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Abstract

We use the theory of distributions to extend the Poincaré–Bendixson theorem and the B
son criterion to piecewise Lipschitz continuous system possessing unique and continuous so
We demonstrate the use of these extensions by several examples that have recently appea
literature.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The study of piecewise linear systems has been essential for applications like c
theory, electronics and automatic navigation systems, during the past decades. The for
lation of a rich and satisfactory theory for such systems is of utmost importance. Yet
a few attempts to treat such systems in a general and abstract mathematical set
been made. Many papers that have appeared quite recently contain, for instance, explic
calculations in specific systems in order to estimate position and number of limit cyc
two-dimensional cases [4,6–9]. In this paper we suggest a new approach based on
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ution theory [5] in the two-dimensional case. We do not intend to make precise state
regarding the most general cases here, but our approach cover most cases that a
the application areas mentioned above including optimal foraging theory in mathem
ecology [1]. Our paper is organized as follows. We formulate our two-dimensional s
and our generalized two basic theorems in Section 2. These two generalizations are
essence of the paper. In Section 3 we demonstrate the use of those theorems in
classical examples that contains many difficulties connected to differential equations w
discontinuous right-hand sides. Any satisfactory theory must fully explain these exam
We attach figures to most of the examples giving the reader a rapid understanding o
ought to be explained. In Section 4, we give a short summary of our results and list
of their main implications.

2. Our settings and main theorems

We shall work with planar systems with discontinuous right-hand sides throughou
paper. We restrict the properties of the systems under consideration by four ma
sumptions. The purpose of this paper is to give a presentation of some new idea
for simplicity and clarity we do not formulate these ideas in their most general conte

We consider a planar autonomous system

ẋ = f (x). (1)

(A1) Ω is an open domain inR2, divided into a finite number of open sub-domainsΩi ,
such that

⋃
Ω̄i = Ω̄ .

(A2) If Ω̄i andΩ̄j are not disjoint andi �= j , thenΩ̄i ∩ Ω̄j = Γij , whereΓij (joint bound-
aries) are piecewise smooth.

(A3) f is Lipschitz in all sub-domainsΩi and possibly discontinuous alongΓij (also
called discontinuity curves).

(A4) The vector fieldf defines a direction in each point inΩ . In particular, at every poin
of Γij the vector fieldf (x) specifies into whichΩi the flow is directed.

The conditions (A3) and (A4) implies that the differential equation (1) has unique,
tinuous and piecewise smooth solutions inΩ . Note that (A4) gives strong restrictions o
the possible discontinuities. In terms of Filippov [3] there are three kinds of sliding m
We only allow transversal sliding mode, that is: the vector field is directed from one s
the other at the discontinuity curves. The solutions will pass the discontinuity curves
field direction and we have uniqueness of solutions there. Attracting and repulsion s
mode will be excluded.

Theorem 1 (Extension of the Poincaré–Bendixson theorem).Consider the planar au
tonomous system(1). Let the conditions(A1)–(A4)be satisfied and letf be bounded inΩ .
Suppose that K is a compact region inΩ , containing no fixed points of(1). If all solutions
of (1) is in K, for all t � t0, then(1) has a closed orbit in K.
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Remark. We show how to check the conditions of the above theorem at several classi
examples.

The proof of the Poincaré–Bendixson theorem uses essentially the same steps
original Poincaré–Bendixson theorem. We remind the reader about the fact that
rection of a Lipschitzian vector field changes continuously, and base our proof o
observation. The following lemma is true.

Lemma 1. Becausef is Lipschitz in K ∩ Ωi there existsε > 0 such that for all
(x, y), (x ′, y ′) in Ωi and|x−x ′| < ε, |y−y ′| < ε implies that∧(f (x, y), f (x ′, y ′)) < π/4
(where∧ is the angle between the vector fields).

Proof of Theorem 1. Take (a, b) an arbitrary point inK, B̄ε = [a − ε, a] × [b − ε, b]
a compact box, andBε = K ∩ B̄ε . If a discontinuity curve crosses such a box, divide
into sub-boxes separated by the discontinuity curves:Bε = ⋃

Bε,i , whereBε,i = Bε ∩ Ω̄i .
Now K can be covered by a finite number of boxes such that in every boxf is Lipschitz
and Lemma 1 holds. Choose one of the boxesBε such that a trajectory which starts a
point A in Bε , returns toBε at a point B and the line through A and B is a transve
(to the trajectories of (1) insideBε). Now all trajectories cross this transversal in the sa
direction. The trajectory connecting A with B and the segment from B to A along
transversal form a Jordan curve. For the rest of the proof we refer to the proof
Poincaré–Bendixson theorem.�

Calculus with distributions turn out to be most important when finding upper boun
the number of limit cycles for systems with discontinuous right-hand sides, as the follo
examples will show.

