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1 The human security paradigm questions the trad
the referent object that is to be secured. Instead the fo
of individuals, emphasising humans' access to basic
being. In this mind-set an important policy goal is
guaranteeing the entire population access to basic en
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This paper provides an overview of methodologies used for quantitative evaluations of security of supply.
The studied material is mainly based on peer-reviewed articles and the methodologies are classified
according to which stage in the supply chain their main focus is directed to, as well as their scientific
background. Our overview shows that a broad variety of approaches is used, but that there are still some
important gaps, especially if the aim is to study energy security in a future-oriented way.

First, there is a need to better understand how sources of insecurity can develop over time and how
they are affected by the development of the energy system. Second, the current tendency to study the
security of supply for each energy carrier separately needs to be complemented by comparisons of
different energy carrier's supply chains. Finally, the mainly static perspective on system structure should
be complemented with perspectives that to a greater extent take the systems' adaptive capacity and
transformability into account, as factors with a potential to reduce the systems vulnerabilities.
Furthermore, it may be beneficial to use methodological combinations, conduct more thorough sensi-
tivity analysis and alter the mind-set from securing energy flows to securing energy services.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

In recent years the concept of ‘Energy Security’ has experienced
a revival, with a resurging interest from academia as well as policy
makers. The meaning and focus of the concept have varied over
time and between different disciplines, although some issues have
remained firmly on the agenda. For example, the perceived threats
to national security due to dependence on a few oil producing re-
gions and supply routes have been a concern and an issue for
politicians and scholars since the early twentieth century [1].
However, some security scholars have tried to broaden the analysis
by including new threats and actors in the analysis and deepening
the perspective by approaching it through the lens of human se-
curity1 [2], a concept originally put forward by UNDP [3]. From a
situationwhen energy security used to be almost synonymous with
ånsson).
itional notion of the state as
cus is on the level of security
necessities and their well-

to reduce energy poverty by
ergy services.

Ltd. This is an open access article u
‘security of oil supply’, analyses now also often focus on other en-
ergy carriers such as natural gas, as well as renewable energy [4].

In order to curb greenhouse gas emissions and mitigate climate
change, renewable energy is expected to increase its share in the
global energy mix, see e.g. Ref. [5]. However, there are fundamental
differences between renewables and fossil fuels and therefore the
security features of low-carbon systems are likely to differ from
those of current systems. For example, a move from tapping stocks
to managing flows from variable production may require new
methods to evaluate the ability to manage demand. Furthermore, a
new energy mix may motivate methods to compare different en-
ergy carriers and/or supply chains. Also, changed trade patterns and
altered or new dependencies between different parts of the system
may require methods to study dynamic and structural changes
within the system.

Although the term ‘energy security’ is widely used, the interest
in methodology development for evaluating energy security has
been less pronounced. This may partly be a result of the sometimes
multiple, vague and often diverging meanings of the concept.
Strengthening the methodological understanding would be helpful
for improving energy security analyses. A first step is to develop a
better understanding of the strengths and weaknesses of existing
methodologies for evaluating energy security and assess if there are
nder the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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2 Some researchers distinguish between several dimensions, for example by
using the 4-A classification, i.e. availability, accessibility, affordability and accept-
ability, see e.g. Refs. [7,19].
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important aspects that current methods do not capture, thus
motivating further methodological development. In such a broad
field as energy security, several methods are needed in order to
study different aspects and different temporal scales.

To investigate this, we carried out a review of existing quanti-
tative methodologies used to assess the level of energy security in
society. Previous reviews of this area havemainly addressed the use
of indicators to measure different dimensions of energy security,
see e.g. Refs. [6e8]. Such reviews provide valuable information but
only cover a subset of the techniques that have been used to date
and only treat a limited set of aspects concerning the relationship
between energy and security. Furthermore, reviews of indicators
mainly address the issue of ‘what’ to measure, but ‘how’ and ‘why’
are as important to consider in order to understand what level of
security that can be considered adequate as well as how different
systems can be compared and how different policies and strategies
impact on energy security, not least in relation to other societal
objectives. For example, we may need to improve current methods
to assess interactions between interrelated policy areas, for
example in the water, energy and food security nexus. The con-
centration on quantitative methodologies in this paper is a way to
limit the size of the study, but does not imply that we think that
they are generally preferable to other methodologies and we
recognise that quantitative parameters can only capture certain
aspects of energy security.

2. Definitions of energy security

Chester [9] described the concept of energy security as ‘poly-
semic’ and ‘slippery’, referring to its tendency to symbolisemultiple
dimensions at the same time. One underlying cause may be the
variation in different stakeholders' perception of what security
means and how to reach a desirable level. Some of this variation can
probably be explained by differences in how stakeholders value the
importance of different parameters, such as decentralisation of
supply and energy intensity [10], and national differences, such as
whether the country of the stakeholder is resource-rich or a net
importer [11] and whether the emphasis in the country is on
market solutions or state involvement. There can also be different
priorities and opportunities in industrialised and developing
countries. In the latter case, energy security tend to be more closely
connected to provision of energy access to the poorest in rural areas
and, in urban areas, access for the rapidly expanding industry and
service sectors [12]. Another explanation for variation is the sci-
entific background of researchers with, for example, political sci-
entists, engineers and complex system analysts often approaching
energy security as an issue of sovereignty, robustness and resil-
ience, respectively [13].

Energy security itself is also dynamic, since the perspective may
depend on the timeframe analysed. For example, those analysts
studying longer timeframes tend to value stability over cost-
effectiveness [14]. Overall, the differences in perspectives and pri-
orities have contributed to a debate among scholars on how energy
security will change over time and how best to respond to this
change [15]. Johansson [16] proposed that a distinction can be
made between: i) when the energy system is analysed as an object
that is exposed to threats, commonly referred to as ‘security of
supply’ or ‘security of demand’, and ii) when the energy system
works as an agent that generates or enhances (in)security, for
example caused by a perceived political or economic value. Thus,
the focus of energy security studies and the weights assigned to
different factors affecting security will depend on the purpose of
the specific analysis. It is therefore improbable, and perhaps un-
desirable, for researchers to agree upon one single definition and
interpretation of energy security.
Winzer [17] reviewed 36 definitions of energy security and he
argued that it should be separated from other policy goals, e.g. goals
related to economic efficiency and sustainability, by defining it as
“the continuity of energy supplies relative to demand”, thus nar-
rowing the concept to security of supply. Using this definition, a
secure supply chain is a vital requirement in order to deliver the
required energy services. The chain can be complex and involve
many steps, such as extraction, transportation, conversion, distri-
bution and final use. The chain can also stretch over long distances
and across national borders. As an example, crude oil can be
extracted in a remote country, transported by oil tanker to a re-
finery and then distributed by truck to a petrol station. The end user
only experiences the final steps, filling up and driving the car.
However, researchers and policy makers may be interested in
exploring different parts of the upstream supply chain to identify
root causes of insecurity, bottlenecks and interactions with other
policy domains.

