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Populärvetenskaplig sammanfattning 

Luftvägsinfektioner som orsakas av bakterier och virus är en av de ledande 

orsakerna till sjukdom i världen. De kännetecknas av inflammation i svalg, hals, 

näsa, öron eller i lungorna. I näsa och hals finns en normalflora av bakterier som 

lever i samspel med sin värd och som normalt sett inte orsakar infektioner. Ibland 

kan dessa bakterier ändå orsaka sjukdom, som då immunsystemet är försvagat 

eller då de skyddande ytskikt som finns hos kroppens egna celler förstörts. 

Moraxella catarrhalis är en sådan bakterie som främst orsakar öroninflammation 

hos små barn samt andra infektioner hos vuxna, bland annat är de med KOL, 

kronisk obstruktiv lungsjukdom, mer utsatta.  

För att kunna kolonisera oss människor och orsaka infektion har bakterier 

utvecklat imponerande mekanismer för att kunna fästa och överleva inuti sin värd. 

Bakterier har t ex specifika molekyler på ytan som gör att de kan fästa vid 

kroppens celler, samma molekyler som känns igen av kroppens celler som 

främmande och sätter igång immunförsvaret. Bakterierna har därför utvecklat 

mekanismer för att undvika att bli upptäckta. De kan t ex ”gömma” sig inuti 

kroppens egna celler, eller locka cellerna att skicka ut ett immunsvar som är 

ospecifikt för bakterien i fråga. Dessutom kan vissa bakterier skicka ut små blåsor, 

eller vesikler, från sin yta med bakteriens egen kroppsfrämmande ytstruktur. 

Vesiklerna är mycket små och kan färdas långt bort ifrån området där bakterien 

koloniserat och därmed lura kroppen att skapa inflammation på ett annat ställe än 

där bakterien befinner sig. Moraxella catarrhalis är en av många bakterier som 

bildar dessa vesikler. 

I detta arbete har vi undersökt sammansättningen av vesikler från Moraxella 

catarrhalis, och hur de kan interagera med kroppens celler. Vi har funnit att de 

binder till kroppens celler och därmed skapar inflammation, samt att de faktiskt 

kan reglera inflammationen genom molekyler som finns på dess yta. Vi har 

observerat samma fenomen i experiment med möss och kan därmed bekräfta att 

det inte bara är ett fenomen som sker i provröret.  

Vi har även funnit en molekyl i vesiklerna, β-laktamas, som bryter ned vanlig  

antibiotika, t ex penicillin. När vi odlar andra antbiotika-känsliga bakterier från 

luftvägarna tillsammans med dessa vesikler så överlever bakterierna antibiotika-

behandlingen. På det här sättet tror vi att bakterier som lever i symbios tätt inpå 

varandra i kroppen inte bara kan hjälpa varandra att orsaka infektion, men också 
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skydda varandra från kroppens försvar. Vi fann också att vesiklerna skyddade β-

laktamaset från inaktiverande antikroppar som finns i blodet hos vissa vuxna. 

Vi undersökte slutligen vesikler som härstammar från en annan luftvägsbakterie, 

Haemophilus influenzae, och fann att även de bär på β-laktamas, och kan skydda 

normalt känsliga Streptokocker från antibiotika. I kliniska studier har man sett att 

dessa bakterier ibland är svårbehandlade hos patienter med infekterade 

halsmandlar. Vi föreslår att en bidragande orsak till att dessa bakterier överlever 

kan vara de små vesikler som frisätts från antibiotika-resistenta bakterier i 

omgivningen, som t ex Haemophilus influenzae och Moraxella catarrhalis. 
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Introduction 

Respiratory Tract Infections 

The air around us may appear clean, but comprises the most common source of 

infections for humans. In fact, air contains massive amounts of microparticles, 

deriving from the earth, water, plants and animals, as well as from us humans. 

These microparticles, in turn, contain microorganisms, most of which are 

harmless, but some that constitutes as pathogens and cause airway disease (1). 

 

Respiratory tract infections are among the leading causes of death in the world, 

according to the World Health Organization (WHO). In low income countries, 

lower respiratory tract infections cause more than 10% of all deaths, and more 

than one third of deaths occur in children under fifteen years of age. Furthermore, 

in developed countries it is the leading infectious cause of death (2). This further 

stresses the importance of characterizing and understanding the ways 

microorganisms cause disease in the human respiratory tract.   

Anatomy of the respiratory tract 

 

The human airways are usually divided into two parts: the upper respiratory tract 

which consists of the nasal cavity, sinuses, middle ear, pharynx and larynx; and 

the lower respiratory tract that consists of the trachea, bronchi and lungs. The 

upper respiratory tract has a rich flora of bacteria, fungi and protozoa. The lower 

respiratory tract on the other hand is essentially sterile, as it has no direct contact 

with the external environment. Most infections thus occur in the upper respiratory 

tract when pathogenic bacteria compete with the normal flora, and are by nature 

short and localized. Bacteria from the normal flora can also be opportunistic and 

cause infections if the immune system is weakened. In contrast, infections in the 

lower respiratory tract are less common, but when they occur are often more 

persistent and potentially serious (1, 3). 
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Upper respiratory tract infections 

Sinusitis, pharyngitis, tonsillitis, pharyngitis, epiglottitis and otitis media are all 

examples of local inflammations caused by viruses or bacteria. Common 

symptoms for these infections may be nasal discharge or congestion, coughing, 

sneezing, sore throats or fever, and can differ in severity (1, 3). Several levels of 

the respiratory tract can also be involved in a single infection.  

Pharyngo-tonsillitis 

The highest incidence of tonsillitis occurs in children between five and 15 years of 

age (4). Pharyngo-tonsillitis is characterized by fever, throat pain, redness and 

enlarged tender lymph nodes. Viruses cause about 50% of all infections (5), while 

the major bacterial causative agent is Streptococcus pyogenes, or group A 

streptococci (GAS) (15-30%). However, polymicrobial infections can also cause 

tonsillitis, suggesting the involvement of various pathogens (6).  These bacteria 

bind amongst other proteins to fibronectin in the extracellular matrix (ECM) of the 

host cells, and some can invade and survive inside the epithelial cells of the tonsils 

(7, 8).  

Acute Otitis Media  

Acute otitis media (AOM) is an inflammation of the middle ear, often leading to 

effusions, or a collection of fluids in the ear (otitis media with effusion: OME). 

AOM is characterized by pain, fever, and on occasion a negative pressure in the 

ear caused by inflammation and swelling of the tympanic membrane (9). It is one 

of the most common diseases in young children, and a major cause for health care 

consultations and antibiotic prescriptions (10). In fact, approximately 200,000 

cases of AOM are diagnosed per year in Sweden, and 70% of children aged below 

two have had this infection (11). Approximately 10-20% of cases become 

recurrent AOM (rAOM) or chronic OME (rOME). Viruses may occasionally be 

the cause of AOM, although this infection is most frequently bacterial. The three 

most common pathogens that cause AOM are Streptococcus pneumoniae, 

Haemophilus influenzae and Moraxella catarrhalis in order of frequency (12).  

Lower respiratory tract infections 

Lower respiratory tract infections include bronchitis and pneumonia. In addition, 

chronic obstructive pulmonary disease (COPD) is a chronic disease of the lungs 

which is in parts characterized by exacerbations due to bacterial and viral 

infections. 
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Pneumonia 

Pneumonia is defined as acute inflammation of the alveoli, or infiltration of 

inflammatory cells in the lungs, causing the accumulation of exudate in the 

bronchi. However, the symptoms vary between children and adults, and depending 

on the cause of the infection. Examples of symptoms are cough, chest pains, fever 

and headache (13). Pneumonia is most commonly caused by pathogens like 

Streptococcus pneumoniae, Haemophilus influenzae or viruses such as influenza, 

rhino and corona viruses. Furthermore, up to 45% of community-acquired 

pneumonia cases in children are actually mixed infections of bacteria and viruses 

(1, 14).  

Bronchitis/bronchiolitis  

Bronchitis is an inflammation of the airway mucosa and cell walls and can be 

either acute or chronic. It is characterized by dry or mucoid cough, chest pain and 

fever. Bronchiolitis is inflammation in the bronchioles, the smallest bronchial 

tubes, and mainly occurs in small children. It can lead to the development of 

serious breathing difficulties as well as fever, cough and mucous production (1). 

The most common endogenous agents causing bronchitis/bronchiolitis are S. 

pneumoniae, H. influenzae and M. catarrhalis from the normal flora of the upper 

respiratory tract. Mycoplasma pneumoniae and Chlamydophila pneumoniae may 

also cause bronchitis, as well as influenza and RS-virus (1, 15, 16).  

COPD 

Chronic obstructive pulmonary disease is a chronic airflow limitation disorder 

characterized by dyspnea, chronic cough and sputum production (17). According 

to the GOLD (Global Initiative for COPD) definition, COPD is a progressive, 

enhanced inflammatory response of the lungs and airways to noxious particles or 

gases, where exacerbations and comorbidities contribute to the severity in each 

individual patient.  A population survey of adults in Spain between 40-69 years of 

age showed that 9.1% of the population had COPD, of them 15.0% were smokers, 

12.8% ex-smokers, and 4.1% nonsmokers (18). The Swedish medical association 

for lung diseases (SLF) estimates that 400,000-700,000 people have COPD in 

Sweden (19). Exacerbations are characteristic of COPD infections, and occur once 

or twice annually on average and the frequency increases with time. 

Approximately 50% of exacerbations in COPD are caused by bacteria such as H. 

influenzae, S. pneumoniae and M. catarrhalis, in order of frequency (17, 20).  
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Pathogens & Host Immunity 

Viruses, fungi, and bacteria all cause infections in the respiratory pathways. In 

order for bacteria to colonize, they first need to adhere to the host epithelial cells. 

