LUND UNIVERSITY

A Simnon Tutorial

Astrém, Karl Johan

1985

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Astrom, K. J. (1985). A Simnon Tutorial. (Research Reports TFRT-3176). Department of Automatic Control,
Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/d961f43e-a711-4851-a356-747329200147

CODEN: LUTFD2/(TFRT-3176)/1-87/(1985)

A SIMNON TUTORIAL

Karl Johan Astrém

7hf,ﬁepartment of Automatic Control
Lund Institute of Technology
’ July 1985

A SIMNON TUTORIAL

Karl Johan Astrém

L
) ' [4 *

Department of Automatic Control

Lund Insu%ute of Technology
Rev1sed edltlon July 1985

Department of Automatic Control

Lund Institute of Technology
P.O. Box 118
S-221 00 Lund Sweden

Document namé

REPORT

Date of issue

July 1985

Document Number

CODEN: LUTFD2/(TFRT-3176)/1-87/(1985)

Author(s)

Karl Johan Astrom

Supervisoer

Sponsoring organisation

Title and subtitle

A Simnon Tutorial

Abstract

The purpose of this report is to give a tutorial introduction to the simulation language SIMNON.

Key words 3
ot
Classification system and/or index terms (if any)
g
Supplementary bibliographical information 7 N J !\

ISSN and key title

ISBN

Language
English

Number of pages
87

Security classification

Recipient’s notes

The report may be ordered from the Depariment of automatic control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

Contents

Introduction 5

The Conceptual Framework 6
Differential Equations 10
Difference Equations 22
Combination of Systems 29
Advanced Features 35

Implementation 42

@ N o Uk wbhde=

References 45

Appendix A - Syntax for Simnon Commands 47
Appendix B - Syntax of System Descriptions 59
Appendix C - Standard Systems 61

Appendix D - Intrac and Simnon Commands 74
Appendix E - Macros for Generating the Figures 79
Index 81

1. Introduction

Simnon is a special programming language for simulating dynamical systems.
Systems may be described as ordinary differential equations, as difference
equation or as combinations of such equations. Models of this type are common
in mathematics, biology, economics and in many branches of engineering. Simnon
requires a computer with a graphics terminal. The results are displayed as
curves on the terminal. The language has an interactive implementation which
makes it easy for a user to work with the system. Simnon may be used in a very
simple way to find solutions to difference or differential equations. This requires
only six commands. There are 38 additional commands in the system. They also

allow optimization, introduction of experimental data and parameter fitting.

The purpose of this report is to provide an introduction to the simulation
language. The conceptual framework is first described in Chapter 2. The report
then proceeds by examples. Chapter 3 describes how to solve simple differential
equations. Solution of difference equations is described in Chapter 4. Chapter 5
describes simulation of more complicated systems which are obtained by
combining subsystems described by differential or difference equations. It is
useful to note that all of this can be accomplished by about a dozen commands.
Some advanced features are described in Chapter 6. A few remarks on the
implementation are given in Chapter 7. Eaeh chapter is provided with exercises.
Do not forget to experiment and test at a terminal as you p}*ogress with the
reading. Remember that you can %always type HELP and that there is also a
manual which gives a detailed descrlptlon of the language constructs. Also
remember that a good way to learn the language is to start by learning how to

master a few commands and expand il’lle vocabulary gradually.

2. The Conceptual Framework

Simnon is an interactive language for simulating dynamical systems. The system
may be described by ordinary differential equations, or difference equations. It is
also possible to simulate systems which consist of interconnected subsystems.
This is useful in order to structure a large system. Simnon may also be used for

other purposes e.g. to graph functions to fit models to data etc.

The simulation language has facilities to edit system descriptions, to integrate
differential equations, to store and retrieve data, to show the solutions as graphs,

and to change parameters and initial conditions.

DESCRIPTIONS OF DYNAMICAL SYSTEMS

To use Simnon it is necessary to have a basic understanding of dynamical
systems. In particular to be familiar with the notions of input, output and state.

The generic form of a continuous time system is
dx
dt
Y

f(x, u) (2.1)

g(x, u)
where u is a vector of inputs, y a vector of outputs and x is the state vector. A
system like (2.1) is specified as a CONTINUOUS SYSTEM in Simnon. The analogous

?
form for a discrete time system is /'

x(t,,) = £(x(t), u(t,)),
y(tk) g(x(tk), u(tk)).' k=1,2,...

uf" ?‘

A system like (2.2) is specified,/ag af“DISCRETE SYSTEM. Simnon allows a system

(2.2)

or a subsystem to be described by either of the forms (2.1) or (2.2). It is also

possible to have interconnected systems where each subsystem has the form (2.1)

or (2.2). Connections are described as a CONNECTING SYSTEM.

INTERACTION PRINCIPLES

Simnon gives information to the user via a graphical screen which can show
curves, text and numbers. It is also possible to get a hard copy of a picture and
to list system descriptions and data. Simnon receives information from the user

by commands from the keyboard. The commands have the form
CMND argl arg2 ...

where CMND is the name of the command and argl, arg2, etc. are the arguments.
The name is a combination of up to eight characters. The arguments may be
identifiers or numbers. Spaces are used as separators. A command is terminated

by carriage return (CR).

Default values

It is desirable that commands are both short and flexible. One possibility to
achieve these conflicting goals is to allow variations of a command which are
selected by the arguments. A description of the simulation command illustrates

the idea.

The simulation command

The different forms of the command SIMU which executes a simulation of a
system are illustrated in the syntax diagram Fig. 1. The diagram implies that any
form of the command which is obtained by traversing the graph in the directions

of the arrows is allowed. For example the command

SIU 0 100 Yoo

[*
P |

simulates a system from time O to time 100. If we want to repeat the simulation a

second time with different parameters it suffices to write
SIMU

4
The previous values of the a"g}ugq‘nts, i.,e. 0 and 100, are then used. Most
commands are provided with default arguments. These arguments are then used

unless otherwise stated.

—t-—l Time /'ncre\ment—l‘l
Irj--[Start time—l—)--[Stop time —I '

l[@

—»(S/MU

: Store increment I
© Y Tv

Figure 1. Syntax diagram for the command SIMU.

It follows from Fig. 1 that start and stop times and the initial time increment may
be specified. It is also possible to mark curves by the optional argument MARK.
A simulation may also be continued by using the end conditions of a previous
simulation as initial values. This is done by the command option CONT. The
results of a simulation may also be stored in a file. The time spacing between the

stored values is specified by increment.

The syntax for the simulation command may also be described as follows:

SIMU [<start time> <stop time> [<increment>]]
[-{CONT|MARK}] [/<filename>[<increment>]]
This description is called the Backus-normal form (BNF), or the Bachus-Naur
form. <...> denotes an argument i.e. a number or an identifier. [al a2 ...] denotes
optional arguments which may be omitted -and {al1|a2|...} denotes that one of the
alternative arguments must be chosen. An asterisk () after an ‘argument denotes
that it may be repeated. The synjtaz;c'foxj ﬁny command is obtained b{/ typing the
command HELP followed by the name of the command. The syntax is then shown
in the Backus-Naur notation. The syntax of the commands is given in Appendix
A.

EXERCISES

1. Learn how to log in and log out of your computer system and how to get
access to mass storage areas. Get help from your systems manager if
necessary. Document what you are doing so that you can repeat it on your
own.

2. On the Vax implementations you start Simnon simply by typing Simnon.
Simnon answers by the prompt > You can exit Simnon by typing STOP.
Practice this.

3. Try to find out about Simnon by using the command HELP.

4. Use the HELP command to find out how the command AXES works. Experiment
with the AXES command to find out how it works.

e

3. Differential Equations

keyboard. How Simnon may be used to generate solutions to an ordinary

differential equation is illustrated by an example.

THE PROBLEM

for different initial conditions and different values of the parameters a and b. The

van der Pol equation is a model for an electronic oscillator.

The path towards the solution tosthe problem can be divided in the following

steps. Y A

Enter system descriptions

Simulate

Analyse the results

Change parameters and ,_inirt’ial conditions

PONM

where steps 2, 3 and 4 are iterated unti] a satisfactory result js obtained. The

different steps will now be described in some detail,

10

continuous system VDPOL
"The van der Pol equation
state x y

der dx dy

dy=x

dx=a*x* (b-y*y)-y

a: 1

b: 1

END

Listing 1. A Simnon system for Equation (3.2).

ENTER THE SYSTEM DESCRIPTION

The equation (3.1) is first rewritten in the standard state space form (2.1). Since
the equation (3.1) is of second order an extra variable is introduced. The

equation (3.1) can then be written as

dy _
at _ *
(3.2)
dx 2
e ax(b-vy") -y

The equations are now in standard state space form, which is the format
necessary to use Simnon. A file which describes the system should now be
prepared. This file which is labeled VDPOL is listed in Listing 1. The first line
indicates that it is a continuous time system with the name VDPOL. The state
variables x and y and their derivatives dx and dy are declared. The differential
equations are then defined. Notice the strong similarity with (3.2). Finally values
are assigned to the parameters a and b.,”Simnon separates between parameters
and variables. Parameters may be assigned values in a system ‘description using
the notation ":' for assignment. Parameter.values may be reassigned interactively

»’
using the command PAR. Variables Are defined using the notation '='.

The file can be edited using any editor you are familiar with. Assuming the
standard editor you type EDIT VDPOL.T if you are in VMS and $EDIT VDPOL.T if
you are in Simnon. In the VAW/VMS system all Simnon system files have the
extension '.T'. This also applies 7t<; Méfcro files (Chapter 6). There is also a simple

line oriented editor built into Simnon which can be used to enter the file. This

11

editor is invoked by the command
EDIT <filename>

where the argument <filename> is an identifier i.e. a letter possibly followed by
letters or digits. The facilities in the editor are described in Appendix A. The

syntax of the system descriptions is given in Appendix B. The command
LIST <filename>

lists a system description on the terminal.

SIMULATION

To run a system it must first be activated. This is done by the command
SYST VDPOL

If there are any errors during the compilation an error message is given and the
system enters the Simnon editor so that the error may be corrected. If you want

to use another editor simply type LEAVE to exit Simnon's editor.

If we would like to see the solution curves as they are integrated we must first

draw axes on the screen. This is done with the command
AXES HO 20V -6 6

which means that the ranges of the horizontal (H) and vertical (V) axes are
chosen as (0, 20) and (-6, 6).