Theorem 2 (Extension of the original Bendixson criterion).Consider the planar au
tonomous system(1). Let the conditions(A1)–(A4) be satisfied and letf be bounded in
the simply connected regionΩ andC1 in Ωi . If divf (the divergence off calculated in
distribution sense) is of the same sign and is not identically zero inΩ , then(1) has no
closed orbit inΩ .

Proof. Since the right-hand sidef is defined piecewise we havef = fi , (x, y) ∈ Ωi .
Let χΩi be the characteristic function ofΩi ; thenf = ∑

i fi · χΩi . Let fi = (gi , hi) so
f = ∑

i (gi · χΩi , hi · χΩi ); this implies

divf =
∑

i

(
∂x(gi · χΩi ) + ∂y(hi · χΩi )

) =
∑

i

(
divfi · χΩi + 〈fi,gradχΩi 〉

)
,

divf is defined in the sense of distribution theory and contains, in this case, Dirac p
and therefore is inL1(Ω). Now take a closed, continuous and piecewise smooth curγ

in Ω . Let D denote the inside region ofγ andT = (ẋ, ẏ) is the tangent vector ofγ ; then
N = (−ẏ, ẋ) is its normal vector. Consider the part of the line integral

∫ 〈f,N〉ds in Ωi ,
γ
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where we have the system(ẋ, ẏ) = (gi(x, y),hi(x, y)) andt is in some interval∆i . If we
uset as parameter this part becomes∫

γ

〈fi · χΩi ,N〉ds =
∫
∆i

(−gi · ẏ + hi · ẋ) dt =
∫
∆i

(−gi · hi + hi · gi) dt = 0.

The line integral along the closed curveγ now becomes∫
γ

〈f,N〉ds =
∑

i

∫
γ

〈fi · χΩi ,N〉ds = 0.

According to Hörmander [5] the Gauss–Green formula∫
γ

〈f,N〉ds = −
∫∫
D

divf dx dy

holds forf ∈ C0
0(Ω) and divf ∈ L1(D). In our case we havef ∈ L1(Ω), this implies that

there existsg ∈ C0
0(Ω) such that

∫
γ

|〈f,N〉 − 〈g,N〉|ds < ε.

Then∣∣∣∣∣
∫
γ

〈f,N〉ds −
∫
γ

〈g,N〉ds

∣∣∣∣∣ �
∫
γ

∣∣〈f,N〉 − 〈g,N〉∣∣ ds < ε,

so the Gauss–Green formula holds forf ∈ L1(Ω).

This implies that∫∫
D

divf dx dy = 0.

This is a contradiction, because divf never changes signs inΩ and this proves the
theorem. �
Remark. It is not a trivial problem to calculate derivatives in sense of distributions,
according to theorems in [5] regarding multiplication and composition of distribution
can use the familiar laws.

3. Examples

Example 1 (Branicky [2]). In this example we consider the system(
ẋ

ẏ

)
=

(−x + (100− 90λ)y + 90(2λ − 1) · y · (H(x) + H(y) − 2H(x)H(y))

−(90λ + 10)x − y + 90(2λ − 1) · x · (H(x) + H(y) − 2H(x)H(y))

)
,

where H is the Heavyside function and 0� λ � 1. The right-hand sidef is in C1 in each
quadrant. Letfc be theC1-part off , the divergence offc is divfc = −2. According to
the classical Bendixson criterion this would mean that this system has no closed orb
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origin is in fact the only fixed point of the system. Letλ0 = 0.4825443328. . .be the unique
solution of the transcendent equation

(10− 9λ)4

(10+ 81λ(1− λ))2 · e− 2π√
1000+8100λ(1−λ) = 1

and note thatf is in C1 whenλ = 1/2.
A careful analysis of the system reveals that all other orbits except for the fixed

are closed orbits ifλ = λ0. For 0� λ < λ0 all orbits spiral outwards from the origin an
for λ0 < λ < 1 the origin is globally asymptotically stable. A calculation of the diverge
in sense of distributions confirm that we can use Theorem 2 here. In fact,

divf (x, y) = −2− 90(2λ − 1)
(|y| · δ(x) + |x| · δ(y)

)
,

from this we can tell:

If 1/2 � λ � 1 then divf < 0. According to Theorem 2 this means that the system
no closed orbit, which does not contradict the result above.