A variety of factors can be considered possible threats or risks
that can either deliberately or accidentally lead to disturbances in
the flow of energy. However, two interrelated dimensions that
consumers are interested in securing can be distinguished [18]: a
physical dimension, sometimes referred to as available, reliable
and/or accessible energy supply, and an economic dimension that
incorporates aspects such as price volatility and affordability.2

These dimensions are connected, since physically unreliable sup-
ply or resource scarcity may affect prices. Lowor volatile pricesmay
also reduce investments in infrastructure and production facilities
and thus affect the physical dimension, sometimes referred to as
supply destruction. Markets should thus be designed so that prices
can act as a mediator between producers and consumers and
indicate a situation of future scarcity or oversupply.

Although physical and economic dimensions of energy security
are frequently emphasised in the definitions it is not common to
specify, for example, when high prices should be considered a
threat to security. That is, most definitions highlight dimensions
and perspectives but do not define thresholds. For the purposes of
this overview we do not attempt to formulate a new definition of
security of supply. We are interested in the broader research field
and not further elaborations of certain security features. Instead we
merely note that a variety of definitions exist, but common de-
nominators are generally related to physical and/or economic
characteristics.
3. Method and analytical framework

The overview is based on material collected in 2011e2013,
searching scholarly databases for peer-reviewed articles using
keywords such as ‘energy security’ and ‘security of supply’. Criteria
for inclusion were studies of methodological interest, such as
generic, state-of-the-art and/or novel methodologies used to
evaluate security of supply. We also used snowballing (i.e. pursuing
references within references) and, for comprehensiveness,
included a few non peer-reviewed reports in this study. Thus, there
may be methodologies that have been used to assess security of
supply that are not included as authors may use another nomen-
clature, or if they have not been cited. Furthermore, as the focus of
this article is to review methodologies and not individual articles
only a limited amount of studies that use the same methodology
has been included. Articles in which energy security is mainly
discussed, described or studied qualitatively were not included.



Fig. 2. Simplified illustration of the causal chain from cause of disturbance to conse-
quences for society.
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In order to make it easier to understandwhich part of the supply
chain that is mainly analysed, the method/s used and how these
two are related, we classified the methodologies in a framework
that mirrors the flow of energy in the supply chain. We started
with: Supply of primary energy (4.1), upstream markets and im-
ports (4.2) and domestic markets and infrastructure (4.3). We also
studied broader evaluations of economic vulnerability to distur-
bances in the energy system (4.4). These studies were analysed
separately, as economic vulnerability may arise from failure in any
one of the previous supply stages. Finally, we examined some
frequently used methods that integrate several different perspec-
tives, as well as different parts of the supply chain (4.5), see Fig. 1. It
should be noted that some methods have been used in several of
the clusters, e.g. diversity indices. In section four, these are analysed
in one of the clusters but, for comprehensiveness, examples of
other uses are provided in the summary in Section 5.

Each section below takes as its starting point a short overview of
the field, after which methodologies and evaluated factors are
analysed. Here, we noted how the assessment is approached. For
example, different methods may be used to study threats and
hazards that may affect the security of supply (e.g. an extreme
weather event or internal war), the impact a disturbance would
have on an energy system (e.g. supply shortage or price spike) or
consequences arising for the society when the system is impacted
by a strain (e.g. welfare effects of disturbances), see Fig. 2.

We also note system boundaries, timeframes, assumptions
made (e.g. rational actors, type of uncertainty) and the type of data
analysed (e.g. historical price movements or data from a simulation
model). Key conclusions are presented in Section 5. See also Table 1
for a summary of aspects evaluated.

4. Evaluating security of supply

4.1. Supply of primary energy

A prerequisite for future supply security is an adequate available
amount of primary energy to satisfy demand. In this section we
analyse common perspectives and methods to study how much
primary energy that can be supplied at a certain time and cost.
Historical production figures, future demand forecasts and possible
physical supply constraints are often used by different analysts to
assess how much can be supplied by various sources of primary
energy and at what cost. The resulting forecasts, or scenarios, of oil,
coal, gas and renewables production can be used to assess and
predict trends, e.g. changes in geographical concentration of re-
serves over time, market size and possible future scarcity.

Due to its importance in the global energy system, oil produc-
tion and the future outlook of extraction is a frequently recurring
topic in research. Sorrell et al. [20] proposed that two parameters
are needed to describe forecasts of oil production, the total stock
Fig. 1. Structure of the paper.
(i.e. amount of recoverable resources) and the production rate (i.e.
the shape of the future production profile) and concluded that only
evaluating the stock is insufficient. A case in point is that despite
price increases, several countries have seen their rate of extraction
decline at the same time as stock levels have remained at the same
level or even increased [20]. One commonly used indicator of
resource availability, the reserves-to-production ratio, may thus be
deceptive as it does not account for aboveground problems or the
future production profile. Another noteworthy aspect is that some
researchers argue that commonly used figures on fossil fuel stocks
and/or forecast extraction rates are overestimated. For a critique of
oil production forecasts see Ref. [21] and for coal stocks see Ref.
[22]. A related issue is the decline in energy balance or EROEI
(‘Energy Return on Energy Invested’) for fossil fuels, decreasing the
net production available to society as a larger share of gross pro-
duction is used for extraction. According to Heun and de Wit [23],
declining EROEI may cause sudden price movements that are not
reflected in the current market price signals, due to a non-linear
relationship between resource scarcity and production cost.

4.1.1. Resource availability
Long-term assessments of resource availability have been con-

ducted both for the global energy supply mix and for certain re-
sources. The global mix of future supply sources have been
evaluated using models of the global energy system [24e26]. This
approach makes it possible to analyse interactions between tech-
nology, demand and supply of different resources. They are usually
based on specific analyses for single energy sources and include
physical, economic and political aspects of resource supply. The
physical aspects include estimates of fossil fuel stocks, geological
restrictions on extraction rates, flows of renewable energy etc.
Economic and political aspects include factors such as political
stability and investments in exploration and extraction activities
[27].

Models of the global energy system can originate from different
scientific backgrounds such as top-down macroeconomic models
[26], technical bottom-up models [24] or a combination of these
[25]. Criqui and Mima [26] used the POLES-model, a partial equi-
librium model which takes economic and demographic develop-
ment as input parameters, to assess future demand and supply of
energy up until 2050. A drawback with this method is that it does
not consider feedback between, for example, changes in the energy
system and the overall macroeconomy. Turton and Barreto [24]
adopted a longer term perspective and studied global trends in
supply up until 2100 using ERIS, a multi-regional bottom-up opti-
misation model with technology learning. Both models can be used
to study consequences for the energy system of implementing
various policies at regional or global scale, for example stringent
climate change mitigation policies. Both also divide the global en-
ergy system into regions, thus making it possible to study changes
in international markets and energy trade, assuming economically
efficient allocation of energy resources.

Hallock Jr. et al. [28] studied the availability and diversity of
conventional oil export, assuming that oil producing states first
serve domestic demand and then export the surplus regardless the
price difference. This economically irrational behaviour of ex-
porters results in an inefficient world oil market. Based on these



Table 1
Summary of categories and examples of aspects evaluated in the material.

