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The effective conductivity of random checkerboards✩

Johan Helsing1

Numerical Analysis, Centre for Mathematical Sciences,

Lund University, Box 118, SE-221 00 LUND, Sweden

Abstract

An algorithm is presented for the fast and accurate solution of the electro-
static equation on multi-component random checkerboards. It relies on a par-
ticular choice of integral equation, extended as to separate ill-conditioning
due to singular fields in corners from ill-conditioning due to interaction of
clusters of well-conducting squares at large distances. Two separate precon-
ditioners take care of the two separate phenomena. In a series of numerical
examples, effective conductivities are computed for random checkerboards
containing up to 104 squares with conductivity ratios of up to 106. The
achievable relative precision in these examples is on the order of 10−11.

Keywords: Integral equation, Corner singularity, Fast solver, Effective
conductivity, Checkerboard

1. Introduction

A composite material of great interest in theoretical materials science is
the conducting checkerboard – a material constructed from a single unit cell
tiled with squares of different conductivities and repeated as to cover the
entire plane. Determining the effective conductivity of such a checkerboard
is a classic problem.

Checkerboard problems are, in general, very challenging. Especially so
when there is a large number of squares in the unit cell and when their con-
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ductivities are randomly chosen from a wide distribution, see Section 1 of [9]
and Section 5 of [24]. From a PDE point of view one first has to solve an el-
liptic boundary value problem in the unit cell with doubly periodic boundary
conditions on the outer boundaries and continuity conditions on the internal
boundaries. Then one has to evaluate a functional on the solution. The in-
ternal boundaries meet at quadruple-junctions (four-wedge corners), where
strongly singular fields may arise. See Theorem 3.1 and Section 6 of [1] for the
difficulties encountered within the framework of the finite element method.
Nevertheless, remarkably simple closed-form expressions for the effective con-
ductivity of two-component ordered checkerboards were found a long time
ago [7, 18, 20]. This has inspired a search for closed-form solutions also for
more complex arrangements. See [3, 5, 6, 21, 22] for examples where ordered
checkerboards with up to four different components have been treated.

Random checkerboards are of interest in percolation theory. It is impor-
tant to know how effective transport properties evolve as well-conducting
squares are about to form a connected path through the unit cell. Tradi-
tionally, such investigations have been undertaken via crude mappings of
continuum composites into resistor networks. Recently, qualitative studies
performed with the finite element method on large two-component random
checkerboards suggest that such mappings lead to a spurious secondary per-
colation threshold and shifts in scaling exponents and effective properties [4].

Difficulties with large random checkerboards at high contrast ratios do
not just include the resolution of local fields close to quadruple-junctions, but
also ill-conditioning caused by long-range interaction between clusters of well
conducting components. This ill-conditioning further limits the achievable
accuracy and tends to slow down the convergence of iterative solvers. It is
known as critical slowing down in the physics community but can, for network
models, be counterbalanced using multigrid methods [8].

This paper presents an integral equation based algorithm which offers
high accuracy solutions to general checkerboard problems. The algorithm
has three main features

• a particular choice of integral equation

• the use of recursive compressed inverse preconditioning [15, 16] to re-
solve layer densities in the vicinity of quadruple-junctions

• a Schur complement style preconditioner to deal with long-range inter-
action
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Combined, these features offer tremendous increase in achievable precision
and tractable system size, compared to competing methods. The algorithm
can be seen as an extension of a previous algorithm [15] for elliptic problems
on domains with corners and triple-junctions (three-wedge corners). In [15]
we solved electrostatic problems in high-contrast granular materials with
up to 900 grains. As we shall see in the present paper, the comparative
advantages with recursive compressed inverse preconditioning are even more
pronounced in the presence of quadruple-junctions. Furthermore, the long-
range preconditioner will completely curb the critical slowing down and we
can accurately solve the electrostatic equation on checkerboards with 104

squares of wildly varying conductivities in the unit cell using an ordinary
workstation.