Specific adhesion proteins found in the bacterial membranes are thus of great 

importance. However, they also need to persist within the host and consequently 

avoid detection of the host immune response.  

 

The human immune system consists of the innate and the more specific adaptive 

immune system, each comprised of a cellular and a humoral part. Although these 

two systems have a distinct set of cells and different mechanisms of action 

interplay between the two branches results in a diverse and broad line of defense. 

Bacteria  

Following the invention of the microscope in 1676 by Antonie von Leeuvenhoek, 

the father of microbiology, discovered the first bacteria. Several major revelations 

of the microbiological world followed in the coming centuries, including Louis 

Pasteur’s discovery that fermentation was caused by microorganisms and that 

bacteria cause disease. Later Robert Koch established techniques to isolate and 

propagate pure cultures of bacteria, and formulated important postulates to 

determine if bacteria are the causative agents of a disease in 1890 (21, 22). Today 

we know much more about these microbes causing disease. 

 

Bacteria are small prokaryote organisms that do not have a membrane-bound 

nucleus. Instead, the nucleoid of the bacteria is a supercoiled molecule of double-

stranded DNA found inside the cytoplasm. The cytoplasm is surrounded by an 

elastic and semi-permeable plasma membrane, consisting of phospholipids and 

proteins. This is surrounded by a more rigid but permeable cell wall. In Gram-

positive bacteria the cell wall consists of a thick layer of cross-linked 

peptidoglycan, intercalated with teichoic acid which has antigenic properties 

(Figure 1). In contrast, Gram-negative bacteria have a thinner layer of 

peptidoglycan surrounded by a second outer phospholipid membrane which 

contains antigenic lipooligosaccharides (LPS) and proteins that act as porins and 

adhesins. Both Gram-positive and Gram-negative bacteria may also have a 

protective anhydrated capsule that protects the organism from phagocytosis and 

enhances the capacity of the bacteria to cause disease (21). 
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Fig 1. The envelope of Gram-positive and Gram-negative bacteria. 

A schematic illustration showing the envelope of Gram-positive (upper panel) and Gram-negative 

(lower panel) bacteria. Gram-positive bacteria have a thick peptidoglycan layer in contrast to Gram-

negative bacteria which have a thinner peptidoglycan layer and the additional outer membrane 

creating a periplasmic space. The outer membrane contains various porins and transmembrane 

proteins.  

 

In order to colonize and cause infection, it is imperative that bacteria can attach to 

the host epithelium. Therefore, adherence factors are essential for bacteria, either 

in the form of pili or fimbriae extending from the cell surface, or as strain-specific 

adhesion proteins. In order to cause infection, bacteria also need to resist discovery 

and destruction by the host immune system.  

Innate immunity 

The innate part of the immune system is in place before onset of infection, and is 

largely unspecific in its targeting of microbes. In fact, most pathogens are removed 

before they have a chance to colonize and cause infection (23).  

 

The first line of defense is the anatomical barriers of the body. The mucous 

membranes found in the nasopharyngeal tract or in the lungs have cilia to expel 

foreign microorganisms out of the body, as well as sticky mucoid that trap 

Outer membrane
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pathogens. Furthermore, the normal flora of the mucous membranes competes 

with pathogens for nutrition and sites of attachment, and secretions of saliva and 

tears have antimicrobial properties. Regulation of temperature, pH and chemical 

mediators also play an important role in preventing infections by microbes (23).  

 

Pathogen-associated molecular patterns (PAMPs) are highly conserved structural 

motifs that are unique to microbes. Examples of these are complex lipids and 

carbohydrates like LPS and lipoteichoic acid, or unmethylated DNA motifs (CpG) 

that are not found in human cells. Other PAMPs include flagellin, peptidoglycan 

as well as double-stranded DNA found in viruses. Since PAMPs are usually 

molecules that are essential for survival, they are difficult for the pathogen to alter 

and therefor often conserved in the species. PAMPs are ligands for pathogen-

recognition receptors (PRR) found soluble in tissue fluids and in the blood stream, 

or bound to cells. Soluble PRRs like the mannose-binding lectin (MBL) and C-

reactive protein (CRP) act as opsonins and activators of the complement cascade. 

Cell-bound PRRs are found both on the pathogen surface and intracellularly, and 

includes both endocytotic PRRs like scavenger receptors that promote attachment 

and destruction of microbes, and signaling receptors such as membrane-bound 

toll-like receptors (TLR) and NOD-like receptors (NLR). 

 

The largest group of PRRs is the TLRs, a family of 13 glycoprotein receptors of 

different ligand specificities that are expressed on immune cells like macrophages, 

dendritic cells, or non-immune cells of the epithelium. TLRs recognize foreign 

surfaces of both bacteria, viruses and fungi (24). There are two major groups of 

these receptors; TLRs 1, 2, 4, 5, 6 and 10 are surface exposed binding extracellular 

spaces, while TLRs 3, 7, 8 and 9 are found in intracellular compartments such as 

the lysosome. The earliest discovered Toll-like receptor was TLR4, which binds 

LPS in complex with other proteins. TLR2 binds multiple glycopeptides and 

glycoproteins, frequently in complex with TLR6. Furthermore, the intracellular 

TLR9 binds unmethylated CpG motifs that are characteristic of bacterial and viral 

DNA. In all TLRs, PAMP recognition triggers an extracellular domain leading to 

signal activation of a Toll/Interleukin-1 (TIR) domain inside the cell.  Although 

each TLR has its specific intrinsic signaling pathway consisting of kinases and 

adaptor proteins, all pathways finally lead to the activation of nuclear factor NF-

κB in the cell nucleus. NF-κB binds to promoters of target genes, thereby 

regulating gene expression which leads to the production of a pro-inflammatory 

response consisting of cytokines, chemokines and DC maturation.    

 

There is also a family of intracellular PPRs called NLRs that face the cytosol and 

can sense intracellular microbial components (25). There are about 20 genes 

coding for NRLs in humans, and a number of these are involved in the recognition 

of intracellular microbes. These cytosolic receptors are found on for example DCs, 
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macrophages, monocytes and epithelial cells (26). NOD-1 and NOD-2 bind 

different forms of peptidoglycan, found on most Gram-negative cells or motifs 

conserved in all peptidoglycan molecules, receptively. The activation of PPRs 

leads to activation of transcription factors and the production and secretion of 

cytokines promoting an inflammatory reaction.   

 

The release of cytokines from damaged or activated tissue cells increase 

permeabilization of the tissue capillaries, leading to an influx of exudate 

containing pro-inflammatory mediators like antibodies, CRP and complement 

factors. The complement system is composed of approximately 35 circulating and 

membrane-bound proteins, which are activated through cleavage of pro-peptides 

in a proteolytic cascade leading to the insertion of a membrane-attack complex 

(MAC) in the bacterial membrane, causing cell lysis. The increased permeability 

of the blood vessels also leads to an influx of phagocytes, such as neutrophils and 

tissue macrophages, which phagocyte and destroy any microbes present (23). 

These mechanisms are often able to clear invading pathogens, but if inflammation 

persists the adaptive immune response becomes activated. 

Adaptive immunity 

In contrast to innate immunity, the adaptive immune response is highly specific. 

Although it is slower to respond, the resulting response is a longstanding 

immunological memory which can differentiate between self and non-self.  

 

The adaptive immune response consists of two groups of cells: antigen-presenting 

(APCs) and lymphocytes. Generally, all cells present antigens, but dendritic cells, 

B-cells and macrophages are considered to be “professional” APCs. APC’s have 

MHC class II molecules on their surface, on which they present small antigen 

peptides and subsequently activate helper T-cells (TH). Activated TH cells act as a 

screening system to co-activate B-cells and cytotoxic T-cells (TC) which have 

previously encountered peptides presented by MHC class I molecules on infected 

cells. Activated TC’s act as effector cells and destroy the infected cells, while B-

cells secrete specific antibodies. In serum the first antibody response consists 

mainly of the high avidity immunoglobulin (Ig) M. However antigen binding leads 

to a class switch and the secretion of IgG, the most abundant antibody isotype. All 

these mechanisms together form a specific and highly enhanced immune response 

at second encounter (21, 23).  
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Immunity and bacterial infections 

The progression of a bacterial infection is a constant battle between the host and 

bacteria. While the host has several systems to discover and destroy the foreign 

microbe (Figure 2), in return the bacteria have also developed several strategies to 

evade the host immune system. This is a complex process that entails hiding the 

antigenic structures that make up the outer membrane of the bacterial surface, 

whilst still exposing key molecules such as adhesins in order to cause infection  

(27). 

 

Figure 2. Immune reaction during bacterial infection. 

(1) Bacterial adhesion to the epithelium causes tissue damage, and leads to the release of various 

cytokines. (2) Vasoactive substances increases the permeability and blood flow to the infected area 

(3) An influx of exudate containing opsonising serum proteins and phagocytes destroy the bacteria. 

(4) Antigen presenting cells activate T helper cells which in turn activate cytotoxic T-cells and B-

cells, which secrete immunoglobulins producing an immonologic memory.  

Bacteria have evolved various mechanisms to evade discovery by the immune 

system. One way is by down-regulating the expression of antigen surface 

molecules or through mimicry of host surface molecules. Another is through the 

secretion of PRRs inhibitors and proteases that destroy antimicrobial peptides. 

Several bacteria have proteins on their surface that bind complement inhibitors, in 

order to evade opsonization and activation of the complement cascade. 

