and execution (2) (3), which

can be used for more reliability in pervasive systems. A fourth technological

foundation of distributed computing is secure communication (2) (3), which

4

may be applied to pervasive computing with special considerations that

match its error prone and ad-hoc nature.

For mobile computing, it supports communication in pervasive systems by

providing several technological foundations that handle mobility

management, variable network quality, constrained resources, and power

consumption (2). Like mobile computing systems, pervasive environments

assume that users move their hand-held devices among different networks

(2) (3). That similarity makes the foundation of mobile computing a very close

match to the needs of pervasive computing, considering the special

requirement of pervasive computing.

For sensor networks, it provides the technological foundations for

pervasive systems to sense and communicate important data about users

and environments (4). Sensor networks devices have both the sensing and

communication capabilities that provide the necessary building blocks for

pervasive systems. Furthermore, sensor networks research provided

important improvements in ad-hoc networking, system integration and real-

time operating systems.

All of the above communication support is composed into pervasive

systems using middleware systems and the underlying networks (3).

Middleware systems interface different resources to pervasive applications,

including networking resources (3). PalCom (5) (1) is an example of such a

system.

3 Communication and Discovery in
Pervasive Systems and the
Pervasive Middleware PalCom

The communication support to pervasive systems is mainly important for

service discovery, which is a networking protocol that enables a device to

advertise its services to other devices in a network where it exists (6) (7).

Also, it enables such a device to discover the services on other devices in the

network. As devices in pervasive environments continuously join and leave

networks, service discovery protocols must provide mechanism to register

and unregister devices and their services so that devices can maintain

enough information about each other.

A device that has just joined a network in a pervasive system needs to

advertise its features and attributes that can be used by the service discovery

5

system to reply service discovery look-ups that may be initiated by other

devices (6) (7). Matching services needs and requirements may employ

querying searches or matching incoming service announcements to service

needs.

3.1 Communication Support for Device and
Service Discovery in Pervasive Systems

Service discovery protocols have to work in computing environments with

no well-defined boundaries and the computing resources may vary over time

from a network to another (6) (7). Also, service discovery protocols need to

minimize the required configuration by automatically detecting devices and

their services in a generic enough way, which enhance usability and reduce

the amount of required development to handle different system setup and

usage scenarios. However, service discovery still needs to maintain security

and privacy.

a. Initial communication and networking media abstraction

Given the above goals of service discovery in pervasive systems,

providing a media abstraction framework that enables service discovery

protocols to discover devices and services via different types of network

media is essential, which we provide by defining a media abstraction

framework for the pervasive middleware PalCom (5) (1). Also, the above

mentioned level of automaticity in service discovery needs support from an

underlying device discovery mechanism that can be used by upper layers of

a pervasive middleware, which we provide for PalCom by our proposed

device discovery mechanism.

Moreover, service discovery protocols must specify an initial

communication method that enables devices to discover and communicate

with each other (6) (7). The most efficient way to provide such a facility is

using unicast communication (6) (7), which enables the communication

between two entities. However, unicast communication requires pre-

configuration of the two communicating devices, which is a disadvantage.

Alternatively, a service discovery protocol may use multicast as an initial

communication method (6) (7). After using multicast for communication

initialization, device may switch to unicast communication. However,

multicast may also require a minimal amount of pre-configuration. A third

alternative for an initial communication method is to use broadcasting (6) (7),

which does not require pre-configuration but may flood the network with

control packets in case of the inter-network broadcasting.

The above mentioned initial communication methods are highly coupled

6

with the underlying networking media and may require pre-configuration, e.g.

for the unicast and multicast cases, and may flood the networks with control

packets, e.g. for the case of broadcasting. Alternatively, for the PalCom

pervasive middleware, we define the media abstraction framework that

abstracts different networking media to our proposed device discovery

mechanism, which provides an automatically configured initial communication

method for upper layers in PalCom, including service discovery. In this way,

the media abstraction framework decouples the initial communication method

from the underlying networking protocols. Also, the device discovery

mechanism limits the broadcasting of PalCom heart-beat messages, which

are used as both device discovery initiators and keep-alive messages, within

the boundaries of local networks.

b. Approaches of service discovery

Also, service discovery protocols must specify a method to refer to

services and to exchange service attributes (6) (7) (8). Such a method can be

template based, which uses a standard format to define service naming and

attributes. That approach can be extended with a predefined set of commonly

used services. In particular, service discovery and registration can be

announcement based or query based (6) (7) (8). For an announcement

based service discovery, all participating devices listen to service

announcement via a specific communication channel. Alternatively, a query

based system may reply to a service query by sending the required services

information to the query sender.

To be able to exchange service information, service discovery protocols

need to provide the required discovery infrastructure (6) (7) (8). A service

discovery protocol may maintain a directory of all of the discovered devices

and services. The system can use such a directory to handle service queries

or to manage and process service announcements. Such a directory based

solution can be used with a large number of interconnected device.

Alternatively, a service discovery protocol may maintain a non-directory

based solution, where all services on all devices process all received service

queries and positively reply, with service information, when on matching the

request. A non-directory based solution is more suitable for system with a

limited number of devices.

c. Supporting device discovery

Regardless of the type of the service discovery infrastructure, the very

first step of maintaining is to enable interconnected devices to discover each

other. Our proposed device discovery mechanism for PalCom enables that

very first step on local networks as well as across interconnected networks.

Additionally, having the media abstraction framework under the device

7

discovery layer, the service discovery infrastructure in PalCom is enabled

over different types of networking technologies.

After devices have exchanged service discovery information, services on

devices must maintain their own state (6) (7) (8). A service may be assumed

available for a specific time period since its discovery. Alternatively, a service

may be periodically interrogated by the system for its availability. The

availability of the devices that host services is the first step towards

maintaining the availability of its services. Within a local network, our

proposed device discovery mechanism for PalCom maintains device

availability via heart-beat messages that are periodically sent by devices. For

cross-network device availability, our proposed device discovery mechanism

for PalCom depends on forwarding discovery events among the

interconnected nodes.

Another perspective of service discovery in pervasive systems is the

possibility to be limited to a specific discovery scope (6) (7) (8). That scope

can be defined in terms of network topology, where the discovery process is

limited to a given domain. However, such limitation may not suit pervasive

systems that spread across different interconnected networks that form

different domains. Our proposed device discovery for PalCom provides event

based cross-network device discovery, which overcomes network based

discovery scope limitations.

3.2 Device and Service Discovery in the Pervasive
Middleware PalCom

PalCom is a pervasive middleware that uses heart-beat messages for

device discovery and availability tracing (5) (1). On top of the network of

discovered devices, PalCom can perform service discovery by exchanging

service descriptions among these devices. PalCom employs the design

principle of “human in the loop” (5) (1) that enables users to specify ad-hoc

compositions of pervasive services into specific use cases. PalCom refers to

such compositions as assemblies, as shown in Figure 1.

8

However, PalCom aims to avoid overwhelming the users with an endless

number of available services. Instead, it focuses the users’ experience of fully

automated service discovery on the available services in their local network

environments (5) (1). For remotely available services, i.e. outside local

networks, PalCom uses a tunneling mechanism that is explicitly configured by

users. This approach supports the scalability of the service discovery protocol

of PalCom.

In addition to device and service discovery, PalCom defines connection

discovery (5) (1). In PalCom, connections define paths of communication

among interacting services. Such feature improves the support of the “human

in the loop” principle by introducing users’ awareness of the communication

paths that resulted from their ad-hoc service compositions, i.e. PalCom

assemblies.

a. PalCom is a layered system

PalCom has a layered discovery stack (5) (1), which is shown in Figure 2.

At the lowest level of this stack, the wire protocol layer abstracts different

types of underlying networks. On the next level, the device discovery layer

periodically announces the existence of devices via heart-beat messages that

can be used for discovering and keep tracing of devices among each other. A

third layer of service discovery manages the announcement of service

availability and defines service descriptions. Finally, at the top most level, the

service interaction layer defines how services may invoke each other and the

formats of the commands, their parameters, and their responses.

Device-1

Service-a

Device-5

Assembly-x logic Assembly-x coordination

Local network connections A tunnel

Device-2

Service-b

Device-3

Service-c

Device-4

Service-d

 Figure 1 an example structure of user-defined PalCom services assembly.

9

b. The wire protocol layer

The wire protocol layer supports heterogonous pervasive environments by

defining formats of payload messages that are conveyed over different

underlying networks (5) (1). PalCom message formats are human readable

and a message is composed of nodes that makes it flexible to modify by

adding or removing nodes. The wire protocol defines the heart-beat

mechanism that enables device discovery and tracing of each other.

Broadcasting heart-beats is limited to device discovery while unicast is used

for device communication, service discovery, and service interaction.

Discovery messages, including heart-beat messages, convey device

discovery status parameters that indicate its reboot number, configuration or

services change number, and its functional readiness.

c. The device discovery layer

The discovery protocol maintains a distributed and replicated discovery

registry among the interacting devices (5) (1). The heart-beat mechanism

allows the configuration of the heart-beat period for each node and the node

with the shortest period will become a heart-beat leader node within a local

network (5) (1). In this way, nodes other than the leader node will

continuously abort sending heart-beat messages and they will only reply to

the received heart-beat messages from the leader with hear-beat-replies.

This configuration limits the number of heart-beat messages within a local

network during a single heart-beat period of the leader node to be equal to

the number of nodes in that local network. Additionally, at the service level,

the PalCom discovery protocol enables explicit status requests and replies

among interacting services (5) (1).

Service Interaction

Service Discovery

Device Discovery

Wire Protocol

The PalCom Discovery Stack

 Figure 2 the layers of the discovery stack in PalCom.

10

d. The service layer

Additionally, using the PalCom discovery protocol, grammatically

constructed descriptions of devices, services, and connections are

exchanged and cached by interconnected PalCom nodes (5) (1). The

change-number in the heart-beat messages represents the current version of

the device, services, and connections descriptions on its source PalCom

node. When that change-number is updated, nodes that cached device,

services, and connections descriptions from its source node will need to

execute descriptors request and responses sequences in order to refresh its

cached discovery data.

e. A summary of PalCom features

To sum up main PalCom features (5) (1), firstly, it defines self-describing

devices, services, and connections that exchange descriptions in terms of

grammar based descriptors. This is different from the mentioned template

based and predefined descriptions that we mentioned above in section 3.1.

For the initial communication method, PalCom mainly employs broadcasting

within local networks. Moreover, PalCom employs discovery announcements

at the device level to enable device discovery and availability tracing. For the

service discovery infrastructure, PalCom employs a non-directory based

service registry structure. Considering the state of a PalCom device, it may

be maintained via the heart-beat messages period, considering it as a keep-

alive period. Naturally, the timely maintained device state overshadows the

state of the services on that device.

For the feature of discovery scope, PalCom fully automates device

discovery within local networks. Also, PalCom enables devices with network

interfaces on multiple networks to function as routers among the devices

within these interconnected local networks. Moreover, PaLCom enables

users to configure PalCom tunnels to interconnect remotely located networks

(5) (1). In turn, the interconnection of PalCom devices and services inherits

the network topology. For usability, PalCom enables users to define

assemblies that combine different services into specific use case scenarios

by defining their roles and their interactions. For service invocation, PalCom

utilizes the address of the service provider to enable services to communicate

over the PalCom wire protocol so that PalCom assemblies can exchange

their messages to perform application specific operations, which are realized

as service invocations. After a service invocations ends, PalCom releases

used resources. PalCom services do not hold computation resources

whenever they are idle, not executing service requests. In other words, a

PalCom service is assumed leased as long as it is serving requests or

requesting services. For the service updates notification mechanism, only the

11

change number in the broadcasted heart-beat messages can convey the

changes to service description on a device. However, the heart-beat

messages broadcast is kept within the boundaries of local networks to

optimize network traffic.

3.3 Example Application Scenarios of PalCom
In (9), PalCom is developed to enable users to easily develop PalCom

services and assemble them into useful use cases, especially in the medial

field. In particular, PalCom enabled health care devices can be combined into

useful assemblies that integrate patients’ data into more useful and

informative perspectives. Such devices may provide services that vary from

allowing patients to write their own notes to enabling healthcare personnel to

graphically describe patients’ pains.

Moreover, integrating household devices to serve specific user needs

provide a number of other application scenarios where PalCom can be used

in a flexible and efficient manner. In (10), a simple demo was developed to

show the simplicity of using PalCom to program a water boiler to keep water

at specific temperature level. However, more complicated scenarios and use

cases can easily be defined and built by users using PalCom.

Another possible application of PalCom is the timely detection of losing

contact among safety critical components of a robot. Such scenario should

lead to the timely device undiscovery problem that we explain next.

4 Problem Statement

As mentioned in section 3.2, the lowest level of the PalCom discovery

stack is the wire protocol that enables PalCom nodes to exchange messages

among each other over different types of networking interfaces. Since the

very first proposals of PalCom, the network interfaces on a device are

abstracted to upper layers of PalCom by media abstraction objects, MAOs.

For each supported network protocol, a MAO is implemented to wrap the

different details of the network protocol including its message formats and

communication mechanisms. A MAO is required to mainly provide interfaces

to the send and broadcast procedures of a network protocol. For every

network interface on a PalCom node, an instance of its protocol specific MAO

is used to represent that network interface to the system.

a. The requirement of a media abstraction framework

However, in the initial designs and implementations of PalCom, there was

12

no MAO development and integration framework that enables MAO

developers to easily and quickly develop a MAO for a new network protocol in

PalCom. Instead, a MAO developer had to be aware of the internal details of

PalCom upper layers and to find a customized way to integrate the instances

of the newly developed MAO to those upper layers. This resulted in

difficulties developing new MAOs and unstructured integration of these MAOs

with upper layers of PalCom, which makes future system development and

maintenance not feasible.

In turn, we identified the need to design and develop a media abstraction

framework for PalCom that gives a starting point template for the MAO

developers to start their MAO implementations from. This makes it much

easier to develop and interface MAOs for newly supported network protocols

in PalCom. However, as we explain in sections 6.1, 7.1, and 8.1, our first

research question is how to design such framework given the vast number of

network protocols that may exist in a pervasive environment. Also, we need

to consider both the reliability and the ease of use of the framework.

b. The requirement of cross-network device discovery

In section 3.2 above, we mentioned that PalCom limits the fully automated

device discovery process, using periodically broadcasted heart-beat

messages, to the boundaries of local networks. Then, PalCom employs user-

configured tunnels to connect devices on remote networks. In spite of such

an approach optimizes the network traffic, it imposes a topological constraint

on the fully automated device discovery, and of course service discovery.

To overcome such limitation, we identified that we need to develop an

automated device discovery mechanism that enables both local and cross-

networks device discovery. However, forwarding heart-beat messages across

interconnected networks is not an option as this will result in flooding the

network with discovery packets. Instead, as we explain in sections 6.2, 7.2,

and 8.2, our second research question is how to limit the use of periodically

broadcasted heart-beat messages within local networks by enabling PalCom

nodes to timely forward their discovery events across interconnected

networks.

c. The requirement of support distance vector routing

By introducing automated cross-networks discovery to PalCom, we also

introduced the need for routing messages among interconnected nodes. We

design and implement distance vector routing in PalCom according to the

design principles and details in sections 6.3 and 7.3. This is where we

address our third research question of how to minimally add the routing logic

while preserving the correctness and the simplicity of the media abstraction

layer and the device discovery layer.

13

d. The requirement of device discovery synchronization

Moreover, as a complement to the mentioned events based cross-

network device discovery mechanism, we need a distributed synchronization

algorithm that enables neighbor nodes on local networks to recover from

possible loss of device appearance/disappearance notifications on unreliable

channels. We explain the design principles and details of this algorithm in

sections 6.4 and 7.4. This is where we address our fourth research question

of how to add reliability to forwarding device discovery notifications.

We emphasize our research questions as follows:

1. How can we design a networking media abstraction framework

considering a vast number of networking interfaces that can co-exist

in a pervasive environment? Also, how can this framework be easy to

use by PalCom developers and reliable against possible mistakes?

2. How can we handle device discovery and undiscovery in remote

networks within a configurable time without flooding the network with

heartbeats?

3. How can we support distance vector routing for an overlay network of

PalCom devices that is built on top of the media abstraction

framework and device discovery/undiscovery mechanism while

preserving the simplicity and correctness of these two lower layers?

4. How can we overcome the possible loss of device discovery and

undiscovery notifications over unreliable channels?

5 Contributions overview

PalCom (5) (1) is a pervasive middleware that can be used to assemble

services provided by devices into configurations, called assemblies, for

specific use cases by the user. Developers can write service descriptions for

the capabilities of devices and PalCom can advertise these services to all

devices running PalCom on the network. PalCom devices may exchange

service descriptions and communication data via different network interfaces

that connect theses device over different networks. Also, before being able to

exchange service descriptions and data, PalCom devices need to discover

each other within the boundaries of local networks as well as across different

interconnected networks.

a. The media abstraction framework

In this dissertation, we provide a media abstraction framework for PalCom

14

that abstracts different network interfaces in a PalCom device to upper layers

of PalCom. A network protocol is abstracted with a Media Abstraction Object,

MAO. On a PalCom device, each enabled network interface is abstracted

using an instance of the MAO of that protocol. The media abstraction

framework enables developers to write and plug MAOs to enable the use of

different network protocols on PalCom devices. Having multiple network

protocols and interfaces on a PalCom node enables it to communicate with a

broad range of devices. We design this framework according to a set of

design principles that depend on the design principles of the abstracted

network protocols (11). The design principles aim to separate the

abstractions of network protocol, e.g. addresses and data, from its

communication mechanisms, e.g. connection establishment and message

transfer. The framework was implemented in Java, as part of the PalCom

stack. It was also evaluated for the time overhead that it adds to the message

transfer and the usability for implementing MAOs. This work resulted in paper

I.

b. The device discovery mechanism

Over the media abstraction layer, we define a device discovery

mechanism that enables a PalCom device to discover other devices on its

local networks, where it has network interfaces, as well as across

interconnected networks. The device discovery mechanism uses heart beat

messages within local networks, enabling the discovery of devices within

these networks, and also functions as keep alive messages among these

devices. When a device discovers other devices via the network interface a

given local network, it advertises these discovery events to devices on its

other local networks. Devices on those local networks than can thus discover

a remote device that appeared across interconnected networks. In turn, those

devices may advertise cross-networks discovered devices to their local

networks. Also, a PalCom device keeps track of the availability of cross-

network discovered devices by monitoring forwarded discovery events from

their neighbor nodes. Such events may indicate the appearance and

disappearance of cross-network discovered devices. This eliminates the need

to forward heart-beat messages across interconnected networks, saving

network traffic and providing timely device un-discovery. Moreover, we refer

to the devices on a local network that forwarded discovery events about

remote-devices as router devices. The disappearance and appearance of a

router device overshadows the discovery state of its advertised remote-

devices. The device discovery mechanism was implemented in Java, as part

of the PalCom stack. Also, it was analyzed and tested to prove its

performance enhancement by eliminating cross-networks device discovery.

15

This work resulted in paper II.

c. Supporting distance vector routing

On top of the device discovery mechanism, we implemented support for

distance vector routing that enables routing data among discovered devices

via the least cost routes. We define the route cost with the number of hops. In

contrary to on-demand ad-hoc routing protocols (12), distance vector routing

in PalCom does not need to implement a separate route discovery

mechanism. Also, in contrary to table-driven ah-hoc routing protocols (13),

distance vector routing in PalCom does not need to implement a mechanism

to exchange table updates. Instead, distance vector routing in PalCom makes

use of the underlying device discovery mechanism that is used to maintain

the entries in the routing tables using route cost updates that are conveyed in

cross-networks discovery events. Moreover, the events driven cross-

networks discovery in PalCom is more efficient than the techniques of

flooding interconnected networks with control packets, which are used for

different purposes in ad-hoc networking routing protocols (14) (15). From

another perspective, distance vector routing in PalCom does not make use of

the underlying MAC protocols to detect broken or failed links, which is a

common measure in ad-hoc routing protocols (16) (17) (18). Instead, in

PalCom, the media abstraction layer abstracts the underlying network

protocols and broken links can cause the device discovery mechanism to

undiscover known devices. We specified a set of design principles for the

support of distance vector routing in PalCom. These principles ensure the

state consistency among different layers of the PalCom stack, the separation

of concerns among them, and minimizing the route dynamics. The support for

distance vector routing in PalCom was implemented in Java, as part of the

PalCom stack. Also, its functionality was evaluated against a set of network

changing scenarios. This work resulted in paper III.

d. The device discovery synchronization mechanism

In the last phase of our work, we refined our device discovery mechanism

for PalCom to be compatible with unreliable channels (19) (20) (21). In

particular, since the events of device appearance/disappearance notification

messages are once sent on the local network channel between two neighbor

PalCom nodes, there is a possibility for losing such messages. Such

situations lead to out-of-sync views of exchanged device discovery

information. To solve this problem we defined our distributed synchronization

algorithm that two PalCom node can utilize to re-sync their exchanged views

of the network. The algorithm is sequence-number based and it uses the

periodic heartbeat messages on the local networks to detect the out-of-sync

situation and to ensure the reliability if the synchronization process itself. The

16

algorithm is modelled using UPPAAL (22) and verified against clear and

simple correctness properties. Also the algorithm performance was evaluated

using a simulated run of the system model in UPPAAL. Finally, we

implemented the algorithm as part of PalCom and we tested its functionality

using three virtual PCs connected via two virtual local networks. We used

scripts to control the network interfaces of the nodes in the test to emulate

channel failures. The algorithm is able to recover discovery information in

case of losing update messages due to emulated channel failures. This work

resulted in paper IV.