The command

ne

PLOT x y

instructs the program to plot the viariables, x and y as functions of time.
y , [4 | 3

To perform a simulation it is necessary to give appropriate initial conditions to
the state variables. The command
INIT x: 1

%
assigns the initial value 1 to the-statg variable x. Initial values are automatically

set to zero if no assignments are made. We are now ready to perform a

simulation. The command

12

4.
2.
o~ . 2
° 1
a 1 2
b 0. |
<
g | 1 2 2
>
. om . 2
©
> 1
") J
©
=
« -4,
©
@
>
[
ey
«
3 -6‘ T T T T T T L
0 5. 10. 15. 20.

Time &

Figure 2. Simulation of the van der Pol equation for a=1 and b=1 with initial
values x(0)=1 and y(0)=0.

SIMU 0 20 - MARK

activates a simulation from time 0 to time 20, and the result shown in Fig. 2 is
obtained. The argument -MARK implies that the curves are labeled with integers

1,2,... in the order they appear in the plot command.

K

HOW TO INTERRUPT A SIMULATION ..
, 1T
Some times when you make a simulation you will find that the results are wrong
at the beginning. It is then useful to’ be able to break the simulation immediately.
!

There are facilities for doing t;xis in Simnon. The details are implementation
dependent. On the standard Va7 ,ss/é,tems the simulation is interrupted by typing
CTRL-C.

13

CHANGING PARAMETERS

Suppose that it is of interest to explore how the character of the solution is

influenced by the parameters a and b. The command
PAR b: 2

assigns the value 2 to the parameter b. The command
SIMU

now generates a new simulation. Notice that it is not necessary to specify any
arguments in the command SIMU. The previously given values 0 and 20 are
automatically used as default values. The use of default values simplifies the user

interaction considerably.

It is now easy to continue to explore how the solution is influenced by the

parameters of the solution by a repeated use of the commands PAR and SIMU.

Current values of all states, derivatives, variables and parameters may be

displayed. The command
DISP

displays all current data. Selective displays of the parameter a, the state x and

the variable y is done by the command
DISP a x vy

The display may also be directed to the line printer. A simple way to find out
how the command DISP works is to type

HELP DISP

f
or

The help function can be applied to all commands.

’ v
|

STORING AND EDITING RESULTS OF A SIMULATION

It may be useful to store some r"esults, to compare results from different

simulations and to plot different gtaﬁe, variables in different diagrams. Suppose for
i 'y

example that we would like to compare the results for the parameter sets a=1,

b=1 with a=1, b=2. Two data files are first generated. The command

14

PAR a:1
PAR b: 1

sets the parameters. The command
STORE x y

tells that the state variables x and y should be stored. The command
SIMU/B1

then performs a simulation and stores x and y in a file called B1. The value of b

is set to 2 by
PAR b: 2
and the command
SIMU/B2
simulates and stores the results in file B2. The command
SPLIT 2 1
splits the screen into two windows. The command
ASHOHW x/B2

plots the variable x from file B2 in the first window using automatic scaling. The

command
SHOW x/B1
plots the variable x from file Bl in the same window. The commands

ASHOW y/B2
SHOW y/B1

plots the variable y from files B2 and B1 in the second window. To document the
results it is useful to generate a hardcopy of the curves obtained. The details

depend on the hardware. On a northal installation the command
A L
HCOPY

sends a copy of the picture on the screen to the plotter queue. The results

shown in Fig. 3 are then obtained. The command
SPLIT 1 1 ff 7
t %

clears the screen and resets plotting to one window which covers the full screen.

L}

15

State variable x

State variable y

0 5. 10. 15. 20.

Time ¢

Figure 3. Solution of the van der Pol equation for b= 1 and b = 2.

PHASE PLANE PLOTS

For two-dimensional differential equations it is useful to visualize the results as

phase plane plots. This may be done simply by

AXES H -4 4 V -3 3
SHOW y(x)/B1

which generates Fig. 4.

GENERALITIES

The general way of using Simnon as a "calculator for differential equations"” will

now be given. The generic for gf g ,system description is given in Listing 2. The
K3]

system description starts with CONTINUOUS SYSTEM <Identifier>. It is terminated

by a line which contains END. An identifier is a a sequence of letters and digits
/

16

2,
1.
0. -
-1.
>
Q
o
e
("; 'Sl T T T T T T -1
-4, -2. 0. 2. 4,
State variable «x
Figure 4. Phase plane plot of the van der Pol equation for a = 1,b = 1, x(0) = 1,
y(0) = 0.
CONTINUOUS SYSTEM <Identifier>
"General differential equation Comment
state <Identifier>...<Identifier>
der <Identifier>...<Identifier> } Declarations
time <Identifier>
computation of auxiliary variables
computation of derivatives "~
; Body
parameter assignment
initial value assignmgnt ,
END I
/
Listing 2. of differential

where the first character musz

Generic form of system description for simulation

equations.

,-vi "f
")

be a letter. Both upper and lower case letters

may be used although the compiler does not distinguish between them. The

/

17

system description has two parts, a declaration and a body.

There are three types of declarations. A time variable may be declared for
simulation of time varying differential equations. This is done by the keyword
TIME followed by an identifier. The state variables and their derivatives are
declared by the keywords STATE and DER followed by a list of the state variables

and the derivatives. associated by their sequential order in the lists.

The body of the system description specifies the derivatives of the state variables
in terms of state variables and parameters. Auxiliary variables may also be used.
The body also contains assignment of parameters and initial values. The order of

the statements in the body is unimportant. A variable may only be defined once.

Expressions and operators

The expressions available in Simnon are similar to those in a procedural language
like Algol or Pascal. An expression may be a string, a numeric constant or a
variable. It may also be combinations of variables, operators and functions.
Conditional expressions of the form IF...THEN...ELSE are also permitted. Simnon
has arithmetic, relational and logical operators. All variables are floating point
numbers. The numbers are written in the conventional way as 4, 1.1 or 6E7. The

result of boolean expressions is 1.0 if it is true and 0.0 if it is false.

Arithmetic operators

The arithmetic operators are addition, subtraction, multiplication, division and

exponentiation. They are denoted as

+ - * / -
respectively. -
Relational operators L ..
A L

There are three relational operators, namely equal, greater than, and smaller

than. They are denoted by

= > <

Logical operators

The logical operators are AND, OR and I)IOT.

18

Functions

The following functions are available:

abs (x) absolute value

-1 x<0
sign(x) 0 x=0

1 x>0

int(x) largest integer less than x
mod (x,y) x mod y
max(x,y) largest of x and y
min(x,y) smallest of x and y
sqrt(x) square root of x, x>0
exp(x) exponential function
In(x) natural logarithm of x
log (x) logarithm (base 10) of x
sin(x) sine of x (x is in radians)
cos (x) cosine of x (x is in radians)
tan(x) tangent of x (x is in radians)

arcsin(x) arcsine

arccos(x) arccos

atan(x) arctangent of x result in (-n/2, @/2)
atan2(x,y) arctangent of x/y result in (-m, =)

sinh(x) hyperbolic sine

cosh(x) hyperbolic cosine

tanh(x) hyperbolic tan
SUMMARY

It has been demonstrated that Simnon may be used to generate solutions to
ordinary differential equations in a very simple way. To do this the differential

equations are first written as a system of first order equations like

dx b e 9
E—f(x,t). , ,' k]

A continuous time system is then generated in Simnon by declaring the state
variables and the derivatives. The function f, which defines the right hand side of
the differential equation, is }hen | introduced using ordinary mathematical
expressions and assignments 07 ,.Pag:ameters. There is no vector notation so all
equations must be written in scalar notation. Any editor may be used. There is

also a special editor incorporated into Simnon, which is invoked by the command
!

19

EDIT. The command LIST can be used to list files. A simulation is executed using
six basic commands: SYST, AXES, PLOT, INIT, PAR and SIMU.

In order to edit, manipulate and document results from several different

simulations it is, however, also useful to use six additional commands, namely
STORE, SHOW, DISP, SPLIT, AREA and HCOPY.

The HELP command is useful in order to see what the commands do.

EXERCISES:

9.

10.

20

Learn how to use an editor on your system. Practice by editing the system
in Listing 1.

Learn how to enter and exit from Simnon. Use the command LIST to list the
system you have edited on the screen and on the line printer. (Note in the
Vax implementation you may invoke a program called PRG from Simnon by
typing $PRG without leaving Simnon.)

Repeat the simulation described in this chapter on your own.

Change parameters with the command PAR and initial conditions with the
command INIT and investigate how the solutions to the van der Pool
equations change.

Experiment with the commands AXES, SPLIT, SHOW, ASHOW and AREA.

Use the HELP command to investigate the basic simulation commands AXES,
PLOT, INIT, PAR, SYST and SIMU.

Introcduce a formal error in the program in Listing 1 by changing the
assignment of dx to dx = axx#(b-yxy-y. Try to simulate the incorrect
program. (When an error is detected the command EDIT is automatically
executed. You may correct the mistaké using the line editor. The simulation
is then automatically continued when you exit the editor by typing E. You can
also leave the editor by the cqmmand LEAVE and use your favourite editor
for the correction.)) =

Use the HELP command to investigate the auxiliary commands STORE, SHOW,
DISP, ASHOW, SPLIT and AREA.

Look at the commands LIST, LP and HCOPY and learn how to get hardcopies
of listings and plots on younﬁsy;tem.

” s
Consider the following van 7de'r Pol equation

" 2 .
ey+ (y-1)y+y=a

Investigate the limit cycles obtained for € = 0.05 and 0.993 < a < 1.

11. The following equations called the Volterra Lotka equations represent a
simple model for the development of two competing species

dx
gt = (2 - by)x
d
ar = (cx - d)y

Make a Simnon program to study the equations. Start with the following
nominal values: a = 2.7, b=0.7,c=1and d = 3.

12. A simple model for a satellite orbit is given by

d’r [d_co ok
dtz dt r‘2
2

d¢ , 2 dr de _
—< *r oat at - ©
dt

where r is the radius from the center of the earth, ¢ the azimut angle and k
a gravitational constant. Simulate the equations.

13. Learn how to interrupt a simulation on your installation.

14. Simulate the differential equation
dx

It = a(y-x), x(0) = -8
dy _ _ a = &
Tl bx -y - xz, vy(0)=-8
dz

3¢ = - ©z * v, z(0) = 24

where a = 10, b = 28 and c = 8/3. Look in particular at z as a function of x.
The equation, which is called the Lorenz equation, is an example of a
deterministic system, which has a very. irregular (chaotic) behavior.