Furthermore, bacteria can also express so called superantigens, which stimulate 

the production of non-specific immune responses in the host, allowing the 

pathogen to escape (27-29). Finally, bacteria can secrete nanoparticles designated 

outer membrane vesicles (OMV), which will be further discussed later in this 

thesis.  
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The Pathogens 

Moraxella catarrhalis  

The respiratory pathogen today acknowledged as Moraxella catarrhalis has had 

many names throughout the century. Known as Microccocus catarrhalis when 

first isolated in the early 1900s due to its morphology and certain biochemical 

characteristics, it was soon thereafter transferred to the Neisseria genus. After a 

period of less frequent isolation in infections, the bacteria reemerged as a common 

cause of AOM in the 1960s. However, using the new techniques that had become 

available at the time it was determined that N. catarrhalis actually had little 

genetic resemblance to the rest of the Neisseria species. In fact, it had a higher 

similarity to the Moraxella genus but since Moraxella consisted of rod-shaped 

bacteria that were non-human colonizers instead a new genus was created in 1970, 

Branhamella (30). This name was short-lived as B. catarrhalis was finally 

renamed Moraxella catarrhalis in 1984 after much debate, making it the first 

genus containing both cocci and rods (31, 32). 

General characteristics 

The respiratory pathogen Moraxella catarrhalis is a Gram-negative diplococcus, 

which exclusively colonizes humans. M. catarrhalis is an aerobic catalase positive 

bacterium, which grows easily at temperatures between 22-37°C with or without 

5% CO2. On chocolate agar it forms small, opaque white colonies of 1-3mm in 

diameter that are often described as “hockey pucks” since they can easily be 

moved across the agar. M. catarrhalis is unencapsulated, non-motile and is 

variably piliated (33, 34). 

Pathogenesis 

Moraxella catarrhalis is often referred to as an opportunistic commensal, meaning 

that it is frequently found in the normal flora of the nasopharynx, but can cause 

infections when opportunity arises. This might occur in patients suffering from 

predisposing medical conditions, or when damage is caused to the respiratory 

epithelium by viral infections (32, 35). On the other hand, M. catarrhalis has also 

been shown to cause infections in healthy adults (36). Therefore, M. catarrhalis is 

both a commensal and a mucosal pathogen.  

According to clinical studies, M. catarrhalis can cause a broad spectrum of 

respiratory diseases including pneumonia, bronchitis, laryngitis, sinusitis and 

persistent cough (15, 37-41). However, M. catarrhalis is most frequently isolated 

in children with AOM or in adults with COPD. In fact Moraxella is the third most 

common cause of AOM, and is estimated to be responsible for approximately 10% 
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of acute inflammatory exacerbations in COPD patients (42). In a study of 120 

children, M. catarrhalis was found to be the most common colonizer of infants 

under the age of one, and after two years of age 77.5% of all children had become 

colonized with Moraxella catarrhalis in the nasopharynx. The M. catarrhalis 

strains isolated showed a high degree of heterogeneity, as the children acquired 

and eliminated a number of different strains (43). In a study by Heiniger et al. it 

was found that 91% of adenoids and 85% of pharyngeal tonsils were reservoirs of 

M. catarrhalis in children undergoing tonsillectomy (44). These studies all suggest 

M. catarrhalis is an important pathogen in a clinical setting.  

Virulence factors 

In order for M. catarrhalis to colonize the host and cause infections, adhesion to 

the respiratory epithelium is essential. Lipooligosacchardies (LOS), pili and 

fimbriae are involved in M. catarrhalis adhesion as well as a range of specific 

proteins on the bacterial outer membrane (45-47).  

The most extensively characterized family of Moraxella adhesin proteins are the 

ubiquitous surface proteins (Usp) which are lollipop-like structures that protrude 

from the surface of the bacteria (48-51). The two main types, UspA1 and UspA2, 

are involved both in adhesion and in regulation of host immunity. These surface 

proteins bind fibronectin and laminin found in the extracellular matrix (ECM) of 

epithelial cells which may be exposed during infection (52, 53). UspA1 also binds 

carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1) motifs 

expressed on epithelial cell surfaces (54, 55). In 2008 Slevogt et al. showed that 

binding of CEACAM-1 by proteins such as UspA1 inhibits the activation of TLR2 

on epithelial cells when binding PAMPs (56). Binding of CEACAM-1 thus 

prevents the activation of transcription factors and consequently leads to 

suppression of the pro-inflammatory response. In this way, M. catarrhalis can 

efficiently evade detection and the subsequent activation of the immune system. 

 

The expression of UspA1 is also essential for internalization of M. catarrhalis by 

epithelial cells and in pharyngeal lymphoid tissue (57, 58). Hiding inside cells is 

another efficient way by which bacteria are protected against the immune system. 

Moreover the UspA proteins are involved in regulation of the complement system. 

UspA2, and UspA1 to a lesser extent, bind vitronectin and C4BP, regulators of the 

complement cascade (59-62). Binding of these proteins to the surface allows the 

bacteria to prevent formation of the membrane attack complex and subsequent 

lysis (61). A hybrid UspA2H protein also exists, which similar to UspA2 has a 

conserved ability to bind vitronectin despite extensive sequence variances between 

isolates (50, 63). In addition, UspA2H binds fibronectin and is involved in cell 

adhesion (50, 51). Furthermore, a rare variant of UspA2 called UspA2V has more 
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recently been discovered, which binds epithelial cells via CEACAM-1, suggesting 

an exchange between functional regions of the two UspAs (64). 

 

The Moraxella IgD-binding protein (MID; also known as the human erythrocyte 

agglutinin (Hag)) is another important virulence factor and Moraxella adhesion 

(65). MID is an autotransporter as well as a superantigen, as it binds surface-bound 

IgD outside the antigen-binding site independent of antibody specificity, and 

activates B-cells in a T-cell independent manner (66-69). M. catarrhalis thereby 

induces a polyclonal immune response and can consequently avoid complement 

activation and phagocytosis. MID and the UspA proteins are essential for M. 

catarrhalis colonization of human respiratory epithelial cells, but are 

complemented by various other adhesins such as McaP, OmpCD, OmpE, 

OmpM35 and MhaC/B (70-74). 

 

Iron-acquisition proteins are also crucial for M. catarrhalis persistence. Since iron 

is toxic in its free form it is mostly found in complex with host proteins such as 

hemoglobin, transferrin, lactoferrin and heme. However, bacteria need iron for 

optimal growth and fitness and thus express proteins on their surfaces that 

compete for these complexes. M. catarrhalis expresses the lactoferrin-binding 

proteins (Lbp), transferrin-binding proteins (Tbp) and CopB which bind and 

utilize these iron complexes (75-77). 

Cold shock & biofilm formation 

An interesting discovery was made by Heiniger et al. in 2005, when it was 

revealed that M. catarrhalis upregulates certain virulence factors like UspA1 at 

26°C, which is the temperature of the nasopharynx at colder air temperatures (78, 

79). This is called a cold-shock response, and was most likely due to a longer half-

life of UspA1 mRNA at 26°C, leading to a higher expression level of UspA1 on 

the bacterial surface (80). As a result M. catarrhalis adhere better to the 

epithelium, leading to an enhanced activation of the cells (80). Cold shock in M. 

catarrhalis also leads to the upregulation of genes like UspA2, Lbp and Tbp, 

involved in serum resistance, iron acquisition as well as immune evasion (81). 

 

In various studies, M. catarrhalis has been proposed to form biofilm, which is a 

complex matrix of proteins, DNA and pathogens. In vitro assays have shown that 

OMPs UspA1/A2 and type four pili are involved in biofilm formation (46, 82, 83). 

Furthermore, M. catarrhalis biofilm could be detected in the middle ear of 

children with OME and occurring AOM (84). However, more studies need to be 

performed in order to fully elucidate the role of biofilm formation in disease 

progression of M. catarrhalis infections.  
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Haemophilus influenzae 

H. influenzae is a Gram-negative aerobic cocobacillus, which consists of two 

general types: the encapsulated classified by their capsular antigens (type a-f) and 

the non-encapsulated (non-typeable Haemophilus influenzae; NTHi) (85).  

Historically, H. influenzae type b (Hib) have been a major cause of invasive 

disease in children, causing up to 2.2 million infections and 520,000 deaths per 

year (86). However, with the introduction of a vaccine against this serotype, Hib 

disease and carriage rate has dramatically dropped. In the United States for 

example, Hib disease has been reduced by more than 95% (87). However, in 

countries where this vaccine has yet to be introduced, Hib infections are still a 

major concern. After Hib, H. influenzae type f is the most common encapsulated 

cause of invasive disease, and this infection has increased in frequency since the 

introduction of the Hib vaccine (88, 89).  

 

NTHi on the other hand is commonly considered to be a commensal of the 

nasopharynx, and shares the same niche as M. catarrhalis (90). NTHi is also an 

opportunist, and is one of the leading causes of respiratory infections in humans 

and causing AOM as well as sinusitis, pneumonia, and exacerbations in COPD 

patients (85, 91-93). Furthermore, NTHi has been found to invade respiratory 

epithelial cells and tissue macrophages, and accumulate in the tonsils (94-97). 

Streptococcus pneumoniae and group A streptococci 

Streptococcus is a Gram-positive species which requires rich media like blood 

agar plates in order to grow. As the name suggests, streptococci are cocci-shaped 

and can be found either in pairs or as long chains. Even though most streptococcus 

species are facultative anaerobes, some cannot grow in the presence of oxygen 

making them obligate pathogens (98). Streptococci can be classified through three 

different overlapping schemes by their serological or biochemical properties. In 

addition, streptococci are classified into groups based on their ability to break 

down red blood cells. While β-hemolytic strains perform a complete hemolysis, α-

hemolytic bacteria only partially break down the blood cells, and γ-hemolytic do 

not perform lysis at all (99, 100). Streptococci are a part of the human normal 

flora, but are also a diverse group of bacteria that are associated with a range of 

different diseases. S. pneumoniae and S. pyogenes are two major human pathogens 

that cause disease given the right circumstances (98). 