The paper is organized in three main sections, each treating one of the
features listed above. The algorithmic presentation is mixed with numerical
examples, performed in the Matlab environment (version 7.6) and executed
on an ordinary workstation equipped with an IntelCore2 Duo E8400 CPU at
3.00 GHz and 4GB of memory. The integral equations are discretized with a
Nyström scheme based on composite 16-point Gauss–Legendre quadrature.
The GMRES iterative solver [23] with a low-threshold stagnation avoiding
technique [14] is used for the main linear systems and the stopping criterion
threshold is set to machine epsilon (ǫmach). The system matrices and their
action on vectors are computed explicitly in the smaller examples. The fast
multipole method [13], coded in C, is used in the larger examples. See Sec-
tion 4.1 of [13] and Section 3 of [11] for how to impose periodic boundary
conditions on potential fields due to charges in a unit cell.

2. Integral equations for the checkerboard problem

Let the unit cell D0 = [−1/2, 1/2)×[−1/2, 1/2) be tiled with Nsq equisized
squares with conductivities σk, k = 1, . . . , Nsq, so that the local conductivity
σ(r) at position r = (rx, ry) is a piecewise constant function. Let the unit
cell be periodically repeated as to cover the entire plane D. We need to refer
to different subsets of the interfaces between the squares. The interfaces that
belong to the unit cell are denoted Γ0 and given orientation, see Fig. 1 where
Γ0 is indicated by solid lines. The interfaces Γ0 and their periodic images are
denoted Γ. The boundary of D0 is denoted L0. Let Γ1 = Γ0 ∩ L0, let Γ2 be
L0 \ Γ1, and let nr = n(r) be the outward unit normal of Γ at r.
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Figure 1: Top left: A part of a two-component ordered checkerboard. Bottom left and right:
A unit cell D0 of a multi-component random checkerboard with Nsq = 16 numbered squares.
Orientation of the interfaces Γ0 (solid lines) and Γ2 (dashed lines) along with a point z ∈ Γ1

and its corresponding periodic image zper ∈ Γ2.

An average electric field e = (ex, ey) of unit strength is applied to the
checkerboard and we seek the potential U(r) for the ultimate computation
of the effective conductivity in direction e of the checkerboard

σeff =

∫

D0

(σ(r)∇U(r) · e) dVr , (1)

where dVr is an infinitesimal element of area. The average electric field e
will be applied in the y-direction in all our numerical examples. To keep the
notation short we make no distinction between points or vectors in a real
plane R2 and points in a complex plane C. All points, from now on, will be
denoted z or τ .

Clearly, the local conductivity σ(z) jumps as Γ is crossed. Let σ+(z)
denote the conductivity on the positive side of Γ at z, let σ−(z) denote the
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conductivity on the negative side of Γ at z, and introduce

a(z) = σ+(z) − σ−(z) , z ∈ Γ , (2)

b(z) = σ+(z) + σ−(z) , z ∈ Γ , (3)

c(z) = σ+(z)σ−(z) , z ∈ Γ , (4)

λ(z) = a(z)/b(z) , z ∈ Γ . (5)

We also need a function l0(z) on Γ0

l0(z) =

{

z − zper , z ∈ Γ1 ,
0 , z ∈ Γ0 \ Γ1 .

(6)

Here zper is the position of the periodic image of z ∈ Γ1 on Γ2, that is, l0(z) on
Γ1 is either minus one or minus the imaginary unit, see Fig. 1. The periodic
extension of l0(z) to Γ is denoted l(z).

2.1. The single layer equation

Standard practice for electrostatic problems is to represent U(z) as a
continuous function which is sum of a driving term and a single layer poten-
tial [12]

U(z) = ℜ{ēz} +
1

2π

∫

Γ

ρ(τ) log |τ − z| d|τ | , z ∈ D . (7)

Here the bar symbol denotes complex conjugation and ρ(z) is an unknown
real valued layer density which can be solved from the integral equation

ρ(z) +
λ(z)

π

∫

Γ

ρ(τ)ℑ
{

nzn̄τ dτ

τ − z

}

= 2λ(z)ℜ{ēnz} , z ∈ Γ0 . (8)