Category Supply of primary energy Upstream markets and imports Domestic markets
and infrastructure

Economic vulnerability Integrated methods

Examples of
aspects
evaluated

Availability of primary
resources
Geographical concentration of
resources
Forecasts or scenarios of energy
export
Average production cost and
cost fluctuations

Systematic and specific risk
Reliability of suppliers
and supply routes
Dependence, independence
or interdependence
among states

Reliability, resilience,
and robustness
of infrastructure

Welfare loss from high or
volatile prices
Economic consequences of
resource scarcity
Outage cost from power
disruptions

Holistic supply chain
security/security of energy
services
Spatial and/or temporal
comparisons of security
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assumptions, to assess oil available for importers, they studied the
difference between global extraction of oil and the fraction expor-
ted and hence available to importers, up until 2060. Estimates of
EUR (extractable ultimate resource) and maximum depletion rate
were used to construct several static scenarios of oil producing
countries future extraction. These scenarios were combined with
scenarios of exponentially increasing domestic demand in oil pro-
ducing countries, a result of political, economic and demographic
factors. The combination of constraints on extraction and distri-
bution resulted in rapidly declining oil exports accessible for im-
porters. A similar methodology has also been used to forecast the
discrepancy between Russia's production and export of natural gas,
see S€oderbergh et al. [29].

Costantini et al. [30] compared global scenarios of extraction of
both conventional and unconventional oil and gas resources up
until the year 2100 and concluded that the geographical concen-
tration of resources would increase over time. This insight was then
used to qualitatively discuss the political consequences of increased
resource concentration in a few producer countries. An example of
the opposite perspective of political interaction can be found in Erb
et al. [27], who constructed both optimistic and pessimistic sce-
narios of bioenergy potentials in the year 2050 using a ‘thermo-
dynamic biophysical balance model’ in which the world was
divided into 11 regions. One parameter that differed was political
stability and the investment climate in producer countries.
Including this factor reduced the available supply. Historically,
aboveground factors, such as investment climate, have in some
countries significantly constrained the growth in production ca-
pacity of oil [31].

Framing energy security as a problem of scarce supply and/or
high cost has resulted in policy recommendations such as pro-
moting alternative sources of energy or increasing end-use effi-
ciency. However, long-term forecasts are inherently uncertain and
it should be noted that overestimating the potential of different
primary fuels may result in lock-in effects, while underestimating
their potential may motivate investments in expensive and, at least
in the short-term, uncompetitive alternatives. Furthermore, scar-
city depends not only on supply but also on access, demand and the
ability to pay, factors that are variable over time and differ between
energy users. Complementary sensitivity analyses to study how
constraints impact on these factors may be an option to evaluate
the vulnerability of systems in a future scenario, reduce uncertainty
and thus strengthen the analysis; examples can be found in Erb
et al. [27] and Hallock Jr. et al. [28].
4.1.2. Average production cost and cost fluctuations
High production costs in itself are generally not framed as a

security concern. However, the cost can be a factor to consider in
technological assessments and comparisons if it is varying rapidly
and/or unpredictably. For example, renewable energy sources have
been evaluated and compared against conventional fossil fuels in
terms of fluctuation of production output [32] and, expected
average cost [33].

Fluctuations of production output have been studied by ana-
lysing historical data on variations in inflow and production output
to assess seasonal patterns, weather-sensitivity and how variable
different production methods are [32]. Non-dispatchable output
may increase price volatility but to what extent depends on, for
example, the availability of energy storage, alternative production
facilities and demand response. In these evaluations, domestic re-
newables are framed as a substitute for imported fossil fuels and
the option with the lowest cost and/or variability is regarded as
favourable. It is important to note here, that price volatility for
consumers is not only a consequence of the development in pri-
mary energy supply but depend on disturbances (or expectancies of
disturbances) in later stages of the energy chain.

Forecasting variability in production output may be difficult, as
it can increase or decrease in the longer term, for example due to
technical progress and exogenous factors such as climate change.
Furthermore, in a longer timeframe policy makers and individual
energy users may have the option to respond to stress by adapting
or diversifying to alternatives that are less variable or integrate
complementary options in a system, see e.g. Denault et al. [34]. For
long-term evaluations it may therefore be interesting to assess the
ability to respond to stress and short-term strain and how pro-
duction output is affected by irregular short-term shocks.
4.2. Upstream markets and imports

Importing energy is commonly valued as negative for security of
supply, as importing exposes a country to risks that are outside its
jurisdiction. In the following section we review methods used to
analyse dependence on upstream energy markets and the reli-
ability of suppliers and supply routes. Typically, nations are framed
as referent objects that import energy from suppliers or a global
market and energy trade is sometimes characterised as of strategic
importance since there are interactions with foreign policy objec-
tives. For example, there is a risk of exporting or transit countries
deliberately cutting off, or threatening to cut off, supply by using
the ‘energy weapon’. Thus, independence of imports in general and
less reliance on individual exporters in particular are usually
regarded as something to strive for. The assumption that imports
pose a greater risk than indigenous supply may in some cases be
misleading, since the ability to import energy can be used to
compensate for domestic production losses. For example, following
hurricane Katrina a large share of U.S. oil production and refining
capacity was either damaged or ‘shut-in’, but the effects on con-
sumers were contained through increased imports [35] and stra-
tegic petroleum reserves drawdown [36]. Thus, the ability to
import energy may in some cases be an asset, as it can make the
energy system more flexible and resilient. However, a prerequisite
is access to a reliable and liquid upstream market.



Fig. 3. Simplified illustration of specific risk (i.e. diversifiable risk), systematic risk (i.e.
market risk), and systemic risk (i.e. the risk of market collapse). Boxes with vertical
lines represent exporters, horizontal lines are importers, the dotted area symbolises
the market and dashed line are the different categories of risk.
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In this category of studies, energy markets and imports are
commonly analysed for two broad groups of interrelated risks. The
first is the specific risk, i.e. the diversifiable risk that is unique to
every exporter or supply route. The second is the systematic risk
that affects all agents on the market regardless of whom they trade
with on that market, i.e. the market risk that it is not possible to
diversify away from.3 A third category is systemic risk, i.e. the risk of
market collapse, originating from interdependencies that enable
cascading of events within systems that are instable or metastable,
see Fig. 3.

Assumptions and framing of relationships between states differ.
Liberals assume that states value absolute gains, whereas realists
assume that they value relative gains, i.e. seek position advantage
[39]. Furthermore, realists view the international arena as an
anarchic environment of power struggles between states. The lib-
eral standpoint, on the other hand, is that cooperation between
states will or can emerge if mutual benefits are achieved. When the
capability or incentive of states to control and deliberately restrict
the flow of energy is analysed, it is important to consider as-
sumptions of international relations as well as the conditions (e.g.
infrastructure, institutions and market structure) that must apply if
flows of energy are to be used as leverage, see Mercille [40] and
Smith Stegen [41]. Hoogeveen and Perlot [42] propose internal
instability as another important interaction with politics that may
cause supply disruptions. However, other researchers argue that
even if instability results in a conflict, the extraction of energy is
often unaffected [43].
4.2.1. Reducing the risks through diversity
Diversity, often assumed to be a factor reducing energy systems

risks, can be with regard to energy sources, suppliers and infra-
structure. Stirling [44] argued that if knowledge is lacking on the
likelihood of an event occurring and on the possible outcome, then
ignorance prevails and the best hedge option is to diversify in order
to spread the risk as much as possible. The vulnerability can then
decrease and resilience can increase, provided that the importance
of each option's functionality decreases. Measures of the diversity
level of energy systems have been developed to assess all three di-
mensions of diversity, i.e. variety, balance and disparity [45]. Variety
and balance can be measured by dual diversity indices, whereas
3 To assess the importance of supplier diversity, Vivoda [37] proposed two
different types of import indicators, those that analyse the specific situation of
importing countries and those that analyse the entire market. Some markets have a
significant systematic risk that may be important to consider when comparing
markets or security policies. As an example, SAFE [38] concluded that in a tight oil
market (i.e. low spare capacity), even small reductions in supply increase the price
significantly for all importers, due to oil being a fungible commodity that is traded
on a liquid market.
disparity is more subjective as it is the difference between the var-
iants. Another method for measuring and valuing the level of di-
versity is to use financial portfolio theory (see 4.2.2). However, none
of these methods can be used to assess the consequences if distur-
bances do occur, only the level of ‘risk spreading’, partly because the
capacity to take advantage of diversity during a strain is not assessed.