21

4. Difference Equations

There are also facilities for simulating difference equations in Simnon. This is
done analogously to simulation of differential equations. An example is first given

and the general principles are then stated.

EXAMPLE

Consider the following difference equation

This is a simple model of a population dynamics. The variable X) denotes the
number of individuals at time k in a normalized scale. There is an equilibrium
value x=1 at which the population remains constant. For kao the population
increases with the factor 1+r in each generation. For xk>1 the population will
decrease. Assume that it is of interest to investigate how the population changes

with time.

A difference equation is characterized as a DISCRETE SYSTEM in Simnon. The
description of a system which simulates the difference equation (4.1) is given in
Listing 3. 3} e

A
The state variable x is declared in the Ssame way as for continuous time system
using the STATE declaration. The declaration NEW is used to declare the variable
nx, which denotes the new value of the state variable. NEW is thus the analog of

DER for continuous time systems. %3 ¢
AR
When simulating difference equations it is necessary to provide a mechanism for

making the state variables change at certain sampling times. For example the state

22

Listing 3.

discrete system POPDYN
"Simple model for population dynamics
state x

new nx

time k

tsamp ts

nx=x+r*x* (1-x)

ts=k+1

x:0.5

r:2

END

equation (4.1).

A Simnon system for simulation of the difference

variable in equation (4.1) changes periodically at k = 1, 2, In the general case

there may, however, be irregular sampling. The mechanism used to describe this

in Simnon is to introduce a variable TSAMP which gives the next sampling time.

In Listing 3 the first assignment statement is simply a definition of the right hand

side of the difference equation (4.1). The second line: ts=k+1 assigns the value

k+1 to the TSAMP variable ts. This tells that the system will be activated next at

time k+1.

SIMULATION

Discrete time systems are run in the same way as continuous time systems. A

simulation is thus executed by the commands

syst
split
axes
plot
simu

popdyn
31

HOS8VO1

X % .
0 80 L1t

This generates the uppermost curve in Fig. 5. The commands

axes

par r:2.70

simu
axes

par r:2.83

simu

23

»
0.75 JJ_,_rr’JJ/r

c -

[]

2

ot -

=

a

mo o. T T L] T T T T 1
0. 20. 40. 60. 80.

* 0.75

c]

[o]

2

o -

>

a

g 0. T T T L] T
0 20 40. 60 80

* 0.75

c i

[o]

2

[y]

E

[~ 9

8 o. T T T T T T T 1
0 20. 40, 60. 80.

Generation k

Figure 5. Simulation of population dynamics.

repeats the simulation for r = 2.70 and r = 2.83, and plots the corresponding
curves shown in Fig. 5. Notice that the behaviour of the solutions change

drastically with moderate changes in the parameters.

GRAPHS OF FUNCTIONS 3
A
Simnon is conveniently used to obtain a graph of a function. Assume for example

that we want a graph of the polynomial
f(x) = x(x+3) (x+2) (x-2) (x-3) .
&)

This is accomplished by the folloym,ng 'system.

24

180.

f(x)

100.

50.

-50.

-100.

-150.

Figure 6. Graph of the function f(x) = x(x+3)(x+2)(x-2)(x-3) generated by
Simnon.

discrete system POL

time x

tsamp z
f=(x+3)* (x+2) xx* (x-2)* (x-3)
z=x+dx

dx:0.05

END

The commands

syst pol , 1"
store f

simu -3.6 3.6

ashow f

will then generate Fig. 6.

,,ﬁ l}

. . . a .
Simnon is also conveniently 7used *to generate level curves, field plots and

conformal maps. To illustrate such applications consider for example the problem

25

of finding the image of the lines arg z = 7/2 and arg z = 37/4 in the conformal

map

G(z) = e? = eX71Y ex(cos Y +1siny).

This may be accomplished by the system

discrete system EXPZ
time r

tsamp s
fi=alfaspi/180
x=r*cos (fi)
y=r*sin(fi)
ReG=exp(x)*cos(y)
ImG=exp(x)*sin(y)
s=r+dr

dr:0.01

Pi: 3.1415926
alfa: 90

END

The commands

syst EXPZ

axes h -1 1vo01.5
plot ImG(ReG)

simu 0 3,14

par alpha: 135

simu 0 4.44

then generate the graph shown in Fig. 7.
GENERALITIES

It is analogous to the continuous time system. The only semantic difference is that

the sampling variable TSAMP must be ass}'gned and that der is replaced by new.

SUMMARY
!

Difference equations are simulated in ’ﬁh',e same way as differential equations. The
System description DISCRETE SYSTEM is used instead of CONTINUOUS SYSTEM.

26

1.5 .

Im G

1.25

0.75 |

0.5 |

0.25 |

Figure 7.

Listing 4.

-0.5 0. ' 0.5 ' P
Re G

Graph of thez map of the rays arg z = n/1 and arg z = 37/4 in the
map G(z) = e”.

discrete system <identifier>

"general difference equation comment
state <identifier>...<identifier> 1

new <identifier>...<identifier> declarations
time <identifier>

tsamp <identifier> hs

computation of auxiliary variables]
computation of new vajues og the states
update the variable Tiamp; body
parameter assignment
initial value assignment
END

Structure of Simnon syslt,em for simulating difference equations.
i

ki
']

The simulation commands are the same as for differential equations, i.e. six basic
commands AXES, PLOT, INIT, PAR, SYST and SIMU and six auxiliary commands
STORE, SHOW, DISP, SPLIT, AREA and HCOPY.

28

EXERCISES

1.

The difference equation

=1
et T 3

is a well known algorithm for computing the square root of a. Write a
discrete system in Simnon and explore the algorithm.

Modify the simulation program in exercise 1 so that the stationary solution to
the equation is computed and plotted.

The following is a simple Keynesian model of a macro economic system

y(t) = c(t) +i(t) + g(t)
c(t) = a y(t-1)

i(t) = b [c(t) —c(t-1)]

where y is the gross national product, ¢ consumption, i investment and g
government expenditures. Write the equations as a system of first order
equations and simulate the equations. Investigate the response of the system
to a sudden increase in government spending. What are the influences of the
parameters a and b? Try the values a = 0.75 and b = 0.5, 1 and 2.

Investigate the properties of the following difference equation

r(x2 + yz) exp [—0.1(x2 + y2)]
x(t)

x(t+1)
y(t+1)

for different values of the parameter r.

T

29

5. Combination of Systems

It is often useful to structure a large problem into smaller subproblems. In
simulation this is done by decomposing a large system into interconnected
subsystems. A subsystem is often represented as a box with inputs and outputs
and the interconnections are represented by directed lines between the boxes.
Such a structure can be represented in Simnon. This is done by adding
declarations of inputs and outputs to the system descriptions. The subsystems
can then be described as a CONTINUQUS SYSTEM or a DISCRETE SYSTEM. A
special type of system is used to describe the interconnections. This system is
called a CONNECTING SYSTEM.

Consider the control system shown in Fig. 8 which is a combination of two
subsystems
discrete system REG

input yref y
output u

END

continuous system PROC
input u

output y

END

and the system which describes the irnterconnection is given by

f
TR0

30

yr

e

REG PROC
’-__

Figure 8. Block diagram of an interconnected system.

connecting system CON

"Connecting system for simulation of process PROC
"with PI regulation by system PIREG

time t

yr[pireg]=1

y[pireg]=y[proc]

u[proc]=u[pireg]

END

Notice that states, variables, and parameters are local variables in each
subsystem. Variables in different subsystems may be specified by adding the
system name in square brackets after the identifier. Also notice that expressions

may be used to describe the interconnections. Constructions like
y[reg] = if t<1 then O else sin(ksy[proc])

are thus possible.

The simulation of an interconnected system is done using the same commands as
was used to simulate difference or differential equations. The only difference is
that it is necessary to activate all subsystems that describe the interconnected

system. This is done by the command
SYST SYS1 SYS2 CON

The connecting system must be the last system in the list. The order of the
systems is otherwise irrelevant. Continuous and discrete system may be mixed

freely. 4

" »

4

AN EXAMPLE - SIMULATION OF A COMPUTER CONTROL SYSTEM

A continuous time process W’f‘thp’a computer control system is conveniently
L
. - L]
described as an interconnected 'system. The process may be represented as a

CONTINUOUS SYSTEM and the control computer as a DISCRETE SYSTEM.

31

discrete system PIREG

"PI regulator with anti-windup
input yr y

output u

state i

new ni

time t

tsamp ts

e=yr-y

v=kxe+i

u=if v<ulow then ulow else if v<uhigh then v else uhigh
ni=i+ksexh/ti+u-v

ts=t+h

k:1

ti: 1

h:0.5

ulow: -1

uhigh: 1

END

connecting system CON

"Connecting system for simulation of process PROC
"with PI regulation by system PIREG

time t

yr[pireg]=1

y[pireg]=y[proc]

u[proc]=u[pireg]

END

Listing 5. Simnon description of a simple control loop consisting of a continuous
time process and a discrete time Pl regulator.

Listing 5 describes a feedback loop consisting of a continuous time process called
PROC and a digital PI regulator called PIREG. The process is an integrator with
input saturation. The interconnectipns are described by the connecting system

CON. I A

32

The following annotated dialogue illustrates how Simnon is used.

Command Action

syst proc pireg con Activate the system.

store yr y[proc] upr Select variables to be stored.

simu 0 40 Simulate.

split 2 1 Form two screen windows.

ashow y yr Draw y and yr with automatic scaling in first
window.

ashow upr Draw upr with automatic scaling in second window.

Notice that the names are local to each subsystem. To distinguish between
variables that occur in different subsystem the name of the subsystem is written
in square brackets as in y[proc]. Variables can be transmitted between subsystem

by declaring them as inputs and outputs.

The results of the simulation are shown by the oscillatory curves in Fig. 9. The
discrete nature of the control actions generated by the computer are clearly
visible in the curves. These curves show that there is a considerable overshoot
due to windup at the integral. This is avoided by telling the regulator what the
process limitations are. The commands

par ulow:-0.1
par uhigh:0.1

changes the necessary parameters. The commands

simu O 40
area 1 1
show y yr
area 2 1
show upr
% . »
shows that the overshoot is reduced significantly. Compare Fig. 9.

GENERALITIES .