6 Design Principles

The design process of providing a networking Media Abstraction

Framework, MAF, for a middleware system like PalCom needs to specify a

set of principles or main guide lines that ensure the fault tolerance and

resilience of the framework when it is used by developers to develop media

abstraction objects, MAOs, that abstract and integrate underlying networking

protocols to the system. I.e. the MAF needs to isolate errors or exceptions in

a faulty implementation of a MAO from the rest of the integrated MAOs, and

the framework needs to continue serving these MAOs when faults appear

during run-time.

From another perspective, the design principles of the Media Abstraction

Framework, MAF, shall consider the separation of the aspects of network

protocols to make it clear for the MAO developer which of these aspects will

be wrapped and hidden from upper PalCom layers and which of them will be

abstracted to these layers. Likely, such design principles must clarify the

concurrency assumptions of the framework and how the MAO developer shall

handle internal concurrency. We discuss the design principles of the MAF in

sections 6.1 and 7.1.

For a mechanism that enables device discovery in a middleware like

PalCom, the design principles need to consider two very important aspects of

pervasive systems, i.e. dynamism and heterogeneity (7) (23) (24). In a

pervasive environment different devices with different network interfaces may

interact while they continuously join and leave the pervasive environment.

Not all of these devices need to be easy to configure every time they join or

leave the network. Thus, a device discovery mechanism may depend on as

much as possible of automated device configuration. In turn, such

mechanism may make use of periodic broadcasting heart beats for both

17

discovery and keep-alive notification among the interaction devices.

However, from the perspectives of scalability and network traffic, using

heart-beats broadcasting is only feasible within the limits of local networks

and not for across networks device discovery. In section 6.2, we list our

design principles a device discovery mechanism for PalCom that makes use

of both heart-beats broadcasting and cross-network discovery events to build

a substrate for service and data communication.

To build distance vector routing into PalCom, where we already

implemented a media abstraction framework and a device discovery

mechanism, we have to specify design principles that considers the relation

among these components while keeping the already existing limits among

them. Also, these design principles need to consider the scalability of

handling the resulting changes in routes according to the received route cost

updates.

In section 6.3, we list our design principles for adding distance vector

routing to the PalCom stack aiming to maintain the consistency of the device

discovery state among different components of the device discovery

mechanism, while keeping these aspects separate. Also, we specify a design

principle that ensures minimal changes in the advertised routes to the

neighbor nodes of a router PalCom node on a received route cost update.

6.1 Design Principles of the Media Abstraction
Framework

As discussed in the problem statement in section 4, PalCom requires a

flexible way to easily add Media Abstraction Objects, MAOs, to support

network interfaces that may appear in the future. We design a Media

Abstraction Framework, MAFs, which enables the development of Media

Abstraction Object, MAOs, that abstract different type of networking

interfaces, and their protocols, to the upper PalCom layers. We specify the

following design principles of this framework:

a. Abstracting the development framework of the Media

Abstraction Objects, MAOs

We have to make sure that the development framework,

where a MAO developer starts his implementation from, is very well

separated from any protocol specific details. In other words, the MAO

development framework needs to be composed of abstract classes

that has no protocol specific mechanism implemented in any of its

override-able or non-override-able methods.

In section 7.1 of the implementation details, we show that the

18

methods of these abstract classes only represent very generic

network abstraction of human-readable network addresses, human

readable network interfaces names, human-readable device names,

and byte array representations of exchanged data. These design

principles make use of the separation of networking protocols

mechanisms and abstraction that are discussed in (11).

b. Dynamic plugging of network interfaces

In Figure 3, we show the Media Abstraction Framework, MAF,

in run-time. At the top of the framework, the Media Abstraction

Manager, MAM, manages a number of Media-type handlers, which

each represents a type of network interface and protocol. In turn, a

media type handler manages a set of MAO objects for the enabled

network interfaces on the PalCom device.

A user shall be able to enable or disable a network interface

on a PalCom device to configure which networks the device can use

and which devices it can communicate with. Since a network interface

is represented by a MAO instance of its networking media type, then

the framework must support the plugging and unplugging of these

MAO instances into the PalCom middleware, which can be done on

both user request and the detection of the availability of network

interfaces.

 Figure 3 the design principles of the media abstraction framework.

19

In section 7.1 of the implementation details, we introduce the

MAOPlug class that enables the plugging and the unplugging of MAO

instances to the framework while handling errors and exceptions on

starting and stopping these MAOs.

c. Fault tolerance

As we discussed above, the Media Abstraction Framework,

MAF, enables the implementation and integration of network

interfaces to the PalCom middleware. As a result the framework

needs to be able to survive erroneous implementations of Media

Abstraction Objects, MAOs that abstract network interfaces.

We detail the different activities of the MAF in section 7.1, of

the implementation details. These activities include adding a media

type to the system, plugging and managing a network interface to the

frame work, and the managing and using of a plugged network

interface.

d. Simplified and robust concurrency

Concurrency is a main aspect of the design and

implementation of middleware like PalCom. We need to specify a

simple and verifiable concurrency model that is used to implement the

system. By clarifying such model to the developers of Media

Abstraction Objects, MAOs, we help them to develop MAOs that are

concurrency-consistent with the rest of the framework.

In Figure 3, we define the concurrency model in two opposite

directions along the hierarchy levels of the Media Abstraction

Framework. In particular, a higher level object can synchronize

around a lower level object whenever it calls one of its methods.

Oppositely, a lower level object can only pass a message or a

notification as an asynchronous event.

6.2 Design Principles of the Device Discovery
Mechanism

As discussed in the problem statement in section 4, PalCom is required to

handle device discovery and undiscovery in a timely manner in order to

support applications in fields like healthcare and robotics. We design a device

discovery mechanism that enables a set of interconnected PalCom devices to

discover the existence of each other. In initial PalCom designs (5) (1), only

periodic heart-beats are used for both device discovery within the boundaries

of local networks and across interconnected networks. This resulted in

flooding the network with heart-beat messages, which is not a scalable

20

solution. Such a solution is shown by Figure 4.

Alternatively, we design a device discovery mechanism that aims to

support scalability by eliminating the use of cross-networks periodic heart-

beats and using event-based device discovery events among interconnected

devices. The main idea behind this approach is shown in Figure 4. We design

this mechanism to realize two design principles that make use of device

discovery to support service discovery and data communication. We specify

these design principles as follows:

a. Maintaining an overlay network of interconnected PalCom

devices

As we will explain in details in section 7.2, a PalCom node that

runs our proposed device discovery mechanism maintains information

about the discovered devices in a routing table. The collective view of

these routing tables on the set of the interconnected PalCom devices

forms an overlay network of these devices. This provides a

communication substrate that can be used by upper layers of

PalCom.

b. Utilizing the overlay routing information among devices for

services discovery and data messaging

The above mentioned overlay network among PalCom devices

can be utilized to enable them to exchange their service descriptions

and data. Thus, we focus on providing an efficient mechanism of

device discovery, which we explain its details in section 7.2.

Figure 4 (a) cross-networks periodic heart-beats (b) local-networks heart-

beating and cross-networks events.

21

6.3 Design Principles of Supporting Distance
Vector Routing in PalCom

As discussed in the problem statement in section 4, PalCom devices need

to find the lowest cost routes via their network to forward data among them.

To support distance vector routing in PalCom, we may need to employ a

cross-layer approach where different modifications at different layers of the

PalCom stack are done. In particular, we need to enable exchanging route

cost updates in the messages that are sent via the Media Abstraction

Framework, MAF. Also, we need to enable the device discovery mechanism

to make use of the received route cost updates to maintain the routing table

on a PalCom device. In turn, different components of the routing layer, where

device discovery is implemented, need to be updated to support distance

vector routing. We make these updates and modifications according to the

following design principles:

a. Discovery state consistency among system components

As we mentioned above, different components of the PalCom

stack may need to be updated to support distance vector routing. It is

important to ensure that these updates do not disturb the consistency

among these components to reflect the state of discovered devices,

based on the latest received heart-beat messages and discovery

notifications.

As we explain in section 7.3, we ensure the satisfaction of this

design principle by localizing the implementation of the logic that

supports distance vector routing to the boundaries of a single

component of the PalCom stack while implementing very small

modifications to other components.

b. Separation of concerns among system components

In spite that we need to ensure state consistency among

different PalCom stack components, which support distance vector

routing in a cross-layer approach, we still need to keep the concerns

of these components well separated. For example, components that

function as data containers need to be clearly separated from

components that implement device discovery logic.

c. Minimizing route dynamics on route cost updates

When a PalCom node receives a route cost update, e.g. via a

notification message, it needs to update its routing table and notify its

neighbor nodes about these route cost updates. From the perspective

of the neighbor nodes of a PalCom node, the interfaces of that node

work as introducers, i.e. receivers of route discovery notifications, or

22

advertisers, i.e. senders of route discovery notifications, of routes.

We need to ensure that the changes of the roles of the

network interfaces, of a PalCom node, on route cost updates is kept

to below a defined upper bound so that the changes to the advertised

routes is kept as small as possible.

6.4 Design Principles of Synchronizing Device
Discovery Information on Loss of Update
Message over Unreliable Channels

As discussed in the problem statement in section 4, a PalCom device

needs to overcome the possible loss of device discovery and undiscovery

notifications over unreliable channels. As shown in Figure 5, on the drop of a

once-sent discovery update message over an unreliable channel, the

exchanged views of the PalCom devices world between two neighbor nodes

becomes out-of-sync. We design a synchronization algorithm to recover from

such a case. This algorithm is a reliability feature that we add to PalCom (20)

(19) (21). We do not use acknowledge based discovery and undiscovery

notifications because this will require an overhead of maintaining an

 Figure 5 the drop of a discovery update message resulting in an

out-of-sync situation

23

acknowledgement session for every sent notification.

From the perspective of design principles, we add this feature to PalCom

as built-in architecture feature that enables each PalCom node to detect by

itself that it is out-of-sync with a specific neighbor node. Then, that node shall

explicitly ask for synchronization updates from its neighbor node. In

particular, the synchronization destination drives the synchronization process.

In this way our approach preserves the peer-to-peer nature of the PalCom

ad-hoc network and does not use any form of central resources for

synchronizing discovery information.

Moreover, both the out-of-sync detectability and the synchronization

algorithm reliability are built on top of the periodic heartbeats that are

exchanged within local networks. Those periodic heartbeats, as well as once

sent notifications, will carry update numbers that can be used by the

destination nodes to detect that they are out-of-sync. Also, on the loss of

synchronization request/response messages, periodic heartbeats can be

used to resume the synchronization process itself.

7 Design Details

In the system design of the media abstraction framework, the device

discovery mechanism, and the support of distance vector routing, we follow

the above mentioned design principles in order to achieve the desired system

properties of functionality, fault tolerance, reliability and maintainability.

7.1 Design Details of the Media Abstraction
Framework

As shown in Figure 6, the media abstraction framework itself is defined by

the package, media_abstraction.framework. It defines four abstract classes

that are required to be implemented for each network media type that we

need to interface to PalCom. We call the result of such interfaces a Media

Abstraction Object, MAO. The first of those classes is the

AbstractMediaAbstractionObject, which mainly abstracts the sending,

broadcasting, and receiving mechanisms of the networking protocol of the

abstracted network interface.

The second abstract class is the AbstractPhysicalInterfacesEnumerator

that can be used to implement an enumerator of network interfaces of the

abstracted networking media-type on the local machine. Such enumerators

may be implemented to periodically use system level calls to enumerate the

24

interfaces on the local machine or it may be GUI-interfaced so that a user

configures the networking interfaces that can be used by PalCom for the

abstracted media type.

The third class of the media abstraction framework is the

AbstractPhysicalInterface which simply represents a network interface on the

local machine to upper PalCom layers. In particular, an implementation of

that class must provide a human-readable representation of names of the

abstracted network interfaces.

Similarly, the fourth abstract class of the framework, the

AbstractCommunicationAddress, needs to provide a human-readable

representation to networking addresses that are used by the the network

protocol of the abstracted media type.

In Figure 6, we illustrate an example use of the media abstract framework

to implement IPv4 in PalCom, namely the IPMAO. The IPv4MAO implements

the AbstractMediaAbstractionObject and it provides send, broadcast and

received methods that enable the corresponding operations on an IPv4

interface on the local host.

Also we see that IPv4PhysicalInterfacesEnumerator which implements

the AbstractPhysicalInterfacesEnumerator by an implementation that

periodically uses the operating systems specific calls to enumerate the list of

network interfaces on the local host. This enumerated list of interfaces is

Figure 6 class diagram of the media abstraction framework.

25

used by the media_abstraction.runtime as we will explain later in this section.

The third part of the example IPv4MAO is the IPv4PhysicalInterface,

which implements the AbstractPhysicalInterface abstract class of the media

abstraction framework. An IPv4 address is represented to upper PalCom

layers in a human-readable format to represent routes via which devices are

discovered and messages to and from them flow.

The last of the example IPv4MAO classes is the IPv4SocketAddress that

implements the AbstractCommuincationAddress abstract class of the media

abstraction framework. This class provides human-readable representation of

IPv4 addresses that may represent the source, the destination, or the next

hop of a PalCom message.

As illustrated in Figure 6, the media-types specific implementations of the

media abstraction framework are integrated to the system by the media

abstraction runt-time. While configuring the communication facilities when

starting PalCom, we need to add an instance of the class

media_abstraction.runtime.MediaTypeHandler to integrate the four classes

that implement a media-type that we need to use in the system.
In particular, as we show in Figure 7, when adding a MediaTypeHandler

instance of an integrated media-type, an instance of the implementation of

the AbstractNetworkInterfacesEnumerator is created and passed to the

MediaTypeHandler instance so that it can be used to enumerate the

Figure 7 adding a media-type to the media-abstraction framework.

26

interfaces on the system, and managing their usage as shown next in Figure

8.

As shown in Figure 8, once a MediaTypeHandler of an abstracted media

type is added and started, it begins to periodically check the updates of the

network interfaces list by using the media-type specific implementation of the

AbstractPhysicalInterfacesEnumerator. For a newly detected network

interface, according to the enumerated interfaces list, the MediaTypeHandler

creates an instance of the MAOPlug class, illustrated in Figure 6, which

represents this interface to the media abstraction run-time. Via the MAOPlug

wrapper of a detected network interface, the MediaControlPanel GUI can

process user requests for enabling or disabling the use that network

interface.

On the creation of a MAOPlug wrapper for a newly detected network

interface, the MediaTypeHandler directly turns its state to enabled, i.e.

plugged. In turn, the MediaAbstractionManager, shown in Figure 6, distribute

the MAO_Event_ADDED to interested component, e.g. the device discovery

Figure 8 managing network interfaces of a media-type in the media abstraction

framework.

27

mechanism. On the other hand, when a network interface is undetected, i.e.

disappears from the list of enumerated network interfaces of the media type,

the MediaTypeHandler disables and removes the MAOPlug wrapper of that

interface. In turn the MediaAbstractionManager distributes the

MAO_EVENT_REMOVED to interested components, which are registered as

listeners to such events. On disabling and enabling MAOPlugs in response to

user requests from the MeidaControlPanel, as we explained above, the

MediaAbstractionManager generates necessary events of

MAO_EVENT_ENABLED or MAO_EVENT_DISABLED to registered

listeners.

As summarized in Figure 9 and detailed in Figure 10, for an enabled

MAOPlug of a network interface, there are two queues where messages are

buffered, namely the ingoing messages queue and the outgoing message

queue. Such buffering decouples the activity of the MAOPlug from the rest of

the PalCom system and from the wrapped network interface.

On the recipient of a message, the network address of its source device is

transformed to a human-readable format and its content is transformed into a

byte-array. Then, this new representation of the received message is added

to the ingoing messages queue. In turn, the receive worker polls such a

Figure 9 an overview of the functionality of a plugged network interface.

28

message from its queue buffer and pass it to the

RecievedMessageDispatcher, shown in Figure 6, which parses it and

distributes it to the proper component, e.g. a signaling message processor, or

a data message processor.

On the request from upper PalCom layers to send or broadcast a

message, a MAOPlug transforms the internal PalCom message object to the

generic presentation of a byte-array and attach it with the human-readable

format of the specific destination address, if any. Then, the message is put

into the outgoing message queue of the MAOPlug for the outbound interface.

In turn, the send worker of the MAOPlug polls the queued message and calls

Figure 10 a detailed view of the functionality of a plugged network interface.

29

the media specific send or broadcast operations, depending on the existence

of an associated destination network interface. Accordingly, the media-type

specific implementation of the AbstractMediaAbstractionObject transforms

the message and the destination address, whether a broadcast or a unicast

address, into a media specific format before sending or broadcasting via the

outbound network interface.

7.2 Design Details of the Device Discovery
Mechanism

As discussed in section 6.2, we aim to provide cross-network device

discovery and undiscovery in PalCom without flooding local networks with

heartbeat messages from their neighbor local networks. For the device

discovery mechanism, we discriminate two types of routes to a device,

namely a local route and remote/routing route. A local route to a device is a

single hop route within the limits of a local network on which that device has a

network interface. On a local node, a local route to a discovered device is

defined with the pair:

(The name of the network-interface on the local network that connects the

local node and the discovered device,

The networking address of the discovered node on the mentioned local

network in the first element of this pair).

In contrast, a remote/routing route to a device is defined as a multiple-hop

route that may go via at least one router node that span across the

boundaries of multiple networks. On a local node, a remote/router route to a

discovered device is defined with the triple:

(The name of the network-interface on the local network that connects the

local node to the next-hop router node that has introduced the discovered

device,

The networking address of the previously mentioned next-hop router

node,

An integer valued short-ID that was assigned by the previously mentioned

next-hop router node to the discovered node)

30

In Figure 11, we define the logic that we use to maintain the discovery

state of a local route to a device on the local network. At its initial state, a

local route is considered to be unknown. On a PalCom node, once a periodic

heart-beat message is received, noted as “h/H”, or an information-request

message, noted as “i”, is received via an unknown local-route to a device, this

route switches to the visible state. Accordingly, the routing table is maintained

with the information of the newly discovered route, and properly with the

information of the newly discovered device if the device was not previously

known via any other route. In all cases, a sequence of at least one

information-request message, i.e. “i”, and one information-reply message,

node as “I”, is exchanged to get the latest updates of the device parameters,

which include the device reboot-number, its change-number, and its status-

a

b

Figure 11 heart-beat based local-network device discovery vs. event based cross

networks device discovery.

31

information.

Once a local-route is discovered, its status can change between visible,

rebooted, out-of-reach, and gone. A route state changes depending on the

recipient of different types of discovery messages or when the local-route

times-out in a specific state. The types of discovery messages and the

configurable time-outs and their processing is illustrated in Figure 11.

From the perspective of the device discovery state on a local node, a

device is declared appeared to upper PalCom layers, e.g. the service layer,

once it is discovered via the first route. On the other hand, a device is

declared disappeared once to upper PalCom layers when the only remaining

route to it times-out in the gone state. In other than these two cases, a device

remains as appeared as long as there is at least one route to that device that

is currently in the visible state.

In Figure 11, we define the logic that we use to maintain the discovery

state of a remote/routing route to a device on a remote/non-local network. At

its initial state, a remote/routing route is considered unknown. On a PalCom

node, once a forwarded information-replay message, noted as “S-I”, is

received via an unknown remote/routing route to a device, this route is

switched to the visible state. Such an S-I message is sent by a node that has

a network interface on one of the local networks on which the receiver node

has network interfaces.

From the perspective of the S-I receiver node, the source node of the S-I

message is referred to as the introducer router node of the just discovered

remote/routing route. In turn, the discovery of a remote/routing node is

accepted only if the local-route to its introducer router node is in the visible

state. Otherwise, an S-I message that is received via an un-reachable route

is considered an error, and it is just dropped.

