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Abstract

We use the theory of distributions to extend the Poincaré—Bendixson theorem and the Bendix-
son criterion to piecewise Lipschitz continuous system possessing unique and continuous solutions.
We demonstrate the use of these extensions by several examples that have recently appeared in the
literature.
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1. Introduction

The study of piecewise linear systems has been essential for applications like control
theory, electronics and automatic navigat&ystems, during the past decades. The formu-
lation of a rich and satisfactory theory for such systems is of utmost importance. Yet, only
a few attempts to treat such systems in a general and abstract mathematical setting has
been made. Many papers that have appearéd gecently contain, for instance, explicit
calculations in specific systems in order to estimate position and number of limit cycles in
two-dimensional cases [4,6-9]. In this paper we suggest a new approach based on distrib-
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ution theory [5] in the two-dimensional case. We do not intend to make precise statements
regarding the most general cases here, but our approach cover most cases that appear in
the application areas mentioned above including optimal foraging theory in mathematical
ecology [1]. Our paper is organized as follows. We formulate our two-dimensional setting
and our generalized two basic theorems att®n 2. These two generalizations are the
essence of the paper. In Section 3 we demonstrate the use of those theorems in several
classical examples that contains many diffiies connected to differential equations with
discontinuous right-hand sides. Any satisfactory theory must fully explain these examples.
We attach figures to most of the examples giving the reader a rapid understanding of what
ought to be explained. In Section 4, we give a short summary of our results and list some
of their main implications.

2. Our settingsand main theorems

We shall work with planar systems with discontinuous right-hand sides throughout this
paper. We restrict the properties of the systems under consideration by four major as-
sumptions. The purpose of this paper is to give a presentation of some new ideas, and
for simplicity and clarity we do not formulate these ideas in their most general context.

We consider a planar autonomous system

X = f(x). 1)

(A1) £ is an open domain iR?, divided into a finite number of open sub-domais
such that J £2; = 2.

(A2) If 2; and$2; are not disjoint and # j, thens2; N 2; = I'};, wherel; (joint bound-
aries) are piecewise smooth.

(A3) f is Lipschitz in all sub-domains2; and possibly discontinuous along; (also
called discontinuity curves).

(A4) The vector fieldf defines a direction in each point{R. In particular, at every point
of I; the vector fieldf (x) specifies into which2; the flow is directed.

The conditions (A3) and (A4) implies that the differential equation (1) has unique, con-
tinuous and piecewise smooth solutionsan Note that (A4) gives strong restrictions on
the possible discontinuities. In terms of Filippov [3] there are three kinds of sliding modes.
We only allow transversal sliding mode, that is: the vector field is directed from one side to
the other at the discontinuity curves. The solutions will pass the discontinuity curves in the
field direction and we have uniqueness of solutions there. Attracting and repulsion sliding
mode will be excluded.

Theorem 1 (Extension of the Poincaré—Bendixson theore@dnsider the planar au-
tonomous systefd). Let the condition§A1)—(A4) be satisfied and lef be bounded irs2.
Suppose that K is a compact regionsih containing no fixed points dfL). If all solutions
of (1)isin K, for all > o, then(1) has a closed orbit in K.
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Remark. We show how to check the conditions okthbove theorem at several classical
examples.

The proof of the Poincaré—Bendixson theorem uses essentially the same steps as the
original Poincaré—Bendixson theorem. We remind the reader about the fact that the di-
rection of a Lipschitzian vector field changes continuously, and base our proof of that
observation. The following lemmais true.

Lemma 1. Becausef is Lipschitz in K N §2; there existse > 0 such that for all
(x,y), ", y)in; and|x —x'| <&, |y—y'| <eimpliesthatn(f(x, y), f(x',y)) <m/4
(wheren is the angle between the vector figlds

Proof of Theorem 1. Take (a, b) an arbitrary point ink, B, = [a — &,a] x [b — &, b]

a compact box, an®. = K N B,. If a discontinuity curve crosses such a box, divide it
into sub-boxes separated by the discontinuity curgs= | B, ;, whereB, ; = B: N Q2.

Now K can be covered by a finite number of boxes such that in everyfbiexd.ipschitz

and Lemma 1 holds. Choose one of the boRgsuch that a trajectory which starts at a
point A in B, returns toB, at a point B and the line through A and B is a transversal
(to the trajectories of (1) insidB,). Now all trajectories cross this transversal in the same
direction. The trajectory connecting A with B and the segment from B to A along the
transversal form a Jordan curve. For the rest of the proof we refer to the proof of the
Poincaré—Bendixson theoremm

Calculus with distributions turn out to be most important when finding upper bounds on
the number of limit cycles for systems with discontinuous right-hand sides, as the following
examples will show.

Theorem 2 (Extension of the original Bendixson criteriononsider the planar au-
tonomous systerfl). Let the conditiongA1)—(A4) be satisfied and lef be bounded in
the simply connected regiag@ and C in £2;. If div f (the divergence of calculated in
distribution sensgis of the same sign and is not identically zerosin then(1) has no
closed orbit ins2.