This equation is derived by enforcing continuity of normal current across Γ.
Once (8) is solved, the effective conductivity can be computed from

σeff =

∫

Γ0

c(z)

a(z)
ρ(z)ℜ{ēl0(z)} d|z| . (9)

This formula is obtained by rewriting (1) using Green’s first identity and it
can also be written in a more roundabout way to avoid division with a(z).
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2.2. An alternative equation

The single layer potential equation (8) is not the only possibility for the
checkerboard problem. An alternative integral equation can be derived by
applying Green’s third identity to U(z)−ℜ{ēz}, which is a periodic function.
In terms of the transformed potential

U∗(z) = U(z)a(z) + σ−(z)ℜ{ēl(z)} , (10)

this equation assumes a particularly simple form

U∗(z) − λ(z)

π

∫

Γ

U∗(τ)ℑ
{

dτ

τ − z

}

= 2
c(z)

b(z)
ℜ{ēl0(z)} , z ∈ Γ0 . (11)

The effective conductivity can be computed from

σeff =

∫

Γ0

U∗(z)ℑ{ē dz} . (12)

This formula is obtained by rewriting (1) using Gauss’ theorem.

2.3. The asymptotic behavior of ρ(z) and U∗(z)

The behavior of the layer densities ρ(z) of (8) and U∗ of (11) close to a
checkerboard quadruple-junction depends on the conductivities of the four
squares that meet. For some combinations strong singularities can develop.

The worst case is when poorly and well conducting squares meet diago-
nally like in an two-component ordered checkerboard, see top left image of
Fig. 1. Let the poor conductivity be σ1 and the good conductivity σ2. Then
one can show, with separation of variables, that the density ρ(z) diverges
and asymptotically behaves as sν−1, where s is the distance to the vertex
and 0 < ν ≤ 1 is the smallest positive solution to

σ2

σ1
sin2(νπ/4) = cos2(νπ/4) . (13)

The leading behavior of the density U∗(z) can be described by a constant
term plus a term proportional to sν .

Note that for large ratios σ2/σ1, the strength of the singularity in ρ(z)
approaches s−1. For comparison, in a two-wedge corner the worst singularity
that can occur is s−0.5.
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Figure 2: Convergence of the effective conductivity and of the GMRES iterative solver for a
two-component ordered checkerboard with σ2/σ1 = 100. The diamond symbols indicate that
product integration [14] is used for interaction between panels meeting at corner vertices.

2.4. A simple numerical example

We illustrate the properties of (8) and (11) in an example for a two-
component ordered checkerboard with σ2/σ1 = 100, see top left image of
Fig. 1. The unit cell has Nsq = 4. The exponent of (13) is ν ≈ 0.127. An
initial mesh with four quadrature panels per square side is deemed sufficient
for resolution away from the vertices. The mesh is refined via binary sub-
division of panels neighboring vertices as to create a simply graded mesh in
the sense of Section 5 of [15].

The convergence of σeff with mesh refinement is illustrated in Fig. 2. The
exact result σeff =

√
σ1σ2 [7] is used as reference value. The stars and the

circles show that the performance of (8) and (11) are almost identical. The
situation is indeed problematic. At 40 subdivisions the shortest panels have
lengths of O(10−13) and instabilities develop due to the limitations of finite
precision arithmetic. By then, we only have achieved convergence to two
digits. This is marginally better than the finite element method results of
Table 3.1 in Ref. [1].

Fig. 2 also shows that product integration on panels meeting at corner ver-
tices, rather than Gaussian quadrature, can improve the convergence of (11)
somewhat. Still, the need for radically better solution methods is obvious.
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3. Recursive compressed inverse preconditioning

Recursive compressed inverse preconditioning is a novel and rather gen-
eral method to deal with the type of problems just encountered (there are
other recently developed powerful techniques as well [2]). The idea is to dis-
cretize the integral equation on a coarse mesh, further resolve the integral
operator locally on a hierarchy of meshes that are refined close to bound-
ary points where singularities occur, invert the operator, and simultaneously
compress it onto the coarse grid without the loss of precision using informa-
tion about the regularity of the right hand side. In this section we give a
brief review of how the method works with focus on issues important to its
implementation. The machinery for four-wedge corners is very similar to the
one developed for three-wedge corners in [15], but we shall use the simpli-
fied notation introduced in [16]. See both references for derivations and full
definitions.

