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ABSTRACT 

The primary Moraxella catarrhalis-specific humoral immune response, and its 

association with nasopharyngeal colonization, was studied in a cohort of infants from birth to 

2 years of age.  

Results indicated that the levels of antigen-specific IgG, IgA and IgM showed extensive 

inter-individual variability over time, with IgM and IgA levels to all 9 recombinant domains, 

from 7 different OMPs, being relatively low throughout the study period. In contrast, the level 

of antigen-specific IgG was significantly higher for the recombinant domains Hag
385-863

, 

MID
764-913

, MID
962-1200

, UspA1
557-704

 and UspA2
165-318

 in cord blood compared to 6 months of 

age (P 0.001). This was a most likely a consequence of maternal transmission of antigen-

specific IgG to newborn babies, possibly indicating a future role for these 3 surface antigens 

in the development of an effective humoral immune response to M. catarrhalis. Finally, at 2 

years of age, the levels of antigen-specific IgG still remained far below that obtained from 

cord blood samples, indicating that the immune response to M. catarrhalis has not matured at 

2 years of age. 

We provide evidence that a humoral antibody response to OMPs UspA1, UspA2 and 

Hag/MID may play a role in the immune response to community acquired M. catarrhalis 

colonization events. 

 

Keywords: Moraxella catarrhalis; colonization; immune response; surface antigens; vaccine; 

children 
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INTRODUCTION 

Moraxella catarrhalis is an aerobic, Gram-negative diplococcal commensal of the 

respiratory tract. Although healthy children are frequently colonized with this bacterium, it is 

also able to cause disease, being especially associated with otitis media (OM), as well as 

exacerbations of chronic obstructive pulmonary disease (COPD) in adults. 

Studies have shown that the bacterium colonizes the nasopharynx soon after birth and 

that the carriage rate of M. catarrhalis in healthy children may differ per geographical region, 

season and year of isolation [1]. For example, in a German study (November 1991 to April 

1992), 9% of children attending day-care centers ranging in age from 4 months to 3 years old 

were colonized with M. catarrhalis [2]. In a Japanese study conducted in 1999, children aged 

1 month to 5 years attending day-care centers, 35% were found to be colonized [3]. In The 

Netherlands, a comparative study of 1.5 to 14 month old children born between February 

2003 and August 2005, indicated a carriage rate for children ranging from 11.8% at the age of 

1.5 months to 29.9% at the age of 6 months and 29.7% at the age of 14 months [4]. In general, 

despite local geographical variation, infants tend to become colonized with M. catarrhalis at a 

very early age, resulting in a nasopharyngeal colonization peak for M. catarrhalis at 2 years 

of age [5]. 

Bacterial adherence to the respiratory mucosa is an essential step towards colonization 

of the human respiratory tract epithelium, and research has indicated that the most important 

adhesins responsible for the attachment of M. catarrhalis to host cells include the outer 

membrane proteins (OMPs) UspA1, UspA2 and Hag/MID, though several other surface-

exposed outer membrane proteins have been described that may also play a role in the 

process. Further, with respect to M. catarrhalis, it has been shown that colonization of the 

human respiratory tract epithelium results in an increased risk of disease, specifically OM 

disease (both chronic and acute) in children [6-7]. Further, two distinct genetic lineages 
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related to 3 different 16S rRNA types have been identified for M. catarrhalis, which differ 

phenotypically in their ability to resist the killing effect of human serum (sero-resistant versus 

sero-sensitive), and in their ability to adhere to human epithelial cells [8-9]. Therefore, it is 

reasonable to expect that an effective immune response raised against UspA1, UspA2 and 

Hag/MID, for example via vaccination, will have a significant effect on colonization and 

disease. 

OM is one of the major childhood diseases that necessitate visits to general 

practitioners [10]. In 2004, the American Academy of Pediatrics (AAP) published new 

guidelines that addressed the diagnosis and treatment of acute otitis media (AOM), largely 

because the treatment of AOM is not always appropriate, and the long-term overuse of 

antibiotics increases the risk of the development of antimicrobial resistance. The AAP 

guidelines recommended the use of observation as a potential strategy for the treatment of 

AOM, although global rates of antibiotic prescription for AOM still vary greatly [11-13].  