As shown in Figure 11, after the discovery of a remote/routing route, its

state keeps changing between the values of visible, out-of-reach and gone in

response to the recipient of different types of discovery messages or when

the route times-out in one of the states, which is not possible when a

remote/routing route is in the visible state. In particular, since the appearance

of a remote/routing route is event based, as opposite to periodic heart-beat

based, we do not time-out such route in the visible state. However, the

disappearance of the local-route to the introducer router of a remote/routing

route results in the disappearance of that route too, which we call route state

alignment.

As we mentioned in the problem statement in section 4, one problem of

depending on event based discovery state is the possibility of losing an event

message, e.g. an S-I message, due to a temporary network failure. In section

32

6.4, we discussed the design principles of a synchronization algorithm to

address this problem. We discuss the design details of this algorithm in

section 7.4.

Another important aspect of maintaining an event based discovery state,

of a remote/routing route, is the mechanism that a router node uses to

forward discovery events about discovered routes, regardless of their types,

to its neighbor nodes on the local networks on which it has networks

interfaces. The most important consideration of such mechanism is to avoid

looping forwarded discovery and undiscovery notifications. We employ a

mechanism that we call Discovery Forwarding Flows, DFF. It is based on

conventional internet protocols that address the looping problems (25).

In particular, on a PalCom node, for any available/visible route a DFF is

defined as the pair:

(The introducer network-interface on the local node which the route was

discovered via,

A set of network-interfaces on the local node through which discovery

messages, about the route, are or to-be sent)

From the perspective of a discovered device, assuming that we sort its

discovered routes according to the temporal order of their discovery, then at

any moment in time a router node maintains only two DFF instances of that

discovered device, which we define as follows:

DFF1 = (The network-interface on the local node via which the first route

to that device was discovered,

The rest of network interfaces on the local node)

DFF2 = (The network-interface on the local node via which the second

route to that device was discovered,

The network-interface on the local node via which the first route to that

device was discovered)

Figure 12 shows an example set of DFFs. Of course, it is possible to

update these definitions according to the criterion that we use to sort the

discovered routes to a known device. E.g. we update these definition to

support distance vector routing in PalCom, as we see in section 7.3.

33

The advantage of using the DFFs to organize the forwarding of discovery

messages is to avoid having loops by stopping the forwarding of a discovery

event message about the availability of a specific device after all the

interfaces of the local PalCom node, performing the role of a router, are

covered by the two maintained DFFs for that device.

Moreover, it is possible that a router node discovers one or more routes to

a discovered device via network interfaces other than the introducer

interfaces of DFF1 and DFF2, which the router node maintains for that

discovered device. In this case, the router maintains a temporally ordered list

of these discovered introducer interfaces, from the oldest discovered to the

newest discovered. We refer to this list and the introducers-list.

Once the router node receives an undiscovery notification about the

discovered device via the introducer interface of DFF1, it moves the

introducer of DFF2 to become the introducer of DFF1 and the first element in

the introducers-list as to become the introducer of DFF2. To complete this

change, the router node rearranges the advertiser interfaces accordingly and

sends the necessary discovery and undiscovery notifications to the neighbor

nodes. In case of no remaining introducers are known to the discovered

device, the router node declares the device as undiscovered.

Figure 12 the discovery forwarding flows on device-x for the discovery and

advertisement of device-y.

34

7.3 Design Details of Supporting Distance Vector
Routing in PalCom

In section 6.3, we introduced the design principles of our solution to

enable PalCom nodes to find the lowest cost routes for forwarding data

messages among them. In the context of supporting distance vector routing

in PalCom, we define the route-cost from a device to another as the number

of hops between these two devices. Of course, the route-cost can be defined

in terms of other criteria that may include link-quality attributes or even user

preferences. However, for the simplicity, we describe our solution with the

number of hops as the only criterion of a route-cost.

The first step of supporting distance vector routing is to extend the

discovery notification messages, i.e. S-I and S-H messages in Figure 11, to

convey route-cost updates. In PalCom, we construct and parse messages as

a sequence of nodes, where each node represent a specific component of a

PalCom message. We note a message as a dash separated sequence of

nodes. Thus, in the previously mentioned S-I symbol, the S-node represents

a forwarded message from a router node while the I-node represent a

discovery-information-replay message with a full set of device parameters,

which include its globally unique device-ID, its reboot number, its change

number, and its status information that indicate its availability.

To convey route-cost updates in a PalCom discovery message, we insert

a new C-node between the two nodes of the S-I and the S-H message. The

C-node contains one field for the routing cost update. Such minimal update

preserves the format and the processing of the discovery messages. Also, it

does not change the format of any already existing PalCom message nodes.

The second step of supporting distance vector routing is to redefine the

discovery forwarding flows, DFFs, of a known device in terms of route-cost

updates of the discovered route instead of the temporal order of their

discovery, as discussed in section 7.2. In particular, we maintain the two

DFFs of a discovered device so that the network-interface of its lowest cost

route is the introducer of DFF1 while the network-interface of its second

lowest cost route is the introducer of DFF2. And the advertisers are updated

accordingly. The discovery and undiscovery of more than two routes to a

device is handled in the same way as we discussed above at the end of

section 7.2.

35

7.4 Design Details of the Synchronization
Algorithm of Device Discovery Information on
Loss of Update Message over Unreliable
Channels

In the problem definition, in section 4, we discussed that PalCom nodes

need to overcome the possible loss of discovery and undiscovery

notifications over unreliable channels. We introduced the design principles of

a synchronization algorithm that addresses this problem in section 6.4. Our

synchronization algorithm for device discovery in PalCom embedded update

number fields into heartbeat and device appearance/disappearance update

messages. A destination PalCom node can detect whether it is out-of-sync

from a neighbor source node by comparing the latest update-number that it

received from that node with the update-number in a received heartbeat or

discovery update message. Then the destination node can initiate the

synchronization process if required.
However, in the original device discovery algorithm, discussed above in

section 7.2, a PalCom node can only remember the currently discovered

Figure 13 uninterrupted cached synchronization, i.e. no update

request/response messages are lost during the synchronization process.

36

device. As a result, it will be required to transfer the entire list of discovered

devices from the source to destination in order to verify that the destination

does not have outdated entries for a device that is not known any more by

the source. This is an expensive process that we need to avoid.

In order to minimize full synchronization rounds, a PalCom source node

uses a limited size cache to remember full history of add and removed entries

within a specific time period. An uninterrupted cached synchronization is

shown in Figure 13. However, if the requested discovery information is

beyond the cached continuous history, a full synchronization is performed as

shown in Figure 14.

Figure 14 uninterrupted full synchronization, i.e. no update request/response

messages are lost during the synchronization process.

37

In both cached synchronization and full synchronization, there is a

possibility of losing synchronization request/response message over

unreliable channels. Such an interrupted synchronization is resumed starting

from periodic heartbeat messages as shown in Figure 15.

8 Evaluation

Depending on the requirements and the designed features of the different

system components, i.e. the media abstraction framework, the device

discovery mechanism, and the support of distance vector routing, we design

and execute different test approaches to evaluate their functionality and

performance.

 Figure 15 interrupted cached synchronization, i.e. some update

request/response messages are lost during the synchronization process.

38

8.1 Evaluation of the Media Abstraction
Framework

For the media abstraction framework, we evaluated two aspects, namely

its usability, for integrating networking interfaces into PalCom, and its time

overhead, when sending and receiving PalCom messages. For the

framework usability, we used the framework to develop and integrate an IPv4

media abstraction object, which we called IPv4MAO. Also, other members of

our research group used the framework to implement an IP tunneling MAO

and an Android inter-process communication MAO. All implementations

proved the flexibility and usability of the framework.

In code snippet 1, we show that it is a very small effort to integrate the

entire framework into PalCom. In particular, on the start of the communication

manager component of PalCom, it is only required to create an object of the

RecievedMessageDispatcher, shown in Figure 6, and an object from the

MediaAbstractionManager, also shown in Figure 6, and to connect both of

them to each other and to the currently used RoutingLayer.

In code snippet 2, we can see that it take only one line to start the

MediaAbstractionManager, of our proposed media abstraction framework,

which in turn takes over the responsibility of starting and managing the media

abstraction objects, MAOs that are implemented using the framework.

In code snippet 3, we show that adding the implementation of a new

Code snippet 1: The integration of the Media Abstraction Manager to the

Communication Manager of the PalCom.

39

networking technology specific media abstraction object, MAO, to the system

is done using one line that results in creating and adding a

MediaTypeHandler of the MAO. In turn, the MediaTypeHandler manages the

creation and maintenance of different components of the MAO, i.e. its

NetworkingInterfacesEnumerator and it MediaAbstractionObject itself, as

discussed in section 7.1. In particular, the example in code snippet 4 adds an

IPv4MediaType to the system.

To evaluate the message processing time-overhead of the designed

media abstraction framework, we designed a test program that uses a

dummy layer above the media abstraction layer that can create new

outbound time-stamped test messages and echo inbound test messages as

they are. The evaluation test uses one instance of the program to send out a

sequence of test messages, i.e. the ping side, to another instance of the test

program that only echoes the received test message, i.e. the pong side. The

test setup is shown in Figure 16. When the ping-side creates a ping

message, it embeds a trace-ID to that message so that it can identify that

particular message when it is echoed by the pong-side.

On the ping-side, before the ping message is passed to the media

abstraction framework, for sending it to the pong-side, a starting time-stamp

is associated with the embedded trace-ID of the message. Also, a specified

time-out is maintained to stop waiting for an echo of that particular message

and to starting attempting to send another one.

Code snippet 2: In the PalCom communication manager, starting of the Media

Abstraction Manager and adding the IPv4 MAO.

40

On the successful receiving of a ping message, the pong-side echoes the

message as it is, with it embedded trace-ID. When the ping-side receives the

echoed ping message, the media abstraction framework processes and

hands it to the upper dummy layer where the ping-side records the time-

stamp of this event and calculates its difference from the starting time stamp

that is associated with the trace-ID of the received ping message. We do this

for a sequence of such ping messages.

In Figure 17, we show the results of measuring the time overhead of using

the media abstraction framework. In the context of these measurements, the

round trip time of a message is the time it takes from the ping side to the

pong side and back again to the ping side. In Figure 17, the circle-noted

series contains more than 180 round trip times for our test messages. In the

same figure, the x-noted series contains the same number of round trip times

for ICMP ping messages that we send using the hrPING tool (26) to control

their length to be the same as that of our test messages, i.e. 14 bytes a

message.

The triangle-noted series in Figure 17 shows the result of subtracting the

times in the x-noted series from their corresponding times in the circle-noted

series. As a result, the values in the triangle-noted series represent the total

time overhead where the media abstraction framework processed the test

Figure 16 the test setup of the processing time overhead of the media

abstraction layer using time stamped ping messages.

Code snippet 3: In PalCom communication manager, adding a MAO to

the Media Abstraction Manager is done by creating an instance of the

MediaType class of that MAO.

41

messages during their round trip. As we can see in Figure 17, the average

round trip time overhead is about 500 micro-seconds. This value gives an

average of around 250 micro-seconds of time overhead for either directions

of the round trip of a test message. Note that, as shown in Figure 17, the first

40 messages seem to consume more than average times for both test

messages and ICMP ping messages.

8.2 Evaluation of the Device Discovery Mechanism
The device discovery mechanism that we designed for PalCom has a

number of key features that can be evaluated. One key feature is that it can

timely discover all possible routes to a connected device. Another feature that

we can test is that no discovery messages loop forever via different links.

However, we test these two features as part of testing the support for

distance vector routing, which we explained in section 7.3. In this section, we

describe our evaluation of the effect of eliminating cross-networks periodic

heart-beat messages from the device discovery mechanism. In Figure 18, we

illustrate the test setup where a PalCom node functions as a router,

connecting two other PalCom nodes. The test is designed in two rounds. In

the first round we run, on all the three test machines, a version of PalCom

that implements the simplistic approach of forwarding periodic hear-beat

messages across the boundaries of local networks. In the second test round,

Figure 17 the time-overhead of processing a PalCom-ping-message is around

250 micro-seconds in each direction.

42

on all the three test machines, we run a version of PalCom that implements

the proposed device discovery mechanism that eliminates the cross-networks

heart-beats.

In both rounds, the three devices discover each other without a problem.

However, by recording the traffic of the heart-beat messages on the local

network links, we can see that the exchanged number of these messages is

reduced to half in the second round, where we used the proposed device

discovery mechanism, compared to the first round, where we use the

simplistic approach. As a conclusion, the events-based discovery notification

provides a noticeable improvement to PalCom by avoiding to flood networks

with heart-beat messages from their neighbor networks.

8.3 Evaluation of Supporting Distance Vector
Routing in PalCom

For an evaluation of a feature like distance vector routing, we need a

network of PalCom devices where different connections among these devices

can be taken up and down using a test script. This is possible to do using

Virtual PC on a Windows 7 machine.

We use the loopback interface on a Windows 7 machine as a virtual Local

Area Network, LAN, among Virtual PCs by installing the Windows Virtual

Network driver to the loopback interface itself. Then, by configuring IP

addresses to Virtual PCs. Then, we can connect a Virtual PC to that loopback

interface as one of its networks. Then by configuring proper network address

and mask values we can create local and isolated networks among Virtual

PCs. We can verify such network setup using normal ping commands among

the connected virtual PCs.

Moreover, from the perspective of software development, it is possible to

connect the host Windows 7 to these virtual networks in the same way as

configuring normal network interface by adding a proper IP address and

mask values to the loopback interface itself. This is useful for debugging and

troubleshooting of the algorithms that we implement.

To evaluate our solution for supporting distance vector routing in PalCom,

Device-1
Device-3
(Routing)

Device-2
LAN-1 LAN-2

Figure 18 the test setup for evaluating the effect of eliminating cross-networks

heart-beat messages from the device discovery mechanism.

43

we define a test scenario where a source node sends a stream of test

messages via available routes in a network of discovered PalCom devices.

The test evaluates how the implemented distance vector routing over PalCom

device discovery responds to changes in the connectivity of the network

interfaces of the source node in terms of making correct and timely routing

decisions of the test stream.

During the test, the source sends a sequence of numbered test messages

to the destination and we record the arrival of these message on the

destination side along with the number of hops that these messages have

taken. At every node along the route that a test message takes, we increment

an embedded counter in that message which represents the number of hops

that it has taken until the current node, as shown in Figure 19. On the

destination side, we log the sequence number and the number of traversed

hops of received test messages.

To evaluate the response to changing network connectivity, we use an

automated script to control disabling and enabling of networking interfaces on

the source node. In particular, we used a network of Microsoft Virtual PC

nodes connected via the above discussed virtual local network interfaces. We

automated disabling and enabling the virtual network interfaces using a

PowerShell script that uses the Windows Virtual PC COM interface. In Figure

 Figure 19 the internals of a test PalCom node in the distance vector routing

test.

44

21, we show the result of running three test rounds, where a test round is

defined from the perspective of the source node, i.e. Device-1 in Figure 20,

as:

1. Initially LAN-1, LAN-2, and LAN-4 are enabled.

2. Disable LAN-1 and wait for 15 seconds.

3. Disable LAN-2 and wait for 15 seconds.

4. Disable LAN-4 and wait for 15 seconds.

5. Enable LAN-4 and wait for 15 seconds.

6. Enable LAN-2 and wait for 15 seconds.

7. Enable LAN-1 and wait for 15 seconds.

The test results in Figure 21 show that the implemented distance vector

Figure 20 the test setup for evaluating the support of distance vector routing

over discovery forwarding flows in PalCom.

Figure 21 the test results for evaluating the support of distance vector routing

over discovery forwarding flows in PalCom.

45

routing makes correct and timely routing decisions considering the resulting

dynamics of device discovery as the network connectivity changes. Note that

dotted lines mean no traffic while the source is trying to find a new alternative

route.

8.4 Evaluation of the Synchronization Algorithm of
Device Discovery Information on Loss of
Update Message over Unreliable Channels

To evaluate our synchronization algorithm we used both model checking

and simulation based evaluation. For the model checking evaluation we

modeled our algorithm as a timed automata model using UPPAAL (22). We

verified that our system is correct against a property that makes sure that a

destination node receives all updates from the source after the completion of

the synchronization process.

Moreover, we used the model in UPPAAL to study the algorithm

performance showing that the larger the history cache of the discovery

updates and the quicker the out-of-sync situation is detected, the fewer

discovery update messages are exchanged among nodes, giving better

performance.

On the other hand we used simulated network of virtual PCs, in the same

way as shown above is section 8.3, to produce an out-of-sync situation, as

shown in Figure 22, to prove the correctness of the algorithm implementation.

Figure 22 test setup for discovery out-of-sync situation.

46

And PalCom passed this test successfully.

9 Future Work

An important future work is revise the device discovery mechanism to

handle an interesting case of looping discovery events that we detected

during regression testing of that mechanism while setting up the test for

evaluating the support for distance vector routing. In particular, considering

the test setup in Figure 20, the problem appears in the following sequence:

1. When Device-2 discovers Device-3 for the first time, it may forward a

discovery event to Device-5 and then to Device-4 and finally to

Device-1, which may return that event to Device-2, which drops the

event according to the mechanism of the Discovery Forwarding Flow,

DFF, which explained in sections 6.2 and 7.2.

2. In case we disable Device-3, then Device-1 may forward a discovery

event to Device-2 to notify that it has a remote/routing route to

Device-3 via Device-4, which is the same discovery event that was

previously dropped by Device-2, as we mentioned above. However,

this time Device-2 does not know Device-3 anymore and there is no

way in the device discovery mechanism to enable Device-2 to detect

that this received discovery was originated from it before to advertised

a recently disappeared local route to Device-3.

3. As a result, Device-2 increments the hop-counts in the discovery

events and forwards the event via Device-5, Device-4, and Device-1

which returns it to Device-2 again. And since all of these devices

increment the hop-count in the forwarded discovery event, Device-2

thinks that this is just a cost-update event from Device-1 about its

remote/routing route to Device-3, so Device-2 increments the hop-

count in the discovery event and forwards it to Device-4 and the

forwarding loop continues for ever.

Till now, we have a simple solution for this problem using the gateway

role of nodes like Device-1 and Device-2, with respect to Device-3. But, we

may need to optimize this solution using less information in the discovery

messages without long string values of gateway device IDs.

Another possible future work is to minimize broadcasts in a local network

where no expected device is missing. In particular, we may add the capability

47

of configuring PalCom nodes to only send heart beat messages to specific

devices on the network that we are interested in periodically checking their

availability. Such approach shall minimize broadcast traffic in local networks

10 Conclusions

In this dissertation, we presented our work to fulfill our research questions

that we listed in section 4. To address the first research question, we added

to PalCom a networking media abstraction framework that developers can

use to easily develop new media abstraction objects, MAOs for PalCom,

which support different networking protocols. Our approach to design that

framework was to refer to design principles of networking protocols to identify

the main components of a network protocol which we represent in the

framework as abstract classes. PalCom developers can implement these

abstract classes to develop new MAOs. Moreover, the framework includes a

runtime environment that can easily integrate a newly developed MAO to the

system while enabling the plugging and unplugging of a specific network

interface.

As part of the PalCom development by our research group, the media

abstraction framework was successfully used in developing MAOs for IPv4,

IP tunneling, Android inter-process communication, and even a virtual

networking environment for testing and evaluation of complex scenarios. As

part of the evaluation work in this dissertation, the framework time-overhead

is found to be around 250 microsecond for a 14 bytes test message in either

direction of communication. This overhead is acceptable depending on the

application domain and there is a room for performance improvement, e.g.

starting with optimizing logging facilities. The work on the media abstraction

framework is detailed in this dissertation in sections 6.1, 7.1, and 8.1. It also

documented in paper I.

To address our second research question in section 4, we added to

PalCom an events based device discovery and undiscovery mechanism over

routed networks in a timely manner without flooding the interconnected local

networks with broadcast heart beats. The mechanism is composed of two

state machines, one for device discovery and undiscovery within local

networks and another for device discovery and undiscovery across

interconnected networks.

We also refined the design of the mechanism to prevent looping discovery

and undiscovery notifications and to align the state of discovered routes to

48

devices on remote networks to the state of discovered routes to their

introducer router devices on local networks. The work on the discovery and

undiscovery mechanism is detailed in sections 6.2, 7.2, and 8.2. It is also

documented in paper II.