3.1. Compressed equations

Consider a Fredholm second kind integral equation such as (8) or (11) on
the general form

(I + K) µ(z) = g(z) , (14)

where I is the identity, K is an operator which is compact away from corner
vertices, µ(z) is an unknown layer density, and g(z) is a piecewise smooth
right hand side.

Let K(τ, z) denote the kernel of K. Split K(τ, z) into two functions

K(τ, z) = K⋆(τ, z) + K◦(τ, z) , (15)

where K⋆(τ, z) is zero except for when τ and z simultaneously lie close to the
same corner vertex. Then K◦(τ, z) is zero. The kernel split (15) corresponds
to an operator split K = K⋆ + K◦ where K◦ is a compact operator. Af-
ter discretization, based on a parameterization z(t) and quadrature weights
associated with Np discrete values of the parameter t, (14) assumes the form

(I + K⋆ + K◦) µ = g , (16)

where I, K⋆, and K◦ are Np ×Np matrices and µ and g are columns vectors
with Np entries. The change of variables

µ(z) = (I + K⋆)−1 µ̃(z) (17)
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makes (16) read
(

I + K◦ (I + K⋆)−1)
µ̃ = g . (18)

This equation corresponds to the discretization of a Fredholm second kind
equation with compact operators and the solution µ̃ is the discretization of
a piecewise smooth function.

Now, in (18), K◦ and g can be evaluated on a grid on a coarse mesh. Only
(I + K⋆)−1 needs a grid on a refined mesh for its evaluation. We introduce
the compressed weighted inverse

R = PT
W (Ifin + K⋆

fin)
−1

P . (19)

Here subscript ‘fin’ indicates the fine grid, P is a prolongation operator from
the coarse grid to the fine grid, PW = WfinPW−1

coa is a weighted prolongation
operator, W is a matrix containing the quadrature weights on the diagonal,
and subscript ‘coa’ indicates the coarse grid, see Section 5 of [16]. Eq. (18)
assumes the form

(Icoa + K◦

coaR) µ̃coa = gcoa , (20)

which in terms of the new discrete density µ̂coa = Rµ̃coa also can be written

(Icoa + RK◦

coa) µ̂coa = Rgcoa . (21)

Functionals on µ(z) of the type

∫

f(z)µ(z) dz =

∫

f(z(t))µ(z(t)) z′(t) dt , (22)

where f(z) is a piecewise smooth function, assume the discretized form

fT
coaZ

′

coaWcoaRµ̃coa , (23)

where f is a column vector and Z′ is a matrix containing discrete values of
z′(t) on the diagonal.

3.2. Recursive construction of R

There are Nsq four-wedge corner vertices γk in D0. Let Γ⋆
k be the part

of Γ0 which covers the eight quadrature panels on the coarse mesh that lie
closest to γk, see Fig. 3. The coarse grid will have 128 discretization points on
Γ⋆

k when 16-point composite quadrature is used. The compressed weighted
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Figure 3: Left: a coarse mesh on Γ0 for a unit cell with Nsq = 16. For illustrative purposes
there are six quadrature panels on a square side (four are enough in practice). The eight panels
forming each Γ⋆

k
are drawn extra thick. Right: local meshes Mb, Mc, and Md are drawn

in correct scale relative to each other but magnified compared to the coarse mesh to the left.
The Mc mesh coincides with the coarse mesh on Γ⋆

k
. The Md mesh is a subset of Mb. There

are 192 discretization points on Mb and 128 points on Mc and on Md.

inverse R corresponds to a block diagonal matrix with Nsq blocks Rk of size
128 × 128. The remainder of R is the identity matrix.