A common method of valuing diversity of imports is to use a
modified dual diversity index, e.g. modifications of the Herfin-
dahleHirschman index or the ShannoneWiener index, see e.g. Refs.
[46e51]. A country's import portfolio is mainly evaluated on the
basis of the composition of exporting countries, i.e. variety of
suppliers and balance in the volume from each supplier. These
factors are typically also complemented with weight factors to
account for, for example, a supplier's political stability and trans-
port distance. A generic import diversity index, based on amodified
HerfindahleHirschman, can be formulated as:

X
i

�
S2i *wi

�

where Si is the share of supplier i in the portfolio, wi is a weight
factor (e.g. political stability of country i).

Depending on the timeframe considered, some authors also
include the ability of importers to switch to a supplier with spare
capacity to compensate for another supplier's shortfall in produc-
tion [46], how liquid and fungible the market is, and the importer's
net import dependence, see e.g. Ref. [49]. The import indices
reviewed here measure diversifiable risk and only value exposure
to market risk by measuring the imported volume. Thus, neither
systematic risk, nor systemic risk is quantified.

A drawback with some import indices is that the supplier's
political risk is only measured with a general risk indicator such as
ICRG (International Country Risk Guide) (see e.g. Refs. [46,48]) or
theWorld Bank governance indicators (see e.g. Ref. [52]). These risk
measures do not take bilateral relationships between countries into
account, nor do they consider specific political issues that might
cause supply disruptions, as they only assess the general political
stability. Furthermore, indicators of political risk tend to be too
static to be useful for forecasting, as they only capture the recent or
contemporary situation, not future political developments.
4.2.2. Reducing risks through financial portfolios
An approach that is sometimes used to identify energy systems

that are less risky from an economic point view is to use financial
portfolio theory. It also takes its starting point in a view that di-
versity is a way to reduce risks but base the analysis on the historic
price volatility of assets (i.e. exporters) and their co-variance in
order to construct ‘optimal’ portfolios and hedge fuel price risk, see
e.g. Refs. [53e55]. According to Awerbuch and Berger [56], Mean
Variance portfolios can be used if the average portfolio cost is
minimised (instead of maximising profit as is typically the
objective):

E
�
Cp

� ¼ X
i

uiEðCiÞ

where Cp is the average cost of the portfolio, ui is the share of asset i
in the mix and Ci is the average cost of asset i.

To find an optimal portfolio, the composition of assets that holds
the lowest risk, measured by portfolio variance, for a given cost and
vice versa, can be found through:
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Fig. 4. Schematic illustration of how system state changes during a time period.
Reliability is the probability of the system state staying between the upper (x1) and
lower (x2) boundaries of desired system states. The deviation from a desired system
state (a1), arising when the system is exposed to a disturbance, depends on the sys-
tem's vulnerability, the ability of the system to speedily respond and/or recover from a
disturbance (following trajectory a2) depend on the system's resilience.
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where ui is the share of asset i in the mix, si is the standard devi-
ation of asset i, rij is the correlation between asset i and j.

Unlike other diversity measures, financial portfolios make it
easy to separate the specific risk from the systematic risk. However,
a prerequisite is that the historic volatility is a valid indicator of
contemporary or future risk. Four different techniques have been
used in the literature to value portfolio variance: mean variance,
semi variance, VaR (value at risk) and CVaR (conditional value at
risk) [57]. Mean variance uses the entire variance to calculate the
risk, whilst the other methods only consider price increases as a
risk. However, events that occur infrequently, and those that have
so far not occurred, are poorly reflected in historical data material
and such risks may therefore be underestimated. Skouloudis et al.
[58] proposed a model which also simulates risks that have not
occurred previously by using ‘catastrophe derivatives’. This method
not only includes a deterministic and stochastic term, but also a
jump component to calculate individual risk premiums for each
import route. However, to be applicable all risk parameters need to
be known and quantifiable, i.e. frequency of occurrence and the
magnitude of price spike that an event might cause.

4.2.3. Reliable supply and transit routes
The aggregated risks from entire supply routes are evaluated in

Refs. [59e61]. Le Coq and Paltseva [60] assessed the risk of different
gas pipelines with an index, constructed in a similar way to the
previously discussed import indices but also including factors such
as political stability in the transit countries and the bargaining
power between the gas exporter, transit country and importer.
Doukas et al. [59] proposed a ‘graph-theory’ basedmethod to assess
the aggregated risk from different supply routes for oil or natural
gas. The first step is to calculate the risk in each supply corridor
using the average socioeconomic risk of each transit country or
chokepoint.4 In the second step an algorithm is used to minimise
the total import risk and simultaneously maximise the flow of
energy through the preferred corridors. A portfolio of how existing
import routes should be prioritised and managed is then created. A
similar perspective, to calculate the risk of each supply corridor and
manage the aggregated risk, is also found in Kanudia et al. [61].
Kanudia et al. integrate this method with TIMES, an energy system
model, to study how the import and transit risk develops in
different scenarios up until 2040 and the trade-off between system
cost and import risk. In contrast to [59,60], in which the import
volume is considered to be predefined, this enables the analysis of
how changing levels of imports could impact the import risk.
However, it may be too simplified to assume that domestic supply
is risk free. Another room for improvement in assessments of
transit risk [59e61] is in the variables used as proxy of threat since
neither the choice of variable nor how the variable could be caus-
ally connected to the likelihood of disruption is explained. Most of
the variables are also only useful to a short to medium timeframe,
since static values are used to analyse threats that are dynamic over
time (e.g. estimates of the current level of political stability).

4.2.4. Asymmetrical (inter)dependence and the ‘energy weapon’
The risk of suppliers deliberately restricting the flow of energy

for political reasons has been analysed by attempting to quantify
the incentive for the respective actors to sustain or break an
arrangement. By applying a liberal perspective to international
relations, in which nations behave as rational profit-maximising
agents, Lilliestam and Ellenbeck [62] assessed the asymmetrical
4 The web tool from EC FP7 project “REACCESS: Risk of energy availability e

common corridors for Europe supply security” was used to assess the risk of
different chokepoints (e.g. Strait of Hormuz).
interdependence between exporters and importers in order to es-
timate the bargaining power symmetry in a future scenario with
regional electricity trade. Thus, the mutual dependences between
importers and exporters were valued simultaneously to assess in-
centives to deliberately restrict the flow of energy in a game theory
model. The method chosen was to calculate the economic inter-
dependence as the difference in alternative cost in the event of a
supply disruption by comparing the revenue loss of the exporter
with the outage cost of the importer. It is thus mainly applicable for
evaluating continuous flows of energy, since discrete flows enable
storage or redirection of supply to other users.