An alternative strategy to the use of antibiotics in the treatment of OM disease is 

vaccination [14]. However, there is currently no licensed vaccine available against M. 

catarrhalis, and none of the antigens so far described (which may serve as potential vaccine 

candidates) have progressed to clinical trials. The challenge in identifying potential vaccine 

candidates for M. catarrhalis lies in identifying antigens that are able to generate an 

appropriate immune response that prevents the process leading from colonization to infection, 

and are conserved among global strains [15]. It is known that healthy adults possess naturally 

acquired serum antibodies directed against several M. catarrhalis OMPs, apparently via the 

acquisition and elimination of many different M. catarrhalis strains [16]. Further, changes in 

antibody response are observed in adults suffering from M. catarrhalis-mediated COPD 

disease [17].  
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The introduction of a vaccination strategy against M. catarrhalis (either in children 

and/or in adults) is still a topic for debate, though the continuing high prevalence of OM 

disease in children and the rising prevalence of COPD in adults means that M. catarrhalis-

associated disease continues to increase in global significance. Further, the introduction of 

successful vaccines against respiratory bacterial pathogens that occupy the same niche as M. 

catarrhalis e.g. Streptococcus pneumoniae and Haemophilus influenzae could facilitate a 

concomitant increase in M. catarrhalis colonization and infection. 

Several new M. catarrhalis OMP vaccine candidates have been described in the 

literature, and previous studies have suggested that a multivalent vaccine comprising a 

combination of epitopes of these M. catarrhalis OMP vaccine candidates should form the 

basis of a vaccine to prevent M. catarrhalis-mediated colonization and disease [16, 18-19].  

However, relatively little is known about the humoral immune response to these 

vaccine candidates, especially within the first few years of life. The present study was 

performed to determine the humoral immune response to potential M. catarrhalis vaccine 

candidates in healthy Dutch children from birth to 2 years of age. The previously described 

M. catarrhalis recombinant domains UspA1
557-704

, UspA2
165-318

, MID
764-913

, MID
962-1200

, 

Hag
385-863

, MhaC, McaP
51-333

, orf238 and orf296 were used in this study [16, 20-24]. These 9 

recombinant proteins (from 7 different OMPs) represented the majority of published M. 

catarrhalis immunogenic proteins discovered at the time that the study was initiated. Further, 

the relationship between M. catarrhalis colonization and humoral immune response was also 

investigated.  
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MATERIALS AND METHODS 

 

Study cohort 

This study was embedded in the Generation R Study, a population-based prospective 

cohort study, designed to identify early environmental and genetic causes of normal and 

abnormal growth, development and health from fetal life until young adulthood [25]. This 

study was performed in a randomly selected subgroup of Dutch children whose parents are 

ethnically homogeneous (two parents and four grandparents born in The Netherlands), in 

order to exclude possible confounding factors associated with ethnicity. 

In total, 57 infants who were born between February 2003 and August 2005 were 

included in this study. Three or 4 serial serum samples were collected from each infant for 

inclusion in the study. The collection totalled 177 samples, comprising 54 (31%) cord blood 

samples, 32 (18%) samples obtained at 6 months, 46 (26%) samples obtained at 14 months, 

and 45 (25%) samples obtained at 24 months of age. The bacterial colonization status was 

determined by taking nasopharyngeal swabs at the ages of 1.5, 6, 14 and 24 months of age, 

with swabs being taken at the same time as serum samples. Swabs were obtained from 40 

(70%), 49 (86%), 50 (88%) and 48 (84%) infants at 1.5, 6, 14 and 24 months of age, 

respectively. The colonization status was determined using standard M. catarrhalis culture 

and detection techniques [1]. 