Example 2 (Giannakopoulos and Pliete [4]). Consider the planar system(
ẋ

ẏ

)
=

(−x + y + b1 · sgn(x)

−p · x + b2 · sgn(x)

)
, wherep >

1

4
. (∗)

Giannakopoulos and Pliete [4] concluded after a careful investigation that a neces
condition for the existence of closed orbits of(∗) is b1 > 0. In fact Theorem 2 above ca
be used in order to reduce the algebra here, and we demonstrate the use of it be
continue by calculating the divergence of(∗) and get

divf (x, y) = −1+ 2b1 · δ(x)

Fig. 1. Limit cycle, Example 2.
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concluding thatb1 > 0 leads to a sign-change of the divergence at they-axis. Thus, a nec
essary condition for closed orbits and limit cycles isb1 > 0.

We continue by formulating a sufficient condition for limit cycles and demonstratin
use of Theorem 1. We assume that the parameters are in the rangeb1 > 0 and 0< b2 < b0

2.
The system has two fixed points (cf. [4]) and a discontinuity line at they-axis. Now we
construct two closed pathscA andcB , see Fig. 1.

cA: a trajectory fromA1 to A2, then along they-axis fromA2 to A1. ChooseA1
so large that the fixed points are insideγA and that the repulsion sliding mod
interval[−b1, b1] at they-axis is insidecA as well.

cB : a trajectory fromB1 to B2, then along they-axis fromB2 to B1.

Note that the location ofA1,A2 andB1,B2 depend on the parameter range. Accord
to the vector fields there is only transversal sliding mode outside[−b1, b1] at the discon-
tinuity line (they-axis). LetK be the annular region betweencA and cB including the
boundary. ThenK is a compact set and the conditions of Theorem 1 are satisfied.
Theorem 1 implies that the system has a closed orbit inK, which coincides with [4].

Example 3. Consider the system(
ẋ

ẏ

)
=

(
y

−x − h · y + k · H(y)

)
.

This implies that divf (x, y) = −h + k · δ(y). If h > 0 andk > 0, we have a necessa
condition for existence of closed orbits. Of course this does not imply a closed orb
direct calculations show that there is a unique limit cycle if 0< h < 2 andk > 0.

Fig. 2. Limit cycle, Example 3.
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We can use Theorem 1 to prove existence of a closed orbit, for the same paramete
The fixed points are(0,0) and(k,0) and the discontinuity line is thex-axis. The direction
of the vector fields gives repulsion sliding mode in the interval[0, k] and transversal slidin
mode elsewhere at thex-axis. We choose a starting point(r0,0) with r0 > k and follow
the trajectory until it intersects the positivex-axis again at(r1,0). Elementary calculation
gives

r1 = r0 · e−2πh/ω + k · (1+ e−πh/ω), whereω =
√

4− h2.

Putr ′
0 = k

1−e−πh/ω , this implies thatr ′
0 > k andr1 − r0 = (1− e−2πh/ω) · (r ′

0 − r0).
We haver1 > r0 if r0 < r ′

0 andr1 < r0 if r0 > r ′
0. Construct a compact setK, as the

annular region between the two closed pathscA andcB including the boundary, see Fig.

cA: a trajectory fromA1 to A2 and thex-axis fromA2 to A1.
cB : a trajectory fromB1 to B2 and thex-axis fromB2 to B1.

The setK now satisfies the conditions of Theorem 1, and it follows that the system
a closed orbit inK. The closed orbit will of course always pass through the point(r ′

0,0).

Example 4. Let Ω1 = {(x, y); x2 + y2 < 1}, Ω2 = {(x, y); 1 < x2 + y2 < 4} andΩ3 =
{(x, y); x2 + y2 > 4}.