 

Currently more than 90 serotypes of the encapsulated Streptococcus pneumoniae, 

also known as pneumococci, have been recognized. S. pneumoniae are usually 

found as diplococci or in short chains.  S. pneumoniae are described as α-
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hemolytic if grown aerobically on plates, but can become β-hemolytic during 

anaerobic conditions (99, 101). S. pneumoniae primarily colonizes the 

nasopharynx but has the ability to spread to the lungs causing pneumonia or to the 

upper airways causing sinusitis and otitis media (102). Historically, penicillin has 

been the drug of choice for treating S. pneumoniae infections. Although penicillin 

resistance in S. pneumoniae is increasing around the world, due to decreased 

affinity of the penicillin-binding proteins (PBP) to penicillin, resistance is still 

quite low in Sweden at approximately 6.8% (2009) (99, 103). 

 

Streptococcus pyogenes, or group A streptococci (GAS), are β-hemolytic 

diploccoci that have been extensively studied and characterized throughout the 

years. Certain S. pyogenes strains have a hyaluronic acid capsule, which allows the 

bacteria to evade immunity due to its similarity to human hyaluronic acid. These 

strains are also more likely to be responsible for cases of invasive disease (99, 

104). S. pyogenes commonly colonizes either the skin or the upper respiratory 

tract, and although it can be found as the normal flora of the nasopharynx, this 

occurs less frequently compared to S. pneumoniae (100). In the airways, S. 

pyogenes is the leading cause of bacterial pharyngitis and tonsillitis, and can also 

cause other respiratory infections such as sinusitis, OM and pneumonia. 

Furthermore, S. pyogenes is associated with scarlet fever, impetigo, necrotizing 

fasciitis, rheumatic fever and in extreme cases, streptococcal toxic shock 

syndrome (100, 105). In contrast to S. pneumoniae, all S. pyogenes clinical isolates 

are completely susceptible to penicillin (105, 106). 

Nasopharyngeal co-infections 

Polymicrobial infections are created when combinations of pathogens colonize a 

certain niche, and may comprise a mixture of different microorganisms such as 

virus, bacteria, fungi and parasites. In a symbiotic polymicrobial infection one 

pathogen generates a beneficial niche that supports the colonization of another 

pathogen, making it easier for the co-colonizer to cause infection. For instance, 

virus infections can lead to the destruction of host epithelial cells which increases 

bacterial adherence. In addition, a prior virus infection induces the upregulation of 

certain surface receptors that bacteria can bind to, or the suppression of the host 

immunity facilitating bacterial infections (107). In addition, polymicrobial 

infections in biofilms generate advantages such as metabolic cooperation, quorum 

sensing signaling, more efficient DNA sharing as well as passive resistance (108). 

 

Several studies have aimed at trying to investigate how pathogen survival and their 

infectious potential is affected by polymicrobial infections. For instance, M. 

catarrhalis has been found to increase the incidence rate, bacterial load as well as 
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the duration of infection of S. pneumoniae (109). A study of a continuous culture 

biofilm M. catarrhalis could protect S. pneumoniae in the presence of amoxicillin 

(110), and Matejka et al. found that M. catarrhalis were less sensitive to 

antibiotics in a continuous flow model of biofilm compared to batch-grown cells 

(111). Another effect of polymicrobial infections is that two infecting pathogens 

can have an additive effect on infection development. For example, a combined 

infection of H. influenzae and S. pneumoniae lead to the synergistic increase of the 

production of inflammatory cytokine interleukin (IL)-8, the recruitment of 

phagocytic neutrophils, and the amplification of a pro-inflammatory response 

(112).  

 

The nasopharynx is often colonized by several microorganisms both of commensal 

and pathogenic nature, and infections such as OM have been associated with 

polymicrobial infections (109). A study by Verhaeg et al. of more than 1,000 

healthy children showed that co-colonization with H. influenzae and M. 

catarrhalis are in fact more common than single-species infections (113). 

Furthermore, in a study by Skovbjerg et al. of 664 health day care children under 

the age of two, the carriage rate for M. catarrhalis and H. influenzae was 54% and 

22%, respectively (114). Evidently, these bacteria are often found in the 

nasopharynx as opportunistic pathogens, and may affect other colonizing bacteria 

also in vivo.  

 

Several studies have also aimed at investigating polymicrobial infections 

involving group A streptococci. Firstly, a study from 2004 showed that M. 

catarrhalis co-aggregates with GAS, increasing the ability of the bacterium to 

adhere to human epithelial cells. Furthermore, Brook et al. investigated the 

correlation between GAS treatment failure and the co-colonization of respiratory 

pathogens. In a study of 548 children with acute pharyngotonsillitis, the authors 

found that a significant portion of M. catarrhalis or NTHi were associated with 

GAS-carriage (115). Brook et al. suggested that the secretion of free β-lactamase 

from these co-infecting bacteria in the respiratory tract could allow for the 

protection and subsequent survival of the susceptible bacteria (116). Co-culturing 

GAS with M. catarrhalis changed the virulence gene expression of GAS, showing 

how polymicrobial infections can actually affect virulence (117). 

 

Previously, clinical diagnostics have focused on identifying the most abundant and 

disease causing pathogen, ignoring the apparent co-pathogens. However, more 

research is showing the importance of characterizing each individual member of a 

microbial community (108). Polymicrobial infections are an important emerging 

area of research. 
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Outer Membrane Vesicles 

In 1965, D.G. Bishop and colleague observed what appeared to be extracellular 

lipopolysaccharides in the supernatant of a lysine-requiring Escherichia coli 

mutant grown without lysine (118). Using electron microscopy, Work et al. could 

find what they described as a “mass of globules” measuring approximately 12-

200nm in diameter (119). First it was thought that these nanoparticles were only 

created under iron-limiting conditions, but it was later shown that they were also 

produced during normal growth in vitro (120). These nanoparticles, or outer 

membrane vesicles (OMV), are formed when parts of the outer membrane of the 

bacteria start bulging out, creating a small sphere that pinches off from the 

membrane (Figure 3).  

 

Since OMV production and secretion is an energy-demanding process, it has been 

hypothesized that OMV have evolved for a reason. The envelope of bacteria 

contains proteins involved in adherence, nutrient acquisition, secretion, signaling, 

quorum sensing, horizontal gene transfer and protection from the extracellular 

environment. Outer membrane vesicles are reflections of the cell surface, and 

consequently OMV are important actors in pathogenesis and survival of bacteria. 

OMV are also an alternative way for protein secretion, allowing the bacteria to 

interact with its environment at a distance, protecting it from the possible 

disadvantages of close contact (121-123). 

 

Figure 3. Biogenesis of outer membrane vesicles (OMV).  
OMV are formed as the outer membrane of Gram-negative bacteria bulges out and pinches off. The 

composition of the OMV thus reflects the composition of the bacterial outer membrane, containing 

lipids, proteins, DNA and specific virulence factors. 
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Biogenesis  

OMV are generally described as spheres of 50-250nm in diameter that are formed 

at all stages of bacterial growth, and are a common feature for all Gram-negative 

bacteria studied up to date (121, 124). OMV are secreted by bacteria both in liquid 

and on solid media, as well as in vivo. The first report of OMV found in humans 

came in 1982, where OMV were found in the cerebrospinal fluid of a child with a 

Neisseria meningitides infection (125). In 1992 endotoxin was found in complexes 

with lipoproteins in plasma from a patient with meningococcal septic shock, and 

in another study OMV were found in urine, blood and internal organs of both rats, 

dogs and humans (126, 127). In 2005, M. catarrhalis OMV were identified by 

transmission electron microscopy (TEM) in a nasal sample from professor 

Riesbeck’s daughter, an at the time eight-year old girl with a sinusitis infection 

(52).  

 

The aim of many OMV studies has been to understand how OMV are formed and 

how this process is regulated, yet no definite model has been established. This is 

partly due to the fact that no mutant completely devoid of OMV production exists, 

making it difficult to determine the exact mechanism involved in the generation of 

OMV (121, 128). Wensink et al. hypothesized that the detachment of the outer 

membrane from the underlying peptidoglycan layer needs to occur as an initial 

step for the formation of OMV, which might happen where there is an imbalanced 

overproduction of outer membrane lipids and proteins (129, 130). This was 

supported by a study where the Lpp protein involved in linking peptidoglycan to 

the outer membrane was mutated, leading to hypervesiculation (131). Another 

model suggested that an imbalance occurs in the turnover of peptidoglycan, 

creating turgor and bulging of the membrane, which would suggest that certain 

proteins might be enriched in OMV (132). In contrast, a third theory advocated 

that a buildup of integral membrane proteins or small molecules found on the 

inside of the outer membrane causes an inherent curvature of the outer membrane 

and consequently leads to the OMV production (123). One study on Pseudomonas 

aeruginosa supported this theory as the authors found that the OMV were 

composed of mostly B-band LPS, compared to the bacterial outer membrane 

which contained both B-band and A-band LPS. The B-band LPS is longer and 

more negatively charged than the A-band, leading the authors to hypothesize that 

an accumulation of these negative charges lead to a repulsion force and subsequent 

curvature of the outer membrane (133). However, this theory also suggests that 

different bacteria have certain conserved proteins involved in OMV production, 

but to find possible candidates we need better genetic studies as well as 

comparative analysis of OMV (134).  
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OMV biogenesis is often considered to be stress regulated. This further implies 

that OMV secretion might be essential for Gram-negative bacteria to deal with 

environmental stress. A study by McBroom et al. supported this hypothesis; OMV 

from underproducing E. coli mutants could not withstand lethal envelope stress, 

while overproducing mutants survived better compared to the wild type (135). 

Other factors that affect OMV production and composition are certain antibiotics, 

oxygen stress, and the availability of iron or nutrients (136, 137). For example, 

ciprofloxacin, gentamicin and mitomycin all affect the secretion and composition 

of OMV in Gram-negative bacteria (138-141). Furthermore, it has been suggested 

that pathogenic bacteria in general produce more OMV than non-pathogenic 

bacteria (142, 143). In conclusion, OMV biogenesis is a regulated mechanism that 

is essential for bacteria to prevail and persist in the human host. 