To address our third research question in section 4, we added distance

vector routing logic to PalCom as part of the layer on top of the device

discovery and undiscovery layer. The main goal was to preserve the

modularity and simplicity of both of the two lower layers in the PalCom stack,

namely the media abstraction layer and the device discovery and undiscovery

layer. The evaluation shows that using this added logic, PalCom is able to

choose lower cost routes from the set of available routes to a destination

node. It can also respond to dynamically changing availability of routes. The

distance vector routing that we added to PalCom is detailed in sections 6.3,

7.3, and 8.3. It is also documented in paper III.

To address our fourth research question in section 4, we refined our

device discovery and undiscovery mechanism to include a synchronization

mechanism to overcome possible loss of device discovery and undiscovery

notifications over unreliable networking channels. The synchronization

mechanism is based on tracking update numbers of the exchanged discovery

and undiscovery messages. The model based evaluation of the

synchronization mechanism shows that it correctly performs its function.

However, the synchronization overhead may be seen as a significant cost

in the case of communicating over highly unreliable channels. So practically

speaking, the synchronization mechanism provides a minimal recovery utility

for occasional loss of discovery and undiscovery notifications. The work on

the synchronization mechanism is detailed in section 6.4, 7.4, and 8.4. It is

also documented in paper IV.

Moreover, we detailed possible future improvements to PalCom in section

9. These include introducing improved solutions to the problem of looping

discovery notifications because of the disappearance of their originator router

nodes. Currently we use a simple solution that refers to such originator nodes

as gateways and enables PalCom nodes to break loops by dropping a

notification message about a specific device that was originated at a specific

gateway when it is received for the second time.

Another possible improvement is to provide PalCom with the ability to limit

broadcasting heart beat messages by using unicast polling to specific devices

on the network that we need to keep track of their availability. This concept is

based on the fact that in some application setup we may not need to check

the availability of some nodes as frequent as we need for other nodes.

49

References

1. Svensson Fors, David. Assemblies of Pervaisve Services, PhD

Thesis. Lund : Dept. of Computer Science, Lund University, 2009.

2. Pervasive computing: vision and challenges. Satyanarayanan, M. 8,

August 2001, Personal Communications, IEEE, pp. 10-17.

3. Pervasive computing: a paradigm for the 21st century. Saha, D. and

Mukherjee, A. 36, March 2003, Computer, IEEE, pp. 25-31.

4. Connecting the physical world with pervasive networks. Estrin, D, et

al. 1, Jan-Mar 2002, Pervasive Computing, IEEE, pp. 59-69.

5. Ad-hoc Composition of Pervasive Services in the PalCom

Architecture. Svensson Fors, David , et al. London : s.n., 2009.

Proceedings of the 2009 international conference on Pervasive

services.

6. Discovery systems in ubiquitous computing. Edwards, W. K. 5(2),

april-june 2006, Pervasive Computing, IEEE, pp. 70 - 77.

7. Service discovery in pervasive computing environments. Zhu, Fen,

Mutka, Matt W. and Ni, Lionel M. 4(4), Oct.-Dec. 2005, Pervasive

Computing, IEEE, pp. 81 - 90.

8. Toward distributed service discovery in pervasive computing

environments. Chakraborty , D. , et al. 5(2), Feb. 2006, IEEE

Transactions on Mobile Computing, pp. 97 - 112.

9. Johnsson, Björn A. Where PalCom Meets the End-User: Enabling

User Interaction with PalCom-based Systems, Licentiate Thesis.

Lund : Dept. of Computer Sceince, Lund University, 2014.

10. Some like it hot: automating an electric kettle using PalCom.

Magnusson, Boris and Johnsson, Björn A. New York, NY, USA :

50

ACM, 2013. In Proceedings of the 2013 ACM conference on Pervasive

and ubiquitous computing adjunct publication (UbiComp '13 Adjunct).

pp. 63-66.

11. Sharp, Robin. Principles Of Protocol Design. Berlin, Heidelberg :

Springer-Verlag Berlin Heidelberg, 2008.

12. An Improvement of the Route Discovery Process in AODV for Ad

Hoc Network. Hu, Yongjun, Luo, Tao and Shen, Junliang. 2010.

International Conference on Communications and Mobile Computing

(CMC), 2010.

13. A new survey of routing algorithms in ad hoc networks. Ghazani ,

Seyed H. H. N., Lotf, Jalil J. and Alguliev, R. M. 2010. 2nd

International Conference on Computer Engineering and Technology

(ICCET), 2010.

14. Efficient Route Discovery and Repair in Mobile Ad-hoc Networks.

Po-Jen, Chuang, Po-Hsun, Yen and Ting-Yi, Chu. Washington, DC,

USA : s.n., 2012. IEEE 26th International Conference on Advanced

Information Networking and Applications (AINA '12).

15. NARD: Neighbor-assisted route discovery in MANETs. Gomez, J.,

et al. 17, 2011, Wireless Networks, Vol. 8, pp. 1745-1761.

16. A Novel Multiple Routes Discovery Scheme for Mobile Ad Hoc

Networks. Xie, Fang, et al. 2006. Asia-Pacific Conference on

Communications, 2006. APCC '06.

17. Improvements on DSDV in Mobile Ad Hoc Networks. Liu, Ting and

Liu, Kai. 2007. International Conference on Wireless Communications,

Networking and Mobile Computing, 2007. WiCom 2007.

18. Ad-hoc on-demand distance vector routing. Perkins, C. E. and

Royer, E. M. 1999. Second IEEE Workshop on Mobile Computing

Systems and Applications, 1999. Proceedings. WMCSA '99.

51

19. A Survey on Fault-Tolerance in Distributed Network Systems.

Xiong, Naixue, et al. 2009. International Conference on Computational

Science and Engineering, CSE '09. IEEE.

20. A survey on reliability in distributed systems. Ahmed, Waseem and

Wu, Wei Yong. 8, 2013, Journal of Computer and System Sciences,

Vol. 97, pp. 1243 – 1255.

21. A Survey of Fault Management in Wireless Sensor Networks.

Paradis, Lilia and Han, Qi. 2, 2007, Journal of Network and Systems

Management, Vol. 15, pp. 171-190.

22. UPPAAL software and tutorials. [Online] http://www.uppaal.org/.

23. A Survey of Service Discovery Protocols in Multihop Mobile Ad

Hoc Networks. Mian, Adnan Noor, Baldoni, Roberto and Beraldi,

Roberto. 1, 2009, IEEE Pervasive Computing, Vol. 8, pp. 66-74.

24. Survey on Service discovery for Wireless Sensor Networks. Anwar,

Fatima Muhammad, Seung-Wha, Yoo and Ki-Hyung, Kim. Jeju

Island, Korea (South) : s.n., 2010. Second International Conference on

Ubiquitous and Future Networks (ICUFN), IEEE, 2010.

25. Hedrick, C. Routing Information Protocol, RFC 1058. [Online]

June 1988. http://www.rfc-editor.org/rfc/rfc1058.txt.

26. hrPING. [Online] http://www.cfos.de/hrping-v506.zip.

27. The effect of forgetting on the performance of a synchronizer.

Függer, Matthias, et al. 2015, Performance Evaluation, Vol. 93, pp. 1-

16.

52

53

Paper I: Media Abstraction Framework for
the Pervasive Middleware PalCom
Amr Ergawy and Boris Magnusson,

Published in Proceedings of the 2nd International Conference on Future

Internet of Things and Cloud, FiCloud-2014, Barcelona, Spain, 2014. IEEE.

Abstract: Pervasive middleware systems are important for enabling the
configuration and coordination of the services provided by devices in
pervasive environments. PalCom is an example of such a system that aims to
enable interaction among pervasive services over heterogeneous networks.

In this paper we discuss the need for providing networking-media
independent messaging among pervasive devices, and identify the problem
of designing a media abstraction framework for a pervasive middleware. We
identify a number of design principles and features that need to be satisfied
by such a framework. The most important of these principles is the separation
of networking protocol aspects into abstraction representations, which are
exposed in a unified format to upper layers of PalCom, and communication
mechanisms which are hidden by media-specific implementations of our
proposed media-abstraction framework for PalCom. Also, we explain our
implementation and evaluation of that framework.

Keywords: pervasive middleware, networking media abstraction, software
framework.

1 Introduction

PalCom is a pervasive middleware that employs the human-in-the-loop
principle that enables users to compose systems as assemblies of available
services on independent devices, which may communicate over local
networks as well as inter-networks [1]. A PalCom instance runs of each of the
interacting devices. Users can write PalCom assemblies that specify the roles
of the services on these devices and their coordination in order to accomplish
the task of the target application. A PalCom assembly separates the
coordination information from services implementation on the provider
devices. A PalCom assembly coordinates services that may not have been
originally designed to work together. PalCom implements device and service
discovery to support the composition and running of services assemblies.
Device discovery is done via a heart-beat mechanism while devices offer self-
describing services.

54

PalCom provides a set of key features [1]. Firstly, it separates the aspects of
configuration and coordination from those of computation. Secondly, PalCom
uses a distributed discovery mechanism spanning devices on different
heterogeneous networks. Thirdly, PalCom defines its own interaction protocol
among the coordinated services, making it independent from the underlying
network protocols.

However, as PalCom was designed with the focus on assemblies of device
services, it does not provide a media abstraction framework that abstracts
different networking interfaces to the upper layer of the PalCom stack, i.e. the
device discovery and routing layer. We use the term media in the same
sense as in [2], referring to the means of accessing a communication or
networking system. That is not to be confused with the elements that are
being communicated, e.g. images, voice, or video. Considering that PalCom
devices and services discovery and communication is done on
heterogeneous networks, such media abstraction framework enables Media
Independent Messaging, MIM, among such devices and services.

In this paper, we describe our design, implementation, and evaluation of a
framework that enables the flexible addition and management of network
interfaces, of different media types, to the PalCom pervasive middleware. We
do this work in the context of extending the work in [3] to support cross-
network discovery/undiscovery, with limited cross-network heartbeat, as well
as cross-network message delivery in PalCom.

In particular, our problem can be stated as follows:

To design a framework that enables interfacing different types of networking
media interfaces to PalCom upper layers.

In section 2, we illustrate the main challenge of designing such a media
abstraction architecture, which is the vast diversity of networking technologies
in pervasive systems. Then, in section 3, we review different approaches of
designing media abstraction frameworks for pervasive systems. Afterwards,
in section 4, we illustrate the design principles and the details of our proposed
media abstraction framework for PalCom. And before testing and evaluation
in section 5, we illustrate the implementation with a usage example of our
proposed framework in section 6.

55

2 Diversity of Media Interfaces in
Pervasive Systems

Media interfaces in pervasive systems are used to communicate data for a
variety of application areas like healthcare [4] and vehicular ad-hoc networks
[5]. In this section, we emphasize that the diversity of networking
technologies is a challenge for designing a common media abstraction
framework for a pervasive middleware like PalCom. For this purpose we
review the networking technologies and protocols from the two example
domains, of health care and vehicular communication.

2.1 Diversity of Media Interfaces in Healthcare
For the health care field [4], both patients and workers need to communicate
and exchange data anywhere and anytime, requiring pervasive computing
architectures. The applications range from remote-monitoring and ambient
assistance of patients to improve hospital-centric workflows.

Health care applications utilize a very broad range of networking technologies
and communication protocols [4], which can be categorized as follows:

1) Short range wireless networking, which is used to implement personal
area networks that integrate patients’ sensors into health care
information systems. Mainly, such networks use Zigbee and Bluetooth
technologies.

2) Radio frequency identification, RFID, technologies, which is mainly
used for identification and tracking of people, e.g. patients or workers,
and objects, e.g. tools and medicine packs.

3) Infrastructure networks that connect people outside hospitals and
homes to health care information systems. That category includes
both wireless local area networking, WLAN, technologies like IEEE
802.11 family and wide area networking, WAN, technologies like
internet and even mobile networks.

Taking the first category as an example, different short range networking
technologies and protocols differ in design considerations [6]. Some of these
technologies are designed for low data rates, others are designed for power
efficiency, while a third set is designed to ensure priority guarantees for a
specific type of data traffic. These differences in design considerations lead to
a large number of different details among different networking technologies
and protocols, even if they are designed for the same application area.

56

2.2 Diversity of Media Interfaces in Vehicular Ad-
hoc Networks

For the vehicular ad-hoc networks field [5], the advances in networking
technologies supported computing intensive vehicles, which even extends to
vehicle-to-vehicle and vehicle to infrastructure networking. Initially, vehicle
networking is built around a heterogeneous set of networking technologies,
including the WLAN IEEE 802.11 standard family and the WiMAX IEEE 802.6
standard family.

Additionally, dedicated vehicle networking standards are being proposed and
developed [5]. Such protocols address design problems like routing in
vehicle-to-vehicle networking and media access protocols for both vehicle-to-
vehicle networking and on-board networking. These protocols are designed
from the beginning with the application area specific considerations and
challenges in mind [5]. These consideration include, continuous vehicles
mobility, limited connections between vehicles and infrastructure networks,
and the not fully adaptable solutions that are based on existing wireless
technologies, like WLAN and WiMAX.

Additionally, a geographic dimension adds to the diversity of the designed
dedicated vehicle-to-vehicle protocols [5]. Different standardization
organizations all over the world have designed a wide variety of dedicated
vehicle networking protocols based on the above mentioned design
considerations. Again, this leads to a wide variety of the details of
technologies and protocols for even this single application domain.

To sum up, the wide variety of design considerations and details of
networking technologies and protocols, in different application domains of
pervasive computing, introduces a challenge for designing a common media
abstraction framework for a pervasive computing middleware like PalCom.

3 Previous Work: Service Oriented
Abstraction vs. Media Independence
Abstraction

Media abstraction was addressed in the areas of providing interoperability
among different devices in pervasive systems [7] and seamless handover
among different media in the area of mobility management [2] [8] [9].

57

3.1 Service Oriented Architecture based Media
Abstraction

First, we review media abstraction for interoperability among devices and
services in pervasive environments [7]. Service Oriented Architecture, SOA,
based on Web Services technologies are used to abstract the services
provided by devices, including their networking interfacing. In [7], an
architecture of a universal service bus is designed to abstract services on
devices to virtual web services using what they refer to as adapters.

For example, the services of devices communicating over Bluetooth are
abstracted via a Bluetooth adapter, abstracting the Bluetooth communication
to the universal service bus in terms of a virtual service. SOA based
abstraction, using Web Services technologies, are criticized for the possibility
of being resource demanding considering the resources limited devices in
pervasive environments [9]. Our proposed media abstraction architecture
minimizes the required extra resources by being a built-in component of
PalCom, i.e. no additional framework is required for its integration.

3.2 Media Abstraction for Seamless Handover
Secondly, for seamless handover among different media in the area of
mobility management [2] [8] [9], media abstraction is handled by providing a
framework that can interface media-specific Service Access Points, SAPs, to
upper layers of mobility management logic.

The Media Independence Handover, MIH, architecture described in [9],
introduces a media abstraction architecture that shares two common features
with the media abstraction architecture what we propose for PalCom, i.e. the
dynamic nature of using plugging-in media specific SAPs, and the flexibility
that developers can develop new media specific SAP implementations as
needed. However the two architectures differ in the target of supporting
media independence. In [9], the architecture focuses on Media Independent
Handover, MIH, while our proposed architecture focuses on Media
Independent Messaging, MIM.

4 Proposed Media Abstraction
Framework for PalCom

From the perspective of a middleware software like PalCom, communication
media are accessed using protocols. To design a media abstraction
framework for PalCom, we may follow an approach where we survey most

58

used media protocols in pervasive environments, similar to the surveys in [4]
[6] [5], aiming to design a media abstraction framework that abstracts their
common and key features to the upper layer in PalCom. However, this
approach may set non-flexible boundaries on the protocols that developers,
who will use the proposed media abstraction architecture, may implement
and plug into PalCom.

Alternatively, we chose to follow an approach where we argue that
communication protocols share common design principles where their
designers start from, then protocols differ in their details based on their
specific requirements and design considerations. Protocol design principles
are extensively discussed in [10]. By referring to that discussion, we argue
that we can divide protocols aspects into two categories, i.e. mechanisms
and representations.

Protocol mechanisms include connection establishment, different types of
control, e.g. sequence and flow control, routing, and security. On the other
hand, protocols representations include addressing formats, naming formats,
and message encoding. We design media abstraction in PalCom to abstract
representations to upper layers and to leave mechanisms to media specific
implementations and upper layers of PalCom, e.g. supporting reliable
sending at these layers.

4.1 Solution Basis and Approach
1) Solution Basis:

We classify aspects of networking protocols [10] of different media interfaces
as follows:

a) Representations: devices names, networking addresses, routes
definitions, and message encodings.

b) Mechanisms: including other aspects of a networking protocol, e.g.
connection establishment and routing.

2) Solution Approach:

We propose a media abstraction architecture that:

a) Transforms networking protocols specific representations into a
unified internal format for processing by upper layers of the PalCom stack.

b) Leaves networking-protocol specific mechanisms as internal
implementation details of Media Abstraction Objects, MAOs, which abstract
different media networking interfaces, as we explain next in section 4.2.

59

4.2 Design Principles and Features
We design our media abstraction architecture to utilize representations
abstraction, to enable easy development and integration of media abstraction
objects, MAOs, for different networking interfaces. Next, we detail our design
principles under two main categories, namely utilizing representations
abstraction and designing for flexible and robust framework.

1) Utilizing Representations Abstraction

In [10], networking protocol aspects that we refer to as protocol specific
representations are defined as follows:

c) A name: a permanently associated identifier with an object.

d) An address: an identifier associated with the current object location.

e) A route: an identifier associated with a path to an object.

From these definitions, we argue that regardless of the protocol specific
representations of these identifiers, they can be abstracted to PalCom upper
layers as strings. For a name or an address, we abstract its protocol specific
representation as its human readable string format, making it easy for both
integration of its media type and for system implementers and maintainers.

For a route, we abstract its protocol specific representation as a pair of two
human readable strings that together represent the next-hop from the local
node to forward a message via that route. The two strings in that route
abstraction pair are listed as follows:

a) The human readable format of the name of the local networking
interface via which a message is to be forwarded on the route.

b) The second string is the human readable format of the address of the
next-hop node on the route.

2) Designing for Flexibility and Robustness

Our proposed media abstraction framework aims to abstract networking
interfaces of different media types as media abstraction objects, MAOs,
which shall be easy to develop for newly PalCom supported networking
media types as well as easy to integrate to PalCom upper layers.

Given the vast variety of existing and future networking technologies and
protocols that are used in pervasive systems, as reviewed above in section 2,
our framework design aims to provide the following features:

a) Abstracting development framework: we have to ensure that no
media-type specific design principle or mechanism is built into our
development framework where MAO developers start their implementation
from.

60

In particular, we have to ensure that the development framework has no
implementation details except of starting points, e.g. abstract methods, where
a MAO developer can extend to provide the necessary representation
abstraction elements that we discussed earlier in this section.

b) Dynamic plugging: we need to allow the possibility to plug and unplug
media abstraction objects, MAOs, of different networking media interfaces to
and from PalCom at any point in time while the system is running.

This is to accommodate the variety of networking media types, the changing
number of available networking interfaces over-time while the system is
running, and the possible changes of user preferences.

c) Fault tolerance: at different stages of plugging and using a media
abstraction object, MAO, we need to ensure that internal MAO errors and
failures are handled robustly by the media abstraction architecture, which
shall continue functioning properly after handling or just smoothly tolerating
such errors.

Also, we need to ensure that our framework provides enough buffering that
decouples the upper layers of PalCom from MAO implementations. This is to
avoid any faulty MAO implementations that would block upper layers for long
times.

d) Simplified and Robust Concurrency: for a media abstraction
framework, concurrency is an essential feature that enables the handling of
multiple input/output operations to/from multiple networking interfaces,
implemented as instances of different media abstraction objects, MAOs.

Therefore, we have to ensure that there is a simple concurrency model that is
easy to understand by MAO developers. Such a model makes it easy to
design, integrate, verify, and troubleshoot MAO implementations. More
importantly, we need to ensure that our concurrency model eliminates the
possibility of concurrency problems, e.g. dead-lock, when plugging an
instance of a media abstraction object, MAO, to the system.

4.3 Framework Structure and Activities
In this section, we start by describing the layered structure of our media
abstraction framework, mapping its different activities to the design principles
and features that we described in the previous section. Then, we describe the
details of the activities of each framework layer, explaining the actions and
signals that realize the design principles and features.

1) Framework Structure vs. Design Principles and Features

As shown in Fig. 1, when the system is running, at the upper-most layer the
Media Abstraction Manager, MAM, maintains a list of Media-Type Handlers,
MTH, at the lower layer, which in turn maintains a list of Media Abstraction

61

Objects, MAO, for the network interfaces of their corresponding media-types.
By “maintaining” here we mean creating the maintained elements,
starting/plugging them, or stopping/unplugging them. We explain these
operations in details later in this section, as part of the framework activities.