4.3. Domestic markets and infrastructure

In this section we analyse methodologies used to evaluate
whether the infrastructure and market design is sufficient to pro-
vide an adequate level of energy security. Although methods vary,
energy infrastructure, such as the electricity or gas grid, is
commonly analysed from the perspective of: i) reliability, i.e.
probability of satisfactory operation over the long-term [63], ii)
vulnerability, i.e. the consequences that arise when the system is
exposed to a strain [64], and/or iii) resilience, i.e. the ability of the
system to speedily respond to and/or recover from a disturbance
[65], see Fig. 4. These different perspectives have also been ana-
lysed at different points in time, mainly in terms of the technical
performance of current systems (e.g. Ref. [66]), and of future
changes in system characteristics under different regulations and
market designs, see e.g. Refs. [65,67e69]. Examples of the aspects
studied are how an increased amount of intermittent renewables
affects the reliability of the system [69] or volatility of the elec-
tricity price [67]. These aspects can be studied using agent-based
modelling in which system components (e.g. a technical system)
and actors (e.g. individuals or organisations) are represented as
autonomous agents and their respective interactions and response
to a disturbance are simulated. The method can be used to model
complex socio-technical systems such as a decentralised electricity
market and assess how policies will affect different business
models, e.g. incentives to invest in back up capacity and implica-
tions for the system's reliability, see Kr€oger and Zio [68].

4.3.1. Infrastructure reliability
Reliability analyses are commonly conducted to assess the

reliability of power systems using probabilistic or deterministic
methodologies [70]. Probabilistic methods use the historical failure
and repair rate of components to assess the reliability of the entire
system, or parts of it, using indicators such as LOLP (Loss of Load
Probability) [71] or SAIDI (System Average Interruption Duration
Index) [66]. Low reliability can result in costly outages for energy
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users, while high reliability can involve expensive investment in
power infrastructure. Using a probabilistic method makes it
possible to optimise the level of reliability using CBA (cost-benefit
analysis). On the other hand, a deterministic method can assist in
specifying requirements of system reliability in a defined situation,
for example, the minimum reserve margin or the functionality of
the system if one or several components are out of operation. The
latter is sometimes referred to as the N-1 criterion, which stipulates
that the system must continue to operate even though any
component fails. Reliability evaluations of power systems can
analyse one or several of the system's parts, including generation,
transmission and distribution, see e.g. Refs. [71e73]. The evalua-
tions can also target two different aspects of power reliability,
namely system adequacy and system security [63]. System ade-
quacy describes the system's ability to meet consumer re-
quirements at all times and has been analysed as ‘steady state’, i.e. a
static condition where the system is in equilibrium. The opposite,
system security, is a valuation of the system's ability to ‘withstand
disturbances’, a dynamic state. However, these perspectives have
also been combined, see e.g. Refs. [71,73].

4.3.2. Infrastructure vulnerability and robustness
The vulnerabilities of a system can be analysed in order to un-

derstand its dynamic behaviour in response to a disturbance and to
identify causes of system instability [74]. Such analysis commonly
makes use of a deterministic approach, as the characteristic of the
disturbance, e.g. magnitude, is predetermined and its likelihood of
occurring is ignored, as it is only the severity of the consequences
that are assessed. Strains can originate from different causes, e.g. an
external attack on the system that causes component failures, a
technical malfunction, accidents or natural disasters. Studies of
vulnerabilities are sometimes framed as part of CIP (Critical Infra-
structure Protection), see e.g. Ref. [74]. Some CIP approaches can be
used to simulate energy systems and their interdependencies with
other systems, such as a physical, cyber, geographical or logical
relationship between infrastructures [75].

Frequently used methods include relational databases, network
theory, rating matrices, system dynamics and multi-agent systems
[74]. As an example, a network topology model can be used to
represent an energy system as nodes (e.g. generators) and edges
(e.g. transmission lines) [76]. The system is tested by disabling
nodes and edges, either randomly or in a predefined pattern (e.g. a
geographical area), and simulating how the system functionality is
affected, see e.g. Ref. [64]. CIP simulations can reveal cascading
effects and identify the components that are critical for a system's
functionality. They can also be applicable for studying various as-
pects, for example how to prioritise where proactive measures
should be implemented (e.g. redundancy, increased protection,
etc.) and which components should be restored first after an
outage. The system can be considered robust if it has a low
vulnerability, i.e. it has the capacity to restrain disturbances.

4.3.3. Infrastructure resilience
Fuel flexibility of individual system components, such as power

generators, has been used as a proxy of response capacity to dis-
ruptions [77,78]. In studies of system resilience the focus is the
entire system's ability to respond and/or rapidly recover and the
costs are analysed in addition to how the disturbance directly im-
pacts on the system, see e.g. Refs. [65,79,80]. Another characteristic
of system resilience studies is that they emphasise structure, re-
lationships and interactions between different parts of the system
rather than the performance of individual parts or components
[81].

A characteristic of resilient systems is that they possess an
adaptive capacity that enables adjustment to new conditions [82].
Thus, the surrounding environment and exogenous factors of the
system are framed as being in a state of constant transition and
hence the system needs to be agile. As the system recovers from
disturbances it should reach a stable state, although this does not
have to be the same as the original state. The disturbance is
sometimes assumed to appear randomly, for which deterministic
methodologies are used [65], and/or with a certain probability, for
which probabilistic methods are used [80]. Deterministic meth-
odologies make it difficult to conduct traditional CBA, as the like-
lihood of the disturbances studied is unknown. However, even if
costs and benefits cannot be quantified, increasing system robust-
ness or resilience can be considered a hedge against future uncer-
tainty. As an example, UKERC [65] studied the development of the
UK physical gas infrastructure using the MARKAL-MED, WASP and
CGENmodels sequentially to create four detailed scenarios. System
shocks were simulated by testing the consequences of dis-
connecting major gas terminals for different lengths of time, i.e. the
shock was caused by physically unavailable primary energy. The
cause and probability of the disturbance were thus irrelevant for
the analysis, as it was the system's resilience that was analysed. The
studied system responded to the shocks by different means, for
example by compensating through increased use of other fuels and
gas interruptions to industrial customers, which resulted inwelfare
losses. The analyses were complemented with an insurance anal-
ogy in which the frequency point of breakeven was estimated, i.e.
how often a shock must occur for an investment to increase resil-
ience to be economically justifiable.

4.4. Economic vulnerability

Disturbance in all supply stages may result in price increases
and/or disruptions in downstream stages that at the micro scale
affect individual energy users and at the macro scale affect the
national economy. In this section we analyse methodologies to
study: i) economic vulnerability to price movements, and ii) the
cost of supply interruptions.

During an unexpected and exogenously caused price shock, the
economy may move out of equilibrium if it is not able to respond
rapidly enough. This causes consumer countries to experience
three different types of economic loss: i) loss of the potential to
produce, ii) macroeconomic adjustment losses, and iii) excess
wealth transfer to producer countries [83]. These losses affect the
macroeconomy, reduce welfare and have a negative impact on the
balance of trade. Indicators such as energy use by a nation or sector,
spending on energy or the energy use per capita have been used in
several studies to assess exposure to high energy prices, see e.g.
Refs. [8,84e86]. These types of indicators can be useful for
comparing countries or following trends and progressions over
time if used as early warning indicators. However, these indicators
only provide a ‘static’ view of economic vulnerability, as they
measure the current situation and not what happens during, or
after, a price increase. Thus, the indicatorsmentionedmay be useful
as a proxy for exposure to high prices, but not the sensitivity of the
economy or the adaptive capacity of users.