2 5
. !
Simnon allows three types of s%s’tetﬂ‘ descriptions, namely CONTINUOUS SYSTEM,

DISCRETE SYSTEM and CONNECTING SYSTEM. The discrete and the continuous

]

33

Y- /\

-]

[-

> \/

2 0.6

B i

Doy

+

a

(-9

»

S 0. T T T T 1
o] 10 20. 30 40

0.1

b=}

L]

e

(]

= C. | ,JJ_\-*__HJ_,_.— Hr!__L“_

. L,

)

o |

-

[=

8 _0'1 T T T T T T T 1
0. 10. 20. 30. 40.
Time t

Figure 9. Results of simulation of process control with a Pl regulator. The
curves with a large overshoot correspond to an ordinary regulator.
The other set of curves are obtained with a regulator with overshoot
inhibition.

systems may be simulated individually provided that no inputs and outputs are
declared. Interconnected systems may also be described by using the connecting

system. The complete syntax for the system descriptions is given in Appendix B.

EXERCISES o

1. Look at the syntax of the comn}a'nds" SYST and SIMU using the help command.
What are the differences Hetween simulation of single systems and
interconnected systems.

2. The HELP command has an hierarchical structure. Explore this
experimentally.

34

Use the command HELP LANGUAGE STRUCT to find the form of the different
system descriptions.

Assume that the variable y is used in two subsystems in an interconnected
system. Construct a simple test example to find out what happens. What
diagnosis is produced? How can the variables be separated?

Consider the system in the example. Repeat the simulation on your own
computer. Investigate the consequences of changing the sampling period.

Study the structure of the system descriptions.

35

6. Advanced Features

Simnon may be used in many different ways. So far we have described problems
which may be solved by using only a dozen commands. This is sufficient for
many applications. For more demanding problems there are however several
additional features. These may all be explored by using the HELP command or by
reading the manual. A brief description of some useful features will be given

here to indicate some possibilities.

MACROS

Commands are normally read from the terminal. It is, however, useful to have
the option of reading a sequence of commands from a file instead. The

construction

MACRO NAME
Command1
Command2
Command3
END

thus indicates that the commands 1, 2 and 3 are not executed directly but stored

on a file. The command sequence isathen activated simply by typing NAME.

As an illustration we give the following macro which generates Fig. 9.

, 1 ’ L

macro FIGO
nGenerates Fig. 9
syst proc pireg con -
store yr y[proc] upr
simu O 40/wup ¢
par ulow:-0.1 ; ¢
par uhigh:0.1 P
simu /nowup

36

split 2 1

ashow y/wup
show yr y/nowup
ashow upr/wup
show upr/nowup
mark a 2.5 0
mark "Time t
mark a 1 1

mark v "Control variable u
mark a 1 7.5

mark v "Output y and yref
END

Notice that lower case letters may be used to get a more readable code, although
Simnon does not distinguish them from upper case letters. Macros for generating

all figures for this report are given in Appendix D.

Macros are useful for documentation. They are also convenient for simplification
of a dialogue. Command sequences, that are commonly used, may be defined as
macros. A simple macro call will then activate a whole sequence of commands.

Macros may also be used to generate new commands.

The usefulness of macros may be extended considerably by introducing
commands to control the program flow in a macro, facilities for handling local and
global variables and by allowing macros to have arguments. By having commands
for reading the keyboard and for writing on the terminal it is also possible to

implement menu driven dialogues using macros.

Even a casual user is strongly recommended to learn simple uses of the macro

facility.

‘e

INTEGRATION ALGORITHMS 3 s

Differential equations are solved in Simnon using numeric integration routines. A
predictor corrector formula by Hamming with automatic step length adjustment is
normally used. The initial value of the step length is chosen as one hundredth of
the integration interval. A differé'glt ,frflitial step size may be chosen by an optional
argument in the command SIMU. ﬁl the algorithm the step length is reduced until
the difference between the prediction and the correction is sufficiently small. The

tolerance may be set by the command ERROR.

37

It is also possible to choose other integration algorithms by the command
ALGOR {HAMPC|RK|RKFIX |DAS}

where HAMPC is Hammings predictor corrector method, RK is a fourth order
Runge-Kutta algorithm with automatic steplength adjustment. RKFIX is also a
fourth order Runge-Kutta algorithm but it has a fixed step length. DAS is an
algorithm for integration of stiff equations, i.e. differential equations with both
slow and fast modes. Further details on the different algorithms are given in the

Simnon manual.

FORTRAN SYSTEMS

The Simnon language is simple, easy to use and reliable because of all the
diagnostics that is built into it. The language has however a limited expression
power. There are no possibilities to control program flow, there are no arrays
or other data types and there are no procedures. For models whose descriptions
require a more powerful language it is possible to interface Fortran routines to
Simnon. This also makes it possible to use library subroutines like Eispac and

Linpac in the simulations. The Simnon manual describes in detail how to do this.

STANDARD SYSTEMS

There are several standard systems in Simnon. A list of the available systems is
normally displayed on the screen when the system is started. A few of the

systems are listed below.

DELAY - time delay ¥ o °

FUNC1 - nonlinearity defindd by a table

LOGGER - logging of stored variables

NOISE1 - white gaussian noise generator

OPTA - optimizer

IFILE - discrete system which reads output variables from file

There are also more sophis iéaiégl systems like linear quadratic gaussian
regulators, self-tuning regulators'in some implementations. A description of the

standard systems is given in the manual. The command HELP SYSTEMS also gives

38

information about the systems. The standard systems are often implemented as

Fortran systems.

GLOBAL VARIABLES

All variables in Simnon systems are local. When using Fortran systems or
standard systems it may, however, be necessary to transfer global data. Global
variables are used for this purpose. The global variables are set by a LET
command. An example illustrates the use of global variables and standard

systems.

Example 6.1 - Use of standard systems

Assume that we want to include a function defined by a table in a simulation. This
is conveniently done by the function FUNC1. This function has one input u and
one output y. The function has one global parameter N.FUNC1 which gives the
number of entries in the table. The arguments are specified by the local
parameters uil, ui2, The corresponding function values are specified by the
arguments gil, gi2, The local parameter ORDER specifies staircase (order = 0)

or linear (order = 1) interpolation.

The following dialogue illustrates how the function may be used.

let n.funcl = 4
syst FUNC1 FUNCPLOT

par uil: -3

par gil: -1

par ui2: -1

par gi2: -2.8 _

par ui3: 1 "
par gi3: 1.5

par uid: 4 , '
par gid: 2 T

par order: 1

The global parameter n.funcl must be assigned a value before the system is
activated by the SYST command. The local parameters may be changed by the

PAR command as parameters in drc%)nary Simnon systems.
Uy

AN

39

f(x) |
2.
1.
0. |
-1.
-2, |
-3 ¥ T T T T T T |
-4, 2. 0. 2. 4.

Figure 10. Graph of a function defined by a table generated using the Simnon
function FUNCI1.

With

connecting system FUNCPLOT
time x
u[FUNC1]=x
yp=y[FUNC1]
END
the commands
axes h -4 4 v -3 3 P
plot yp
simu -4 4

then generates a graph of the functiop, see Fig. 10.

1
)" fﬁ

40

ORGANIZATION OF LARGE SIMULATIONS

There are several facilities which are useful when working with large systems or
with large amounts of data. System descriptions and macros are stored as text
files. These files have the file extension .T on the VAX/VMS system. The
subsystems also have a name which is the identifier given on the first line of the
system description. See Appendix B. Notice that the file name and the system
name may be different. This is very useful when simulating different versions of
a model because the same macros and the same connecting systems may be used.
The selection of a particular model is done when the systems are activated by the
command SYST. An illustration is given in the macro FIG9 which is listed in the
appendix. A PI regulator with the name REG is stored in a file called PIREG and a
system with the name PROC is stored in a file called INTEGR. The systems are

activated by the command
SYST INTEGR PIREG CON

The variables of the system are labeled by [REG] and [PROC] respectively. This
makes it possible to use a standard connecting system for different processes and

regulators.

SAVING AND RETRIEVING PARAMETERS AND INITIAL VALUES

The command SAVE stores parameters and initial values in a file. The values may
be retrieved by the command GET. These commands are very useful when
working with large models, because parameters and initial values are not
introduced manually. Assume for example that the systems FUNC1 and FUNCPLOT

have been activated as in Example 6.1 by the command
L) e

¢ v

SYST FUNC1 FUNCPLOT
The command
SAVE FUNCPAR

then generates a file FUNCPAR.T”%of the form

e

41

[FUNC1]
UI11: -3.
U12: -1.
UI3:1.
UI4:4.
GI1:-1.
GI2:-2.8
GI3:1.5
GI4: 2.
order: 1.
[FUNCPLOT]

It is convenient to edit files of this type for parameters and initial values when

simulating large systems.

DOCUMENTATION

It is often useful to keep a running log of an interactive session. The command
SWITCH LOG ON

generates a file of all commands in a session.

The scale factors in the graphs are computed by an algorithm. The same axes are
obtained in horizontal or vertical direction if the horizontal range is divisible by
four and the vertical by 3. It is possible to get scale factors 1, 2 and 5 only by

the command
TURN S125 ON

It is possible to add text to the axes by the command MARK. This is used in the

macros which generate the curves in the report.

It is also useful to have access to operating system commands under Simnon. In
. LI . .
the Vax implementation this is doneﬁlmply' by typing § followed by any operating

system command.

42

7. Implementation

When using Simnon it is helpful to have some insight into how the program

works and how it is implemented. A brief description is given in this chapter.

HOW A SIMULATION IS ORGANIZED

When the command SYST is given the equations describing the system to be
simulated are first sorted so that all calculations are done in the correct order. It
is possible to store the sorted equations in a text file by using the optional

argument [/<filename>]. The command
SYST INTEGR PIREG CON/DUMMY

generates a file called DUMMY with the content:

SORTED INITIAL EQUATIONS

SORTED TIME-INDEP. EQUATIONS

CON yr[REG] = 1
SORTED DERIVATIVE EQUATIONS
PROC y =X
CON y[REG] = y[PROC]
REG e =yr -y 3 e
v=%kte +1 | 4 v
u = IF v<ulow THEN ulow ELSE IF v<uhigh THEN v ELSE uhigh
CON u[PROC] = u[REG]
PROC upr = IF u<-0.1 THEN -0.1 ELSE IF u<0.1 THEN u ELSE 0.1
dx = upr

SORTED CONTINUOUS EQUAT’EDN‘;

SORTED DISCRETE EQUATIONS
REG ni = i + ksexh/ti + u - v

ts =t +h)

43

The subsystem name is given to the left and the equation to the right. The
equations are sorted so that the calculations may be performed in sequential
order. The equations are then brought to the standard form of a system of first
order differential equations, which are then integrated using the chosen
integration routine. The state variables of discrete time systems are constant
between the sampling instants. They may change discontinuously at the sampling
instants. The integration is therefore carried out only to the nearest sampling
instant. The states of the discrete systems are then changed and the integration is

continued.