Continuing with the system structure, we map the design principles and
features, discussed above in section 4.2. For utilizing the representation
abstraction, as shown in Fig. 1, when a MAO receives a message in a media
specific format, it decodes its payload to a byte array that forms a PalCom
message. Similarly, the MAO supplies the address of the message sender to
the upper PalCom layers with a human-readable string of that address. For
an outgoing message, the MAO encodes the byte-array of a PalCom
message as a payload for a media-specific message. In this case, the
message is either a broadcast message or a unicast message, where the
destination address is supplied by the upper PalCom layers to the MAO as a
reference to a media-specific address.

As a fault tolerance measure, for both outgoing and ingoing messages,
limited size buffering is used to decouple the MAO functions from the
functions of the upper PalCom layers. On the buffer-full events of these
buffers, proper measures are taken while keeping the properly functioning
parties working. We explain the details of all of these mechanism below, as
part of the system activities explanation.

Figure 1. Media Abstraction Management for PalCom

62

For abstracting the development framework, this is more explained as part of
the framework design, in section 6. But for dynamic plugging, as shown in
Fig. 1, a media-type handler, MTH, of a given media-type continuously
create, plug and unplug MAOs for the network interfaces, on the local
system, of its media-type. For fault tolerance, all operations of dynamic
plugging are checked at its different stages for possible faults due to
implementation issues.

A more generic view of dynamic plugging and unplugging is the addition of
new media-types to the system, by the media abstraction manager, MAM. In
particular, a media-type can be configured to the system as a set of media-
specific implementation elements, e.g. classes in the case of object oriented
implementation of the framework. Then, for each configured media-type, the
MAM creates and starts a media type handler that uses these implementation
elements to dynamically plug and use the interfaces of this media to the
system. For tolerating faults in the media-type implementations, the MAM
handles possible faults at the different stages of using them. below, we
explain the details of the MAM and the MTH mechanisms among other
framework activities.

Finally, as shown in Fig. 1, the concurrency model has two simple rules. The
first rule allows top-down method/procedure executions to lock used objects
while the second rule restricts bottom-up message and signal flows to be
communicated as only asynchronous events to avoid locking upper-layer
objects. On a very limited scale, bottom-up message and signal flow can be
done in synchronized blocks on an upper-layer object that must exist outside
any synchronized block that is used by that upper-layer object.

2) Framework Activities

We explain the framework activities at the three layers of the framework
structure. We start by explaining the activity of adding a media-type to the
system by the MAM. Then, we explain the activity of adding and dynamically
plugging network interfaces into the system, by MTHs. Finally, we provide the
details of the functionality of plugged network interfaces.

a) Adding Media Types: New-media types can be
configured to the system. One way to do this is to store the media
specific implementation of a network interface enumerator, NIE, to
a store that can be parsed by MAM to create an instance of that
NIE. Another way is to programmatically create an instance of that
media specific NIE and pass it to an explicit call of a configuration
method/procedure of the MAM.

On the event of configuring a new media type to the system, the MAM
creates a media type handler, MTH, which takes the NIE of the media-type as

63

a parameter. Finally the MAM attempts to start the MTH. On any fault event
at any of these stages, the MAM takes necessary measures, at least by
logging them and terminating the attempted operations properly.

b) Manageing Network Interfaces: On the start of the MTH, periodically,
it uses the NIE to get the list of the current network interfaces of this media-
type on the system. Then, for newly detected interfaces, the MTH starts to
create MAOs and plug them into the system using MAOPlugs, which we
explain next as part of the functionality of plugged network interfaces. For all
disappeared interfaces, the MTH unplugs them.

In addition to the periodic maintenance of the network interfaces plugging
and unplugging, control commands to the MTH, e.g. issued by the user
interface can plug or unplug a specific MAO for a specific interface or even
stopping the entire media-type by stopping the MTH, which in turn unplugs all
MAOs for all interfaces. For all of MTH operations, possible faults, e.g. due to
NIE or MAO faulty implementations, are handled at least by logging them or
at most by properly terminating the MAOPlug and the MAO for the associated
interface.

c) Functionality of plugged network interfaces: On the initial plugging of
the interface, the MAOPlug attempts to start the MAO that abstracts the
interface, the send worker, and the receive worker. All of these components
are expected to start properly after a given time. In case of an exception
during starting any of the components or the starting attempt times out, the
initial plugging attempt is terminated gracefully. On the success of the initial
plugging attempt, an “added interface” event is signaled to the Interfaces
Events Store, IES. Also, the MAOPlug provides operations for plugging and
unplugging the MAO, e.g. by the user interface, which also add
corresponding events to the IES.

 On the recipient of a media specific message, a plugged MAO decodes
the payload of a received media specific message to a byte array that
represents a PalCom message. Then, if the ingoing messages buffer has
enough space, the message is buffered for further processing by the
MAOPlug receive worker, which signals PalCom upper layers about the
ingoing message and receive signals from them about either successful or
unsuccessful processing of the message.

For outgoing messages, the PalCom upper layers can send or broadcast
messages of the MAOPlug, passing the message in PalCom internal format.
In turn, the MAOPlug transforms the message to a byte array and buffers it to
the outgoing message queue if there is enough space. On polling an outgoing
message, the MAOPlug send-worker calls the proper sending or

64

broadcasting method from the interface MAO, which encodes the byte array
message into the payload of a media-specific message.

In addition to message buffering for decoupling the functionality of and
interface MAOPlug and MAO from the PalCom upper layers, all faults from a
MAO implementation or even from the framework are handled by at least
logging them or at the worst case by terminating the execution of the
MAOPlug. For all of the framework activities, the concurrency model,
discussed above, applies across the three layers.

5 Framework implementation

We divided our framework into two layers, a run-time framework and a
development framework for developing media abstraction objects, MAOs. We
implemented our framework in Java, as an extension of the current PalCom
implementation. As shown in Fig. 2, the runtime is implemented by the top-
most package, media_abstraction.runtime, while the development framework
is implemented by the media_abstraction.framework package.

All the development framework classes are abstract classes, with the abstract
methods expected to be implemented by MAO developers while final
methods are dedicated for error handling and interfacing with the runtime. As
an example MAO implementation, we implemented the
media_abstraction.IPMAO package, which have classes that implement a
MAO for IPv4.

As illustrated in Error! Reference source not found. 2, in the runtime
package, the MediaAbstractionManager class, the MediaTypeHandler class,
the MAOPlug class, and the AbstactiMediaAbstractionObject class directly
map to the components we show in Fig. 1. Moreover, the abstraction of a
media-specific message content, which we discussed in section 4, is
implemented as a MediaAbstractionPayload. That is a message payload that
can be passed or received from a plugged MAO. Additionally, the abstraction
of the network address is implemented as an
AbstractCommunicationAddress, which is extended by the MAO for its own
specific address format. To associate a source or a destination address with
a message payload, the AddressedMediaAbstractionPayload class uses
objects of the AbstractCommunicationAddress.

65

Another aspect that Fig. 2 illustrates is handling MAO events of different
types, as listed by the constant values in the MAOEventClass. Such events
can indicate an added MAO, a removed MAO, a disabled MAO, or an
enabled MAO. With each MAOEvent object that a MAOPlug can pass about
a MAO, the event type is indicated as well as the source MAOPlug. Such
events are asynchronously communicated to the MediaAbstractionManager
via a MAOEventsStore. The MediaAbstractionManager has to convey such
events to objects of the MAOEvents listener, e.g. the MediaControlPanel.

6 Testing and Evaluation

In addition to conventional software unit and integration testing of our
framework, we tested the usage of the framework by our being developed
across-networks device discovery mechanism. Simulated devices that
communicate concurrently were able to discover each other on top of our
media abstraction framework and across multiple IPv4 networks.

Also, we considered evaluating the framework from two other aspects. The
first is the required effort to integrate a MAO into the framework. The second
is the upper-limit of the time overhead that our framework adds to send and

Figure 2. The Media Abstraction Framework

66

receive PalCom ping messages of a specific size compared to sending and
receiving ICMP ping messages of the same size.

6.1 Integration Effort
To integrate the framework to PalCom we mainly need an object of the
MediaAbstractionManager. Then, a programmer needs to start the
MediaAbstractionManager and add different MAOs to the system. Thirdly, the
example IPv4MAO is easily added to the system with just one method that
take, as a parameter, an object of the IPv4MediaType, which implements an
abstract bundling class in the MAO development framework called
AbstractMediaType. It takes only one line to add a media-type to the system.

In addition to saving the name of the media type and creating a singleton of
the MAO enumerator, the MAO implementation AbstractMediaType is
responsible for creating objects of the MAO implementation of the
AbstractMediaAbstractionObject as well as validating the type of
AbstractCommunicationAddress objects against the type of the MAO
implementation of the AbstractCommunicationAddress.

6.2 Messaging Time Overhead
We evaluated the time overhead of sending a PalCom ping message via our
media-abstraction framework for a round-trip over an Ethernet LAN. For
configurable and focused testing, we developed a testing framework that
adds a dummy PalCom device stack on top of the tested media abstraction
framework.

The test is done in a ping pong setup, where one node is configured to
periodically ping another node that just echoes the ping message back. We
refer to the first node as a ping node while we refer to the other as a pong
node. The ping node is a dual core of 1.7 GHz each and 16 GB memory,
while the pong node is a dual core of 2.6 GHz each and 8 GB memory.

The ping message contains a trace-ID that travels with it in the round-trip.
The ping node uses the trace-ID to record two time stamps for a message:

1) On sending the message, the ping node records the time of the
message entry to the sending method of the media abstraction
framework.

2) On receiving the message, the ping node records the time of the
message handing to the dummy processing logic above the
framework.

In Fig. 3, the series with round-shaped elements represents the round trip
times of more than 180 PalCom ping messages. Also in Fig. 3, the series with

67

x-shaped elements shows those round trip times minus the average round
trip time of ICMP ping messages on the Ethernet link of the test setup, 300
microseconds, of the same size as PalCom ping messages. We set the size
of the ICMP packet as an option in the ping tool we use. Finally, the series
with triangle-shaped elements in Fig. 3 shows the subtracted round trip times
divided by two. This series gives an estimation of the upper bound of the
overhead processing time of PalCom ping message, in both directions, on
each of the two machines in the test setup.

From Fig. 3, the processing time of a PalCom ping message via our
framework decreases over time to almost stabilizing, after message number
40 in this test run, to be around 500 microseconds. The processing time
includes both directions of the message. This result shall be interpreted in the
context of the test setup. For realistic communication situation in PalCom, an
overhead of 0.5 millisecond should be acceptable.

7 Conclusion and Future work

The vast diversity of networking in pervasive environments is a main
challenge for designing a media abstraction framework for a pervasive
middleware like PalCom. However, using such network technologies is

Figure 3. Framework processing time of a PalCom ping message over Ethernet LAN

68

mainly done via network protocols which share common design principles. A
previous work on media abstraction utilized web services technologies to
abstract network adapters as services [7], which is resource-demanding with
respect to pervasive devices [9]. Our proposed media abstraction framework
aims to avoid this by being an integrated part of PalCom. Another previous
work focuses on abstracting networking media among a specific family of
network protocols for the purpose of handing-over communication among
network interfaces [9]. Our proposed framework differs from that work by
enabling media independent messaging across heterogeneous networks.

We identified the design principles for a media abstraction framework for
PalCom by refering to the design principles of networking protocols,
separating the protocol specific mechanisms from generic enough
abstractions that are provided by these protocols, e.g. string representations
of network addresses and byte arrays values of messages contents. That
enables simplified integration of media abstraction objects, MAOs that
integrate different network media to the PalCom. We evaluated both the
MAOs integration effort and the framework performance, which shall be
interpreted in the context of the application domains.

As future work, we aim at developing more MAOs for other media to identify
more requirements for the framework, we also may investigate techniques to
improve the performance of the system, if required.

Acknowledgment

This work was funded by The Swedish Fund for Strategic Research. We also
gratefully thank the developers of the free tools:

1) Modelio: http://www.modelio.org/

2) hrPING: http://www.cfos.de/hrping-v506.zip

References

[1] D. Svensson Fors, B. Magnusson, S. Gestegård Robertz, G. Hedin and E. Nilsson-Nyman, "Ad-hoc
Composition of Pervasive Services in the PalCom Architecture," in Proceedings of the 2009

international conference on Pervasive services, London, 2009.

[2] 802.21-2008 IEEE Standard For Local And Metropolitan Area Networks- Part 21: Media
Independent Handover.

[3] D. Svensson Fors, "Assemblies of Pervaisve Services, PhD Thesis," Dept. of Computer Science,

Lund University, Lund, 2009.

http://www.modelio.org/
http://www.cfos.de/hrping-v506.zip

69

[4] F. Delmastro, "Pervasive Communications In Healthcare," Computer Communications, no. 35.11,
pp. 1284-1295, 2012.

[5] M. Booysen, S. Zeadally and G.-J. van Rooyen, "Survey Of Media Access Control Protocols For
Vehicular Ad Hoc Networks," IET Communications, no. 5.11, pp. 1619-1631, 2011.

[6] Khan, Z. A et al., "A Comprehensive Survey Of MAC Protocols For Wireless Body Area

Networks," in Broadband, Wireless Computing, Communication and Applications (BWCCA), 2012
Seventh International Conference on, 2012.

[7] Y. Hyung-Jun and K.-C. Lee, "A Ubiquitous Web Services Framework For Interoperability In

Pervasive Environments," International Journal Of Multimedia & Ubiquitous Engineering, 2012.

[8] Aguiar, R.L. et al., "A Framework For The Connectivity Of An Internet Of Things," in Sensors,

2011 IEEE, 2011.

[9] Aguiar, R. et al., "Mindit: A Framework For Media Independent Access To Things," Computer
Communications, no. 35.15, pp. 1772-1785, 2012.

[10] R. Sharp, Principles Of Protocol Design, Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg,

2008.

70

71

Paper II: Device discovery for the Pervasive
Middleware PalCom with Eliminated Cross-
networks Heart-beat Messages
Amr Ergawy and Boris Magnusson,

Published in proceedings of the 5th International Conference on Emerging

Ubiquitous Systems and Pervasive Networks (EUSPN-2014), Halifax, Nova

Scotia, Canada, 2014, Procedia Computer Science, Volume 37, 2014, Pages

64-71.

Abstract: Service discovery is central in pervasive middleware systems, built
on top of the communication substrate using the more fundamental
mechanisms for device discovery. In mobile pervasive systems devices come
and go, and switch network frequently, demanding support for device
discovery across heterogeneous networks. We present the design of a device
discovery mechanism for the PalCom middleware that eliminates the need for
cross-network periodic keep-alive messages while still supporting timely
detection of missing devices, i.e. undiscovery. The design has been
implemented and is evaluated against the simplistic approach of flooding the
inter-connected networks with keep-alive messages.

Keywords: pervasive middleware; device discovery; network traffic
optimization.

1 Introduction

Discovery mechanisms, for example Zero conf [1], have greatly simplified

configuration of computer systems, such as finding a nearby printer. These

mechanisms are frequently used in a local network, as supported by UDP [2]

broadcasts, but not across networks. Palcom [3] is offering similar

mechanisms across networks to configure general systems of Internet-of-

Things covering both discovery, i.e. a device is available, and undiscovery i.e.

finding out that a device is no longer available within a configurable time-out.

The latter is relevant for example when monitoring patients in medical

applications. Such mechanisms are implemented using broadcasting

requests, for discovery, and exchanging periodic keep-alive messages,

heartbeats, for detecting loss of devices, undiscovery.

72

In Palcom there is support for discovery/undiscovery over heterogeneous,

potentially large, networks where every device can act as a router of

discovery information between networks it is attached to. In such cases a

simplistic approach might result in a network flooded with keep-alive

messages. In this paper we present a solution to this problem where

broadcasting is only needed in the local networks, while maintaining the effect

that loss of a device in one network can be acted upon in another network

with a configurable and predictable delay. The idea behind our approach is to

replace cross-network periodic heart-beat messages with discovery events

notifications. This is shown in Fig. 1.

From the perspective of service discovery and data messaging, our

proposed device discovery mechanism builds an overlay communication

substrate [4] on router nodes that bridges the islands of discoverability [6] of

different local networks. We discuss this perspective and its implications on

designing a device discovery mechanism in section 2. In section 3, we detail

our proposed device discovery mechanism and summarize the results of

evaluating our cross-networks heart-beating optimized mechanism against

the simplistic approach of cross-networks heart-beat flooding. Finally, in

section 4, we present our conclusions that generalize our evaluation results

and brief our future work.

Fig. 1 (a) cross-networks periodic heart-beating (b) local-networks heart-beating and

cross-networks events.

73

2 Communication support for service
discovery: challenges and design

In [4], a reference model to the pervasive computing middleware is

introduced. It groups the functionalities of a pervasive middleware into three

main areas: common services support, cross-layer support, and runtime

support. Among the runtime support functionalities is the communication

support. As we mentioned above, device discovery in PalCom provides a

communication substrate for service discovery and data messaging. In turn,

according to the model in [4], device discovery for PalCom can be classified

as a communication support utility.

In order to understand the design considerations of such a utility, we

survey the communication support for service discovery in pervasive

computing [5]. Thus, we identify that dynamism and heterogeneity of

pervasive environments, where devices with different communication

interfaces continuously join and leave the network, are main challenges to

communication. In turn, we refer to communication support for service

discovery in ad-hoc and mobile networks [7] [8] to identify design options for

handling dynamism in pervasive environments. Moreover, we discuss desired

characteristics [5] that a communication support utility shall provide in order to

handle heterogeneity in a pervasive environment.

2.1 Communication support vs. dynamism and
heterogeneity

In pervasive computing environments [5], service discovery spans

networks of different types. It may even integrate users by enabling them to

assemble services into application scenarios. In turn, for service discovery,

pervasive environments are more heterogeneous and dynamic than

conventional distributed or mobile computing environments. The

heterogeneity and dynamism are reflected in the design options for

components of service discovery protocols [5]. Among the several

components of a service discovery protocol is the initial communication

method [5].

For the initial communication method, service discovery protocols mainly

employ unicast, multicast, or broadcast messaging [5]. Unicast is efficient, but

it requires configuration of network addresses prior to service discovery,

which may not suite dynamism. In contrast, broadcast has the advantage of

not requiring pre-configured addresses, but it is preferred to be limited to local

networks. Alternatively, multicast can be an initial mechanism via which

74

unicast addresses are automatically configured, but it may still require a

minimum of pre-configurations. Also, these approaches are bound to the

network layer or the media-access layer, not suiting heterogeneity.

2.2 Designing device discovery for dynamism and
heterogeneity

Mobility support is essential for service discovery in mobile and ad-hoc

networks [7] [8]. Mobility is supported by periodic updates of service

information. It is suggested to limit the diameter of advertising services [8]. To

support dynamism in pervasive environments, it is suggested to utilize

devices routing information to support service discovery [8]. From such

suggestions, we specify two mobility support approaches as design principles

for our proposed device discovery mechanism in PalCom, namely:

 Maintaining an overlay structure that improves service discovery.

 Utilizing the resulting routing information among devices for services

interaction during application scenarios.

Compared to the approaches above in section 2.1, our device discovery

mechanism provides an overlay routing substrate decoupling service

discovery, and data messaging, from networks details. As we will explain in

section 3, our mechanism builds this substrate using heartbeat broadcast

messages that are limited to local networks and using discovery event

advertisements for cross network discovery. In turn, we limit the effect of

choosing an initial communication method to the building process of the

routing substrate.

From the perspective of heterogeneity in pervasive environments, a

communication support utility can be characterized with respect to the two

dimensions of communication transport and discovery scope [6]. Some

service discovery systems limit their communication support to reachable

devices via the network-layer or the media-access-layer protocols. In

contrast, by using an overlay substrate, our device discovery mechanism

inter-links discovery scopes across different networking technologies. This is

supported by our ongoing work to provide a framework to abstract different

networking media. We detail our solution in section 3.

75

3 The proposed device discovery
mechanism

On a given node, the device discovery mechanism maintains a routing

table with the status and routing information of devices in the networks local

to the device and in other networks that are reachable via router nodes,

which are mentioned in section 1. We start by describing the structure and

the constraints of the routing table. Then, we describe the device discovery

state machine for local network discovery. Afterwards, we detail the discovery

forwarding mechanism that is used by router nodes to forward device

discovery events among the different networks. Then, we describe the device

discovery state machine for cross networks discovery, which handles

forwarded device discovery events. And before mentioning our evaluation

results, we describe a state machine that aligns the discovery state of

devices on non-local networks, i.e. remotely discovered, to the discovery

state of their introducer router nodes on local networks.