The construction of R from its definition (19) is costly when the refined
mesh has many panels on Γ⋆

k. It may also be unstable. Fortunately, the
construction can be greatly sped up and also stabilized via a recursion for
each block Rk. This recursion uses grids on local meshes, see Fig. 3, and
becomes particularly simple for wedge-like corners thanks to scale invariance
of the Cauchy-type integrals in (8) and (11). It assumes the form of a fixed-
point iteration where Rnk → Rk as n → ∞

Rik = PT
Wbc

(

F{R−1
(i−1)k} + I◦b + K◦

bk

)

−1

Pbc , i = 1, . . . , n , (24)

initialized with
F{R−1

0k } = I⋆
b + K⋆

bk . (25)

Here K is still the discretization of K and I is the identity matrix. Subscript
k refers to the kth block. The stars and the circles have a meaning which can
be explained by considering the discretization of K on a 192-point grid Gb

on the mesh Mb and on a 128-point grid Gd which is the subset of Gb on the
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mesh Md, see Fig. 3. Let the resulting matrices be denoted Kb and Kd. Now
K◦

b is the 192×192 matrix Kb with the entries that also are contained in the
128×128 matrix Kd set to zero. The matrix K⋆

b is defined as K⋆
b = Kb−K◦

b,
that is, K⋆

b has the same non-zero entries as Kd but is larger. Finally, the
operator F{·} expands an 128 × 128 matrix into an 192 × 192 matrix by
adding zero entries in such a way that F{Kd} = K⋆

b. The 192×128 matrices
Pbc and PWbc are un-weighted and weighted prolongation operators from a
grid Gc on the mesh Mc to Gb.

3.3. Speedup of the recursion for R

Assume that σ(z) is such that ν of Section 2.3 for a vertex γk is close to
zero. Then the number n of steps needed for convergence in the recursion (24)
for the matrix block Rk may be large. Actually, it grows without bounds as
ν → 0. It could pay off to use a variant of Newton’s method.

The recursion (24) can be recast as a non-linear matrix equation

F (A) ≡ A− PT
Wbc

(

F{A−1} + I◦b + K◦

bk

)

−1
Pbc = 0 , (26)

where A = Rk. Let X be a matrix-valued perturbation of A and expand
F (A + X) = 0 to first order in X. This gives a Sylvester-type matrix equa-
tion for X which can be solved by GMRES or by a variant of the method
in [10] (with Schur factorization) and used as a Newton update for A. As ini-
tial guess one can take A = R0k from (25). For improved speed and precision
we use the Schur–Banachiewicz inverse formula for a partitioned matrix [17]
when evaluating the inverses in (24) and (26).

One Newton step with GMRES costs about as much as 50 fixed-point it-
eration steps, but the convergence seems quadratic. As an example we com-
pute Rk for a Γ⋆

k in the two-component ordered checkerboard of Section 2.4
within the single layer formulation (8). With a stopping criterion threshold
of 10ǫmach in the relative error ||F (A)||/||A||, measured in Frobenius norm,
we reach convergence in five Newton steps. This takes 0.34 seconds. Conver-
gence to the same precision with (24) requires 352 fixed-point iteration steps
and takes 0.44 seconds.

3.4. Numerical examples with R

We return to the two-component ordered checkerboard of Section 2.4 and
see how much improvement recursive compressed inverse preconditioning (20)
with (24) gives.
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Figure 4: Left: Same as left image of Fig. 2, but recursive compressed inverse preconditioning
is used. Right: investigation of achievable accuracy for different conductivity ratios σ2/σ1.

The left image of Fig. 4 shows the performance of (8) and (11). Prod-
uct integration is used in (25) for (11). A comparison with the left image
of Fig. 2 shows a dramatic improvement. The recursive compression com-
pletely eliminates the instabilities and we can use as many recursion steps
(corresponding to subdivisions) as we like. The relative accuracy obtained
in σeff eventually saturates at about 10−14.

As for the preconditioning aspect of recursive compressed inverse precon-
ditioning, the number of GMRES iterations needed for full convergence drops
dramatically as well. The alternative equation (11) needs eleven iterations
and the single layer equation (8) needs seven iterations, irrespective of the
number of recursion steps in (24).