ALGEBRAIC LOOPS

When systems are interconnected it may happen that the equations can not be
sorted so that the variables may be obtained by sequential computations. A simple

example, which illustrates what may happen is given below.

continuous system Si
Input u

Output y

y =u

END

continuous system S2
Input u

Output y

y=u

END

connecting system C
yr = 1

u[S1] = yr + ksy[s2] .
ufs2] = y[s1]
k: 0.5

END

When the command
SYST S1 s2 C

§
is given the error diagnosis " geb#aic loop detected" is given. The attempt to
' O

sort the equations result in

44

rIntrac
|
'i Initialize
- N |
: s Keyboard l
| /
| Read command
| Macro
| | Data base
|
k I Decode command
A
L _ S _ —
] |
Command SYST Command STOP
1)

Figure 11. Skeleton flow chart for Simnon.

S1 y =u

C u[S2] = u[s1]

S2 Yy =u

C u[S1] = yr + kxy[S2]
S1 y =1u

The variable u[S1] thus can not be solved sequentially. A simple calculation

shows that the variable is given by the following algebraic equation:
u[S1] = yr + kxu[S1]

This explains the name algebraic loop. In this particular case it is easy to solve
the equation if k # 1. In the general case the algebraic equation may be nonlinear.
It is then difficult both to determine if a solution exist and to find it if it does.
Simnon will not attempt to find a solution. It will just give an error message. The
presence of an algebraic loop is often an indication of poor modeling. Models with

algebraic loops may be integrated with the'«outine DAS.

Yoo

4 L

;A
HOW THE PROGRAM IS ORGANIZED

A schematic flow chart for Simnon is shown in Fig. 11. The main loop reads a
command, decodes it and perforrpf the required actions. All parts of Fig. 7 except
the action routines are implemented, as a package of subroutines called Intrac.
These subroutines perform command decoding, file handling, listing and plotting.

Intrac also contains the macro facility. A summary of the commands in Intrac and

45

Simnon is given in Appendix E.

The source code for Intrac is about 7000 lines of Fortran code, which compiles to
about 90 kbytes of code. Simnon itself has a source code of about 25 000 lines of

Fortran code, which compiles into 360 kbytes of code.

46

8. References

Simnon was developed in connection with a project for computer aided design of

control systems. See

Astrom, K J (1983):
Computer aided modeling, analysis and design of control systems - A
perspective. Control Systems Magazine, May, pp 4-16.

Simnon inherited many ideas from the tradition of analog and digital simulation in
the control engineering field. When the work on Simnon was started there were
a number of digital simulation languages like CSSL and CSMP available. These are

described in the book

Korn, G. A. (1978):
Digital Continuous System Simulation. Prentice Hall. Englewood Cliffs,
New Jersey

which contains much useful information on simulation. Languages like CSMP and
CSSL were, however, implemented using batch calculations. Since the languages
largely were inspired by analog simulation techniques they also inherited several
constraints imposed by the analog hardware. For example the state space notation
which is so natural was not supported 'I')‘y proper language constructs. When
Simnon was developed the main idga was to provide a tool which supports the
state space notation with good ,mah—xﬁachine interaction based on interactive

computing.

The first version of Simnon was defined and implemented by Hilding Elmqvist as
an MS dissertation in 1972, The,ﬁw rk was continued by Elmqvist and a usable

language and a manual were avaﬁlab e,in 1975:

Elmqvist, H (1975):
SIMNON, an interactive simulation program for nonlinear systems.

47

Report TFRT-3091, Dept of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

A good description of Simnon is also found in

Elmquvist, H (1977):
SIMNON - An interactive simulation program for nonlinear systems.
Simulation '77, Montreux, Switzerland, June 1977.

A new Simnon manual by Elmqvist is in preparation.

The Simnon language has been used extensively in teaching at the department of
Automatic Control at Lund Institute of Technology ever since. It is increasingly

being used at other schools and industries.
An innovative use of Simnon is given in the textbook
Astrém, K J and Wittenmark, B (1984): Computer Control Theory.

All graphs for simulation results in the book are generated by Simnon Macros
which are accessible to the students. They can then easily change parameters and

modify graphs.

The interaction principles used in Simnon, which are based on commands and

macros were developed in a more general CAD context. See

Wieslander, J (1979):

Interaction in computer aided analysis and design of control systems.
PhD thesis, Report TFRT-1019, Dept of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

and
Wieslander, J (1980a): .
Interactive programs - General guide. Report TFRT-3156, Dept of
Automatic Control, Lund Instit'u'te of Technology, Lund, Sweden.

The program Intrac, which is the core of the interaction with the user, is

described in

Wieslander, J and Elmqvist;{H (1978):

INTRAC, A communicatiory modyle for interactive programs. Language
manual. Report TFRT-3149, Dept of Automatic Control, Lund Institute
of Technology, Lund, Sweden.

43

APPENDIX A

Syntax for Simnon Commands

A list of the commands, their syntax and brief descriptions are given below.
Some Intrac commands (denoted by t) are also included in the list. More details
about the commands are obtained using the command HELP. All Intrac commands
are listed in Appendix D. The list is valid for implementations on VAX-11

systems. The following notations are used:

{op1 | ... | opn} Defines different alternatives of which one must be given.
[....] Parts within squared brackets are optional and can be
omitted.
{....}x A star indicates that the previous part can be repeated.
<> Defines arguments for the commands.
% .
A A

49

ALGOR {HAMPC|RK|RKFIX|DAS}

To select integration routine.
HAMPC - Hamming predictor corrector (default)

RK
RKFIX
DAS

ALGOR

- Runge-Kutta variable

step size

- Runge-Kutta fixed step size
- Integration routine for stiff systems

AREA <row> <column>
To define the plotting area to be used next, see SPLIT.

.@_
D~
»@

ASHOW {[<start><stop>] {<variable>}s [(<variable>)] [-MARK]|-LIST}

HAMPC

i

RKFIX

R

T

DAS

w
Row

[/<filename>]

To plot stored variables with automatic scaling. Similar to SHOW.

X;

i
Column

Yo

(AsHow }r:

e N L O KD O
]{—,.-]'I Vc:rfqb!e II l :

'S

- O——@D-
O~Cm
1

o Grmn

3)

Y

1)

50

AXES [<axis spec> [<axis spec>]]

To draw axes. :
<axis spec>::= {H|V} <min value> <max value>
H - horizontal, V - vertical

Min value H Max value l——

Min va[ue_l--—]Max valuel

DISP [({DIS|TP|LP}[{FF|LF}])] [{<variable>}+]

To display variables.
DIS - display (default)
TP - teleprinter

LP - line printer
FF - form feed (default when no variables are specified)
LF - line feed (default when variables are specified)

If no variables are given all variables are displayed.

5

Jr‘-jl Variable Il

Y

DISP

51

EDIT <«filename>

To edit a file. The editor has two modes, INPUT and EDIT. The mode is
changed by entering an empty line. In the edit mode it is possible to change
the current file. The following commands are available:

A[PPEND] <string> - Append string to current line
B[OTT] - Line pointer to bottom

C[HANG] /[x/vy/ - Replace string x by string y

D[EL] <integer> - Delete n lines

DIS [ON|OFF] - Echo check enable/disable

E[XIT] - Leave editor with updated file

F[IND] <string> - Find string at the beginning of a line
I[NS] <string> - Insert a line below current line
L[OC] <string> - Locate string anywhere in a line
LEAVE - Leave the editor without update
N[EXT] <integer> - Move line pointer down n lines
O[VERL] <integer> - Overlay n lines by new text

P[RINT] <integer> - Print n lines on display

R[ETYP] <string> - Retype current line

T[OP] - Move line pointer to the top of the file

(e

ERROR <error bound>

To choose error bound for integration routine. Default value is 0.001.

—»(ERROR | Error bound I——b—

GET <filename>

To get parameter values and initial values from a file that previously has
been stored using SAVE or edited.

52

HCOPY {[<MODE>]| [<factor>] | <SWITCH>}
MODE::={Q|L|R|LP}
SWITCH::={ON|OFF |SHOW}
Make a hardcopy of curves on display. Th
<factor>, which may be in the interval (0.5, 1.6
on the hardcopy too.

e hardcopy is scaled with
). The comment is obtained

—
-

HELP [([DEV][FEED][PROMT[NSLASK]])][KEY1[KEY2..]..]

DEV::={DIS|LP|TP}

FEED::={LF|FF}

PROMT::={ASK|CONT}

KEY1::={SIMNON COMMAND |INTRAC|SYSTEM}
KEY2::={DETAIL OF SIMNNON|INTRAC COMMAND}

To get more information about the commands, the editor, Intrac, Simnon, and
the standard systems. A menu of commands is obtained by typing HELP.

L]

S,

(HELP)

Detail of simnon
—»I Simnon command]— Intrac command

»(INTRAC) .‘:_-—“ Y

SNETED

Y

INIT <state variable>:{<number>|<variable>}

To change the initial value of a state Variable.

v 4!

—={ INIT State variable

54

LET {<variable>=}* {<number> [<operator> <number>]
|[{+]-} <number>| <identifier> [+<integer>]
|<delimiter> |<unassigned variable>}
<operator>::= {+|-|*|/|~}

An Intrac command that also is used to set global parameters for the
standard systems.

)

D) ~{reriasie}-C

|

| ¢9 20089

Oz —

=1 /dentifier

|

ﬂ

Delimiter -

[Unassigned variable =

LIST [({DIS|TP|LP}[{FF|LF}])] {<filename>}«

To list textfiles. The first arguments are the same as for the command DISP.
When typing the command LIST the files are sent to a print file. Type the
command LP to initiate the printing.

e 3—

)
W0
ey
~
N

FF

(O

é]
el
[

LIST ’,"’ 7 1 -:—{ Filename r——a-—
L {

55

LP

Initiate listing on lineprinter of the print file generated by the commands
DISP, LIST, LOG or PRINT. .