 

Moraxella catarrhalis antigens 

The previously described M. catarrhalis recombinant domains UspA1
557-704

 (aa 557–

704 of UspA1), UspA2
165-318

, MID
764-913

, MID
962-1200

, Hag
385-863

, MhaC, McaP
51-333

, orf238 

and orf296 were used in this study [16, 20-24]. These 9 recombinant proteins (from 7 

different OMPs) represented the majority of published M. catarrhalis immunogenic proteins 
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discovered at the time that the study was initiated, and are derived from the reference M. 

catarrhalis strains Bc5 (UspA1
557-704

, UspA2
165-318

, MID
764-913

 and MID
962-1200

) and O35E 

(MhaC, McaP
51-333

 and Hag
385-863

) [16, 20, 22, 26]. Orf238 and orf296 are hypothetical 

proteins that share homology with lipoprotein family A proteins and with the M. osloensis 

disulfide isomerase gene, which encodes a virulence factor, respectively. 

 

Antigen coupling  

Recombinant proteins were coupled to SeroMAP
TM

 beads, which are carboxylated 

beads that are developed for serological applications. The coupling procedure was performed 

as detailed by Verkaik et al. (2008) [27]. Briefly, 5.0  10
6
 microspheres were resuspended in 

100 mmol/L monobasic sodium phosphate (pH 6.2) buffer. For activation of the carboxyl 

groups on the surface of the beads, 10 µl of 50 mg/ml of N-hydroxysulfosuccinimide (Sulfo-

NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide was used (Pierce Biotechnology, 

Rockford, IL). The coupling buffer consisted of 50 mmol/L 2-(N-morpholino) ethanesulfonic 

acid, pH 5.0 (Sigma-Aldrich, Zwijndrecht, The Netherlands) in which 25 μg of protein was 

added. The final concentration of microspheres was adjusted to 4000 beads/µl with blocking-

storage buffer (PBS-BN; PBS, 1% bovine serum albumin, and 0.05% sodium azide [pH 7.4]). 

The microspheres were protected from light and stored at 4°C until required. All 

centrifugation steps were performed at 12,000 g for 2 min at room temperature (RT). 

Uncoupled beads were used as a negative control, and to determine non-specific 

binding. If minor non-specific binding was observed, then the median fluorescence intensity 

(MFI) values obtained from this non-specific binding was subtracted from the antigen-

specific results. 

 

Multiplex M. catarrhalis antibody assay 
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The multiplex procedure was performed as described elsewhere [27]. Briefly, after 

validation of the assay (where human pooled serum (HPS) MFI multiplex assay values were 

compared to corresponding HPS MFI singleplex assay values), the different antigen-coupled 

microspheres were mixed to a working concentration of 4000 beads per color per well. Serum 

samples were diluted 1:100 in PBS-BN for measurement of antigen-specific IgG and IgA and 

1:50 for measurement of IgM. Fifty microliters per diluted sample was incubated with the 

microspheres in a 96-well filter microtiter plate (Millipore) for 35 min at room temperature on 

a Thermomixer plate shaker (Eppendorf). The plate was washed twice with PBS-BN that was 

aspirated by vacuum manifold, and the microspheres were resuspended in 50 μl of PBS-BN. 

In separate wells, 50 μl of a 1:100 dilution of R-phycoerythrin (RPE)-conjugated AffiniPure 

goat anti-human IgG and IgA and 50 μl of a 1:50 dilution of RPE-conjugated donkey anti-

human IgM (Jackson Immuno Research) were added. The plate was incubated for 35 min at 

room temperature and washed. The microspheres were resuspended in 100 μl of PBS-BN. 

Measurements were performed on the Luminex 100 instrument (BMD) using Luminex IS 

software (version 2.2). Tests were performed in duplicate, and the fluorescence intensity 

values, reflecting quantitative antibody levels, were averaged. The coefficient of variation of 

these values was then calculated for each serum sample and averaged per protein and 

antibody isotype. 

 

Vaccine candidate gene carriage 

M. catarrhalis isolates were grown from glycerol stocks at 37
o
C overnight on blood 

agar plates. DNA was extracted using the MagNA Pure LC System (Roche Applied Science). 