The right image of Fig. 4 illustrates the achievable accuracy in σeff for
various ratios σ2/σ1, with σ2 > σ1. In these experiments we have limited the
number of recursion steps in (24). If convergence, in Frobenius norm and with
a stopping criterion threshold of 10ǫmach, has not occurred in 1000 recursion
steps we resort to the Newton iterations of Section 3.3 with a maximum
number of 15 iterations and R1000k as initial guess. This transition occurs at
σ2/σ1 ≈ 750 for (8) and at σ2/σ1 ≈ 3200 for (11). Fig. 4 shows that there are
no cancellation effects as σ2/σ1 → 1, but precision is lost at a rate of about
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(σ2/σ1)
1.5 as σ2/σ1 → ∞. Fig. 4 also shows that extra clustering of some

quadrature points on panels that lie closest to the γk, in a direction towards
γk, and replacing (20) with (21) for (11) greatly increases the achievable
accuracy for very high ratios σ2/σ1.

We end this section with an example for the multi-component random
checkerboard with Nsq = 16 shown in the bottom left image of Fig. 1.
The conductivities are σ1 = 0.002, σ2 = 3, σ3 = 30, σ4 = 300, σ5 = 700,
σ6 = 0.004, σ7 = 400, σ8 = 3, σ9 = 0.5, σ10 = 0.4, σ11 = 900, σ12 = 0.2,
σ13 = 0.003, σ14 = 0.2, σ15 = 10, and σ16 = 200. Here we have no exact
reference value for σeff in the y-direction, but the results for produced by (8)
with (9) and by (11) with (12) agree to thirteen digits (σeff = 26.93379911313)
thereby illustrating the consistency of the two formulations in a more ambi-
tious setting. Both formulations need 25 GMRES iterations for convergence.

4. Long-range preconditioning

As the number of squares in the unit cell of a random checkerboard grows,
the problem of computing its effective conductivity gets harder. For one
thing, the number of iterations needed to solve the discretized equations to
a given accuracy grows. This phenomenon, due to long-range interaction,
is well-known [8] and is illustrated in Fig. 16 of [15] for an aggregate of
grains with conductivity ratios up to 106. The largest geometry that could
be treated there, due to memory constraints, has 900 grains in the unit cell.
Around 700 GMRES iterations are needed for convergence. This is bad. Not
only does it take time and requires a lot of memory. The achievable accuracy
also suffers. This section describes a preconditioner which, roughly speaking,
will increase the overall efficiency of such computations with a factor of at
least ten. We concentrate on equation (11) with (20), which has shown the
best performance so far for low and medium high ratios σ2/σ1.

The idea behind our preconditioner is to split the unknown U∗(z) of (11)
into two parts. One part will mimic the average local behavior of U∗(z)
with few degrees of freedom. The other part will mimic the rapidly varying
behavior of U∗(z) with many degrees of freedom. We seek to expand the
integral equation as to decouple the two parts of U∗(z) as much as possible,
hoping that the ill-conditioning due to long-range interaction will be captured
by equations for the average local behavior. Then we use systems of such
equations as a preconditioner for the original equation.
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4.1. An expanded equation

Each square in D0 has a boundary consisting of four straight segments,
two of which have positive orientation relative to the square, and two of
which have negative orientation relative to the square, see Fig. 1. Introduce
piecewise constant local basis functions sk(z), k = 1, . . . , Nsq, on Γ0 ∪ Γ2

such that sk(z) = 1 when z lies on a boundary part of square k with positive
orientation, sk(z) = −1 when z lies on a boundary part of square k with
negative orientation, and sk(z) = 0 otherwise.

Let us take (11) on the general form (14), where µ(z) corresponds to
U∗(z), and make the split

µ(z) = µ0(z) +

Nsq−1
∑

k=1

aksk(z) . (27)

Here ak are coefficients and
∫

sk(z)µ0(z) d|z| = 0 , k = 1, . . . , Nsq − 1 . (28)

The last square in the unit cell is excluded from the sum in (27) in order to
break symmetry and to make the ak unique.