MARK
To introduce text into a plot. For syntax type HELP INTRAC MARK.

D

NEWS

To obtain news about Simnon.

PAR <parameter> : {<number>|<variable>}

To change a parameter value.

[reamre —-0— -
Varietie |

o

PLOT [{<variable>} x [(<variable>)]]

To select variables to be plotted when making the command SIMU:
Examples: PLOT X1 X2 gives jX1 4nd X2 as functions of time while PLOT
X1(X2) gives X1 as function of X2.

O[O

i
hoa f
(pLor) M |

56

PRINT [({DIS|TP|LP} [{FF|LF}])] <filename> [<lines>]
[/<start time>]

To list file generated with the commands STORE+SIMU. <lines> lines starting
from <start time> will be printed. The other parameters are the same as for

DISP.
=4
N)
@ ~G

@
—={(PRINT Filename |——>»

e SRR ¢, ¥ s o

@ Y \

SAVE <filename> [<systemname>] [-{PAR|INIT}]

To save parameter values and initial values for a given system
<systemname> on a file named <filename> to be used by the command GET.
Only parameters or initial values are saved with the option PAR or INIT.

PAR
=1 System identifier | — ——O H

SAVE Filename

57

SHOW {[<start><stop>] {<variable>}* [(<variable>)] [-MARK]|-LIST}
[/<filename>]
To plot stored variables from file <filename>. To be used with the command

STORE. The specified variables are plotted from <start> to <stop> time. If
MARK is used the different variables are numbered on the plot. The

LIST-option lists the names of all variables.

—[= O -0

tart [—-—I Stop I—I
o "
k'_ll Variable ll

-
©
0@ =

O =@ Q- Fmm)—

Y

Y .
A
©
% .
’l *
"y

58

SIMU [<start time> <stop time> [<time increment>]]
[-{CONT|MARK}[CONT|MARK]] [/<filename>][<store increment>]

To simulate the system from <start time> to <stop time> using the maximum
stepsize <increment> (default (stop time - start time)/100). Using MARK the
variables defined by PLOT are numbered. With CONT the simulation is
continued with the previously obtained state variables as initial values.
When specifying <filename> then the plotted variables are stored in
<filename> with <increment> as sampling interval.

’—»l Time increment I
:-I Start time —,—)-I Stop time I—

= ‘,
i

-@D
m ,.@ Store increment
© [

SPLIT <rows> <columns>

Y®

Y

To split the screen into maximum six plotting areas.
<rows>:={1]|2|3} default 1
<colums>:={1]2} default 1

4®_‘
.

3 v

— @D

025
i

Row # J Column #

59

STATE {{<variable>}* [{<variable>)] [-<option>]|
-CHECK <time increment> |-STATUS}
<option>::={SLOW |FAST|SOLVE}

A special command, which is only used with the integration routine DAS.

e
—O{rariasie=(D O 43D
Goue)

\

Y

Variable

< \
——--.7 CHE Time increment B
@ A

=(O)=(5747U5)

STOP ¢

To leave Simnon.

STORE [{<variable>}x [-ADD]]

To select variables to be stored at each simulation. With ADD new variables
can be added to a previously defined list of variables. The variables can be
displayed using ASHOW or SHOW and printed using PRINT.

0 ADD

e

| Variable

Y

Y

60

SWITCH {CLOCK|DATE|ECHO|EXEC|LOG|TRACE} {ON|OFF} +t

To control the execution of Intrac.

CLOCK - Adds time to hardcopy output. Default OFF.
DATE - Adds date to hardcopy output. Default OFF.
ECHO - Macro commands are echoed. Default OFF.

EXEC - Commands executed while typed during macro generation.
Default OFF.
LOG - Executed commands are logged on line printer. Default OFF.

TRACE - Affects ECHO and LOG.

@D~

-7 S R e €Dy

Y
SWITCH }—— Y e
A A
-~ (CExec)

—®={ (0G)=

L G~

SYST {<identifier>}* [-<option>] [/<filename>]
<option>:={EDIT |EXIT}

To define the system. The subsystems are compiled. If there are several
subsystems the last one has to be a connecting system. EDIT means that the
compiler goes into the editor for each file. If filename is specified the sorted
equations are written into a text file.

of,
~ (&) FQ)
; RN

—»{ SYST j\--l Identifier E

as

: - k]
TEXT '<any string not containing 51;1gle "qu'ote>'

To include text on paper plot.

—»@—»@——-‘Tc\ny string not containing single quote I—*""@*"‘
f
p /
' 0

61

TURN {DARK|DIS|NOCODE|OVFLO|PLCOM|S125|TIMING} {ON|OFF}

To turn on and off switches.

S125 Selects a limited set of scale factors (1., 2., 5.) when
choosing scales on axes. Default OFF.

DARK ON means that plotted curves will not be connected between the
sampling instants. Default OFF.

DIS Informs SIMNON if the user has a graphic display. Default ON.

OVFLO ON means that the simulation stops if overflow occurs in the
calculations. Default OFF.

DARK

{

DIs

NOCODE
Y r—"
~—-—b—(OVFLO} ".-r—jl
SN Gz S M Con

57125

—
.-—l—-..

TIMING

I

62

APPENDIX B
Syntax of System Descriptions

Simnon allows three types of systems: CONTINUOUS SYSTEM, DISCRETE SYSTEM
and CONNECTING SYSTEM. The following Bachus-Naur notations are used to
describe the syntax.

< > syntactic unit

1= denotes

| exclusive or

[] optional element

{ } compulsory element
* repetition

The following syntactic elements are needed to describe the systems.

LETTERS

<letter>::=A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|X|Y|Z
alblc|d|e[f|g|h|i]j[k|[Ll|m|n]o|p|q|r|s|t|u]v|x]|y|z
<digit>::= 0|1|2|3|4|5|6(7|8|9

IDENTIFIERS
<identifier>::=<letter>|<identifier><letter>|
<identifier><digit>
VARIABLES h '
Y A

<system identifier>::=<identifier>

<simple variable>:: =<identifier>

<variable>::=<simple variable>|<simple variable>[system
identifier>]

A
D

63

The generic form of the system descriptions are:

CONTINUOUS SYSTEM <system identifier>
[INPUT <simple variable>x]
[OUTPUT <simple variable>x]
[STATE <simple variable>x]
[DER <simple variable>x]
[TIME <simple variable>]

INITIAL
Computation of initial values for state variables
SORT

[Computation of auxiliary variables]
[Computation of output variables]
[Computation of derivatives]
Parameter assignment

[Initial value assignment]

END

DISCRETE SYSTEM <system identifier>
[INPUT <simple variablex]
[OUTPUT <simple variable>x]
[STATE <simple variable>x]
[NEW <simple variable>#]

[TIME <simple variable>] "denotes the new values of
the states
TSAMP <simple variable> "denotes the next sampling
instant
INITIAL

[Computation of initial values for state variables]
[Computation of initial values for output variables]
[Computation of initial values for the TSAMP-variable]
SORT

[Computation of auxiliary variables]

[Computation of output variableg] ,
[Computation of new values of the spates]
Updating of the TSAMP-variablé

[Modification of states in continuous subsystems]
Parameter assignment

[Initial value assignment]

END

64

CONNECTING SYSTEM <system identifier>
[TIME <simple variable>]

[Computation of auxiliary variables]
[Computation of input variables]
[Parameter assignments]

END

Note that the order of the computations and assignment is unimportant because
the equations will be sorted automatically. The section Initial makes it possible to
compute initial values to state outputs and TSAMP. These variables can normally
not be assigned an expression.

65

APPENDIX C
Standard Systems

This appendix describes the standard systems DELAY, FUNC1, IFILE, LOGGER,
NOISE1, OPTA, and STIME. These systems are written in Fortran and linked into

Simnon.

DELAY

This discrete time system simulates pure time delays. Old values of the signal to
be delayed are stored in a vector. Delayed values are then generated by
interpolation. The system admits two interpolation schemes due to Hermite and
Aitken. In Aitken's scheme a Lagrange polynomial is fitted to the stored values. In
Hermites method the values of the derivatives are stored together with the
function values. The delayed values are then determined using an interpolation
polynomial, which agrees with the function and its derivative at the stored points.

Hermite's method requires that derivatives of the function are also stored.

The function admits delay of many signals. It has the following global variables.

‘ot

ni.delay Number of variables using Hermit interpolation
n2.delay Number of variable% }Jsipg' Aitken interpolation
space.delay Number of elements in the allocation area to be used for saving

old values. Try to use as many as possible, SIMNON gives an
error message if too much space is used.

These variables must be assigned By a LET command before the system is

activated. 7’: ¢

66

The system has the following local variables.

INPUT:
ul,uz,... Variables to be delayed (n1+n2)
dui,du2,.. Derivatives of the variables (ni)
td1,td2,... Delay times (see below) {n1+n2)
OUTPUT:
ylya... The delayed variables (n1+n2)

The outputs from the system DELAY are all zero for t<td, but other values can
easily be set in the equations (see example below). The following example

illustrates how the system DELAY can be used.

Example: Assume that the following systems have been defined.

continuous system SYS1
END

connecting system CONN
time t

tdi[delay]=t-5
ui[delay]=sin(t)

u[sys1] = if t<5 then 1 else yi[delay]
END

The global variables for the system delay are assigned by the commands

let ni1.delay=0
let n2.delay=1
let space.delay=450

The systems are activated by the command
syst sys1l delay conn ar

The signal u[sys1] is then given by,

L]
-I' *
1 if t <5
u[sysi] (t) =
sin(t-5) if t > 5

67

FUNC1
This is a continuous time function which makes it easy to introduce functions in
tabular form. The system has one global variable:

n.funci

which gives the number of tabulated function values. The local variables are:

INPUT:
u Argument value
OUTPUT:
\'4 Function value
PAR:
uil, ui2, ... Table of argument values
gil, gi2, ... Table of function values
order Order of interpolation (0 or 1)

The following example illustrates how the function is used.

Example: Assume that the following systems are defined.

continuous system SYS1

END

connecting system CONN
time t

u[funcl]=t

u[sys1]=y[funci]

END

The global variable of the system FUNC1 is assigned by the command
let n.funci=5

The systems are activated by the commam‘i"
syst sys1l funcl conn % v

, ' ’ *
The parameters of the system FUNC1 are defined by the commands

68

par uil:
par gil:
par ui2:
par giz:
par ui3:
par gi3:
par uiég:
par gid:
par uib:
par gib: 16

par order: 1 "Use linear interpolation

PO WBNR, OO

The parameters of the system FUNC1 are saved on file TAB1.T by the command
save tabl funcl

Another illustration is given in Example 6.1.