Proof. Since the right-hand sid¢ is defined piecewise we have= f;, (x,y) € £2;.
Let xo, be the characteristic function 2;; then f =", fi - xo,. Let fi = (gi, hi) SO
f= Zi(gi c X2 hi - X.Qi); this implies

div f = (0c(gi - x2) + 3y (hi - x2)) = Y _(div f; - xe; + (fi, grade;)),

1 1

div f is defined in the sense of distribution theory and contains, in this case, Dirac pulses
and therefore is i 1(£2). Now take a closed, continuous and piecewise smooth gurve

in 2. Let D denote the inside region of andT = (x, y) is the tangent vector gf; then

N = (—y, x) is its normal vector. Consider the part of the line integrya(lf, N)ds in £2;,
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where we have the systef®, y) = (g (x, ¥), h; (x, y)) andz is in some intervalp;. If we
user as parameter this part becomes

/(fi X2, N)ds = (—gi-)"+hi-J’C)dt=/(—gi-hi+hi-gi)dt=0-
12 Aj A

The line integral along the closed curyenow becomes

/(f,N)ds:Z/(fi-Xg,.,N)ds=O.
iy

Y
According to Hérmander [5] the Gauss—Green formula

/(f,N)ds:—/ div fdxdy
¥ D

holds for f € CJ($2) and divf € L(D). In our case we havg € L1(£2), this implies that
there existg € C8(.Q) such thagfy {f, N) — (g, N)|ds <e.

Then
/(f,N>ds—/<g,N>ds </|<f,N>—<g,N>|ds<e,
% % %

so the Gauss—Green formula holds foe L1(£2).
This implies that

//divfdxdy:O.
D

This is a contradiction, because divnever changes signs i? and this proves the
theorem. O

Remark. It is not a trivial problem to calculate derivatives in sense of distributions, but
according to theorems in [5] regarding multiplication and composition of distributions we
can use the familiar laws.

3. Examples

Example 1 (Branicky [2]). In this example we consider the system

X\ _ (—x+4+(100—900)y +90(2x — 1) - y - (H(x) + H(y) — 2Hx)H(y))
y) U —Q0+10x —y+9021r—1) - x - (H(x) +H(y) — 2Hx)H()) /)’
where H is the Heavyside function andQ < 1. The right-hand sid¢ is in C1 in each

quadrant. Letf, be theC1-part of f, the divergence of, is div f. = —2. According to
the classical Bendixson criterion this would mean that this system has no closed orbit. The
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originis in fact the only fixed point of the system. Lgf= 0.4825443328. . be the unique
solution of the transcendent equation
(10— 9%

(10+ 81r(1—1))?

and note thaf is in C* wheni = 1/2.
A careful analysis of the system reveals that all other orbits except for the fixed point

are closed orbits il = 1g. For 0< A < Ag all orbits spiral outwards from the origin and
for o < A < 1 the origin is globally asymptotically stable. A calculation of the divergence
in sense of distributions confirm that we can use Theorem 2 here. In fact,

div f(x,y) = =2—-902% — 1)(|y| - 8(x) + |x| - 8(»)),

from this we can tell:

21
e_ v/1000+8100:(1-%) — ]

If 1/2 <A < 1then divf < 0. According to Theorem 2 this means that the system has
no closed orbit, which does not contradict the result above.

Example 2 (Giannakopoulos and Pliete [4]). Consider the planar system
X —x+y+b1-sgnx) 1
.= ,  Where -,
<y> (—p-x+b2-sgr‘(x) P=73 ()
Giannakopoulos and Pliete [4pncluded after a careful investigation that a necessary
condition for the existence of closed orbits@) is b1 > 0. In fact Theorem 2 above can

be used in order to reduce the algebra here, and we demonstrate the use of it below. We
continue by calculating the divergence(@j and get

div f(x, y) = —1+ 2b1 - 8(x)

x 10 Phase portrate for the system with b1 = 0 and 0 < b2 < b20
T ]

8 T T

L L
-1.5 =1 -0.5 0 0.5 1 1.5 2

Fig. 1. Limit cycle, Example 2.
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concluding thab; > 0 leads to a sign-change of the divergence aptaais. Thus, a nec-
essary condition for closed orbits and limit cycle${s> 0.

We continue by formulating a sufficient condition for limit cycles and demonstrating the
use of Theorem 1. We assume that the parameters are in thebrand®and O< by < bg.
The system has two fixed points (cf. [4]) and a discontinuity line atyttais. Now we
construct two closed pathg andcp, see Fig. 1.

ca: a trajectory fromA; to Ay, then along they-axis from A, to A;. ChooseA;
so large that the fixed points are insigg and that the repulsion sliding mode
interval[—b1, b1] at they-axis is insidec4 as well.

cB: a trajectory fromB; to Bp, then along the-axis from B to B;.

Note that the location ofi1, A2 and B1, B2 depend on the parameter range. According
to the vector fields there is only transversal sliding mode oufsida, b1] at the discon-
tinuity line (the y-axis). LetK be the annular region between andcp including the
boundary. TherK is a compact set and the conditions of Theorem 1 are satisfied. Then
Theorem 1 implies that the system has a closed orhit,imhich coincides with [4].