PCR was performed to detect the major identified M. catarrhalis vaccine candidates uspA1, 

uspA2 and hag/mid genes. Primer pairs were used to detect the uspA1 (RTF1-8 5‟-

cgttatgcactaaaagagcaggtc and RTB1-8 5‟-gcatctgaccagcttagaccaatc) and uspA2 (RTF2-10 5‟-
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gcatctgcggataccaagtttg and RTB2-10 5‟-ttgagccatagccaccaagtgc) genes according to the 

protocol of Meier et al. (2002) [28]. For the detection of the hag/mid gene, the primers 

McatHag-2 (5‟-gtcagcatgtatcattttttaagg) and McatHagR4 (5‟-tgagcggtaaatggtttaagtg) were 

used [19]. The uspA2, uspA2H and uspA1 screening primers are situated at the 3'-end of the 

respective genes, whilst the hag/mid primers amplify a region at the 5'-end of the gene, 

including a small region of the promotor. 

Further, PCR was performed to detect 16S rRNA types as previously described by 

Verhaegh et al. (2008) [19]. 

To identify the 16S rRNA types of individual M. catarrhalis isolates, 16S rRNA PCR 

products were digested using the enzymes FspBI (10 U) and HhaI (10 U) according to 

Verhaegh et al. (2008) [19]. 

 

Isolate genotyping 

M. catarrhalis genotyping was performed on 30 isolates (representing all M. 

catarrhalis culture positive swabs obtained during the course of the study), by pulsed-field gel 

electrophoresis (PFGE) as detailed by Verduin et al. (2000) [29]. Briefly, M. catarrhalis plug 

digestions were performed using SpeI at 20 U/reaction and an electrophoresis protocol 

comprising a 1st block with a constant voltage of 6 V cm
-1

, a pulse time from 3.5 to 25 

seconds during the first 12 hours, followed by a 2nd block of 8 hours where the pulse time 

increased linearly from 1 to 5 seconds. All PFGE patterns were analyzed using BioNumerics 

(Applied Maths), with gel lanes normalized against a lambda DNA ladder (Bio-Rad) and band 

tolerance set to 1.5%. PFGE products between 48.5 and 339.5 kb were included in the band 

matching analysis. 

. 

Statistical analysis 
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Statistical analyses were performed using SPSS PASW 17.0.2. The Wilcoxon signed-

rank test was used to compare the anti-Moraxella antibody levels between different age 

groups. The Mann-Whitney U-test was used to compare differences in antibody levels 

between colonized and non-colonized children. A P-value of ≤0.05 was considered to be 

statistically significant. 

 

RESULTS 

 

Isolate genotyping and vaccine candidate gene carriage 

A high degree of genotypic heterogeneity in M. catarrhalis isolates colonizing 

children in the focus cohort was maintained over the entire study period, with no association 

found between genotype and any of the antigen-specific MFI values. In total, 28 different 

genotypes were observed, with only two children being colonized more than once (Fig. 1).  

Ninety-seven percent (29/30) of the M. catarrhalis isolates were found to be positive 

for uspA1, with 90% (27/30) positive for uspA2, and 87% (26/30) positive for hag/mid gene 

carriage. In total, 87% (26/30) of the M. catarrhalis isolates were categorized into 16S type 

lineage 1 (16S type 1; seroresistant lineage), with the remaining 13% belonging to the 16S 

type lineage 2 (16S type 2 and 3; serosensitive lineage) (Table 1). 

 

Dynamics of the anti-Moraxella antibody response 

The changes measured in anti-M. catarrhalis IgG, IgA and IgM during the first 2 

years of life are shown in Fig. 2. The levels of antigen-specific IgG, IgA and IgM showed 

extensive inter-individual variability over time. The level of antigen-specific IgG in cord 

blood (maternal antibody) was significantly higher for Hag
385-863

, MID
764-913

, MID
962-1200

, 

UspA1
557-704

 and UspA2
165-318

 than at 6 months of age (P 0.001), presumably due to passive 
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immunization by maternally acquired IgG antibodies in utero. Such passive immunity 

typically remains until approximately 6 months after birth [30]. 