Characterization and composition 

Bacteria can transfer material into the extracellular environment at a distance from 

the site of colonization through the secretion of OMV. OMV are smaller in surface 

area and thus interact with environments that are inaccessible to the whole 

bacteria, as well as with host cells and other bacteria within the niche (144). OMV 

also act as protective vesicles in protein secretion, where soluble material may be 

released from the cell in complex with other proteins or surrounded by insoluble 

material (145). 

 

As mentioned previously, OMV secretion occurs during all stages of bacterial 

growth. The composition of OMV reflects the surface of the parent bacteria, 

containing phospholipids, LPS and proteins. These proteins are mainly derived 

from the outer membrane and periplasm, although DNA and cytoplasmic proteins 

have also been identified in OMV (141, 146-148). Two-dimensional gel 

electrophoresis, western blot and mass spectrometry analysis revealed that OMV 

contain outer membrane proteins that are specific virulence factors for the 

bacteria. For instance, OMV can act as carriers of active bacterial toxins for 

Campylobacter jejuni, Salmonella enterica, and Vibrio cholera (149-151). 

Vesicles from Helicobacter pylori contained not only specific adhesins BabA and 

SabA, but also proteases and ureases (152). OMV can also contain heme-binding 

proteins as well as hemolysins (153-156). Furthermore, studies of M. catarrhalis 

OMV found that the vesicles contain specific virulence proteins UspA1/A2 and 

MID (157, 158). In addition, there are reports that OMV can be enriched for 

certain virulence factors. The Borrelia burgdorferi Oms28 porin, the 

enterotoxigenic E. coli (ETEC) enterotoxin LT, P. aeruginosa B-band LPS, as 

well as P. aeruginosa aminopeptidase were all shown to be enriched in vesicles 

secreted from the parent bacteria (159-161). 
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Since the establishment of OMV as vehicles for proteins and molecules, several 

studies have aimed at investigating how OMV deliver their cargo to cells. 

Kardurugamuwa et al. showed that OMV fuse with the outer membrane of other 

Gram-negative cells and become integrated, releasing their antigens (162). TEM 

analysis determined that OMV from Salmonella typhi, S. enetrica and E. coli 

could fuse with both P. aeruginosa and V. cholerae. However, OMV from these 

bacteria could only attach to the surface of the Gram-positive bacterium 

Staphylococcus aureus, without fusing with the membrane (133). Considering the 

different composition of Gram-negative and positive cell envelopes, these results 

might not be entirely surprising. Furthermore, another study showed that B. 

burgdorferi OMV not only fused with the surface of host epithelial cells, but there 

was also a lipid exchange between bacteria and host cells (163).  

Cell interactions 

In order to interact with the host, bacteria need to bind host cells, and the same 

goes for OMV. Consequently, numerous studies have focused on investigating 

how OMV are involved in host cell binding and the promotion of infection. 

Binding of virulence factors on OMV by epithelial cells through PPRs like TLRs, 

leads to the activation of NF-κB and triggers a pro-inflammatory response 

mediated by cytokines. In a unique way, OMV thus have the possibility to interact 

with and regulate the inflammatory response of epithelial cells at a site distant 

from colonization. 

 

OMV from Gram-negative bacteria adhere to the mucosa and epithelial cells of the 

respiratory tract (164-166). One interesting example is H. pylori, which normally 

stays unattached to the mucosa. However, OMV secreted from this bacterial 

species containing the OMPs BabA, SabA and cyototoxin bind and invade gastric 

epithelial cells (152, 167, 168). Attachment of Legionella pneumophilia OMV to 

A549 lung epithelial cells modulate their cytokine release, leading the cells to 

secrete IL-7 and the anti-inflammatory IL-13 which are normally not produced 

when whole bacteria bind (169). OMV may also inhibit the fusion of the 

phagosome with the lysosome of macrophages (170). Furthermore, OMV derived 

from H. pylori, N. meningitides and P.aeruginosa bind to lipid rafts of epithelial 

cells, and are taken up through endocytosis. Binding of peptidoglycan activates the 

intracellular PPR receptor NOD-1 and induces an IL-8 release from the cell (26). 

 

OMV also directly interact with cells of the host immune system, thereby acting as 

potent regulators of inflammation. Depending on the bacterial strain or the 

environmental circumstances OMV can be either pro- or anti-inflammatory 
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mediators, interacting with phagocytic cells such as neutrophils, macrophages as 

well as immunity B- and T-cells and the complement system. For instance, OMV 

from Brucella abortus are internalized by monocytes through clathrin-mediated 

endocytosis, leading to the upregulation of ICAM-1 and the downregulation of 

MHC class II molecules on the cell surface. OMV treatment of these cells thus led 

to an increased number of bacteria adhering and being internalized, and a 

downregulation of the innate immune response which promotes the persistence of 

the bacteria in host cells (171). 

 

OMV are also involved in the regulation of the adaptive immune cell response. As 

previously mentioned, OMV from M. catarrhalis were found to contain the 

superantigen MID. In a study by Vidakovics et al., it was shown that M. 

catarrhalis OMV could bind to B-cells through MID, leading to clustering of the 

B-cell receptor (BCR) in lipid rafts, followed by endocytosis of the OMV (157). 

Interactions with lipoproteins and DNA found on the surface of the OMV led to a 

T-cell independent activation of the B-cells, through binding of TLR2 and TLR9. 

This led to the secretion of polyclonal IgM and the inflammatory cytokine IL-6 

unspecific for M. catarrhalis, thereby redirecting the immune response. MID 

could also be found on OMV secreted from M. catarrhalis in vivo, implying that 

this phenomenon occurs in a clinical setting. Another example of OMV interacting 

with adaptive immune cells comes from a study of the pathogen Bacteroides 

fragilis. OMV were found to contain a capsular polysaccharide (PSA) which 

induces regulatory T cells to secrete anti-inflammatory cytokines through 

interactions with DCs (172). The resulting tolerance of the mucosa leads to the 

prevention of experimental colitis in a mouse model.  

 

Finally, OMV are also involved in regulating the complement system of the 

human host in models of infection. For instance, OMV from M. catarrhalis was 

shown to absorb complement factor C3 from serum through binding it to UspA1 

on the vesicle surface (158). In co-cultures with serum-sensitive NTHi, OMV 

could thus protect NTHi from complement-dependent lysis, suggesting a new 

strategy by which co-colonizing bacteria can work together to defeat the host 

immune response. OMV may also perform molecular mimicry, as shown by H. 

pylori vesicles with LPS. The vesicles express Lewis blood antigens very similar 

to those found in the gastric mucosa, thereby creating an autoimmune response 

against the host (173, 174).  

Biofilms and vaccines 

OMV play a role in biofilm formation and maintenance; mediating adherence, 

delivering material and competing for growth factors. OMV were found to be 



36 

important components of H. pylori biofilms, and in fact the addition of OMV to a 

Helicobacter culture triggered the biofilm formation (175, 176). Moreover, 52% of 

all LPS found in P. aeruginosa is derived from OMV, thus making it an important 

feature of biofilm according to a study by Schooling et al (177). The presence of 

OMV in Pseudomonas biofilm was confirmed by transmission electron 

microscopy (TEM), and the authors suggested that a large majority of the outer 

membrane proteins found in the biofilm was in fact OMV-derived (178).  

 

Another important role for OMV has been in vaccine research. Considering that 

OMV are carriers of common virulence factors specific for each bacteria, secreted 

in complex proteins and lipids of the outer membrane whilst being non-replicating, 

they are ideal to use as vaccine agents. Many studies have focused on investigating 

the potential of OMV as vaccines for pathogens including Neisseria meningitides, 

S. flexneri, V. cholera, S. enterica, B. pertussis, ETEC and many others (179-184). 

In fact, vaccines against Neisseria meningitides serotype B have been used in 

several countries like Cuba, Norway and New Zealand. A study from the Cuba 

showed that the OMV vaccine had a promising efficacy of 83-94% (185). More 

recently, a vaccine containing three N. meningitides surface antigens was 

developed in order to provide broad protection and minimize the risk of escape 

through mutations. In the study the authors compared the vaccine incorporating 

only the antigens, to one containing the same proteins with the addition of OMV. 

Interestingly, the immunogenicity was enhanced when OMV was added to the 

vaccine (186). When developing an OMV vaccine it is essential that it is not 

cytotoxic in itself, for example toxic LPS needs to be removed whilst keeping the 

vesicles intact. OMV vaccines have a potential as an alternative way of treating 

bacterial infections, in a world facing the growing problem of antibiotic resistance 

(121). 
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Pathogens & Antimicrobial Resistance 

The human body has developed several sophisticated strategies to avoid bacterial 

infections. In cases when the immune system is not successful in eliminating a 

pathogen we are, however, forced to use antimicrobial drugs. Nevertheless, 

through natural selection bacteria have also rapidly evolved resistance mechanisms 

against these antimicrobials. 

Antimicrobial drugs  

The first antibiotic, penicillin, was discovered accidently by Alexander Flemming 

in 1928 (22). Since then, several antibiotics have been discovered and developed 

into semi-synthetic modifications. In general, Gram-negative bacteria are more 

difficult to treat than Gram-positive, due to their extra lipid membrane. One of the 

main criteria for an antibiotic is to be toxic for the prokaryote while leaving the 

host cells intact, targeting molecules and processes exclusive to the bacteria (101). 

These include inhibitors of cell wall synthesis, protein synthesis, folic acid 

metabolism, and DNA/RNA synthesis. 