Example 3. Consider the system

X\ _ y
y) \—x—h-y+k-H®» )"

This implies that divf (x, y) = —h + k - §(y). If h > 0 andk > 0, we have a necessary
condition for existence of closed orbits. Of course this does not imply a closed orbit, but
direct calculations show that there is a unique limit cycle # 6 < 2 andk > 0.

Compact set, limit cycle, ex. 3

B[ 1

Fig. 2. Limit cycle, Example 3.
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We can use Theorem 1 to prove existence of a closed orbit, for the same parameter range.
The fixed points ar€0, 0) and(k, 0) and the discontinuity line is the-axis. The direction
of the vector fields gives repulsion sliding mode in the intef@ak] and transversal sliding
mode elsewhere at the-axis. We choose a starting poi@b, 0) with ro > k& and follow
the trajectory until it intersects the positiveaxis again atr1, 0). Elementary calculations
gives

rm=ro-e M L k. (14 ™), wherew= \/4——h2

Putry = 1_6_% this implies that}, > k andry — ro = (1 — e2*"/) . (rj — ro).

We havery > rq if ro < ry andry < ro if ro > rj. Construct a compact sét, as the
annular region between the two closed pathsindcp including the boundary, see Fig. 2.

CA: atrajectory fromA1 to A, and thex-axis fromA2 to As.
cB: a trajectory fromB; to B2 and thex-axis from Bz to Bj.

The setK now satisfies the conditions of Theorem 1, and it follows that the system has
a closed orbit ink . The closed orbit will of course always pass through the pe{i).

Example 4. Let 21 = {(x, y); x>+ y2 <1}, 22 ={(x,y); 1 <x?+y? <4} and23 =

{(, y); x4 y2 > 4).
Consider the piecewise linear system

X X
<y>_(y)7 (-x7y)6[21a
(;“) = (_xy>, (x.y) € 22.

Phase plane, example 4

Fig. 3. Phase plane, Example 4.
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x —X
()-=(). o

The only fixed point of the system is origin, which is unstable. The phase portrait is
shown in Fig. 3.

We have attracting sliding mode along the circles and consequently the conditions of
the local uniqueness of solutions are not satisfied. The solutions are indeed not unique
at this circles. Either forward or backward uniqueness is broken. Thus the conditions of
Theorem 1 are not satisfied. But if we I8 = {(x,y); 1 <r2 <x2+ y2< R? <4},
thenK is a compact set satisfying the conditions and there is a closed orkit in fact
according to the phase portrait there is a ifdimumber of closed orbits in this annulus.

After some nontrivial calculations, the divergence of the right-hand side is

div f(x,y)=2—2-Hx?+y°—1) — 2 - Hx? +y2—4) — 2. §(x°+ y* - 1)
—8-8(x%+y% —4).

We conclude that diy (x, y) = 2 in the simply connected regiaf?;. According to
Theorem 2 the system has no closed orbit®irand that coincides with the phase portrait.

4. Summary

In this paper we have formulated extensions of the Poincaré—Bendixson theorem and
the Bendixson criterion that in principle could be applied to piecewise nonlinear systems.
Current literature that is concerned with ordinary differential equations possessing piece-
wise continuously differentiable right-hand sides have mainly considered the piecewise
linear case. In order to demonstrate the usefulness of our extensions we have chosen several
(piecewise linear) examples that have occurred previously in the literature and to which our
theorems can be applied. When our theorems are applied we must start by using Heavyside
functions to describe the right-hand sides of the systems. The derivatives of such functions
will then usually contain Dirac pulses. It is not a trivial matter to calculate quantities like
the divergence of the vector field in distribution sense, but once such an expression has been
calculated correctly, our extension of the Bendixson criterion may reveal interesting quali-
tative properties of the system. The application of our extension of the Poincaré—Bendixson
theorem does not include nontrivial calculations of distributions. The application of the the-
orem requires construction of a compact set without attracting or repulsion sliding mode
inside. The main advantage of this extension is thus a possibility to avoid tedious explicit
calculations of the trajectories (when possible) in order to prove existence of limit cycles
in systems of ordinary differential equations possessing discontinuities in their right-hand
sides.

We have demonstrated the usefulness of our extensions on several examples that have
appeared recently in the litdtae. We begin by analyzing an example brought out by Bran-
icky [2] demonstrating that classical two-dimensional qualitative theory does not extend to
discontinuous systems, but where our extensiof the theory give accurate explanations
of the qualitative behavior of the system.

Our second example was analyzed in detail by Giannakopoulos and Pliete [4] through
extensive explicit calculations of the trajectories of the system involved. We show how parts
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of this example can be managed by less extensive calculations. The prize we pay is that
we have to be able to make calculus with distributions available for broader audiences. In
addition we provide two examples showing explicitly the construction of relevant compact
regions in our extension of the Poincaré—Bendixson theorem.
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