IgG levels against MID
764-913

, MID
962-1200

, UspA1
557-704

 and UspA2
165-318

 rose 

significantly between 6 months to 2 years of age. IgG levels to M. catarrhalis OMPs Hag
385-

863
, McaP

51-333
, MhaC, orf238 and orf296 remained relatively low and did not significantly 

increase over the 6 month to 2 year time period.  

IgM and IgA levels to all 9 recombinant domains of 7 different OMPs were relatively 

low throughout the study period. However, IgM levels to MhaC, MID
764-913

, MID
962-1200

, 

UspA1
557-704

 and UspA2
165-318

, and IgA levels to Hag
385-863

, MID
764-913

, MID
962-1200

, UspA1
557-

704
 and UspA2

165-318
 increased significantly (P 0.05) over the 6 month to 2 year time period. 

Finally, not every infant developed an antigen-specific IgG, IgA or IgM response to all of the 

recombinant proteins tested in the first 2 years of life.  

 

Relationship between colonization and anti-M. catarrhalis antibody levels 

In order to relate colonization status to changes in anti-M. catarrhalis antibody levels 

(which would provide an estimation of the efficacy of the immune response in preventing M. 

catarrhalis colonization), results were utilized from sera and nasopharyngeal colonization 

data of children at 6, 14 and 24 months of age where concurrent sera and nasopharyngeal 

swab data was available. Children were divided into colonized or non-colonized at each time 

period and their IgG levels to Hag
385-863

, MID
764-913

, MID
962-1200

, UspA1
557-704

 and UspA2
165-

318
 plotted. 

In total, 9 (33%), 10 (24%) and 11 (29%) of the children were found to be colonized 

with M. catarrhalis at the time of sampling at 6, 14 and 24 months, respectively. There was 

no significant difference in IgG levels for all antigens between colonized and non-colonized 

children, except for MID
962-1200

 at 24 months of age (P=0.04) (Fig. 3). Further, the increase in 
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IgG antibody response did not result in a decrease in the percentage of infants nasopharyngeal 

colonized by M. catarrhalis, although antigen-specific IgG levels significantly increased for 

MID
764-913

, MID
962-1200

, UspA1
557-704

 and UspA2
165-318

 between 6 months and 2 years of age 

(Fig. 4).  

 

DISCUSSION 

The research performed in this publication represents the most extensive study of the 

infant immune response to potential vaccine candidates of M. catarrhalis performed to date, 

utilizing 9 recombinant domains representing 7 different M. catarrhalis OMPs in a cohort of 

57 healthy children followed from birth until 2 years of age. Further, the study was performed 

using multiplexed Luminex‟s xMAP technology that proved to be a rapid method for research 

into humoral immune response changes during M. catarrhalis colonization. 

In our study, the level of antigen-specific IgG to M. catarrhalis antigens in cord blood 

was significantly higher compared to the anti-M. catarrhalis IgG level at 6 months, most 

likely due to the presence of maternally derived IgG antibodies that were transferred to the 

fetus through the placenta. The passage of antibodies between mother and baby, via the 

umbilical cord, gives rise to “passive immunity”, which generally tends to confer humoral 

protection against infection until approximately 6 months after birth [30]. During this 6 month 

period, passively acquired antibodies disappear and are replaced by antibodies generated by 

the infants‟ own “actively acquired” humoral immune response. This actively acquired 

immune response may be generated by successive rounds of colonization and/or infection by 

pathogens, leading to the development of a host-specific immune response and eventual 

pathogen clearance. In this respect, Ejlertsen et al. (1994) showed a significant fall in 

antibody concentration during the first 3 months of life, and a steady low level was 

maintained in the age group from 3 to 10 months, similar to the results obtained in this study 
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[31]. Further, from the age of 1 year, the immune response of the children in the study of 

Ejlertsen et al. (1994) and Tan et al. (2006) increased slowly to reach maternal levels at the 

age of 10 years and in healthy adults, and though only sampling children up to 2 years of age, 

our study also showed increases in IgG antibody response for the antigens MID
764-913

, MID
962-

1200
, UspA1

557-704
 and UspA2

165-318
 between years 1 and 2. In contrast, MhaC, MhaP, orf238 

and orf296 did not induce major humoral immune responses in this cohort of children. 