Cell wall synthesis inhibitors 

The largest group of antibiotics is inhibitors of cell wall biosynthesis. The 

peptidoglycan-containing cell wall is unique to bacteria, and is therefore an ideal 

target for antibiotics. -lactam antibiotics inhibit enzymes that catalyze cross-

linking of glycan molecules N-acetylglucosamine and N-acetylmuramic acid, the 

final step of peptidoglycan and cell wall biosynthesis. These transmembrane 

enzymes are called penicillin-binding proteins (PBP) and the number of variants 

differ between bacterial species. As the name suggests these antibiotics have a -

lactam ring, and a side chain that gives specific properties to each antibiotic 

substance. For example, the side chain determines if the antibiotic is taken up by 

the cell and how resistant it is against degradation (187-189). Cell wall synthesis 

inhibitors are bactericidal and thus directly kill the bacteria. 

 

In Sweden, phenoxymethylpenicillin (penicillin V) is the most common -lactam 

still used in treating AOM and pneumonia. However amoxicillin, a semi-synthetic 

derivative of penicillin, has a higher porin penetrance in Gram-negative bacteria. 

Furthermore, cephalosporins and carbapenams bind PBP-3 and PBP-2 

respectively, and are frequently used with bacteria resistant against extended 

spectrum antibiotics. Vancomycin is another cell wall synthesis inhibitor that act 

on earlier steps compared to the -lactams, which is mainly used against Gram-

positive bacteria (190).  
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Other antimicrobial drugs  

Protein synthesis inhibitors that target the ribosome are aminoglycosides such as 

tetracyclines or chloramphenicol which binds different parts of the ribosome 

subunits. These antibiotics can be either bacteriostatic, meaning they slow down 

growth instead of directly killing the bacteria, or bactericidal.  

 

Folic acid is important in the synthesis of nucleic acids as well as in protein 

synthesis. Examples of inhibitors are sulphonamide and trimetoprim which are 

competitive inhibitors and uptake inhibitors, respectively. Folic acid metabolism 

inhibitors are mainly bacteriostatic.  

 

DNA/RNA synthesis inhibitors such as quinolones and rifampicine block the 

replication of nucleic acid sequences, through binding and inhibition of unwinding 

supercoiled DNA or inhibiting polymerases, respectively. These antibiotics are 

mainly bactericidal (101). 

Antibiotic resistance 

Resistance to antibiotics can be acquired either as a random mutation in the 

chromosome of a particular bacterial strain giving it a selection advantage over 

other strains, or through the spread of a plasmid or transposon carrying a 

resistance gene. In fact, a single base pair substitution or deletion may lead to a 

changed protein sequence which can potentially mean the acquisition of resistance 

to antibiotics. For instance, an alteration in the protein sequence of the PBP-

proteins may lead to a lower affinity for -lactams. The permeability of the cell 

membrane can decrease, making it difficult for antibiotics to pass, and efflux 

systems pump out antibiotics.  

 

Furthermore, some bacteria have acquired resistance against -lactams by 

expressing enzymes that hydrolyze the -lactam ring, called -lactamases. These 

enzymes were first discovered in the late 1940s, soon after antibiotics had become 

a common treatment in the clinic. There are currently more than 300 types of -

lactamases, classified into four groups by sequence similarities and their catalytic 

mechanisms. One option when treating resistant bacteria is by using alternative 

antibiotics with a different mechanism of action, another is to combine for 

example amoxicillin treatment with a -lactamase inhibitor like clavulanic acid 

that inactivates -lactamases (191). However, the emergence of new broad-

spectrum -lactamases is a major problem across the world, and is one of the pre-

eminent issues modern health care currently faces (101, 188, 192). 
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Testing for antibiotic susceptibility and resistance 

In order to make sure the patient receives the correct antibiotic patient samples are 

grown in the clinical laboratories, and tested for susceptibility. Bacteria are 

thereafter classified as sensitive, intermediate or resistant (the SIR system). 

Minimal Inhibitory Concentration (MIC) determination 

The MIC for a certain bacterial strain is evaluated through broth or agar dilution 

methods. The bacteria are grown with varying antibiotic concentrations, and the 

MIC is the lowest antibiotic concentration which inhibits its growth (101). E-tests 

are commonly used to determine antibiotic MIC-values on agar plates. It consists 

of a plastic strip which has a predefined antibiotic concentration gradient, that is 

placed on a plate with growing bacteria. The MIC value can be identified at the 

point on the strip where the growth inhibition zone ends (193).  

Disk diffusion 

Disk diffusion methods are used in order to measure the sensitivity of a certain 

bacterial strain to an antibiotic on agar plates. Perforations are made in agar plates 

with the bacteria growing on them, and antibiotic samples added and diffuse into 

the agar. The size of the zones where the bacteria do not grow indicate the 

susceptibility of a certain bacteria to the antibiotic (194). 

-lactamase analysis 

The chromogenic substance nitrocefin is used to analyze the presence of -

lactamase in bacteria. Hydrolysis of nitrocefin by the enzyme changes the colour 

of the substance from yellow (380nm) to red (500nm), and this change in 

absorbance can be measured using spectrophotometry. 

M. catarrhalis and H. influenzae resistance against β-lactam antibiotics 

Moraxella catarrhalis 

The unique M. catarrhalis β-lactamase enzyme BRO was first described in 1977, 

and is encoded by the chromosomal gene bro (195, 196). Within just a few years 

after its discovery the enzyme was found in up to 75% of all M. catarrhalis 

isolates in the United States (197). This has led to speculation that this dramatic 

effect was due to an interspecies horizontal gene transfer, however this topic is 

still up for debate (198, 199). Today, studies report that between 90-97% of all M. 

catarrhalis strains are β-lactamase positive (199-201). 
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Two variants of the β-lactamase gene exist: the more common bro-1 and the less 

prevalent bro-2. The bro genes code for proteins that differ by only one amino 

acid as well as a deletion of 21 base pairs in the promoter region of bro-2. This 

results in the proteins having different isoelectric points (202, 203). Compared to 

β-lactamases originating from other Gram-negative bacteria, M. catarrhalis BRO 

has a significantly different protein sequence (203). After analyzing the gene 

regions flanking bro-1/2, Bootsma et al. suggested that the β-lactamase gene was 

spread through horizontal transfer to Moraxella. The gene sequence has a 

significantly different GC-content compared to the rest of the M. catarrhalis 

genome (31% vs. 41%) (198). BRO has a signal sequence motif LPXTG which is 

characteristic of Gram-positive microbes suggesting that perhaps this enzyme is 

derived from a Gram-positive species (202). Further strengthening this hypothesis, 

it was determined that M. catarrhalis β-lactamase is a lipoprotein, which is 

common in Gram-positive β-lactamases. BRO is synthesized as a precursor 

protein and the signal sequence is modified by lipidation. Corresponding with this, 

approximately 10% of β-lactamases in M. catarrhalis were found to be membrane-

bound on the outer membrane, as well as in the periplasm (202). 

Haemophilus influenzae 

In 1974, two cases of ampicillin-resistant H. influenzae strains were reported 

(204). Since then, H. influenzae resistance has increased worldwide, with 4% 

resistant strains reported in Russia, 26% in the United States and 31% in France 

(205). Two major resistant groups exists in H. influenzae, those that are β-

lactamase positive and ampicillin resistant (BLPAR) and those which have other 

resistance mechanisms, BLNAR (β-lactamase negative ampicillin resistant) (206). 

A majority of H. influenzae strains are BLPAR, where the β-lactamase is of TEM-

1 or ROB-1 type (94% vs. 5%) (205, 207). In Sweden, it has been reported that β-

lactam resistance has increased from 11% in 1994 to 23.3% in 2009. In contrast, 

approximately 4% of strains are BLNAR (208). In these strains ampicillin 

resistance is generally due to mutations in the PBP-3 proteins, leading to a lowered 

affinity for β-lactams. However, BLNAR strains are still relatively uncommon 

globally. Furthermore, BLPACR (β-lactamase positive ampicillin clavulanate 

resistant) strains have both β-lactamase and chromosomally derived resistance, 

and are tested by their resistance to cephaclor (206). Despite the increase in 

resistance, ampicillin is still the first choice of treatment for most H. influenzae 

infections.    
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The present investigation 

Aims 

The aim of this thesis was to characterize outer membrane vesicles (OMV) 

secreted by the Gram-negative pathogens Moraxella catarrhalis and non-typeable 

Haemophilus influenzae (NTHi) in the respiratory tract, and to investigate 

different ways in which OMV interact with both the host immune system, as well 

as other pathogens in the surrounding area. The specific aims of the thesis were: 

 

 To determine the proteomic composition of OMV from the 

nasopharyngeal pathogen Moraxella catarrhalis 

 

 To investigate if OMV from M. catarrhalis bind to and activate 

respiratory epithelial cells from humans in vitro and mice lung cells in 

vivo 

 

 To examine if OMV from M. catarrhalis contain active β-lactamase in 

vitro and in vivo and if these OMV can protect other antibiotic sensitive 

bacteria in co-infections from antibiotic-induced killing 

 

 To investigate if healthy adults have antibodies against M. catarrhalis β-

lactamase and if OMV thus can act as protective vesicles against 

neutralization by these antibodies 

 

 To establish if OMV from non-typeable Haemophilus influenzae likewise 

contain active β-lactamase, and if these OMV can protect group A 

streptococci from antibiotic-induced killing in co-cultures 
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Results and Discussion 

Paper I: Multicomponent Moraxella catarrhalis outer membrane 

vesicles induce an inflammatory response and are internalized by 

human epithelial cells 

M. catarrhalis is one of the main bacterial agents causing AOM in children and 

exacerbations in adults with COPD. Although several studies have focused on 

elucidating how M. catarrhalis causes infection through specific virulence factors, 

very few studies have concentrated on an important virulence mechanism for 

Gram-negative pathogens: the secretion of outer membrane vesicles. We know 

from earlier studies that OMV from M. catarrhalis contain virulence factors MID 

and UspA1, but otherwise very little about the composition of these nanoparticles. 