3.1 Structure of the routing table
For a discovered device, the routing table contains information that

includes: the globally unique ID of the device, a current-hop generated short-

ID for the device, a reboot-number, and a change-number. As long as a

discovered device is known, its short-ID may replace its longer device-ID in

messages. For the device change-number, it indicates updates of device

services and it is mainly interpreted and used by upper PalCom layers.

We define a route to a device as the following pair: (A network interface on

the current hop node, the networking address of the next hop node).

In the routing table, route specific information includes; the route state, the

last time the current-hop node received an indication of the route availability,

and possibly a number that we refer to as remote-short-ID. Other than the

implicit initial state of unknown, a route state can be visible, rebooted, out-of-

reach, and gone. We explain more about the route states in section 3.2.

The existence of a remote-short-ID in the route information distinguishes

two route types:

 A local-route: its destination node and the current hop node have

interfaces on a particular local network.

 A remote-route: its destination node does not have a network interface on

any of the local networks on which the current hop node has interfaces on.

In this case, a remote-short-ID is the short-ID that was generated by the

next-hop router node for the destination node.

76

The discovery logic of a local-route is explained in section 3.2. While the

discovery of a remote-route is initiated by the discovery forwarding

mechanism, explained in section 3.3. The remote-routes discovery logic is

explained in section 3.4.

We impose the following constraints on the device information in the

routing table:

 A device can have only one address on a local network.

 Two device are not allowed to have the same address on the same local

network.

 The device parameters are independent of which route the information is

received from.

Table 1 shows an example of the routing table structure.

Device-

ID

Short

-ID

Reboot-

Nr

Change

-Nr

Network

interface

Address Route

state

Refresh

time

Remote-

short-ID

Device1 1 54321 54 IPv4-

MAO-1

<IP-nr,

port)

Visible <Time2> N/A

BT-

MAO-1

<BT-

addr>

Out-of-

reach

<Time1> 3

Device2 2 12345 6 X-MAO3 <Adr5> Visible <Time3> 2

3.2 Device discovery in local networks
Implicitly, a device is initially unknown to a node until at least a route is

discovered to that device, via the proper sequence of discovery messages. In

the context of a local network, such messages are handled are shown in Fig.

2. A node periodically broadcasts an h-message within the local networks

that it has interfaces on. A node that receives an h-message from a device

via a route in the visible state can reply with an H-message. In this way,

nodes on a local network can track the availability of each other.

Otherwise, a node that receives an h-message from a device via a route in

the implicit unknown state initiates a discovery sequence using device

information request and reply messages, i-messages and I-messages

respectively, which contain the globally unique device IDs of the interacting

devices. On the success of the discovery sequence, according to the logic in

Fig. 2, the conveying route of the h-message becomes a visible route to its

sender. As shown in Fig. 2, a state transition may report the appearance,

Table 1. The structure of the routine table with example data.

77

disappearance, or updates of a device via a route, which is processed by the

discovery forwarding mechanism that we explain in section 3.3. State

transitions happen either on configurable time-outs or on received messages.

A received X-message indicates the shut-down of its source device, which

results in setting the state of all the routes to that device as gone. In such a

case, if no more discovery messages regarding that device are received from

any interface during a configurable time-out, the device information is

removed from the routing table. Another message type that is not shown in

Fig. 2 is the interface-down message, i.e. the Y-message. A received Y-

message indicates that its source node disabled the interface that the

message was sent from. As a result, the state of the route to the sender

device via that interface is set to gone. When all routes to a device are set to

gone and subsequently become unknown, the device information is removed

from the routing table after a time-out without receiving discovery messages

regarding that device.

3.3 Discovery forwarding on a router node
A router node may have interfaces to multiple networks. It advertises

device discovery events on one network to nodes on other networks. A

discovery advertisement message has two parts. The first part is a routing-

source node, S-node, which contains the short-ID that was given to the

advertised device by the advertiser router node. The second part can be an

H-message, an I-message, a Y-message, or an X-message, according to the

Fig. 2 Device discovery in local networks.

78

discovery forwarding logic, which is executed by router nodes to handle

device appearance and disappearance reports, mentioned in section 3.2.

A router node forwards a discovery event advertisement via a discovery

forwarding flow, DFF, which originates at the network interface of the route

where the event originated, the introducer, and branches to a set of other

network interfaces, the advertisers. Thus a DFF is the pair (introducer,

advertisers). On a router node, from the time of the discovery of the first route

to a device until the time when all routes to it disappear, the discovery

forwarding mechanism maintains only two DFFs for that device:

 DFF1 = (the interface of the oldest discovered route to the device, the rest

of interfaces on the router node).

Device discovery event on a

route

Handling logic

Appeared Maintain the device DFFs. If the interface of the discovered route

becomes the introducer of DFF1 or DFF2, broadcast an S-I message

via the advertisers of that DFF.

Changed If the interface of the source route of the message that triggered the

event is the introducer of DFF1 or DFF2, broadcast an S-H with the

updates via the advertisers of that DFF.

DisappearedShutDown All local and remote routes to the device are set to “Gone”. If the

interface of the source route of the message that triggered the event is

the introducer of DFF1 or DFF2, broadcast an S-X via the advertisers

of that DFF. Then, maintain the device DFFs. A local-route becomes

“Visible” again on periodic update messages, processed as in Fig. 2.

A remote-route becomes “Visible” again on non-periodic update

messages, processed as in Fig. 3.

DisappearedTimeOut. If the message that triggered the event conveyed a new reboot-Nr and

its source rout is a local-route to the device, as in Fig. 2, all local

routes to the device are set to “Rebooted” and all remote routes to it

are set to “Out-of-reach”. A local-route becomes “Visible” again on

periodic update messages, processed as in Fig. 2. A remote-route

becomes “Visible” again on non-periodic update messages, processed

as in Fig. 3. On the time-out of the last local-route to the device in the

“Rebooted” state, all the remote-routes to it are set to “Gone”.

In all cases, if the interface of the source route of the message that

triggered the event is the introducer of DFF1 or DFF2, broadcast an

S-Y via the advertisers of that DFF. Then, maintain the device DFFs.

Rebooted If the interface of the discovered route becomes the introducer of

DFF1 or DFF2, broadcast an S-I message via the advertisers of that

DFF.

Table 2. Handling discovery events.

79

 DFF2 = (the interface of the 2nd oldest discovered route to the device, the

introducer of DFF1).

Table 2 shows how the forwarding mechanism handles device discovery

events that are triggered by the state machines in Fig. 2 and Fig. 3, explained

in section 3.2 and section 3.4 respectively.

3.4 Handling routing loops
The communication substrate formed by discovery forwarding is formed of

the set of DFF1 instances on all router nodes. A loop in that substrate may

form when a router node forwards the same discovery event twice. To

minimize such loops, the structure of DFFs prevents forwarding an event via

its source interface, which is similar to the split-horizon mechanism of the

routing information protocol, RIP [9]. Also, invalid routes are explicitly

reported using S-Y and S-X messages, which is similar to route poisoning of

RIP. In turn, a loop for a service discovery or data message is limited to be

transient in a link between two router nodes while they exchange device

discovery updates. Since a routing decision is made on hop-by-hop basis, a

routing loop appears only when a node, B, decides to return a data message

back to its direct neighbor source, A. The loop-initiator node, B, must have

just lost the route that still seems valid to the source neighbor node, A.

Eventually node A receives a message from node B to invalidate that route,

terminating the transient loop.

3.5 Cross-networks device discovery
A node processes a received discovery advertisement message according

to the logic in Fig. 3. The triggering of S-I, S-Y, and S-X messages is

described in section 3.3. An S-H message is triggered by the discovery

forwarding mechanism only on the event of updating the parameters of a

remotely discovered device. Discovered routes by the logic in Fig. 3 are

remote routes according to the definition in section 3.1. The state of a

remote-route is affected by the state of the route, to the advertiser router

device, that has the same network interface and networking address. Next,

we explain the procedure that aligns the state of a remote route to it container

remote route.

80

3.6 Aligning a remote-route to its introducer-local-
route

On a node, a remote-route and its introducer-local-route have the same

pair of (network interface on the current hop node, networking address of the

next hop node). In other words, a remote-route was discovered based on

forwarded discovery events that were received via its introducer-local-route.

The availability of a remote-route is affected by the availability of its

introducer-local-route. The availability of a route is described by two views:

 An internal view that is defined by the route state and maintained by state

machines in Fig. 2 and Fig. 3.

 An external view that is defined by the route appearance and

disappearance reports, and any subsequent forwarded discovery events,

as described in section 3.3.

We align the availability of a remote-route to the availability of its

introducer-local-route as shown in Fig. 4, following two rules:

 We align only the external availability view of a remote-route to the

external availability view of its introducer-local-route. In particular, we align

their appearance and disappearance reports, and any subsequent

forwarded discovery events, and we never align their discovery states.

 We never discard a non-periodic discovery advertisement message about

the status of a remote-route.

Fig. 3 Cross-networks device discovery. Notice the absence of the
plain h/H messages compared to Fig. 2.

81

3.7 Implementation and evaluation
We evaluated an implementation of our proposed device discovery

mechanism against an implementation of the simplistic approach, i.e. flooding

heart-beat messages across networks. An analysis of the simplistic approach

gives that the number of heart-beat messages seen by a devicei, Ni is:

 1

Where ni,j is the number of devices on the networkj disregarding devicei

and devices routing to it, summed over the entire set of interconnected

PalCom networks, K. Notice that this expression do not cover situations with

routing loops where the number of heart-beats seen can be even higher than

the number of individual devices. In the proposed solution we calculate Ni as:

 2

Where L is the set of networks that are local to devicei. By applying

equation (1) to the simple scenario in Fig. 1 we get N2=2, while by applying

equation (2) to the same scenario we get N2=1. In order to validate the

analysis we made a matching setup. For each of the two cases, we recorded

the heart-beat traffic on one of the networking interfaces, an IPv4 interface, of

the router node. In this test setup, our optimized approach, Fig. 1 (b), was

,i i j

j L

N n

,i i j

j K

N n

Fig. 4 Aligning remote-route to its introducer-local-route.

82

measured to cut the heart-beat traffic in half when compared to the traffic in

the simplistic approach, Fig. 1 (a), as expected.

4 Conclusions and future work

We proposed a device discovery mechanism for PalCom that uses

discovery events notifications instead of flooding interconnected networks

with periodic keep-alive messages. Also, our mechanism can detect device

disappearance, i.e. undiscovery, in predictable configurable state time-outs.

In the evaluation test setup, Fig. 1, our optimized approach reduces heart-

beating traffic into half, as expected. Generally speaking, in the simplistic

approach, a device processes heart-beating traffic from every single device in

the set of interconnected networks. While in our approach, a device

processes heart-beat traffic only from devices on its local network(s), while it

processes discovery events notifications about devices on non-local networks

from router nodes that belong to its local networks.

Currently our mechanism triggers events about all its visible devices to a

just discovered node. We plan to optimize this mechanism by introducing a

discovery information synchronization mechanism. Also, we plan other

optimizations like selective polling of device using configurable heart-beats.

Finally, we will evaluate our system against real-life use cases.

References

[1] Guttman E, Autoconfiguration for IP networking: enabling local communication, Internet Computing,

IEEE, 2001, Vol. 5, No. 3, Pages 81-86.

[2] Postel J, User Datagram Protocol, STD 6, RFC 768, August 1980, available at http://www.rfc-

editor.org/rfc/rfc768.txt.

[3] Svensson Fors D, Magnusson B, Gestegård Robertz S, Hedin G, Nilsson-Nyman E, Ad-hoc

Composition of Pervasive Services in the PalCom Architecture, In: Proceedings of the 2009 international

conference on Pervasive services, Pages 83-92. New York, NY, USA. ACM, 2009.

[4] Raychoudhury V, Cao J, Kumar M, Zhang D, Middleware for pervasive computing: A survey,

Pervasive and Mobile Computing, 2013, Vol. 9, No. 2, Pages 177-200.

[5] Zhu F, Mutka MW, Ni LM, Service Discovery in Pervasive Computing Environments, IEEE Pervasive

Computing, 2005, Vol. 4, No. 4, Pages 81-90.

[6] Edwards WK, Discovery Systems in Ubiquitous Computing, IEEE Pervasive Computing, 2006, Vol. 5,

No. 2, Pages 70-77.

[7] Mian AN, Baldoni R, Beraldi R, A Survey of Service Discovery Protocols in Multihop Mobile Ad Hoc

Networks. IEEE Pervasive Computing, 2009, Vol. 8, No. 1, Pages 66-74.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Guttman,%20E..QT.&searchWithin=p_Author_Ids:37444832500&newsearch=true
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt

83

[8] Anwar FM, Seung-Wha Yoo, Ki-Hyung Kim, Survey on Service discovery for Wireless Sensor

Networks. In: Ubiquitous and Future Networks (ICUFN), 2010 Second International Conference on,

IEEE, Pages 17-21. Jeju Island, Korea (South). IEEE, 2010.

[9] Hedrick C, Routing Information Protocol, RFC 1058, June 1988, available at http://www.rfc-

editor.org/rfc/rfc1058.txt.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5535006
http://www.rfc-editor.org/rfc/rfc1058.txt
http://www.rfc-editor.org/rfc/rfc1058.txt

84

85

Paper III: Supporting Distance Vector
Routing over Device Discovery Flows in the
Pervasive Middleware PalCom
Amr Ergawy and Boris Magnusson,

Published in Proceedings of the 6th International Conference on Ambient

Systems, Networks and Technologies, ANT-2015, London, UK. Procedia

Computer Science, volume 52, 2015, p. 153-160.

Abstract: PalCom is a middleware system that provides different utilities to
interacting devices pervasive environments. One of these utilities is device
discovery that enables such devices to discover the existence of each and to
establish an ad-hoc network among themselves. However, the device
discovery mechanism does not provide a routing protocol for exchanging
messages via the discovered ad-hoc network.

In this paper, we detail our solution to add support of distance vector routing
to the PalCom stack. We build on top of our previous work of device
discovery in PalCom, which uses periodic heart-beat messages for device
discovery within a network and discovery event message for cross-networks
device discovery. In turn, we avoid the need for route-queries, compared to
on-demand ad-hoc routing protocols, and we avoid exchanging routing-table
updates, compared to table-driven ad-hoc routing protocols. The proposed
solution was implemented and integrated to the PalCom stack. Moreover, the
solution is evaluated against a network with connections of continuously
variable availability.

Keywords: distance vector routing; pervasive middleware; ad-hoc
networking.

1 Introduction

PalCom is pervasive middleware that enables users to integrate the services
different devices into assemblies of uses cases [1]. It provides a service
discovery protocol that enables those devices to exchange their services
descriptions. Using a device that can display such descriptions in a user
friendly interface, a user can write, or compose, simple services assembly
scripts that enable exchanging data and commands among those devices.
We refer approach as a human or user in the loop system [1], where users
are given more control on system configuration and control.

86

In [2], we defined the lowest level layer of the PalCom stack that enables
third-party developers to write Media Abstraction Objects, MAOs, which
abstract different types of network interfaces to upper PalCom layers.
Moreover, in [3], we detailed a device discovery mechanism for PalCom that
enables devices to discovery each other and to build an ad-hoc network
among them. However, the supposed routing protocol among to a destination
device in that network was to forward a message via the first discovered
route, which is not a practical nor a realistic assumption. In turn, we need to
add support of a more practical routing approach to PalCom, i.e. distance
vector routing.

In this paper, we explain the design challenges, principles, options, decisions,
and details of supporting distance vector routing in PalCom. We build our
design on top of the device discovery mechanism that we proposed in [3].
That mechanism already provides an ad-hoc network among discovered
devices, which saves a lot of signaling and control overhead for supporting
distance vector routing compared to table-driven and on-demand ad-hoc
routing protocols [4].

In section 2, we summarize our previous work on the PalCom stack to
provide network media abstraction and device discovery. Also, we survey
relevant routing protocols in ad-hoc networks to compare their required
signaling and control overhead with the already provided device discovery
information in the PalCom stack, which simplifies supporting distance vector
routing in PalCom. Then, in section 3, we detail our design before we
summarize its implementation and evaluation results in section 4. Finally we
explain our conclusions and future work in section 5.

2 Previous Work

We build the support of distance vector routing in PalCom on top of our
previous work of networking media abstraction and device discovery in
PalCom [2][3]. Also, we compare the provided utilities by the device discovery
mechanism to the required signaling and control overhead that is required by
routing protocols in ad-hoc network, showing how the device discovery
mechanism in PalCom simplifies the support of distance vector routing.

2.1 Device Discovery over Media Abstraction in
PalCom

To make our design decisions for supporting distance vector routing in
PalCom, we review the current state of the PalCom stack. At its lowest, we

87

define the media abstraction layer [2]. It enables the development and use of
media abstraction objects, MAOs, that abstract different network protocols to
PalCom upper layers. As a result, PalCom nodes can communicate over
heterogeneous networks, which is a desired feature in pervasive systems.

On top of the media abstraction layer, we define the device discovery layer
[3], which enables devices to discover each other and construct an overlay
network that can be used by PalCom upper layer for service discovery and
data messaging. As a result of the discovery process, each PalCom node
maintains a routing table about the discovered devices. On a PalCom node,
the next hop to a device is defined by an introducer network interface via
which the device was discovered. In [3], trivial routing decisions are made to
forward a message via the first discovered introducer interface to the
destination device.

To support distance vector routing in PalCom, we need to extend the device
discovery layer. In turn we review its components, which include the
discovery state machine, the discovery forwarding manager, and the
discovery forwarding flows [3]. The discovery state machine implements logic
that enables a node to discover devices on its local networks as well as to
process forwarded discovery events from devices on local networks about
devices on other networks, i.e. cross-networks device discovery.

Within a local network, the discovery state machine, on a PalCom node, uses
periodically broadcasted heart-beat messages from another node on the
network to discover a local-route, defined by the pair of (network-interface,
network-address), to that node and to keep track of its availability via that
route [3]. On the event of appearance or disappearance of a device via a
local route, that discovery state machine passes that event to the discovery
forwarding manager, which notifies the discovery forwarding flows of the
concerned device about that local-route discovery event.

From the perspective of a known device, the discovery forwarding flows
arranges the network interfaces on a local PalCom node as introducers and
advertisers of that device [3]. A discovery forwarding flow, DFF, is defined as
a pair of the format (an introducer interface, advertiser interfaces). Device
discovery events via the introducer interface are advertised over the
advertiser interfaces of its discovery flow. At any point in time, a maximum of
two discovery forwarding flows are maintained for a known device: DFF1 that
is defined as (the interface of the first discovered route to the device, the rest
of network interfaces on the local node), and DFF2 that is defined as (the
interface of the second discovered route to the device, the interface of the
first discovered route to the device).

PalCom discovery messages are composed of nodes [3]. A forwarded
discovery starts with an S-node. Then it may include either a device status

88

node, an H-node, or a more extended device information node, an I-node.
We indicate a PalCom message as a dash separated sequence of nodes.
When a PalCom node receives forwarded S-H and S-I messages about a
device that is not on its local networks, the discovery state machine on that
node uses its cross-networks discovery logic to process these messages to
discover and maintain a remote-route to that device. The local-route via
which such S-H and S-I messages are received is called the introducer-local-
route of that discovered remote-route.

The discovery state of a remote-route is overshadowed by the discovery state
of its introducer-local-route [3]. The discovery forwarding manager
implements the necessary logic that aligns the state of a remote-route to its
introducer-local-route. That logic contributes to the decisions of forwarding
discovery events to neighbor nodes, which are advertised by the discovery
forwarding flows.

Next, we discuss the implications of the above mentioned details on
supporting distance vector routing in PalCom.

2.2 Challenges and Design Options for Routing in
Ad-hoc Networks vs. PalCom Stack
Implications

In [3], we identified that devices in pervasive systems communicate over
heterogeneous networks while they keep joining and leaving the pervasive
environment, as users come and go. In turn, we referred to the
communication support in mobile and ah-hoc networks to identify design
challenges and options for different aspects of communication support for
PalCom, as a pervasive middleware. Similarly, in the context of supporting
distance vector routing in PalCom, we refer to the relevant protocols in mobile
and ad-hoc networks [4].

From another perspective, we build our design on top of our previous work of
device discovery [3] and networking media abstraction [2] in PalCom, which
we summarized above in section 2. Those two layers impose their own
assumptions on the resulting distance vector routing layer. This constraints
our options for addressing identified design challenges.