Although M. catarrhalis is considered to be a major mucosal pathogen of the human 

respiratory tract, the IgA response towards OMPs of M. catarrhalis remained relatively low 

throughout the study period. Two forms of IgA can be distinguished based upon their location 

(serum IgA and secretory IgA). In its secretory form, IgA is the main immunoglobulin found 

in mucous secretions, including respiratory epithelium. Studies have shown that human 

salivary IgA response is directed consistently against a small number of major OMPs in 

healthy adults and adults suffering from COPD. It is also found in small amounts in blood 

[32]. This may explain the relatively low levels of IgA found in this study, as serum antigen-

specific IgA levels were measured and not secretory IgA [33-34]. 

The IgM levels to all 7 OMPs were also relatively low throughout the study period. 

IgM antibodies appear early in the course of an infection and usually reappear, to a lesser 

extent, after further exposure. In contrast to IgG, IgM (and also IgA) antibodies do not pass 

across the human placenta.  

Though an antibody response was generated against our M. catarrhalis OMP vaccine 

candidates in our focus cohort group during the first 2 years of life, the relatively constant  

level of M. catarrhalis nasopharyngeal colonization observed within the cohort suggests that 

the antibody response measured did not provide significant protection against M. catarrhalis 

nasopharyngeal colonization up to 2 years of age, with the exception of antigen MID
962-1200

. 

Non-colonized children showed significantly higher IgG levels for MID
962-1200 

compared to 
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colonized children at 24 months of age. MID
962-1200

 represents the IgD-binding domain of the 

M. catarrhalis IgD-binding protein (MID), a 200-kDa outer membrane protein comprising 

2,139 amino acids that has been shown to display a unique and specific affinity for human 

IgD. This result provides preliminary evidence that antibodies raised against MID
962-1200

 could 

offer protection against M. catarrhalis colonization. If indeed confirmed, then a MID
962-1200

 

vaccine may possibly be used to boost immunity levels at or before 2 years of age, in order to 

provide protection against M. catarrhalis colonization, and hence disease. However, further 

research is required to investigate this hypothesis. 

The factors influencing M. catarrhalis colonization and elimination are not yet fully 

understood, though genetic variation and adhesion to mucosal receptors appear to play an 

important role in colonization dynamics [35]. For example, several studies have shown that 

children acquire and eliminate a number of different strains throughout the first 2 years of life 

by the ability of these strains to evade the host immune system, caused by phase variation and 

antigenic variation [36]. Under “immune pressure”, antigenic variation due to sequence 

changes in virulence genes may provide a selective advantage for bacterial isolates expressing 

novel sequence variants. Alternatively, mutations may generate phase variable gene 

expression, switching off genes that are recognized by the immune system. Specifically, M. 

catarrhalis OMPs UspA1, UspA2 and Hag/MID are known to undergo phase-variation, with 

antigenic variation reported in the target region of monoclonal antibody (MAb) 17C7 (a 

conserved UspA1 and UspA2 binding site) [37-42]. The relatively constant level of M. 

catarrhalis nasopharyngeal colonization observed within the cohort could also be related to 

host factors, for example relatively low levels of antibody at 2 years of age, lack of effective 

antibody neutralizing activity, evasion of the host innate immune defence by several virulence 

factors involved in adherence to the respiratory tract, or complement resistance [31, 43-44].  
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Further research is required in order to determine whether increased IgG levels against 

the OMPs UspA1, UspA2, and Hag/MID (induced for example via vaccination) would 

significantly reduce the incidence of M. catarrhalis colonization and infection in infants up to 

2 years of age (and in later life). In this respect, further studies are being planned at 5 years of 

age. 