The particular choice of local basis functions sk(z) is motivated, in part,
by that the action of K in (11) on sk(z) can be evaluated analytically and
that the result is a chiefly local function

Ksk(z) = −λ(z)|sk(z)| + 2λ(z)

Nsq

. (29)

Using (27) and (29) we rewrite (14) as

(I + K)µ0(z) +

Nsq−1
∑

k=1

ak

(

sk(z) − λ(z)|sk(z)| + 2λ(z)

Nsq

)

= g(z) . (30)

Discretization of (30) and (28) together with recursive compressed inverse
preconditioning applied to µ0(z) results in the linear system

(Icoa + K◦

coaR) µ̃0coa +
(

B1 −Λcoa|B1| + λcoau
T
)

a = gcoa , (31)

BT
1 Wcoa|Z′

coa|Rµ̃0coa = 0 . (32)
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Here B1 is a Np × (Nsq − 1) matrix whose kth column is the discretization of
sk(z), λ is a column vector whose Np entries is the discretization of λ(z), Λ is
matrix containing λ on the diagonal, u is a column vector with Nsq−1 entries
all equal to 2/Nsq, a is a column vector containing the Nsq − 1 coefficients
ak, and vertical bars denote entrywise absolute value.

The effective conductivity (12) can be computed from

σeff = ℑ
{

ēT
coaZ

′

coaWcoa (Rµ̃0coa + B1a)
}

, (33)

once (31) and (32) is solved. Compare (23).

4.2. A Schur complement style preconditioner

The system (31) and (32) can be written in partitioned form

[

I + K◦R B

C 0

] [

µ̃0

a

]

=

[

g

0

]

, (34)

where subscripts ‘coa’ are omitted and

B = B1 − Λcoa|B1| + λcoau
T , (35)

C = BT
1 Wcoa|Z′

coa|R . (36)

The change of variables

[

µ̃0

a

]

=

[

I B

C 0

]

−1 [

ω1

ω2

]

=

[

I − BS−1C BS−1

S−1C −S−1

] [

ω1

ω2

]

, (37)

where the (Nsq − 1) × (Nsq − 1) matrix block S is given by

S = CB , (38)

transforms (34) into

[

I + K◦R(I− BS−1C) K◦RBS−1

0 I

] [

ω1

ω2

]

=

[

g

0

]

. (39)

Obviously, ω2 = 0 and we can write (39) as a single equation for ω1:

(

I + K◦R(I −BS−1C)
)

ω1 = g . (40)
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4.3. The inverse of S

Note that C of (36) is a sparse (Nsq − 1)×Np matrix and that B of (35)
is a sum of three matrices, two of which have the same sparsity pattern and
the third is rank one. This makes S of (38) a sum of a sparse matrix (a
lattice operator) and a rank one matrix. In the limit λ(z) → 0, the matrix
S approaches a standard five-point stencil for the discrete Laplace operator.
Most rows and columns of the lattice operator, for general λ(z), have nine
non-zero entries. The columns, then, sum up to zero. The rows and columns
corresponding to squares (or periodic images of squares) that neighbor the
Nsqth square have eight non-zero entries. In the right image of Fig. 1 such
squares have numbers 1, 3, 4, 9, 11, 12, 13, and 15. The entries of the lattice
operator can be computed in O(Nsq) time.

Solving linear systems with S as system matrix using LU -factorization is
no problem on a modern workstation for Nsq up to about 104 and we shall
use this method here. The time it takes is small compared to the time other
computational tasks take in our algorithm. The storage required for the fac-
torization is, at Nsq = 104, comparable to the storage required for quantities
such as the matrix blocks Rk. Besides, the LU -factorization only has to be
carried out once. Still, should one wish to study much larger checkerboards,
LU -factorization is no longer an option. We speculate that some kind of
hierarchical iterative solver for S-systems, perhaps multigrid, could be one
way to go. The fast direct nested dissection scheme of Martinsson [19] is
surely also an interesting option.