4.4.1. Macroeconomic effects of high or volatile prices
The potential welfare loss that occurs due to high and volatile oil

prices has been studied with top-down economic models, see e.g.
Refs. [83,87e89]. Price shock characteristics (e.g. probability of
occurring) are generally estimated from historical data on price
movements [87] and/or a forecasts that are fairly similar to his-
torical figures [83], while the resulting loss of wealth is estimated
using a macroeconomic model that considers factors such as elas-
ticity of demand. These studies thus presume that the price in-
crease is temporary and that the price reverts back to the mean.



Fig. 5. Illustration of a complex indicator consisting of three indicators. To calculate
these three indicators can, in its turn, require conducting evaluations of various parts
of the supply chain (e.g. to assess diversity of suppliers).
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Lutz et al. [90] adopted a similar perspective, i.e. of estimating
national welfare loss, but instead analysed the economic conse-
quences for importing nations of a persistent decline in oil pro-
duction. Thus, instead of mainly relying on data on historical price
movements, an explorative scenario in which supply of energy is
scarce was analysed.5 The reviewed studies of welfare loss are often
combined with impact assessments examining which policies are
cost efficient and reduce the dependence on oil imports, e.g.
increased end-use energy efficiency or replacing oil with biofuels
[83,87]. However, since the probability, occurrence, duration and
magnitude of a price shock is predefined and the import risk is fixed
for a given import volume (i.e. only systematic risk), security pol-
icies proposed in the studies are bound to be demand side options
or fuel switching. If it is possible to reduce the risk of a price shock
by switching suppliers, supply routes or similar means, a comple-
mentary analysis of the specific risk from different import sources
would be valuable.

4.4.2. Cost of power interruptions
The economic aspect of energy insecurity has also been studied

empirically to calculate the direct and/or indirect cost of a power
supply interruption for end users, sometimes measured as the VoLL
(value of lost load). As there is a trade-off between reliability and
cost, some researchers have tried to determine the optimal level of
reliability. De Nooij et al. [93] list four different methods for esti-
mating this: i) surveys and interviews of stated preferences (e.g.
willingness to pay to avoid an outage), ii) the production-function
method (lost production or leisure time during an outage), iii)
market behaviour (revealed preferences), and iv) case studies (e.g.
monetising the negative effects from a real supply interruption).
The different methods have their respective strengths and weak-
nesses, for example only a few larger participants deal with inter-
ruptible contracts, which limit the ability to draw general
conclusions on market behaviour.6 However, it is worth noting that
studies on outage cost demonstrate a great variety in results. For
example, Praktiknjo et al. [95] conducted a literature review of
private household outage cost and found 21 studies with estimates
ranging from 0.48 to 68 V/kWh lost through outage.

4.5. Integrated perspectives

Integrating and comparing different aspects of security calls for
prioritisation. Cost-benefit analysis, as discussed above, is one op-
tion for prioritising on monetary grounds, but it may only be used
when the analyst has firm knowledge of the characteristics of the
security threat (e.g. magnitude and probability), the outcome of the
impact (e.g. severity) and options for a prevention policy. If this
information is not available other methods may be used, such as
complex indicators or methods to support decision making under
uncertainty.

4.5.1. Complex indicators
Indices, sometimes referred to as complex indicators, are con-

structed by adding the results from several quantitative indicators
into a single value, see Fig. 5. An index value can be interpreted as a
proxy of a general level of ‘insecurity’. To construct an index a
scoring scheme is needed (i.e. the scale on each indicator) as well as
5 Other researchers who assume that upstream markets will operate, remain
liquid and allocate available resources efficiently have studied how scarcity affects
GDP at regional and global level, see e.g. Refs. [91,92].

6 Some authors propose mandatory security markets, with tradable security
agreements, as they argue that this would enhance security and benefit the long-
term interests of both producers and users [94].
a weighting scheme (i.e. the aggregation rule that determines how
indicators should be added). Some indices rely on expert opinions
to come up with weight factors [78,96], whereas others use the
same weight factor for all indicators [97e99]. However, the selec-
tion of criteria (e.g. choice of different indicators) and weight fac-
tors is usually not transparent or well explained.

Although the above indices all have a broad coverage of research
perspectives, they differ somewhat in focus. For example, the index
developed by Molyneaux et al. [98] mainly focuses on contemporary
perspectives of resilience of power system and is used for spatial (i.e.
cross-national) comparisons. An index may be useful as a starting
point to provide an overview and identify best practices within a
group of countries, although the aggregation makes detailed as-
sessments of strengths and weaknesses difficult. Furthermore, per-
ceptions and preferences of what energy security is and how it
should be valued may differ between countries [100]. It is therefore
questionable whether the same index and criteria can be used to
analyse heterogeneous countries without losing validity. Another
purpose with the indices is to follow up developments, historical
trends and progressions over time [101e103] and/or to compare and
evaluate scenarios of systems development [78,104,105]. It can thus
also serve as a tool in an early warning system.

4.5.2. Decision making and prioritisation under uncertainty
Another tool used to support decision making is multi-criteria

analysis, see Refs. [45,106,107]. Karvetski et al. [106] proposed use
of an analytical hierarchy process whereby experts make pairwise
comparisons of various aspects, policies or scenarios and rank them
individually based on their judgement and a set of predefined
criteria. Multi-criteria analysis can be used to analyse both qualita-
tive and quantitative aspects. If only quantitative data is evaluated,
the ranking weights can be used to construct a complex indicator
(see 4.5.1). To account for uncertainty in knowledge of the devel-
opment of exogenous parameters, Stirling [45] combined the multi-
criteria analyses with an assessment of diversity. This allows the
importance of diversity to be weighted differently depending on the
respondent's or policy maker's priorities. Lee et al. [107] also used
multi-criteria analysis to prioritise technological options and
formulate a robust development strategy, but combined itwith fuzzy
logic so that respondents could provide a range rather than a fixed
value for the performance of different options. A drawback with
fuzzy logic is that it does not consider second order probabilities, i.e.
within the interval all values are assumed to be equally plausible.

Real options theory has been used to optimise investments
when the future is uncertain, see Ref. [108]. Originating in financial
theory, real options theory takes account of managerial flexibility as
the timing of the decision is a central part, i.e. agents can decide to
either invest now or wait one or several time periods and see how
the future unfolds. Blyth [108] proposed that policy makers use the
method to analyse how energy companies may respond in various
uncertain situations, e.g. due to incomplete knowledge on future
prices of fuels or legislation.
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5. Discussion

5.1. Aspects studied

Generally, upstream supply stages are primarily analysed on
long-term trends. These evaluations tend to focus on technical or
below ground issues, such as resource scarcity, that may result in
increased geographical concentration of resources and future dis-
turbances. Trends in production costs are also evaluated.