 

CONCLUSIONS 

Though further research is required, our results indicate that at 2 years of age, the 

antibody response to M. catarrhalis is still developing, and is largely based on an IgG isotype 

of antibodies raised against 3 major OMPs (i.e. UspA1, UspA2 and MID/Hag). We also 

provide preliminary evidence to suggest that antibodies directed against Hag/MID may be 

associated with the prevention of M. catarrhalis colonization, though natural variation in 

amino acid sequences of this protein may act to limit the potential of vaccines created to 

generate an immune response against Hag/MID. 
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TABLES 

 

Table 1. Prevalence of virulence genes for 30 M. catarrhalis isolates for which PFGE 

genotyping was performed. 

Virulence genes positive (%) 

uspA1 97 

uspA2 90 

hag/mid 87 

16S lineage 1 87 

16S lineage 2 13 
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Figure 1. Relationship between M. catarrhalis genotypes (representing all positive M. catarrhalis nasopharyngeal swab cultures isolated at 6, 14 5 

and 24 months of age) and vaccine candidate serum MFI values. No relationship between MFI value and genetic relatedness was observed for 6 

these isolates. Key: Age nasopharyngeal swabs were taken; 6 = 6 months, 14 = 14 months, 24 = 24 months, after birth. The month and year of 7 

isolate culture from the nose of children is also shown. 8 
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Figure 2. Levels of IgG, IgM and IgA directed against M. catarrhalis immunoglobulin D-binding protein (MID) and ubiquitous surface proteins 19 

A1 (UspA1) and A2 (UspA2) in 57 children at birth, 6 months, 14 months and 24 months. Antibody levels are reflected by MFI values. Each dot 20 

represents a serum sample. Median values are indicated by a horizontal line. 21 

 22 



 27 

 23 

non-colonized colonized

0

200

400

600

800
A

n
ti

-H
a

g
3

8
5

-8
6

3
 I

g
G

6 months

non-colonized colonized

0

500

1000
6000

8000

14 months

non-colonized colonized

0

500

1000

1500

2000

2500

24 months

 24 

non-colonized colonized

0

1000

2000

3000

4000

5000

A
n

ti
-M

ID
7

6
4

-9
1

3
 I

g
G

6 months

non-colonized colonized

0

5000

10000

15000

14 months

non-colonized colonized

0

5000

10000

15000

24 months

 25 

 26 



 28 

non-colonized colonized

0

100

200

300

400

500
A

n
ti

-M
ID

9
6

2
-1

2
0

0
 I

g
G

6 months

non-colonized colonized

0

500

1000

1500

14 months

non-colonized colonized

0

2000

4000

6000

8000



24 months

 27 

non-colonized colonized

0

500

1000

1500

2000

A
n

ti
-U

s
p

A
1

5
5

7
-7

0
4
 I

g
G

6 months

non-colonized colonized

0

5000

10000

15000

14 months

non-colonized colonized

0

5000

10000

15000

24 months

 28 

 29 

 30 

 31 



 29 

non-colonized colonized

0

500

1000

1500

2000

2500

A
n

ti
-U

s
p

A
2

1
6

5
-3

1
8
 I

g
G

6 months

non-colonized colonized

0

5000

10000

15000

14 months

non-colonized colonized

0

5000

10000

15000

24 months

 32 

Figure 3. Relationship between M. catarrhalis colonization and anti-Hag/MID, UspA1 and UspA2, IgG levels at 6, 14 and 24 months of age, as 33 

reflected by MFI values. Median values are indicated by a horizontal line. A significant difference between non-colonized and colonized children 34 

was observed for MID
962-1200

 at 24 months of age (P=0.04). 35 
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 46 

Figure 4. Relationship between M. catarrhalis colonization, (colonized children as a 47 

percentage of total number of children tested), and anti-M. catarrhalis IgG levels at birth, 6, 48 

14 and 24 months of age, as reflected by median fluorescence intensity values. The total 49 

number of children tested at birth, 6, 14 and 24 months was 54, 32, 46 and 45, respectively. 50 
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