IFILE

This is a discrete time system which reads variables stored in a datafile. It is
useful for example when comparing simulation models with real data. The system

has two global variables:
n.ifile Number of columns to be read from file or equivalently the
number of output variables

fname.ifile File name for input data file

The local variables are

OUTPUT:
ci 1st column in the file
c2 2nd column in the file -
PAR:
du1 Time for first input relative to the start time (default: 0.0) '
dt Distance between inputs {defdult: 1.0)
TSAMP:
ts Time for next input

The actual value of n.ifile is fixec’lv during the execution of the SYST command. The
value of fname.ifile can be chanﬁed l{),etween simulations. The simulation terminates
I)

if the input file is exhausted.

69

Several systems with different system identifiers can be active simultaneously.
The global variables should then contain actual system identifiers. The following

example illustrates the use of IFILE.

Example. Assume that data is stored in the file FDAT.D, which has 10 columns
and that we want to use the third column as input to a simulation. Let the

following systems be defined.

continuous system SYS1
END

connecting system CONN
time t

u[sysi1]=c3[ifile]
END

The global variables of the system IFILE are assigned by the command

let n.ifile=10
let fname.ifile=fdat

and the systems are activated by the command

syst sysl ifile conn

The file used as input to IFILE can be created in Simnon using a store command.

It can also be generated in the system identification package Idpac.

LOGGER

‘&

This is a discrete time system which can be used to sample and save arbitrary
% v '

*
+ ' ’

Simnon variables on a file.

The system has one global variable:
file.npoint

which gives the number of data 1;pints stored in the current STORE file with
name <file>. The global variable’hg set by LOGGER after each simulation. It can be

displayed by the WRITE command. (This value must be known if the generated file

I

70

is to be used by Idpac.)

The local variables are:

PAR:
dt1 Time for first sampling relative to the start time
(default: 0.0)
dt Sampling interval. If dt=0.0, no fixed sampling is done,
and all points are saved (default: 0.0)
TSAMP:
ts Time for next sampling

When it is desired to store data the system LOGGER should be included as a
system in the SYST command. Since it has neither INPUTs nor OUTPUTs, it need
not be connected in the CONNECTING SYSTEM. A connecting system must,
nevertheless, be present even if only one system is compiled together with
LOGGER. The connecting system can then be empty (3 lines). The following

example illustrates how the system LOGGER can be used.

Example. Assume that a system SYS1 is simulated, which has a variable x and
that it is desired to store the values of x every 10th second starting at time
t = 2.0. Assume that the following systems are defined.

continuous system SYS1

END

connecting system CONN

time t
END

The systems are activated by the command
‘oo

syst sysl logger conn

The parameters of the system LOG&];ZR _a_lré set by the commands
o

par dt[logger]: 10
par dti[logger]: 2

The command request the variatg%e x of SYS1 to be stored.

store x[sys1] o

The following simulation command executes the simulation with the option that the

'

71

variable is stored in FIL1
simu 0 1500 / fil1
Notice that the number of stored variables are available as the global variable

fill.npoint. The value of this variable is found as follows:

write fill.npoint
149

NOISE1

This is a discrete time system, which generates a sequence of independent
random vectors. The components of the vector have either a normal or

rectangular distribution. The system has the global variables
n.noisel Number of outputs
nodd.noisel Initial value for the generator (should be an odd,

positive integer)

The local variables are:

OUTPUT:
el, e2, ... The noise vector
PAR:
stdev1, stedv2, ... Standard deviations for the outputs (default: 1.0)
dt1 Time for first output relative to start time (default: 0.0)
dt Distance in time between outputs (default: 1.0)
same Reset switch. When same > 0.5, the noise generator
is reset (default: 1.0)
rect Type switch. If rect > 0.5, rectangular noise in
the interval (0, stdev) is generated instead of
white noise (default: 0.0)
TSAMP: ¥ . /
ts Time for next putput

Note that the switches same and rect influence the entire noise vector. Control of

individual components is not possible.

The global variable nodd.noise»”fis/updated at the end of each simulation. The

value of nodd.noisel can be changed between the simulations. The following

72

example illustrates how to use the noise generator.

Example. Generate two white noise input signals to the system SYS1. The signals
should start at t = 0.5 and change with a sampling period of 3 time units. Assume

that the following systems are available.

continuous system SYS1
END

connecting system CONN
time t
ui[sys1]=el[noisel]

u2[sysi]=e2[noiset]
END

The global variables of the system NOISE1 are assigned by the commands

let n.noisel=2
let nodd.noisel1=25831

The systems are activated by the command
syst noisel sysl conn

and the parameters dt and dtl of NOISE1 are set by

par dt: 3
let dt1:0.5

STIME

ar

This system stores clocktime and cpu-time in the two Simnon variables MSCLOCK
and MSCPU. It is wuseful for f#iming .,of simulations and for investigating
computational efficiency. No connecﬁr'lg ;ystem is needed. It is sufficient to include
STIME in the SYST command. The variables MSCLOCK and MSCPU are set to zero

at the start of each simulation.

)
g !

73

OPTA
This discrete time system is a tool for the problem of minimizing the function J(p)
subject to the constraints

gi(p) <0 i=1, ..., m
The system OPTA performs the minimization recursively. The system has old
values of the parameters as states. It accepts values of J and g as inputs and it
generates new values of the parameters, which will give a smaller loss function
as outputs.
The global variables are:

npar.opta Number of parameters (max 10)
ncons.opta Number of constraints (max 10)

The major local variables are:

INPUT:
loss The value of the function to be optimized
coni,con2 The values of the constraints
OUTPUT:
pl,p2 The new values of the parameters
tbeg This variable is set to the sampling time
PAR:
tinc Sampling period

There are also several additional parameters, which will influence the

optimization. They are listed below.

XM1 XM2 ... (1 1 ..) Scaling factors, see HH and EPS

LAM1 LAM2 ... (0 0 ..) Lagrange multipliers, initial values

DFN (-0.5) Controls initial stdp at the first linear minimization; should give
an estimate of the likely yeduction in function value, Af; there are two
possibilities:
DFN<O DFN itself is an estimate of Af
DFN<O ABS(DFN)f is taken as an estimate of Af

TINC (1) Length of sampling interval of OPTA

&
HH (0.005) Step length pr galculation of the gradient by differences; the
step length for each component Pi is XMI-HH

EPS (0.01) Stopping criterion for unconstrained minimization - is satisfied

74

when the change in each component Pi is less than XMi-EPS

PRIN (1) Controls printout on line printer; every ABS(PRIN):th iteration is
printed; if PRIN<O only function values are printed; if PRIN>O also P
and the gradient are printed; if PRIN=0 there is no printout

EVMAX (10000) Maximum number of function evaluations

CEQ (0) Number of equality constraints

C (1) Constant used in the modified function; only used for constrained
problems

DELTA (0.01) Stopping criterion for constrained minimization - satisfied when

TEST is less than DELTA
RESET (1) The states are reset to their initial values if RESET>0

DARK (1) There is no trace on the display at the sampling points of OPTA if

DARK>0
MODE (1) Controls the initialization of the approximation of the second
derivative, H
MODE=1 H is set equal to the identity matrix initially
MODE=3 the H-matrix from the previous minimization is used
LPLOT There is no plotting on the display when the optimization routine is

calculating derivatives by differentiation if Iplot>0.0

For a detailed discussion of these parameters and their use we refer to Glad
(1974).

The system OPTA can be used in many different ways. Typical applications are to
adjust regulator parameters for optimized performance and to adjust model
parameters in connection with model fitting. In such cases it is necessary to
perform a simulation in order to obtain the wvalues of lossfunctions and

L

constraints.

A starting value of the parameter \,n;ctq'r .p is given to initialize the 6ptimization.
The system is then simulated fo;‘ this parameter value. The criterion and the
constraints are evaluated. The optimization routine then uses the value of the
loss function J and the constraint g to compute a new value of the parameter
vector. The process is then rep,gated with the new parameter. The procedure is
illustrated by Fig. C-1. The critérion’J and the constraint vector g are connected
from the system to the optimizer while the output of the optimizer is the

parameter vector p, which is an input to the system. At each sampling point of

75

= System

Optimizer

Figure C-1

the optimizer it uses the current values of J and g to compute the next value of
p. If the criterion or constraints depend explicitly on the parameter vector p, a
vector p q' containing delayed values of p, is used. The system can consist of a
number of subsystems. The connections between these subsystems, as well as
connections needed to form J and g from output of the subsystems, are made in

the connecting system.
An example illustrates how OPTA is used.

Example. Consider a control system, whose block diagram is shown in Fig. C-2.
Let the purpose of the controller be to keep X, as small as possible despite the
disturbance v, which is an impulse disturbance. This is equivalent to setting

x1(0)=1. The criterion is

T
1= xg dt
0
It is also assumed that the total control effort is limited.
% '
2

T
= - A =
g g u dt Usim <0 Uiim 0.5

The gains Kp and K d should be chosen to satisfy these demands. The Simnon

programs required to solve the problem are given below.

"ﬂ
RS

76

Figure C-2

continuous system IMP
state x1 x2 z w
der dx1 dx2 dz dw
input kd kp
output y

output y=x2

y=x2

dynamics
u=-kd*x1-kp*x2
dxil=-x1+u

dx2=x1

dz=uxu

dw=x2*x2

END

connecting system CONN

time tim

wt: 10 .
loss[opta]=wtxw[imp]

ulim: .5 ! »
conifopta]=z[imp]-ulim ,, =
kd[imp]=p1[opta]

kd[imp]=p2[opta]

t = tim - tbeg[opta]

END

&
To do the optimization the glopall éqriables of OPTA are first assigned by the

commands

77

let npar.opta=2
let ncons.opta=1

The systems are then activated by the command
syst imp opta conn

Initial values of states and parameters are assigned by

init x1:1
init pil1: 2
init pi2: 2
The sampling period of the system OPTA is set by the command
par tinc: 10
The command
par prin: 5
tells that parameters, function values and gradients are printed. The optimization

is then executed by

plot y conl (t)
axes h010v -.1 .5
simu O 10000 1

78

APPENDIX D

Macros for Generating the Figures

This appendix gives Simnon macros for generating the figures in the report.

macro FIG2
"Generates Fig. 2
syst vdpol

split 1 1

axes h 0 20 v -6 6
plot x y

store x y

init x:1

simu 0 20 -mark/bl
mark a 2.5 0

mark "Time t

mark a 1 1

mark v "State variables x and y marked 1 and 2
END

continuous system VDPOL
"The van der Pol equation
state x y

der dx dy

dy=x

dx=axx* (b-y*y)-y

a:1

b: 1

END ¥ "

macro FIG3

syst wvdpol

init x:1

store x y

simu 0 20/bt y
par b: 2 i 4
simu/b2 re
split 2 1

axes h020v -6 6

show x /bl !