Consider the piecewise linear system(
ẋ

ẏ

)
=

(
x

y

)
, (x, y) ∈ Ω1,

(
ẋ

ẏ

)
=

(−y

x

)
, (x, y) ∈ Ω2,

Fig. 3. Phase plane, Example 4.
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(
ẋ

ẏ

)
=

(−x

−y

)
, (x, y) ∈ Ω3.

The only fixed point of the system is origin, which is unstable. The phase portr
shown in Fig. 3.

We have attracting sliding mode along the circles and consequently the conditi
the local uniqueness of solutions are not satisfied. The solutions are indeed not
at this circles. Either forward or backward uniqueness is broken. Thus the conditio
Theorem 1 are not satisfied. But if we letK = {(x, y); 1 < r2 � x2 + y2 � R2 < 4},
thenK is a compact set satisfying the conditions and there is a closed orbit inK. In fact
according to the phase portrait there is a infinite number of closed orbits in this annulus

After some nontrivial calculations, the divergence of the right-hand side is

divf (x, y) = 2− 2 · H(x2 + y2 − 1) − 2 · H(x2 + y2 − 4) − 2 · δ(x2 + y2 − 1)

− 8 · δ(x2 + y2 − 4).

We conclude that divf (x, y) = 2 in the simply connected regionΩ1. According to
Theorem 2 the system has no closed orbits inΩ1 and that coincides with the phase portra

4. Summary

In this paper we have formulated extensions of the Poincaré–Bendixson theore
the Bendixson criterion that in principle could be applied to piecewise nonlinear sys
Current literature that is concerned with ordinary differential equations possessing
wise continuously differentiable right-hand sides have mainly considered the piec
linear case. In order to demonstrate the usefulness of our extensions we have chosen
(piecewise linear) examples that have occurred previously in the literature and to whi
theorems can be applied. When our theorems are applied we must start by using He
functions to describe the right-hand sides of the systems. The derivatives of such fun
will then usually contain Dirac pulses. It is not a trivial matter to calculate quantities
the divergence of the vector field in distribution sense, but once such an expression h
calculated correctly, our extension of the Bendixson criterion may reveal interesting
tative properties of the system. The application of our extension of the Poincaré–Ben
theorem does not include nontrivial calculations of distributions. The application of th
orem requires construction of a compact set without attracting or repulsion sliding
inside. The main advantage of this extension is thus a possibility to avoid tedious e
calculations of the trajectories (when possible) in order to prove existence of limit c
in systems of ordinary differential equations possessing discontinuities in their right
sides.

We have demonstrated the usefulness of our extensions on several examples th
appeared recently in the literature. We begin by analyzing an example brought out by B
icky [2] demonstrating that classical two-dimensional qualitative theory does not exte
discontinuous systems, but where our extensions of the theory give accurate explanatio
of the qualitative behavior of the system.

Our second example was analyzed in detail by Giannakopoulos and Pliete [4] th
extensive explicit calculations of the trajectories of the system involved. We show how
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of this example can be managed by less extensive calculations. The prize we pay
we have to be able to make calculus with distributions available for broader audien
addition we provide two examples showing explicitly the construction of relevant com
regions in our extension of the Poincaré–Bendixson theorem.
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[1] D. Boukal, V. Křivan, Lyapunov functions for Lotka–Volterrapredator–prey models with optimal foragin
behavior, Math. Biol. 39 (1999) 493–517.

[2] M. Branicky, Multiple Lyapunov functions and otheranalysis tools for switched and hybrid systems, IE
Trans. Automat. Control 43 (1998) 475–482.

[3] A. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer Academic, 1988.
[4] F. Giannakopoulos, K. Pliete, Planar systems of piecewise linear differential equations with a line of disco

tinuity, Nonlinearity 14 (2001) 1611–1632.
[5] L. Hörmander, The Analysis of Linear Partial Differential Operators, I, Springer, 1990.
[6] J. Imura, A. van der Schaft, Characterization of well-posedness of piecewise linear systems, IEEE

Automat. Control 45 (2000) 1600–1619.
[7] J. Melin, A. Hultgren, A limit cycle of a resonant converter, in: Conference on Analysis and Design of H

Systems, 2003.
[8] D.v.C.R.I. Leine, B. van de Vrande, Bifurcationsin nonlinear discontinuous systems, Nonlinear Dynam.

(2000) 105–164.
[9] G. Villari, Z. Zhifen, Periodic solutions of a switching dynamical system in the plane, Appl. Anal. (19

177–198.