4.4. Numerical examples with long-range preconditioning

This section tests the combination of recursive compressed inverse pre-
conditioning and long-range preconditioning, that is (40) with (37) and (33).
We begin with the the multi-component random checkerboard shown in the
bottom left image of Fig. 1 and already solved in Section 3.4. Again we get
σeff = 26.93379911313, which illustrates the consistency of the new formula-
tion with the previous ones. The number of iterations needed for convergence
in GMRES, however, drops from 25 in Section 3.4 to 16.

As a main test we construct a series of progressively larger setups, 4 ≤
Nsq ≤ 10, 609, where the conductivities are given by σk = 10ck , with ck being
a random variable uniformly distributed in [−3, 3]. A checkerboard with
Nsq = 104 such squares in the unit cell is depicted in Fig.5.

The difference between using the recursive compressed inverse precondi-
tioning of Section 3 only, and recursive compressed inverse preconditioning

16



Figure 5: A unit cell with 10,000 squares of a multi-component random checkerboard. The
conductivity varies between σ=0.001 (darkest) and σ=1000 (lightest).

together with long-range preconditioning is remarkable. Especially so for unit
cells with a large number of squares. Fig. 6 shows that without long-range
preconditioning the number of GMRES iterations needed for convergence
grows at an alarming rate, compare Fig. 16 of Ref. [15], making computa-
tions for Nsq > 103 exceedingly slow and unreliable, if not impossible. With
long-range preconditioning the number of GMRES iterations seems bounded
by 21. It appears as if our preconditioner has captured the long-range inter-
action completely.

Fig. 6 also shows an attempt at error estimation. Lacking exact results
for σeff , we construct reference solutions by doubling the number of panels
on each square side on the coarse mesh from four to eight. The estimated
relative error presented in Fig. 6 is the relative difference between the results
produced with the two meshes. The growth of the relative error with Nsq is
moderate and we conclude that accurate solutions of large multi-component
random checkerboards at high conductivity ratios indeed can be produced.

As for timings, we quote the following for Nsq = 104 squares and Np =
1.28 · 106 discretization points in the unit cell D0: Construction of R takes
20 minutes, construction and LU -factorization of S takes 3 minutes, iterative
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Figure 6: Left: the number of GMRES iterations needed for full convergence in the linear
system, resulting from the discretization of (11), as a function of checkerboard size Nsq. The
use of recursive compressed inverse preconditioning only, denoted ‘R only’, is compared with
use of the long-range preconditioning as well, denoted ‘R & S’. Right: error estimates for the
effective conductivity.

solution of (40) takes 14 minutes.

5. Discussion

The problem of computing the effective conductivity of large random
checkerboards at high conductivity ratios is difficult and, seemingly, hope-
lessly ill-conditioned in various ways. Much recent research has therefore
been directed towards finding closed-form solutions for models with a small
number of squares or rhombuses in the unit cell. This paper shows that
checkerboard problems can be solved efficiently and to high precision using
purely numerical techniques, at least, say, for conductivity ratios up to 108

and for unit cells with up to 104 squares.
Two issues should be addressed if one wishes to push the limits fur-

ther with respect to achievable accuracy and tractable system size within
the framework of the present method. First, a fast solver is needed for
linear systems involving the matrix S of (38). Some ideas on how to pro-
ceed were discussed in Section 4.3. The second issue is the rate with which
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precision is lost as the conductivity ratio σ2/σ1 → ∞ for an ordered two-
component checkerboard. This rate controls the achievable accuracy also for
larger random checkerboards. We observed, in Section 3.4, that the rate was
(σ2/σ1)

1.5. This reflects the conditioning of the matrix equation (26) when
Legendre nodes are used for discretization and feels rather on the high side
considering that the condition number of the R matrix, where much of the
ill-conditioning of the underlying integral equations is contained, appears to
grow at a rate of only (σ2/σ1)

0.5. Other choices of discretization points on
panels neighboring corner vertices and replacing (20) with (21) can improve
the situation in this respect, as shown in the right image of Fig. 4.
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