Characterizing OMV from M. catarrhalis may lead us to discover new biological 

functions of these vesicles. Consequently, in paper I, we decided to carry out a 

proteomic study of M. catarrhalis OMV. 

 

Following OMV isolation, vesicle proteins were separated according to size and 

their isoelectric focusing point through a 2D-gel electrophoresis. Through 

MALDI-TOF mass spectrometry the protein spots were analyzed and the proteins 

were identified through sequence analysis. We found 85 spots and could identify 

58 M. catarrhalis proteins, 22 which were originating from the outer membrane or 

periplasm. Proteins isolated were common outer membrane proteins such as 

ompCD, ompE, copB, and ompM35 that play roles in adhesion, serum resistance, 

iron acquisition and antibiotic resistance (73, 77, 209, 210). However, because of a 

size limitation of the gel, MID and UspA1/A2 could not be isolated this way and 

had to be identified using western blot. Other proteins identified were involved in 

cell envelope functions, energy metabolism and transport and binding proteins. 

 

The analysis also revealed the presence of numerous cytosolic proteins in the M. 

catarrhalis OMV, mainly involved in protein synthesis. This has been seen in 

other proteomic studies as well, and different theories have tried to explain this 

phenomenon. Recently, a study by Perez-Cruz et al. showed that two types of 

OMV are secreted from bacteria, the majority originating from the outer 

membrane with just a bilayer membrane, and a minority of double bilayer-type 

which also contained cytosolic proteins (148, 211). Another study suggested a 

model where the presence of autolysins in the periplasmic space leads to the 

development of a gap in the periplasm, allowing cytosolic proteins and DNA to 

“leak” into the OMV (141). It is apparent that more research needs to be done to 

establish the full mechanism of OMV biogenesis. Meanwhile, when observing the 
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major spots of our 2D-gel it clearly illustrated that the main constituents of the 

vesicles were OMPs (Figure 4). Consistent with this, the highest scores from the 

MALDI-TOF analysis were almost exclusively obtained by outer membrane, 

periplasmic and extracellular proteins. In contrast, most cytosolic proteins got 

relatively low scores. 

 

 

Figure 4. Protein spots from M. catarrhalis OMV.  

Two-dimensional electrophoresis of M. catarrhalis OMV where proteins are separated in size (kDa) 

vertically and their isoelectric point horizontally.  

 

As shown in several studies, OMV are mediators of inflammation that allow the 

bacterium to colonize in one site and cause inflammation in another. In this way 

the bacterium can evade the immune response while staying pathogenic. We knew 

from a previous study in our group that OMV from M. catarrhalis bound to and 

activated B-cells in a T-cell independent manner, inducing a polyclonal pro-

inflammatory immune response (157). As M. catarrhalis is a Gram-negative 

pathogen that primarily colonizes the respiratory tract, we wanted to investigate 

how OMV secreted from this bacterium interacts with respiratory epithelial cells. 

Using fluorescence microscopy we showed that OMV bind human alveolar A549 
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epithelial cells at specific lipid raft domains. After isolating the lipid raft motifs we 

determined that OMV stimulation of epithelial cells also leads to TLR2 clustering.  

With flow cytometry analysis we could further observe that binding of OMV to 

A549 cells lead to the upregulation of the adhesion protein ICAM-1 on the cell 

surface, as well as the secretion of the pro-inflammatory cytokine IL-8. Because 

A549 cells have little or no TLR4 expression on their surface they are less 

responsive to LPS, indicating that this response is mainly due to OMV surface 

protein binding to TLR4 (212).  

 

Carcinoembryonic antigen-related cell adhesion molecules (CEACAM)-1 is 

widely expressed on respiratory epithelial cells and implicated as a regulator of 

infection and inflammation, and is often co-localized with TLR2 (56, 213). 

Slevogt et al. showed that the adhesion protein UspA1 of M. catarrhalis binds 

CEACAM-1 on the surface of epithelial cells, thereby abrogating the TLR2 

signaling pathway, resulting in reduced transcription of NF-κB and a decrease in 

the secretion of pro-inflammatory cytokines (56). In this study, we wanted to 

investigate if UspA1 on the OMV surface has the same attenuating effect on the 

TLR2-dependent signaling pathway of A549 cells, thereby allowing the bacteria to 

dampen the subsequent immune reaction. Using flow cytometry analysis we 

confirmed that OMV from UspA1-deficient M. catarrhalis produced a stronger 

immune response than the wild-type counterpart. The results of this study show 

that binding of OMV to epithelial cells creates an immune response characterized 

by IL-8 secretion and ICAM-1 upregulation, and that OMV can regulate this 

response through interaction of CEACAM-1 and UspA1. We hypothesize that 

through OMV secretion the pathogen activates epithelial cells to promote adhesion 

and infection, while at the same time “fine tuning” this immune response so that 

the bacteria may still successfully evade the immune response.  

 

In addition, we wanted to confirm that OMV induce a pro-inflammatory response 

in vivo, using a mouse model. When the mice inhaled an OMV solution, we could 

clearly see the development of inflammation in lung specimens, represented by an 

influx of neutrophils and a disturbance of the membrane integrity of the alveolar 

cells. Mice are usually not considered the ideal model for M. catarrhalis infections 

since the bacteria are cleared within a few hours because of the strong immune 

response they induce in the lungs (214, 215), which we could clearly observe in 

our results.  

  

In conclusion, the present study established that OMV from M. catarrhalis are 

composed of several major virulence factors and other outer membrane proteins 

important for survival and pathogenesis. We also confirmed that OMV from M. 

catarrhalis induce inflammation in respiratory epithelial cells from the human 

host, through binding to the cell membrane and activating cell surface receptors. 
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However, OMV can also modulate the immune response of these cells through 

binding of UspA1 on the vesicle surface. It has previously been shown that M. 

catarrhalis OMV are found in nasopharyngeal infections in vivo (37, 38, 52), and 

this study suggests that OMV are indeed important regulators of inflammation.  

Paper II: Moraxella catarrhalis outer membrane vesicles carry beta-

lactamase and promote survival of Streptococcus pneumoniae and 

Haemophilus influenzae by inactivating amoxicillin  

Since the 1980s, approximately 97% of all M. catarrhalis strains are resistant to β-

lactam antibiotics, through carriage of the Moraxella-unique enzyme β-lactamase. 

Considering that β-lactamase is a periplasmic enzyme (202), in paper II our aim 

was to further study OMV secreted from β-lactam resistant M. catarrhalis strains 

and investigate if they carry β-lactamase.  

 

In order to investigate the presence of β-lactamase we cloned and produced a 

recombinant protein and after immunization of rabbits purified polyclonal anti- β-

lactamase antibodies. Screening for β-lactamase in the OMV through western blot 

and TEM analysis confirmed that OMV from β-lactamase positive strain KR526 

contained the enzyme, while the β-lactamase negative control strain Bc5 did not 

(Figure 5). Using the chromogenic substance nitrocefin, we found that that these 

vesicles were enzymatically active and that most β-lactamase was protected from 

proteinase activity inside the OMV. Our results also indicated that β-lactamase 

was not enriched in OMV. In addition, we could see that OMV can break down 

amoxicillin in a dose-dependent manner, in contrast to OMV from β-lactamase 

negative strains. 
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Figure 5. M. catarrhalis OMV contain β-lactamase.  
TEM showing OMV from the β-lactamase positive KR526 (upper bar) and negative strain Bc5 

(lower bar). Black spots represent gold-labeled anti-β-lactamase antibodies.  

 

Previous studies have shown that M. catarrhalis is often found in co-cultures with 

other respiratory tract bacteria such as Haemophilus influenzae and Streptococcus 

pneumoniae (109, 110, 216). In addition, we know that OMV are found in vivo in 

patients with M. catarrhalis infections (52). Brook et al. hypothesized that β-

lactamase producing bacteria in polymicrobial infections such as AOM or 

pharyngotonsillitis can survive and protect other bacteria through the release of 

free β-lactamase into the environment (116). Since OMV secretion allows bacteria 

to safely secrete proteins far away from the site of infection, we hypothesize that 

this might be a mechanism whereby bacteria share β-lactam resistance. We 

consequently wanted to examine if OMV from M. catarrhalis can protect 

susceptible M. catarrhalis, H. influenzae and S. pneumoniae strains in culture 

from amoxicillin-induced death. Interestingly, our results convincingly showed 

that β-lactamase-containing M. catarrhalis OMV protected other pathogens from 

antibiotic killing for up to five hours. The growth of the susceptible bacteria was 

comparable to that of the control incubated without antibiotics. This could effect 

could not be seen with OMV from β-lactamase negative strains.  

 

Many studies have discussed the benefits of co-colonization of bacteria, and the 

advantages for the bacteria in polymicrobial infections (107, 108, 116). This 

project suggested a novel virulence mechanism for OMV, as mediators carrying 

and sharing antimicrobial resistance in mixed infections. 

Paper III: Outer membrane vesicles shield Moraxella catarrhalis -

lactamase from neutralization by serum IgG  

In a study of patients with cystic fibrosis, Giwercman et al. discovered significant 

levels of β-lactamase activity in patient sputum, with activity increasing after 

treatment with antibiotics (217). The authors suggested that P. aeruginosa secreted 

β-lactamase freely into sputum as an in vivo resistance mechanism. Furthermore, 

they found anti-β-lactamase IgG in serum and sputum from these patients, which 

was not present in healthy controls (218). In a later study, Ciofu et al. discovered 

β-lactamase in OMV from P. aeruginosa, suggesting that OMV were a possible 

mechanism for secretion from this bacteria into the extracellular space (219). 