One of the first challenges to distance vector routing protocols in ad-hoc
networks is route discovery [4]. Handling this challenge resulted in
categorizing these protocols into table-driven protocols and on-demand
protocols. In table-driven protocols a node maintains a routing table with
routes to every other node in the network [4]. This requires exchanging
routing table updates among different nodes, which is criticized as an
overhead for both communication and processing [5]. Examples of table-

89

driven protocols include Destination Sequenced Distance Vector Routing [6],
DSDV, and its fault-tolerant improved version [7], I-DSDV.

In on-demand routing protocols, a sender node attempts to discover a route
to a destination node only when there is a message to send [4]. Basically, a
sender node broadcasts a route-request message that may be replied with
the first intermediate node that has a route to the destination or may be
replied by the destination itself. Different on-demand protocols use route-
request and route-reply messages in different ways to set-up a route between
a source node and a destination node. On-demand protocols are criticized for
their route-setup latency [8]. Examples of on-demand routing protocols
include Ad-hoc On-demand Distance Vector Routing [9], AODV, and its
multipath version of Ad-hoc On-demand Multipath Distance Vector Routing
[10], AOMDV.

In contrary to table-driven routing protocols in ad-hoc networks, distance
vector routing over PalCom device discovery [3] does not need to exchange
routing table updates. Also, in contrary to on-demand routing protocols,
distance vector routing over PalCom device discovery does not need to
implement a route discovery stage. The PalCom device discovery
mechanism ensures that a device continually gets event-based updates
about the availability of other devices via different network interfaces. In turn,
each node maintains its routing table internally, without the need for
exchanging routing table updates or running a route discovery mechanism.

Another challenge to distance vector routing protocols in ad-hoc networks is
the need to flood a network with control messages [11] [12]. E.g. on-demand
routing protocols may flood a network with route-request messages. To
address this challenge, these protocols may employ a multi-point relaying
approach that selects only a specific sub-group of a node neighbors to
forward a broadcast message [11]. Alternatively, these protocols may employ
a neighbor assisted approach that utilizes information about the destination
recent neighbors to forward route-request messages [12].

Compared to these approaches, PalCom device discovery already limits
broadcasting control messages within the boundaries of local networks while
it forwards device discovery events across those boundaries [3]. In turn, a
distance vector routing protocol over PalCom device discovery does not need
to implement a separate mechanism to limit control messages flooding.

A third challenge that distance vector routing protocols in ad-hoc networks
need to address is the detection of, and overcoming, broken links [4]. Usually,
these protocols utilize information from the underlying Media Access Layer,
MAC, protocols to detect broken links and reduce duplicate control messages
that may be broadcasted to overcome them [7] [8] [9]. Oppositely, a distance
routing protocol in PalCom cannot make use of MAC layer information as

90

networking protocols are abstracted by the media abstraction layer [2], as we
explained above in section 2.

Alternatively, device discovery in PalCom [3] provides a device undiscovery
mechanism that enables detecting the disappearance of a device via a
specific network interface, possibly indicating a broken link. Additionally, the
PalCom media abstraction layer [2] provides the ability to reach a device via
different networking interfaces. Combining this with device discovery, a
routing protocol in PalCom can overcome a broken link.

3 The Proposed Support For Distance
Vector Routing in PalCom

In principle, in order to support distance vector routing, a source node or a
router node forwards a data message to a destination device via a network
interface that represents the lowest cost route to that device [13]. In our
proposal for distance vector routing in PalCom, we use the number of hops
between two nodes as the route cost between them. Devices need to
exchange route cost updates among each other while they build and maintain
their routing tables as part of the device discovery process in PalCom [3],
which we summarized above in section 2. In turn, wherever necessary in the
PalCom discovery process, we need to convey route cost updates in the
exchanged discovery messages.

We assume the route cost between two devices in a local network to be a
single hop. In turn, the exchanged messages in a PalCom device discovery
sequence within a local network do not need to convey any route cost
updates. However, the exchanged messages in a cross-networks PalCom
device discovery sequence must convey the accumulated route cost to the
discovered device. That accumulated route cost is calculated while a device
discovery event is being forwarded, as a discovery message, from a node to
another across interconnected networks.

In particular, the main goal of our design is to extend one of the PalCom
stack components [3] that are involved in the device discovery process to:

 Maintain route cost based natural ordering of the routes set to a known
device, reflecting route cost updates that are conveyed in discovery
messages that are received via introducer routes to that known device.

 Report route cost updates to neighbor nodes based on that natural
ordering of the introducer routes.

91

As summarized above in section 2, the PalCom stack components that are
responsible for device discovery are the discovery state machine, the
discovery forwarding manager, and the discovery forwarding flows. We need
to choose the one of these components with the logic that extensible to
maintain a route cost based natural ordering among the elements in the
routes set of a known device.

Ideally, the logic of the chosen component needs to be already designed to
maintain some relation among the routes to a known device. We refer to such
logic as routes-set oriented. We distinguished that logic from device-state
oriented logic that makes decisions only based on device appearance,
disappearance, and status updates. Extending a component with only device-
state oriented logic to support distance vector routing will increase its
complexity and decrease its modularity.

In this section, we start the discussion by analyzing the discovery state
machine, the discovery forwarding manager, and the discovery forwarding
flows [3], summarized above in section 2, to identify which of them has the
most routes-set oriented logic and the least device-state oriented logic. Then,
we emphasize our design principles that focus on preserving the discovery
state consistency among the PalCom stack components, the separation of
concerns among them, and minimizing the routes changes that result from
triggered discovery events and route cost updates. Finally, we detail our
design.

3.1 Design Options
As mentioned above in this section, our criterion is to choose the component
that already implements routes-set oriented logic more than device-state
oriented logic to be extended for the support of distance vector routing.

1) Analyzing the discovery state machine: We start by considering the
discovery state machine, as the first component of the PalCom stack
that is responsible for device discovery [3]. As mentioned in section 2,
it implements both the local discovery logic as well as the cross
networks discovery logic. By analyzing that logic, we find that the
discovery state machine makes its decisions, about updating the
routing table and/or triggering a device discovery event, based on the
combination of:

a) The parameters of the concerned device that are conveyed in an
input device discovery message.

b) The current state of the source route, to the concerned device,
via which the input message was received.

c) The current values of the parameters of the concerned device.

d) The collective state of the concerned device via its routes set.

92

It is clear that the discovery state machine does not maintain any relation
among the elements in the routes set of a known device and it makes it
decision only based on the device state. In turn, the discovery state
machine is more device-state oriented than routes-set oriented. In turn,
we exclude it as a candidate for the update to support distance vector
routing.

2) Analyzing the discovery forwarding manager: Alternatively,
considering the discovery forwarding manager [3], summarized in
section 2, it implements the logic that triggers forwarding discovery
events to neighbor nodes and aligns remote routes to their introducer
local routes. By analyzing that logic, we find that the discovery
forwarding manager makes its decisions, about triggering discovery
event reports to neighbor nodes, based on the combination of:

a) A device discovery event that was triggered by the discovery
state machine. If that event originated from a local route, then the
concerned device is on the local network and it may function as a
router to discovered devices on remote networks. Otherwise, if
that event originated from a remote route, then the concerned
device is a discovered device on a remote network.

b) The latest forwarded discovery event to neighbor nodes about
the concerned device.

c) In the case of a local concerned device, the decision considers
the current state of the remote routes that are discovered via the
local route via which the discovery event was received.

d) In the case of a remote discovered concerned device, the
decision considers the state of the local route that introduced the
remote-route via which the discovery event was received.

The logic of the discovery forwarding manager considers the state of the
event concerned device as well as the relation among the states of
associated local and remote routes. Those routes are routes to different
devices. In turn, the logic of the discovery forwarding manager is not
oriented to the routes-set of a given device and we exclude it as a
candidate for supporting distance vector routing.

3) Analyzing the discovery forwarding flows: Finally, considering the
discovery forwarding flows [3], summarized in section 2, it implements
the logic that arranges the network interfaces on the local node into
flows via which triggered discovery events are forwarded to neighbor
nodes. It makes its decision, about forwarding a triggered discovery
event to neighbor nodes, based on the combination of:

a) The temporal order of the discovery of the introducer routes to
the concerned device. In particular, the interface of the first
discovered route to that device becomes the introducer of the

93

first forwarding flow, which advertises discovery events via all the
network interfaces on the local machine except the interface of
that first discovered route. Then, the interface of the second
discovered route, to the concerned device, functions as the
introducer of the second forwarding flow, which advertises
discovery events only via the interface of the first discovered
route.

b) The current set of network interfaces on the local node.

To sum up, the logic of the discovery forwarding flows maintains a relation
among the interfaces of the local node that are associated with routes to a
known device. Such logic can be modified to be routes-set oriented. In
turn, we decide to extend the discovery forwarding flows with the
necessary logic to support distance vector routing in PalCom. Next we
emphasize the design principles that we build for that extension.

3.2 Design Principles and Properties
In this section, we list and discuss the three design principles that we follow
to specify the details of extending the discovery forwarding flows to process
and advertise route cost updates about a known device.

1) Discovery state consistency: As summarized in section 2, the
discovery forwarding flows advertise messages that reflect the
discovery state of a known device as seen by the advertiser PalCom
node, regardless of whether the node functions as router. That
reflection ensures the state consistency between the discovery state
machine and the discovery forwarding flows on that node. Our design
must preserve such consistency.

In particular, after extension to process and advertise route cost updates,
the discovery forwarding flows must maintain two properties:

a) To only function as a processor of discovery state events that are
triggered from the state machine and refined by the discovery
forwarding manager.

b) To never influence or create discovery state events.

2) Separation of concerns: As we explained in section 2, the discovery
forwarding flows separate the discovery advertisement logic from the
device discovery logic, which is implemented by the discovery state
machine and the discovery forwarding manager. Thus, it provides a
clear separation of concerns between advertising discovery events
and triggering them.

Such separation of concerns minimizes the complexity of the discovery
forwarding flows data structure. In turn, extending the discovery
forwarding flows to process and report route cost updates shall produce a

94

PalCom stack with reasonable modularity and acceptable complexity. The
extension of the discovery forwarding flows, to process and advertise
route cost updates, must preserve the separation of concerns by
maintaining two properties:

a) To only maintain the relations among interfaces on the local node
and routes to discovered devices, which are necessary to
advertise discovery events and route cost updates.

b) To never implement or influence device discovery logic, which is
implemented by the discovery state machine and the discovery
forwarding manager.

c) Minimizing route dynamics: In addition to considering the internal
details of the local PalCom node, we need to consider how the
changes to the roles of its network interfaces, as discovery flows
introducers and advertisers of known devices, affect the stability
of routing decisions that are made by the neighbor nodes of that
local node.

As we summarized in section 2 and discussed in section 3.1, at any
time a PalCom node maintains only two discovery forwarding flows
for advertising discovery events about a known device [3]. Assuming
a static set of network interfaces on the local PalCom node, for a
single discovery event about a known device, the mechanism of
maintaining these two discovery forwarding flows ensures a
maximum of two interfaces to change their roles with respect to that
known device, as introducers and advertiser.

The case of the maximum changes in interfaces roles happens only
when a discovery event indicates the disappearance of a known
device via one of its two introducer interfaces, those of its first and
second discovered routes, and the interface of the third discovered
route to the known device currently functions as an advertiser. Those
two interfaces swap their roles. We shall consider this maximum
number of changes in the interfaces roles as a best case that our
design shall not go much beyond it.

Additionally, in our design, we must consider the implications of
supporting a dynamic set of network interfaces on a PalCom node,
i.e. interfaces that can be enabled and disabled by the user.
Basically, a newly enabled interface can be considered as an
advertiser for every known device. On the other hand, for a known
device that is discovered via more than one interface, disabling an
introducer interface may at most result in one advertiser interface
changing its role to be an introducer. That is the interface of the third
discovered route to that device.

95

To be more specific, our modifications of the discovery forwarding
flows to process route cost updates shall minimize the changes in
routes by maintaining two properties:

a) To keep the maximum number of changes in interfaces roles, as
introducers and advertisers, per discovery event as close as
possible to the above mentioned maximum of two.

b) To keep minimal changes to interfaces roles per interface enable
or disable event.

To sum up, we modify the discovery forwarding flows to process and
advertise discovery events and route cost updates while preserving the
discovery state consistency among the PalCom stack components,
maintaining the separation of concerns among the logic of these components,
and minimizing the routes dynamics that result from changes in interfaces
roles. Next, we details our design.

3.3 Design Details
In this section, we start to detail our design by defining the necessary
modification to the format of the discovery message types that will convey
route cost values. Then, we specify which PalCom stack components are
responsible for updating route entries, in the routing table, with the received
route cost updates. Afterwards, we define the interface between the
discovery forwarding flows and the other stack components. Finally, we detail
the mechanism of the discovery forwarding flows that maintains the route
cost based natural ordering of the routes set to a known device, and the
advertisement of route cost updates and discovery events over these
forwarding flows.

1) Discovery messages formats and routing table updates: As we
summarized in section 2, PalCom discovery messages are composed
of nodes. Moreover, we define a message type as a dash separated
sequence of nodes, where a node is symbolized as a capital letter. To
convey route cost values, we define a new node, symbolized as C. If
the local PalCom node receives a discovery message that triggers a
device discovery event, then a C-node is inserted between the two
nodes of S-H message or the S-I message that is broadcasted to
advertise that event [3], which we explained their triggering in section
2. If the received discovery message triggers no device discovery
event, then only an S-C message is broadcasted to advertise the
route cost update.

Moreover, according to the separation of concerns design principle of, the
discovery forwarding flows cannot modify the routing table to update
routes entries with route cost updates. Instead, we consider the route cost
to be a route entry parameter that is updated by the discovery state

96

machine and the discovery forwarding manager, similarly to other route
parameters.

2) Defining the interface of the discovery forwarding flows: Before
detailing the internal mechanism of the modified discovery forwarding
flows, we define its interfacing to the discovery state machine and the
discovery forwarding manager. In particular, we specify which of these
components shall be interfaced, the necessary procedures for such
interface, and the parameters that we need to pass.

As explained in section 2, and conforming to the design principle of
discovery state consistency, a discovery event disseminates from the
discovery state machine, to the discovery forwarding manager, and finally
to the discovery forwarding flows.

Also, we specified above that only the discovery state machine and the
discovery forwarding manager may update a route cost update to a route
entry, in the routing table. From all of the above, we can preserves the
current design properties where:

a) The discovery forwarding flows needs only to be interfaced to the
discovery forwarding manager.

b) Among the parameters of that interfacing, we may only pass
route entries with already updated route cost values.

Moreover, as we explained before, the modified forwarding flows
aims to maintain a route cost based natural ordering of the routes to
a known device and arrange the interfaces on the local PalCom node
as introducers and advertisers of that device. That behavior specifies
the interface procedures of the discovery forwarding flows to be only
route and interface oriented. These procedures need to handle the
events of adding, deleting, and updating the routes to the concerned
known device and the interfaces on the local node.

We define these procedures in table I, below. At the end of these
procedures, they call a procedure to update the discovery forwarding
flows and advertise discovery events. That procedure is called
update_advertisements, and it take two parameters, that we describe
as follows:

a) The first parameter is the type of the message node that
indicates a device appearance or update that will be advertised
via interfaces that become advertisers after updating the
discovery forwarding flows. If a caller procedure, from those in
table I, does not specify a value for this parameter, we assume a
default of an information-reply node, I. We refer to that value as
default-appearance-or-update-node.

97

b) The second parameter is the type of the message node that

Event Discovery Flow Element

Name Details Introducer route Network interface

Add

Parameter
A newly discovered route to a known
device, with updated route cost.

An enabled network-interface on the
local node.

Processing

For the conerned known device:

1. Add the parameter route as

a introducer to the route
cost based sorted set of the

device introducer routes.

2. Call
update_advertisements(def

ault-appearance-or-update-

node , default-
disapperance-node).

For every known device:

1. Add parameter interface as

an advertiser to the device
lowest cost discovery flow.

2. Boradcast an S-C-I message

about that knonw device via
that interface.

Remove

Parameters

Two parameters are required for this

procedure:
1. An introducer route via

which a known device has

disappeared.
2. The node type in the

advertisement discovery

message that indicates the
reason of the device

disapperance via this route.

Only two values are
expected, an interface-

closed node, Y, or a heart-

attack node, X.

A disabled network-interface on the

local node.

Processing

For the conerned known device:

1. Remove the parameter

route from the route cost
based sorted set of the

device introducer routes.

2. Call

update_advertisements(def

ault-appearance-or-update-

node , X or Y node).

For every knonw device:
1. If the parameter interface is

an advertiser in any of that

device two discovery
forwarding fllows, remove it

from that flow.

2. If parameter interface is of
an introducr router in any of

that device two discvoery

forwarding flows, remove

that route from the

discovery frowarding flows.

3. Call
update_advertisements(defa

ult-appearance-or-update-

node , default-disapperance-
node).

Table 1. Procedures of the discovery forwarding flows, continued on next page.

98

indicates a device disappearance via non-introducer interfaces

c) that are just detache d from the discovery flow of a disappearing
introducer, after updating the discovery forwarding flows. If a
caller procedure, from those in table I, does not specify a value
for this parameter, we assume a default of an interface-closed
node, Y. we refer to this value as default-disappearance-node.

3) Maintaining the route cost based sorted routes set and the discovery
forwarding flows: As we summarized in section 2, we define a
discovery forwarding flow as the pair (introducer route, advertiser
interfaces) [3]. Accordingly, for a known device, we define the two
maintained route cost based discovery forwarding flows as follows:

a) DFF1 = (the local node interface of the lowest cost route to the
known device, the rest of the local node interfaces).

b) DFF2 = (the local node interface of the 2nd lowest cost route to
the known device, the local node interface of the lowest cost
route to the known device).

As explained above, for a known device, the discovery forwarding flows

Update

Parameters

Three parameters are required for this procedure:

1. An intoducer route via which the
parameters of a known device and/or

the route cost to it has been updated.

2. The node type in the advertisement
discovery message that indicates the

type of the device parameters update

via this route. Only three values are
expected, a heart-beat-reply node, H,

an information-reply node, I, or a Null

to indicate only route cost update and
no device parameters update.

3. A boolean to indicate if the discovery

state machine and the discovery
forwarding manager has updated the

route cost of that introducer route.

N/A

Processing

For the concerned known device:
1. If the third parameter indicates an

updated route cost, resort the route

cost based sorted set of the device
introducer routes.

2. Call update_advertisements(H, I, or

Null , default-disapperance-node).

Event Discovery Flow Element

Name Details Introducer route Network interface

Cont. table 1. Procedures of the discovery forwarding flows.

99

maintain a route cost based sorted set of the discovered routes to that
device. On a call from one of the procedures in table I, the sorted routes
set is used to maintain the discovery forwarding flows as we show in Fig.
1, below.

From Fig. 1, we can see that the design principle of minimizing routes dynamics
is achieved as the maximum number of changes in interfaces roles remains the
same as specified in section 3.2 of this section. In particular, in case both of the
discovery forwarding flows remain to exist after their maintenance, a maximum
of two interfaces may change their roles, as advertisers and introducers of the
concerned known device.

4 Implementation And Evaluation

We implemented our solution as part of the Java implementation of PalCom. We
used the test setup in Fig. 2-a to evaluate routing decisions of a message stream

Figure 1. Updating discovery forwarding flows and advertisements.

100

with a periodic sending rate of 1 second from device-1 to device-2 in the
condition of changing routes availability. At the start of the test, routes from
device-1 to device-2 are available by enabling the connections via LAN-1, LAN-
2, and LAN-4. Then, during a test round, we use an automated script to disable
LAN-1, LAN-2, and LAN-4 respectively with a period of 15 seconds between
each of these actions. Afterward, in the same round, we re-enable those
networks in the reverse order. In Fig. 2-b, we show the sequence of received
test messages on device-2 during three test rounds. The support for distance
vector routing in PalCom is proven to be working properly in response to
changing networking connectivity.

5 Conclusion and Future Work

Supporting distance vector routing in PalCOm over device Discovery Forwarding

Figure 2. Test setup and results of evaluating the implemented support of distance
vector routing in PalCom.

101

Flows, DFF, avoids the need for specialized signaling and control messages
compared to table-driven and on-demand ah-hoc networking protocols [4]. In
particular the PalCom device discovery mechanism already provides the
necessary autonomous management of the ad-hoc network of the discovered
PalCom devices. The proposed solution was integrated into the Java
implementation of PalCom. The evaluation results show that correct and timely
routing decisions are made by the system in response to changes of the
availability of network connects.