79

show x [b2
axes v -3 3
show y /bl
show y /b2
mark a 2.5 0
mark "Time t
mark a 2.5 6.5
mark "Time t
mark a 1 1
mark v "State variable y
mark a 1 7.5

mark v "State variable x
END

macro FIG4

"Phase plane for the van der Pol equation
syst vdpol '

init x:1

split 1 1

axes h -4 4 v -3 3

plot y(x)

simu 0 20

mark a 2.5 0

mark "State variable x
mark a 1 1

mark v "State variable y

END

macro FIG5

"Simulation of population dynamics 0 20
syst popdyn

split 3 1

axes h08voO01

par r: 0.2

plot x

simu O 80

mark a 2.5 0O

mark "Generation k

mark a 1 1 G
mark v "Population x

mark a 1 5.5

mark v "Population x - !
mark a 1 10 -

mark v "Population x

axes

par r:2.70

simu

axes »

par r:2.83 . /

simu he .

END

80

discrete system POPDYN

"Simple model for population dynamics

state x

new nx

time k

tsamp ts
nx=x+rxxx (1-x)
ts=k+1

x:0.5

r:2

END

macro FIG6
syst POL
store f

simu -3.6 3.6
split 1 1
ashow f

mark a 17 O
mark "x

mark a 0.5 12
mark "f (x)
END

discrete system POL

time x

tsamp z
f=(x+3)* (x+2) xx* (x-2) % (x-3)
z=x+dx

dx: 0.05

END

macro FIG7
"Generates Fig. 7
syst EXPZ

split 1 1

axes h-11v01.5
plot ImG(ReG)

simu 0 3.14

par alfa: 135

simu 0 4.44

mark a 17 O 2!
mark "Re G

mark a 0.5 12

mark "Im G

END

discrete system EXPZ If /

time r pe
tsamp s

fi=alfa*pi/180

x=rxcos (fi)

81

7

y=rxsin(fi)
ReG=exp (x)*cos (V)
ImG=exp (x)*sin(y)
s=r+dr

dr:0.01
pi:3.1415926
alfa: 80

END

macro FIGY9
nGenerates Fig. 9
syst proc pireg con
store yr y[proc] upr
simu O 40/wup

par ulow: -0.1

par uhigh: 0.1

simu [nowup

split 2 1

ashow y/wup

show yr y/nowup
ashow upr/wup

show upr/nowup

mark a 2.5 0

mark "Time t

mark a 11

mark v "Control variable u
mark a 1 7.5

mark v "Output y and yref
END

continuous system PROC
"Integrator with input saturation
input u
output v
state X
der dx
upr=if u<-0.1 then -0.1 else if u<0.1 then u else 0.1
dx=upr -
=X

END

s ’ ’ L
discrete system PIREG
"PI regulator with anti-windup
input yr v
output u
state 1
new ni ” f
time t /A
tsamp ts
esyr-y
v=k*e+i . ,
u=if v<ulow then ulow else if v<uhigh then v else uhigh

82

ni=i+kxexh/ti+u-v
ts=t+h

k:1

ti: 1

h:0.5

ulow: -1

uhigh: 1

END

connecting system CON

"Connecting system for simulation of process PROC
"with PI regulation by system PIREG

time t

yr{pireg]=1

y[pireg]=y[proc]

u[proc]=u[pireg]

END

macro FIG10

"Macro for generating Fig. 10
let n.funci=4

syst FUNC1 FUNCPLOT
get funcpar

split 1 1

axes h -4 4 v -3 3
plot yp

simu -4 4

mark a 17 0O

mark "x

mark a 1 12

mark "f (x)

END

connecting system FUNCPLOT
time x

u[FUNC1]=x

yp=y[FUNC1]

END

[FUNC1]

UIi: -3. ,
UI2: -1. !
UI3:1.
UI4:4.
GIt: -1.
GI2:-2.8
GI3: 1.5
GI4: 2.
order: 1.

[FUNCPLOT]

APPENDIX E

Intrac and Simnon Commands

This appendix lists all the commands in Intrac and Simnon.

INTRAC COMMANDS

1. Input and output

READ - Read variable from keyboard
WRITE - Write variables

SWITCH - Utility command

STOP - Stop execution and return to OS

2. Assignment

FREE - Releases assigned global variables
LET - Assigns global variables

3. Control of program flow

LABEL L - declaration of label
GOTO L - transfer control
IF..GOTO - Transfer control
FOR.. TO - Loop

NEXT V

4. Macro

DEFAULT - Assigns default values
MACRO - Macro definition
FORMAL - Declaration of formal a}‘gun;eﬂts

END - End of macro definition/
SUSPEND - Suspend execution of macro
RESUME - Resume execution of macro

SIMNON COMMANDS

..ﬁ /
1. Input and output e
EDIT - Edit system description
DISP - Display parameters

84

GET - Get parameter and initial values

LIST - List files

PRINT - Print files

SAVE - Save parameter values and initial values in a file
STOP - Stop

2. Graphic output

AREA - Select window on screen

ASHOW - Plot stored variables with automatic scaling
AXES - Draw axes

HCOPY - Hardcopy of the screen

MARK - Write text on axes of graphs

SHOW - Plot stored variables

SPLIT - Split screen into windows

TEXT - Transfer text string to graph

3. Simulation

ALGOR - Select integration algorithm

ERROR - Choose error bound for integration routine

INIT - Change initial values of state variables

PAR - Change parameters

PLOT - Choose variables to be plotted

SIMU - Simulate

STATE - Special command for the integration routine DAS
STORE - Choose variables to be stored

SYST - Activate systems

4. Auxiliary

HELP - Gives guidance
NEWS - Gives news about Simnon
TURN - Set switches

Index

advanced features, 36 EXPZ, 81

algebraic loop, 45 field plots, 25

algebraic loops, 44 FIG10, 83

ALGOR, 38, 49, 85 FIG2, 79

AREA, 20, 28, 50, 85 FIG3, 79

arithmetic operators, 18 FIG4, 80

ASHOW, 50, 85 FIG5, 80

AXES, 12, 20, 28, 51, 85 FIG6, 81

Backus-normal form, 8 FIG7, 81

BNF, 8 FIG9, 36, 82

changing parameters, 14 file, 69

combination of systems, 30 FOR..TO, 84

command, 7 FORMAL, 84

command syntax, 8, 49 Fortran, 38

computer control, 31 Fortran systems, 38
CON, 83 FREE, 84

conformal maps, 25 FUNCI1, 38, 39, 41, 66, 68
connecting system, 7, 33, 65 FUNCPLOT, 41, 83
connecting system., 30 functions, 19

continuous system, 6, 30, 33, 64 functions in tabular form, 68
CSMP, 47 GET, 41, 52, 85

CSSL, 47 global parameter, 39
DAS, 38, 45 global variables, 39
DEFAULT, 84 GOTO L, 84

default values, 7 graphs of functions, 24
DELAY, 38, 66 HAMPC, 38

DER, 18 hardcopy, 15

difference equations, 22 HCOPY, 15, 20, 28, 52, 85

differential equations, 10 HELP, 20, 53, 85

discrete system, 6, 26, 30, 33, 64 b .IDENTIFIERS, 63

DISP, 14, 20, 28, 51, 84 ~ 1" "IF..GOTO, 84
documentation, 42 IFILE, 38, 66, 69

EDIT, 12, 19, 51, 84 INIT, 12, 20, 28, 54, 85
edit mode, 11 integration algorithms, 37
edit mode: how to leave it, 12 interaction principles, 7
END, 84 P Intrac, 45

ERROR, 37, 52, 85 "/ LABELL, 84
experimental data, 69 b large simulations, 41
experimental data in simulations, 69 LEAVE, 12

expression power, 38 LET, 54, 84
expressions, 18 LETTERS, 63

86

level curves, 25 STORE, 15, 20, 28, 60, 85

LIST, 12, 19, 55, 85 store parameters, 41
local parameter, 39 subsystem, 30

local variables, 33, 39 SUSPEND, 84

LOGGER, 38, 66, 70 SWITCH, 42, 60, 84

logical operators, 18 syntax, 8, 49

lower case letters, 16, 37 syntax diagram, 7

LP, 56 SYST, 12, 20, 28, 31, 61, 85
MACRO, 36, 84 system description, 10, 64
macros, 36 table nonlinearities, 38
Macros for generating the figures, 79 TEXT, 61, 85

MARK, 42, 56, 85 TIME, 18

minimization, 74 time delay, 66

NEWS, 56, 85 timing of simulations, 73
NEXT V, 84 TSAMP, 23

NOISE, 38 TURN, 42, 61, 85

NOISE1, 66, 72 upper case letters, 16
numeric integration, 37 van der Pol equation, 10
operators, 18 variables, 11, 63

OPTA, 38, 66, 74 variables local, 33
optimization, 75 variables transmission to other systems, 33
PAR, i1, 14, 20, 28, 56, 85 VDPOL, 79

parameter adjustment, 75 vector notation, 19, 38
parameters, 11 WRITE, 84

phase plane plots, 16 [FUNC1], 83

Pl regulator, 32

PLOT, 12, 20, 28, 56, 85

POL, 81

POPDYN, 80

population dynamics, 22

PRINT, 56, 85

PROC, 82

READ, 84

REG, 82

relational operators, 18

RESUME, 84

retrieve parameters, 41

RK, 38

RKFIX, 38

SAVE, 41, 57, 85 -
scale factors, 42

SHOW, 20, 28, 57, 85

Simnon commands, 84 B
Simnon language, 38 A
SIMU, 7, 12, 20, 28, 58, 85
simulation, 12

simulation command, 7

sorting, 43
source code, 46 .
SPLIT, 20, 28, 59, 85

standard systems, use of, 39 L
STATE, 18, 59, 85

STIME, 66, 73

STOP, 60, 84, 85 '

87