Since we had previously established that M. catarrhalis OMV also contained this 

enzyme, our aim in this study was to further examine the presence of anti-β-

lactamase IgG in serum of health adults.  
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In order to determine that the discovery of β-lactamase in OMV was not only in 

vitro or a laboratory phenomenon, we first wanted to make sure that OMV also 

contained β-lactamase in a human host. We established using TEM that a nasal 

sample from a child with sinusitis due to a M. catarrhalis infection was packed 

with bacteria secreting OMV-containing β-lactamase. This verified that OMV had 

a clinical relevance as mediators of antimicrobial resistance. 

 

Next, we compared the antibody levels against M. catarrhalis β-lactamase in 

humans to those against M. catarrhalis adhesins and virulence proteins MID, 

UspA1 and UspA2. Since M. catarrhalis β-lactamase has a unique protein 

sequence compared to known β-lactamases from other Gram-negative bacteria, we 

were confident that these antibodies were specific for the M. catarrhalis enzyme. 

Our results showed that the highest IgG levels were against UspA1 and UspA2, 

with lower levels against MID and β-lactamase (Figure 6). In a previous study 

from our group similar results were obtained, although antibody levels against the 

MID protein were generally higher than those against UspA1/A2 (53). Our 

analysis of the sera showed that only a small portion had specific antibodies 

against β-lactamase, about 15%. These antibody levels were significantly lower 

than against adhesion proteins UspAs, suggesting that this protein is less 

accessible for the immune system.  

 

 

Figure 6. Comparison of IgG levels in human serum against M. catarrhalis virulence proteins. 
Results from enzyme-linked immunosorbent assay (ELISA) showing binding of IgG from healthy 

adults to common M. catarrhalis virulence factors β-lactamase, MID, UspA1 and UspA2 measured 

as absorbance. 

 

The lack of antibodies against M. catarrhalis β-lactamase in most healthy 

adults indicated that this protein is rarely exposed to the extracellular space. This 

corresponds with data from our previous study, where we proposed that the 

majority of β-lactamase was found inside the OMV. However, in the present study 
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we also found that purified anti-β-lactamase antibodies could bind to and partially 

inhibit the activity of the β-lactamase in OMV, suggesting that the enzyme may 

also be exposed to the extracellular space. Put together, these results indicate that 

OMV act as storage pools for β-lactamase, although the localization of the enzyme 

can vary between preparations perhaps due to different environmental 

circumstances affecting OMV production. Similar to the study previously 

mentioned by Giwercman et al., other groups have suggested that β-lactamase can 

sometimes be found freely secreted from bacteria into the extracellular space (220, 

221). However, since extracellular proteases would quickly hydrolyze any freely 

secreted proteins, we propose OMV secretion as a more probable delivery 

mechanism of these proteins.  

 

In conclusion, the aim of this project was to investigate if there are antibodies 

against β-lactamase in human serum, as in patients with P. aeruginosa-derived 

cystic fibrosis. We found not only the presence of these antibodies, but could also 

determine that these antibodies bound OMV from resistant M. catarrhalis strains, 

and that they could inhibit the activity of this enzyme to a certain degree. We 

further confirmed the role of OMV not only as vehicles of protein secretion, but 

also as protective vehicles against serum proteases and inhibitory antibodies. In 

future studies it would be highly interesting to see how antibody levels vary in 

children with AOM or in adults with M. catarrhalis-derived exacerbations in 

COPD as compared to healthy adults. 

Paper IV: Group A streptococci are protected from amoxicillin-

mediated killing by vesicles containing β-lactamase derived from 

Haemophilus influenzae 

Finally, in our fourth project, we wanted to investigate the prevalence of β-

lactamase in other Gram-negative species in the nasopharynx. NTHi is a common 

colonizer of the upper respiratory tract and is frequently found to be β-lactamase 

positive and thus antibiotic resistant (205). Consequently, in paper IV we 

examined OMV from NTHi and could indeed confirm the presence of β-lactamase 

in the secreted vesicles (Figure 7).  
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Figure 7.  OMV from NTHi contain β-lactamase. 

SDS-gel and western blot showing OMV from β-lactamase positive NTHi strains KR664 and KR672 

contain β-lactamase, as opposed to susceptible strain KR665.  

 

On another note, several studies have shown that even though group A 

streptococci are highly susceptible to β-lactams, these bacteria are sometimes 

inexplicably resistant to penicillin-treatment in patients with tonsillitis (222, 223). 

In a study by Brook et al. NTHi and M. catarrhalis frequently co-infected these 

patients with GAS treatment failures, leading the authors to hypothesize that these 

bacteria shared β-lactam resistance in a symbiotic relationship (115, 224). 

Additionally, other reports suggested that cephalosporins were more effective in 

GAS infections compared to penicillin. Interestingly, most NTHi and M. 

catarrhalis strains are susceptible to later generation cephalosporins, further 

implicating these bacteria in treatment failures with penicillin.   

 

In light of our earlier studies, the aim of the current project was to investigate if 

OMV could be potential mediators of resistance in GAS infections. Using similar 

methods to our previous studies, we found that these OMV were potent 

hydrolyzers of amoxicillin even at peak plasma concentrations. The β-lactamase-

containing vesicles could effectively protect GAS against β-lactam antibiotics 

which were entirely susceptible to the antibiotic without these vesicles. We also 

compared OMV from the different species and found that NTHi OMV seemed to 

be more efficient at breaking down amoxicillin compared to M. catarrhalis OMV. 

This could be due to a more potent or more closely packed β-lactamase. 

 

In conclusion, the results of this study corroborate well with the previous findings 

indicating that co-infecting antibiotic resistant bacteria may protect susceptible 

pathogens in polymicrobial infections (116). We suggest that OMV may be 

mediators of resistance between bacterial strains in the nasopharynx. We also 

propose that OMV may be a mechanism whereby NTHi and M. catarrhalis protect 

GAS in pharyngotonsillitis infections from antibiotic-induced killing in co-

infections. Today, clinical diagnostics focus on recognizing and treating the most 

abundant and disease causing pathogen, however our results stress the importance 

of also screening for and possibly treating co-pathogens present in an infection. 
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Conclusions 

The aim of this thesis was to further elucidate the role of OMV secreted from 

Gram-negative pathogens of the respiratory tract, and their involvement in 

immune activation or evasion, as well as how they interact with other pathogens 

found in the same colonization niche.  

 

First, we studied the proteomic composition of M. catarrhalis OMV, and were 

able to establish that the vesicles were composed of major Moraxella virulence 

factors involved in virulence, adhesion and nutrient acquisition. We also found 

that the OMV bound to and activated respiratory epithelial cells in vitro as well as 

in vivo and that OMV could induce and regulate the immune response to a certain 

degree.  

 

Previous studies have hypothesized that bacteria in polymicrobial infections can 

share antibiotic resistance factors. We propose that OMV secretion could be a 

mechanism through which bacteria achieve this in a protected manner. In the 

papers that make up this thesis we showed that OMV secreted from patients with 

nasopharyngeal infections contain β-lactamase and that incubation with these 

vesicles save antibiotic susceptible respiratory pathogens from killing. We also 

demonstrated that OMV are protective vehicles that shield β-lactamase from 

neutralizing antibodies in serum. 

  

Respiratory tract infections are a major cause of disease in the world, at a high cost 

for society. At the same time, antibiotic resistance is emerging as a threat to 

modern health care. For this reason, we find it essential to investigate pathogenesis 

and virulence mechanisms of the common microbes found in our respiratory tract.  
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Future perspectives 

Throughout the last 40 years, OMV have been studied from various perspectives; 

their biogenesis and composition, their roles in bacterial pathogenesis and 

survival, as well as their interactions with other cells.  

 

In this thesis we have studied the composition of Moraxella OMV obtained using 

standard laboratory settings. For future studies, it would be interesting to study 

how the vesicle protein composition varies with different environmental 

circumstances, such as a change in temperature, pH, or during antibiotic treatment. 

Using electron microscopy it would also be interesting to see how and if the OMV 

size and shape vary with change s in the environmental. We would also like to 

investigate the expression of specific proteins in different OMV preparations. For 

example we could determine if the expression of proteins involved in fine tuning 

the immune response in vesicles varies when produced under cellular stress. In 

addition, it could be interesting to investigate if β-lactamase is more frequently 

packed into these vesicles when bacteria are grown with antibiotics, or perhaps in 

co-infections with other bacteria. Not many studies regarding the role of OMV in 

polymicrobial infections have been conducted so far, and we believe this might be 

an interesting field of research. Furthermore, a central question would be to 

investigate how much OMV is secreted by bacteria in the normal flora of healthy 

adults, as well as by pathogens during infection, or in polymicrobial infections. 

 

However, to be able to find the answer to these questions, it is imperative that we 

discover more precise methods to quantify OMV. Presently, most laboratories use 

protein content to achieve this. However, since the vesicles vary both in size and 

protein composition during different stages of growth or methods of isolation, this 

is an arbitrary unit and a more accurate method is desirable. One way of doing this 

might be using small particle counters used for nanoparticles such as viruses, or 

through direct counting in grids using TEM which, although tedious, might be a 

more accurate and precise method devoid of variation. However, a more simple 

way might be using flow cytometry analysis, although this might be better as a 

relative measurement between different preparations. 

 

To date, the genetic trigger for OMV production has not yet been established. The 

discovery of a bacterium devoid of OMV production might give a clue to how 

important OMV are in pathogenesis and bacterial survival, or in the case of our 

studies as vehicles mediating inflammation and antibiotic resistance. It is also 

feasible to suggest that this trigger is general for most bacterial species; therefore it 

is desirable to investigate how this mechanism is regulated. Specifically, this 

might allow us to determine the importance of OMV in an in vivo animal model. 



54 

  

In conclusion, though a lot is known about OMV as mediators of virulence and 

bacterial survival, much still remains to be elucidated in order to determine the 

true impact of these nanoparticles on other microbes and the human host. 
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