Imports are assessed on the basis of risk spreading among ex-
porters, exposure to unreliable suppliers, supply routes and/or
upstream markets. Most methods, and previous studies, make use
of a portfolio approach to measure the level of diversity in the
import mix. When import dependence is analysed, the domestic
production is commonly assumed to be risk free.

Downstream stages are analysed on reliability, vulnerabilities
and/or resilience to disturbances (known and/or partially un-
known). The disturbance can have its origin internally within the
system (e.g. component failure) or externally (e.g. severe weather
or terrorist attack) resulting in a physical strain. Others analyse
economic vulnerability, e.g. the macroeconomic effects of volatile
prices, using equilibrium models. Finally, some researchers eval-
uate and compare several of the above aspects and integrate
different perspectives, using complex indicators and/or multi-
criteria analysis.

There are a variety of sources that can cause disturbances that
have been analysed but, some methods do not enable connecting a
potential threat to the likelihood of it causing a disruption or the
consequences that can arise. Also, threats are commonly seen as
exogenous factors that are constant over time and can be projected
into the future. For example, the historic level of political instability
in producer countries is sometimes used in assessments of these
countries future reliability as suppliers without assessing how the
level of stability can develop over time or the likelihood of insta-
bility affecting supply.

Only analysing disturbances, and neither its cause nor impact,
has mainly been done for price volatility, for example using
financial portfolios. In these evaluations, the strain is framed as
occurring in the energy market and the aim is to protect the
economy.

Methods that analyse howa disturbance could impact an energy
system can either use models that are representations of energy
systems in which vulnerability can be tested (e.g. “what would
happen if component X would fail”) or indicators that can be used
as proxies of the systems vulnerabilities or capabilities, such as
capacity to switch between fuels.

The outcome for society, when the energy system is exposed to a
strain, is generally assessed for disturbances of short duration. This
is probably because the historical experience of disturbances is
mainly of this character. One exception is found in Lutz et al. [90],
who estimate the national welfare loss caused by declining avail-
ability of oil. A lack of this longer perspective is mainly a problem
with the occurrence of major trend shifts in energy supply distur-
bances, causing persisting physical strain and high prices, some-
thing which has not happened historically.7 However, this is not to
say that it will not happen in the future.

5.2. Scientific origin, strength and weaknesses of the methodologies

There is a great variety in terms of methodologies being used
partly due to the researcher's background in different scientific
7 A summary of major historical disruptions of gas and electricity can be found in
Ref. [65] and of oil in Ref. [5].
fields (e.g. economics, engineering, political science and natural
Science; see Table 2), but also to enable valuation of different as-
pects of energy security. Since the methods complement each
other, having different strengths and weaknesses, there is not one
which is always the best option. The suitability depends on the
research question.

Energy security researchers have adopted several methods from
the field of economics. Here, there is an aspiration to monetize
effects (e.g. macroeconomic welfare effects from price volatility or
cost of power outages); it is assumed that rules describing the
behaviour of the current energy system can be used to predict the
future (e.g. financial portfolios use historic data on prices and
volatility to hedge volatility), and threats to market efficiency are
seen as relevant energy security factors to study (e.g. concentration
of producers). Often, these methods are used to value and compare
different options to increase security of supply and find cost effi-
cient solutions. However, these methods are less suitable to study
radical system changes and longer timeframes if this alters the
structure and feedbacks within the system. If these aspects are
analysed, an opportunity for improvement could be to conduct
more thorough sensitivity analysis. Concerning dual diversity
indices, thesemethods are easy to use and provide results of how to
hedge insecurity through increasing the number and balance of
options. However, a limitation is that risks that correlate, such as
systemic and systematic risk, is overlooked. Also, these methods
can only be used to value risk spreading and not to find an optimal
level.

Methods from the field of engineering have been adapted to
value reliability of energy systems, particularly power systems, and
the subfield of operations research has contributed with methods
to support decisions in uncertain environments, such as multi-
criteria analysis. Analysis of reliability depart from a probabilistic
view of threats and use historical failure rates, which is observable,
to estimate reliability of systems or deterministically the reliability
if a certain component is malfunctioning. This knowledge can then
be used and combined with insights of outage cost to find cost
efficient investments to increase systems reliability. One strength of
this methodology is that it is based on actual observations. How-
ever, since this requires the distribution of threats to be known the
method is mainly applicable to analyse frequently occurring tech-
nical failures. Methods originating from operations research have
been used to analyse and weigh different threats to security of
supply to compare the level of security of different energy systems.
These methods can be used to evaluate factors that are hard or
sometimes impossible to monetize. The results from these evalu-
ations depend to a large extent on subjective judgement and
expertise of those who contribute to the analysis. Increasing the
transparency of the decision process would improve the ability to
interpret the validity and generalizability of the results.

Political science provides different perspectives of how inter-
national relations and energy security interacts. Concerning
quantitative methods, researchers have developed methods to
analyse degree of interdependence, distribution of power and
incentive to use the energy weapon. These evaluations use game
theory and are sensitive to assumptions of states rationale and
ability to have perfect foresight of their action's consequences. It
could be useful to compare the result with how states have acted in
the past and use their historic or doctrinal behaviour as basis for
assumptions of their behaviour.

In system studies there are methods that in some way depart
from more than one scientific tradition, such as combining engi-
neering and economics, in order to analyse energy systems in a
broader sense. Energy system models, such as MARKAL e an
optimization partial equilibrium bottom-up model that generates
scenarios of technologies that minimises total system cost, have



Table 2
Overview of methodologies indicating strengths and weaknesses, disciplinary origin and examples of publications.

Disciplinary origin Economics Engineering

Sub-discipline Macro-economics Micro-economics Industrial
Organization

Financial Theory Power &
Robustness
Engineering

Operations
Research

Examples of
method

Partial equilibrium models,
impact assessment, cost-benefit
analysis

Surveys,
production-
function approach,
market behaviour,
case studies

Dual diversity
indices (e.g.
Herfindahl
eHirschman index,
Shannon Wiener
Index)

Financial portfolios,
real options theory

Power system
reliability
assessments

Multi-criteria
analyses, analytic
hierarchy process,
fuzzy logic

Examples of aspects
evaluated

Welfare loss from high or
volatile prices

Cost of power
outage

Exposure to market
risk or specific risk

Exposure to market
risk and specific
risk, uncertainty/
timing of
investment
decisions

Technical reliability
(probability of
system operating
during a specified
time)

“Holistic” supply
chain security

Strengths Possibility to compare, and
identify cost efficient, strategies
to increase security

Can be combined
with power
reliability
assessments to
identify cost
efficient
infrastructural
investments

Required data is
often easily
accessible and
publicly available

Enables analysis of
trade-offs between
diversity and
portfolio cost

Useful to mitigate
frequently
occurring failures

Useful to compare
factors that are
difficult to quantify
with a single digit,
fosters dialogue
and illuminates
priorities

Weaknesses and
opportunities for
further
development

Require quantifiable data on
strains (distribution and
outcome) and mitigation
options, sectorial and
distributional effects are often
overlooked

Macroeconomic
cost of outage and
long-term effects
are not evaluated

Correlation
between risks are
overlooked (e.g.
market risk)

Mainly applicable
to short timeframes
and easily
quantifiable
parameters,
underestimates tail
events

Requires a firm
knowledge of
system and the
distribution of
threats/failure rate

Result can have low
transparency,
making it difficult
to draw
generalizable
conclusions

Example of papers,
reports, studies

[83,87e90] [93,95,109] [46e51,60] [53e55,57,58,108,
110,111]

[63,66,69,71e73] [45,106,107]

a System studies integrate methods from several disciplines, e.g. economics and engineering.
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been used to generate forecasts or scenarios of how energy systems
could develop. Sometimes energy security parameters have been
incorporated as a constraint the model has to satisfy (e.g. a certain
level of installed back up capacity), in other studies some aspect of
energy security is analysed after the model has constructed a sce-
nario using single indicators (e.g. import dependence) or one of the
other methods mention in this overview (e.g. diversity of energy
carriers). These models can be useful to analyse trends and devel-
opment over time. However, depending on the granularity and
iteration steps, short-term threats (e.g. fluctuations in production)
and problems related to interregional trade are sometimes
disguised. Security issues related to price volatility is commonly
overlooked. Also, some models do not capture macroeconomic
feedbacks from high energy prices, an exception can be found in
Ref. [86] that hard-link a bottom-up with a top-down model.