As a future work, we plan to enhance the device discovery mechanism itself, the
basis of the proposed distance vector routing, by adding a revision system of the
routing table contents that enables re-synchronizing discovery information
among PalCom devices after temporary disconnections that last below the
configured heart-beat periods. Moreover, we plan to review the device discovery
mechanism to prevent a noticed problem where a router node may forward an
appearance discovery event about a routing route to a just disappeared neighbor
node while it has been the only gateway to that disappeared neighbor node.

References

[1] D. Svensson Fors, B. Magnusson, S. Gestegård Robertz, G. Hedin and E. Nilsson-Nyman, "Ad-hoc
Composition of Pervasive Services in the PalCom Architecture", in Proceedings of the 2009
international conference on Pervasive services, London, 2009.

[2] Amr Ergawy and Boris Magnusson, “Media Abstraction Framework for the Pervasive Middleware
PalCom” in Proceedings of the 2nd International Conference on Future Internet of Things and Cloud,
FiCloud-2014, Barcelona, Spain, 2014, in press.

[3] Amr Ergawy and Boris Magnusson, “Device Discovery for the PalCom Pervasive Middleware with
Eliminated Cross-networks Periodic Heart-beat Messages”, Procedia Computer Science, Volume 37,
2014, Pages 64-71, ISSN 1877-0509.

[4] Ghazani, S.H.H.N.; Lotf, J.J.; Alguliev, R.M., "A new survey of routing algorithms in ad hoc
networks," Computer Engineering and Technology (ICCET), 2010 2nd International Conference on ,
vol.3, no., pp.V3-684,V3-688, 16-18 April 2010, doi: 10.1109/ICCET.2010.5485743.

[5] Yongjun Hu; Tao Luo; Junliang Shen, "An Improvement of the Route Discovery Process in AODV
for Ad Hoc Network," Communications and Mobile Computing (CMC), 2010 International
Conference on , vol.1, no., pp.458,461, 12-14 April 2010, doi: 10.1109/CMC.2010.123.

[6] Charles E. Perkins and Pravin Bhagwat. 1994. “Highly dynamic Destination-Sequenced Distance-
Vector routing (DSDV) for mobile computers”. In Proceedings of the conference on
Communications architectures, protocols and applications (SIGCOMM '94). ACM, New York, NY,
USA, 234-244. DOI=10.1145/190314.190336.

[7] Ting Liu; Kai Liu, "Improvements on DSDV in Mobile Ad Hoc Networks," Wireless
Communications, Networking and Mobile Computing, 2007. WiCom 2007. International Conference
on , vol., no., pp.1637,1640, 21-25 Sept. 2007, doi: 10.1109/WICOM.2007.412.

[8] Fang Xie; Lei Du; Yong Bai; Lan Chen, "A Novel Multiple Routes Discovery Scheme for Mobile
Ad Hoc Networks," Communications, 2006. APCC '06. Asia-Pacific Conference on , vol., no.,
pp.1,5, Aug. 2006, doi: 10.1109/APCC.2006.255962.

102

[9] Perkins, C.E.; Royer, E.M., "Ad-hoc on-demand distance vector routing," Mobile Computing
Systems and Applications, 1999. Proceedings. WMCSA '99. Second IEEE Workshop on , vol., no.,
pp.90,100, 25-26 Feb 1999, doi: 10.1109/MCSA.1999.749281.

[10] Marina, M.K.; Das, S.R., "On-demand multipath distance vector routing in ad hoc
networks," Network Protocols, 2001. Ninth International Conference on , vol., no., pp.14,23, 11-14
Nov. 2001, doi: 10.1109/ICNP.2001.992756.

[11] Po-Jen Chuang; Po-Hsun Yen; Ting-Yi Chu, "Efficient Route Discovery and Repair in Mobile Ad-
hoc Networks," Advanced Information Networking and Applications (AINA), 2012 IEEE 26th
International Conference on , vol., no., pp.391,398, 26-29 March 2012, doi:
10.1109/AINA.2012.120.

[12] J. Gomez, V. Rangel, M. Lopez-Guerrero, and M. Pascoe. 2011. NARD: Neighbor-assisted route
discovery in MANETs. Wirel. Netw. 17, 8 (November 2011), 1745-1761. DOI=10.1007/s11276-
011-0375-2.

[13] Hedrick C, Routing Information Protocol, RFC 1058, June 1988, available at http://www.rfc-
editor.org/rfc/rfc1058.txt.

103

104

Paper IV: Synchronizing device discovery on
loss of update messages in the pervasive
middleware PalCom
Amr Ergawy and Boris Magnusson,

Published in Proceedings of the 11th International Conference on Future
Networks and Communications (FNC 2016). Montreal, Canada, 2016.
Procedia Computer Science, Volume 94, 2016, Pages 347-352.

Abstract: PalCom is a pervasive middleware that enables users to combine
the services on devices into useful configurations. Interconnected PalCom
devices can discover, and keep track of, the existence of each other by
exchanging periodic heartbeats within local networks, and once-sent device
appearance/disappearance notifications across interconnected networks.
This approach has the advantage of eliminating the need to forward periodic
heartbeats beyond the boundaries of the local networks of their originator
devices. However, when a device appearance/disappearance notification is
sent only once over an unreliable channel, there is a possibility of losing that
notification. As a result, the device discovery information on PalCom devices
will be out-of-sync. In this paper, we present the design, model-based
evaluation, and the implementation status of a solution to this synchronization
problem.

Keywords: pervasive middleware; device discovery; synchronization; model
checking

1 Introduction

PalCom is a pervasive middleware that enables users to combine the

services of their devices into useful application scenarios
1
. In particular,

PalCom can be deployed onto user devices to provide the necessary utility

for advertising device existences to other devices on the same local

networks, as well as across different interconnected networks
2,3,4

. Once

interconnected devices discover the existence of each other, they can

exchange description of their functionality, i.e. services
1
.

PalCom provides the necessary abstraction for devices to communicate

via different networking technologies
2
. On top of that abstraction, PalCom

uses periodic heartbeats within the boundaries of local networks to enable

devices to discover and keep track of each other
3
. For cross-networks device

http://www.sciencedirect.com/science/journal/18770509/94/supp/C
http://www.sciencedirect.com/science/journal/18770509/94/supp/C

105

discovery, PalCom uses once-sent device appearance/disappearance

notifications
3
. This approach saves network bandwidth by eliminating the

need to forward periodic heartbeats outside the local networks of their

originator devices. However, if such appearance/disappearance notifications

are sent over unreliable channels, then PalCom nodes that lose a notification

will lose synchronization of their exchanged cross-networks device discovery

information.

In this paper, we present the design, model-based evaluation, and the

implementation status of a reliability feature for PalCom that enables

synchronization of device discovery information on the event of losing

discovery updates. In section 2, we summarize our previous work on

networking and device discovery for PalCom, illustrating the need for a

device discovery synchronization mechanism. Then, in section 3, we survey

reliability in distributed systems to inspect different design options for the

required synchronization support in PalCom. Afterwards, in section 4, we

present our proposed synchronization mechanism, modelled using UPPAAL
9
.

In section 5, we present a performance evaluation of the algorithm. We

conclude with the implementation status of the algorithm and our future work.

2 Previous work and problem
statement

PalCom is designed as a layered distributed system
2,3,4

. In this section, we

review the lowest two layers of PalCom that provide the communication utility

and state machine logic for device discovery among interconnected devices.

We conclude this section by the problem statement of this paper, namely the

need for a synchronization mechanism to overcome the loss of once-sent

device discovery notification on unreliable channels.

2.1 Cross networks communication support in
PalCom

PalCom enables devices to communicate via different types of networking

technologies by defining a networking media abstraction layer, MAL, as its

lowest layer
2
. The core of the MAL layer is to view a network protocol as a

composition of a device addressing method, a connection establishment

mechanism, a byte array encoding/decoding method, and a network

interfacing utility. By inheriting and extending this framework, a PalCom

developer can easily add a new connectivity driver to support a new

106

networking protocol. The plugging for such connectivity driver to PalCom is

done in a way that considers different sides of system reliability and

performance
2
.

2.2 Device discovery in PalCom
On top of the MAL layer, PalCom defines the device discovery layer

3
. This

layer defines two state machines, namely the local-network device discovery

state machine and the cross-networks device discovery state machine. A

PalCom device applies the logic of the local-network state machine to

discover and keep track of other PalCom devices on its connected local

networks
3
.

In particular, PalCom device-A periodically broadcasts heartbeat

messages via all its network interfaces on available local networks. Then,

PalCom device-B that receives a heartbeat from device-A, on the same local

network, starts to exchange device information request and response

messages with device-A. On the successful completion of device information

exchange, PalCom device-B declares device-A as visible. From that point in

time, device-B may change the availability state of device-A between visible,

out-of-reach, rebooted, and gone based on configured time-outs and received

periodic heartbeats from that device.

Moreover, when device-B discovers device-A on a local network that

connects them, device-B will advertise the appearance of device-A on other

networks that it is connected to
3
. To prevent looping device discovery

advertisements in a network of PalCom devices, device-B manages

forwarding device discovery notifications using a data structure called

discovery forwarding flow
3
, DFFs. The idea behind this data structure is to

prevent forwarding a device discovery notification via the network interface

that it was received from, a reused concept from conventional internet

protocols
3
. Similarly, device-B may forward a disappearance notification of

device-A on all other local networks after a specific time-out of not receiving

heartbeats from that device. When device-C receives from device-B

appearance/disappearance notifications about device-A, it uses the cross-

networks device discovery state machine to process this notification to keep

track of the availability of device-A.

2.3 The problem of once-sent device discovery
notifications over unreliable channels

When sending cross-networks device appearance/disappearance

notifications over unreliable channels, there is a possibility of losing these

messages. In the above discussed example in section 2.2, if a discovery

107

notification message from device-B to device-C about device-A is lost, then

device-C will be out-of-sync from the world view that device-B meant to

update it with. This will cause communication issues to the services on

device-C and other PalCom devices that are connected to device-C, but not

connected to device-B or device-A.

We view this problem as a reliability problem of the PalCom device

discovery mechanism. And to handle it, we need a synchronization

mechanism that recovers the world view on device-C whenever it detects the

loss of a discovery update message from device-B. In the next section, we

review reliability support in distributed systems while focusing on possible

design options for the required discovery synchronization mechanism for

PalCom.

3 Reliability in distributed systems
and design options

As discussed above, we designed PalCom as a layered distributed

system
2,3,4

. In this section, we review reliability requirements and approaches

in distributed systems. We focus on different approaches of fault detection

and tolerance for communication/networking faults. Below, we compare these

approaches to the current status of PalCom, aiming to make proper design

decisions for the required device discovery synchronization mechanism.

3.1 Reliability requirements in distributed systems
vs. communication/networking faults

Among several requirements for distributed systems, reliability comes as

an essential one
5,7

. It aims at ensuring system functionality, quality and

scalability. A reliable distributed system must provide a specific probability of

successful performance of its intended function for sufficient time periods to

meet users’ expectations
5
. Moreover, a reliable distributed system is required

to properly operate under the specific conditions of its deployment

environment and resources
5
. Among several challenges to meet these

requirements, the reliability of the used communication/networking

infrastructure comes as a very important factor to consider
5,7

. Fault tolerant

and recovery techniques are required to overcome reliability issues at such

low-level utilities.

108

3.2 Requests redirection reliability vs.
architectural based reliability

The simplest way of failure recovery at the networking levels is to redirect

operations to other resources
5,7

. However, such an approach is not suitable

to recover lost device discovery messages in PalCom, because such

messages represent only the perspective of their originator node.

Alternatively, we can employ an architectural and state based approach
5
 to

add support for device discovery synchronization in PalCom.

The main challenge to applying an architectural based reliability is the

need to plan it before application development
5
, which is not the case for

PalCom. A recommended approach to start such a design is to preserve the

layered system structure in a way that keeps hiding communication and

networking from the reliability module
5
. We apply this recommendation to

design a synchronization mechanism that fits into the layered architecture of

PalCom.

3.3 Time-out based failure detection vs. sequence
number based failure detection

To design reliability into device discovery in PalCom, we need to consider

failure detection
6,7

. A proper failure detector is expected to provide a specific

time after which a failure is detected while a properly functional process is not

wrongly detected as a failed one
6
. To support device discovery

synchronization on lost update messages in PalCom, we need to

complement its time based device discovery failure detection
3
 with a

mechanism that keeps track of the sequence of update messages. This is a

packet loss failure detection approach
7
.

To keep track of the sequence of update messages, we re-use the concept

of update round numbers
8
 in our proposed synchronization mechanism for

PalCom. However, instead of using update round numbers to implement a

lock-step synchronizer
8
, we implement a synchronizer that can handle a

continuously changing ad-hoc network of PalCom devices
3
. We detail our

design in the next section.

109

4 The proposed algorithm for
synchronizing device discovery on
lost update messages

As shown in Fig. 1 and Fig. 2, we model our proposed synchronization

algorithm in UPPAAL
9
. Our design has four components, we list them while

describing the algorithm functionality:

 Sequence number based fault detection: Every heartbeat message, an

h/H-message
3
, from device-A to device-B contains an update-number field.

As shown in Fig. 1, if device-B finds that the (h/H).update-number is not

equal to the latest update-number that it has received from device-A via

the network interface that received the h/H-message, then device-B

concludes that it is out-of-sync with device-A. Every appearance or

disappearance notification from device-A to device-B about device-x, an S-

*-message
3
, has two fields: previous-update-number and update-number.

Fig. 1. The UPPAAL model of the destination node of the synchronization algorithm.

110

Device-B uses a received (S-*).previous-update-number in the same way

as it uses a received (h/H).update-number to detect whether it is out of

sync with the sender device-A.

 Destination-device driven request/response synchronization: When device-

B detects that it is out-of-sync with device-A via one of its network

interfaces, it initiates the synchronization process, as shown in Fig. 1. In

particular, device-B declares all remote routes discovered via that interface

as out-of-sync, and sends a sync-start request, a k-message, to device-A.

Fig. 2 illustrates how device-A handles such message to respond with a

relevant S-*-message to device-B.

Fig. 1 illustrates how device-B handles a reply to its sync-start message.

Device-B may ask for more updates by sending a sync-next request to

device-A, a K-message. In Fig. 1, we illustrate that device-B terminates the

synchronization process when a received (h/H).update-number equals its

remembered latest-update-number from device-A via its network interface that

received the h/H message.

 Limited cache of continuous device appearance/disappearance history: As

illustrated in Fig. 2, the synchronization source, device-A, maintains a

limited size cache of complete device-x appearance/disappearance

history. If device-B, the synchronization destination, asks for updates

within this cached history, then a smaller number of messages will be

required for the synchronization process.

 Synchronization reliability over periodic heartbeat messages: As shown in

Fig. 1, device-B, the synchronization destination, uses h/H-messages to

Fig. 2. The UPPAAL model of the source node of the synchronization algorithm.

111

make sure that sync-start and sync-next message are sent as much as

required to the synchronization source device-A. This feature overcomes

any lost synchronization request/response messages from device-A.

5 Model-based performance
evaluation

We used the UPPAAL
9
 model of our synchronization algorithm to evaluate

its performance. We use two different parameters to evaluate the

performance of the algorithm:

 Cache capacity: the number of appearance and disappearance updates

that the source node remembers.

 Out-of-sync detection sensitivity: the number of sent discovery update

messages before sending a heartbeat message. This is a definition of the

heartbeat frequency in terms of the number of discovery update

messages.

We measure the synchronization overhead as the average number of

sync-request messages per a lost message. The input to the performance

evaluation is composed of 50 message sequences with 20 messages each

and randomly chosen dropped messages. These message sequences are

grouped into five groups based on the ratio of dropped messages. These

groups are randomly specified to contain 2/20, 5/20, 6/20, 8/20, or 10/20

Fig. 3. The algorithm performance with two different configurations of the heartbeat frequency.

0

1

2

3

4

5

6

7

2/20 lost
messages

4/20 lost
messages

6/20 lost
messages

8/20 lost
messages

10/20 lost
messages

A
ve

ra
ge

 n
u

m
b

er
 o

f
sy

n
c-

re
q

u
es

t
m

es
sa

ge
s

p
er

 a
 lo

st

m
es

sa
ge

Number of lost messages in each group of 10 message sequences

heartbeat_frequency_1 =
an h-message every
number of update
messages that equals the
cache size.

heartbeat_frequency_2 =
2× heartbeat_frequency_1

112

dropped messages, which are extreme message drop rates of 10% to 50%.

We run the performance evaluation against two configurations of the

algorithm. The first test configuration is: heartbeat_frequency_1 = an h-

message every number of update messages that equals the cache size. The

second test configuration is: heartbeat_frequency_2 = 2×

heartbeat_frequency_1.

As shown in Fig. 3, the test run with heartbeat_frequency_2 produces less

synchronization overhead compared to that with heartbeat_frequency_1. We

interpret this as the more frequent the heartbeat messages compared to the

update messages, the earlier the out-of-sync status is detected, and the more

cached synchronization is performed. Also, for the test run with

heartbeat_frequency_2, the majority of cases does not require more than

three sync-request messages per a lost message. This is a relevant but still

expensive performance. We interpret these results as at least a sync-start k-

message and a sync-next K-message will be triggered per an out-of-sync

detection event. Moreover, a minimal overhead of a sync-start k-message

and two sync-next K-message are triggered per one out-of-sync detection

event when the source cache has one more update message after the one

that triggered the synchronization. From the test results in Fig. 3, the higher

the heartbeat frequency, the less the synchronization overhead.

Moreover, Fig. 3 shows that, for the test run with heartbeat_frequency_1,

the message sequences with 10/20 dropped messages have less average

synchronization overhead than the message sequence with 2/20 dropped

messages. We interpret this as the more dropped messages, the higher the

chance that they are consequent messages, and the higher the chance that

more than one message is retrieved during a single full-synchronization

round. This will reduce the number of out-of-sync detection events and the

average synchronization overhead.

6 Conclusion and future work

We added to PalCom a synchronization algorithm to overcome the

problem of losing a once-sent device discovery update message over an

unreliable channel. We evaluated the algorithm using an UPPAAL based

model. The evaluation shows a stable and reasonable synchronization

overhead when using high enough heartbeat frequency that provides

sufficient out-of-sync detection sensitivity compared to the size of the

discovery events cache. We implemented the synchronization algorithm as

part of the current PalCom Java implementation. The implementation passed

testing against basic scenarios of channel failure. As a future work, we need

113

to run more advanced test scenarios on the implementation. We may also

modify the algorithm for less synchronization overhead.

References

[1] Svensson Fors D, Magnusson B, Gestegård Robertz S, Hedin G, Nilsson-Nyman E. Ad-hoc
Composition of Pervasive Services in the PalCom Architecture. In: Proceedings of the 2009
International Conference on Pervasive Services, London, UK, 2009. ACM. p. 83-92.

[2] Ergawy A, Magnusson B. Media Abstraction Framework for the Pervasive Middleware PalCom. In:
Proceedings of the 2nd International Conference on Future Internet of Things and Cloud, FiCloud-
2014, Barcelona, Spain, 2014. IEEE.

[3] Ergawy A, Magnusson B. Device Discovery for the PalCom Pervasive Middleware with Eliminated
Cross-networks Periodic Heart-beat Messages. In: Proceedings of the 5th International Conference
on Emerging Ubiquitous Systems and Pervasive Networks, EUSPN-2014, Nova Scotia, Canada.
Procedia Computer Science, volume 37, 2014. p. 64-71.

[4] Ergawy A, Magnusson B. Supporting Distance Vector Routing Over Device Discovery Flows in the
Pervasive Middleware PalCom. In: Proceedings of the 6th International Conference on Ambient
Systems, Networks and Technologies, ANT-2015, London, UK. Procedia Computer Science, volume
52, 2015, p. 153-160.

[5] Waseem Ahmed and Yong Wei Wu: A survey on reliability in distributed systems. Journal of
Computer and System Sciences. 2013, volume 97, number 8, p. 1243 – 1255.

[6] N. Xiong and Y. Yang and M. Cao and J. He and L. Shu. A Survey on Fault-Tolerance in Distributed
Network Systems. In: Computational Science and Engineering, 2009. CSE '09. International
Conference on. 2009, vol. 2, p. 1065-1070. IEEE.

[7] Lilia Paradis, Qi Han: A Survey of Fault Management in Wireless Sensor Networks. Journal of
Network and Systems Management. 2007, volume 15, number 2, p. 171-190.

[8] Matthias Függer and Alexander Kößler and Thomas Nowak and Ulrich Schmid and Martin Zeiner:
The effect of forgetting on the performance of a synchronizer. Performance Evaluation. 2015,
volume 93, pages 1-16.

[9] UPPAAL and its tutorial material are available at http://w ww.uppaal.org/.