A system perspective has also been adapted to construct com-
plex indicators in which data is aggregated to enable comparisons
over time and/or space. The aggregation can disguise the vulnera-
bility of certain sectors (e.g. transportation), users (e.g. energy
poverty in heterogeneous societies) and since aggregation rules are
predefined it is assumed that priorities and threats are static.
Furthermore, implications for security are difficult to derive from a
certain value.

In complex system studies it is assumed that systems are dy-
namic, adaptive and system parts interact through feedback
mechanisms. Methods from this field have been used to analyse
interdependencies between infrastructures and to identify com-
ponents that are critical for the functionality of the energy system.
Generally, these methods require a detailed description of system
properties and, consequently, have primarily been used to analyse
energy systems similar to existing systems and not profound
changes over longer timeframes. Properties of the energy system
are seen as affecting the severity and consequences a disturbance
would have while threats and hazards are exogenous.

From the field of natural science, methods have been adapted to
estimate resource potentials and diversity. In estimates of resource
potentials and flow rates researchers make assumptions of how
much energy can be produced or extracted from a resource during a
defined period of time taking into account the boundary conditions
and restrictions that needs to be met at all times, such as laws of
thermodynamic, assumed maximum conversion efficiency and
geological depletion rates. The results can be used to estimate
physical aspects of availability and trends over time. Economic as-
pects, such as effects on energy prices or volatility, are usually not
valued. Also, feedbacks between scarcity, prices and technological
progress are rarely studied.

From ecology, diversity metrics have been adapted that value
the three dimensions of diversity; balance, variety and disparity. In
an uncertain environment, diversity is seen a hedge that can reduce
exposure to unforeseen events. However, if disturbances do occur
the consequences arising depends on the energy system's capa-
bility to take advantage of the various options at hand, i.e. a
diversified system is not equivalent with a resilient system. A future
research direction could be to develop metrics to analyse these
aspects, for example by placing greater emphasis on adaptive ca-
pacity and flexibility.

6. Moving forward and concluding remarks

A great variety of methodologies exist to evaluate energy se-
curity. As a result of this overview, we suggest putting more effort
into developing: i) methods that enable evaluation of sources of
insecurity that are dynamic and change over time, ii) methods to
compare energy carriers and supply chains in the medium
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[60,62] [59,64,65,67,74] [24e26,30,61,85,86] [78,97e99,101
e104]

[27e29,112] [44,45]
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timeframe, and iii) approaches to assess adaptive capacity and
transformability.8 Further, it may be beneficial to use interdisci-
plinary methods, conduct more thorough sensitivity analysis and
approach security of supply from the perspective of securing en-
ergy services rather than supply flows.

Sources of insecurity can be dynamic and change over time, for
better or worse, but insecurities are in most studies seen as static
and independent of the development of the energy system; for
example, historic levels of political stability in producer countries is
used in assessments of these countries' future reliability. An option
for improvements could be to conduct subsequent valuations with
more extensive sensitivity and uncertainty analyses, particularly of
factors that are important for security of supply and assumed to be
exogenous (e.g. how international relations and upstream market
structure will develop) in order to reveal which policies are robust
(i.e. useful in situations where exogenous factors differ). Inspiration
can be found from the field of scenario studies that sometimes use
scenarios of exogenous factors to identify robust policies and
analyse certain strategies sensitivity (see e.g. Refs. [114,115]). Con-
cerning some sources of insecurity, it can also be fruitful to assess if
and how these insecurities would be affected from the develop-
ment of the energy system; for example, how the likelihood of
antagonistic threats can be reduced if the resilience of the system is
improved.

In many studies, each energy carrier is analysed separately
when it comes to their level of security. This makes it difficult to
compare novel end-use technologies and how they could impact
security, e.g. comparing vehicles powered by electricity, hydrogen
and biofuels. Researchers that compare energy carriers, e.g. Refs.
[32,87,88,110,111], use the historical level and/or volatility of the
market price for the comparison, which narrows the timeframe
considered as the relative market price, and volatility, of com-
modities may change over longer timeframes. In order to compare
8 Walker et al. [113] defined transformability as “the capacity to create a
fundamentally new system when ecological, economic, or social structures makes
the existing system untenable”.
supply chains on longer timeframes, one could turn the analyses
from the volatility itself to how parameters that affect volatility
develop, e.g. comparing the supply chains on parameters such as
flexibility of production, spare capacity, storage and demand side
response.

The portfolio approaches (financial portfolios, dual or triple di-
versity indices) rely on data of the composition of options used
historically or what is used in a particular scenario. Current ap-
proaches can disguise risks that correlate between options (such as
systemic and systematic risk) and the vulnerability of individual
sectors (such as transportation). Furthermore, the capability to use
options not in the current portfolio, such as switch between fuels or
suppliers, is underestimated or not valued. An alternative approach
could be to move from analysing portfolio diversity to agility and
flexibility of energy systems; for example, evaluating portfolios of
options available to respond to disturbances and new conditions
and how to develop current systems to increase those options. This
would involve evaluating which options and capabilities that exist
to enable change. A starting point can be found in Stirling [116] and
Blum and Legey [117] who suggests placing more emphasis on
evaluating resilience, adaptability and transformability. Evaluating
these capabilities would also make it possible to reduce negative
consequences from trend shifts and low-probability but high
impact events that may be hard to anticipate in advance. It could
also be useful to shift the referent object, from evaluating security
of energy supply to security of energy services since this shift
would illuminate that security can be achieved through different
means. Focusing on delivering secure energy services, rather than
securing flows, opens up the possibility to identify different op-
portunities throughout the supply chain; for example, overall
increased energy efficiency, demand side management of elec-
tricity or modal shift of transportation.

Finally, several of themethodologies are usually used separately,
so energy security is a multidisciplinary rather than interdisci-
plinary field. This is not a problem per se, but the different meth-
odologies sometimes depart from conflicting assumptions and
promote opposing solutions on how to increase the level of security
(e.g. a diversified system vs. a cost efficiently optimised system,
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reduce imports vs. increase interdependence, reduce threats vs.
increase resilience). An option for bridging the gap between the
various assumptions and scientific fields and simultaneously
improving current valuations may be to combine different meth-
odologies, for example, by testing a system's response to both
volatile prices and physical disruptions.
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