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ABSTRACT 
Regression testing is verifying that previously functioning software remains after a change.  With the goal of 

finding a basis for further research in a joint industry-academia research project, we conducted a systematic 

review of empirical evaluations of regression test selection techniques. We identified 27 papers reporting 36 

empirical studies, 21 experiments and 15 case studies. In total 28 techniques for regression test selection are 

evaluated. We present a qualitative analysis of the findings, an overview of techniques for regression test 

selection and related empirical evidence. No technique was found clearly superior since the results depend on 

many varying factors. We identified a need for empirical studies where concepts are evaluated rather than small 

variations in technical implementations.  

1 INTRODUCTION 
Efficient regression testing is important, even crucial, for organizations with a large share of their cost in 

software development. It includes, among other tasks, determining which test cases need to be re-executed, i.e. 

regression test selection, in order to verify the behavior of modified software. Regression test selection involves 

a trade-off between the cost for re-executing test cases, and the risk for missing faults introduced through side 

effects of changes to the software. Iterative development strategies and reuse are common means of saving time 

and effort for the development. However they both require frequent retesting of previously tested functions due 

to changes in related code. The need for efficient regression testing strategies is thus becoming more and more 

important.  

A great deal of research effort has been spent on finding cost-efficient methods for different aspects of 

regression testing. Examples include test case selection based on code changes 

[1][6][13][17][20][22][43][49][62][64][67] and specification changes [38][40][54][68], evaluation of selection 

techniques [48], change impact analysis [44], regression tests for different applications e.g. database 

applications [18], regression testing of GUIs and test automation [39], and test process enhancement[31]. To 
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bring structure to the topics, researchers have typically divided the field of regression testing into i) test 

selection, ii) modification identification, iii) test execution, and iv) test suite maintenance. This review is 

focused on test selection techniques for regression testing. 

Although techniques for regression test selection have been evaluated in previous work[3][15][36][65], no 

general solution has been put forward since no technique could possibly respond adequately to the complexity 

of the problem and the great diversity in requirements and preconditions in software systems and development 

organizations. Neither does any single study evaluate every aspect of the problem; e.g. Kim et al. [27] evaluate 

the effects of regression test application frequency, Elbaum et al. [11] investigate the impact that different 

modifications have on regression test selection techniques, several studies examine the ability to reduce 

regression testing effort [3][11][15][27][36][65][66] and to reveal faults [11][15][27][49].  

In order to map the existing knowledge in the field, we launched a systematic review to collect and compare 

existing empirical evidence on regression test selection. The use of systematic reviews in the software 

engineering domain has been subject to a growing interest in the last years. In 2004 Kitchenham proposed a 

guideline adapted to the specific characteristics of software engineering research. This guideline has been 

followed and evaluated [5][30][57] and updated accordingly in 2007 [29]. Kitchenham et al. recently published 

a review of 20 systematic reviews in software engineering 2004-2007[28]. 

Ideally, several empirical studies identified in a systematic review evaluate the same set of techniques under 

similar conditions on different subject programs. Then there would be a possibility to perform an aggregation 

of findings or even meta-analysis and thus enable drawing general conclusions. However, as the field of 

empirical software engineering is quite immature, systematic reviews have not given very clear pictures of the 

results. In this review we found that the existing studies were diverse, thus hindering proper quantitative 

aggregation. Instead we present a qualitative analysis of the findings, an overview of existing techniques for 

regression test selection and of the amount and quality of empirical evidence. 

There are surveys and reviews of software testing research published before, but none of these has the broad 

scope and the extensive approach of a systematic review. In 2004 Do et al. presented a survey of empirical 

studies in software testing in general [8] including regression testing. Their study covered two journals and four 

conferences over ten years (1994-2003). Other reviews of regression test selection are not exhaustive but 

compare a limited number of chosen regression test selection techniques. Rothermel and Harrold presented a 

framework for evaluating regression test techniques already in 1996 [48] and evaluated the, by that time, 

existing techniques. Juristo et al. aggregated results from unit testing experiments [25] of which some evaluate 

regression testing techniques, although with a more narrow scope. Binkley et al. reviewed research on the 
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application of program slicing to the problem of regression testing [4]. Hartman et al. reports a survey and 

critical assessment of regression testing tools [21]. However, as far as we know, no systematic review on 

regression test selection research has been carried through since the one in 1996 [48]. An early report of this 

study was published in 2008 [12], which here is further advanced especially with respect to the detailed 

description of  the techniques (Section 3.4), their development history and the analysis of the primary studies 

(Section 3.5).1 

This paper is organized as follows. In section 2 the research method used for our study is described. Section 3 

reports the empirical studies and our analyses. Section 4 discusses the results and section 5 concludes the work. 

 

2 RESEARCH METHOD 
 

2.1 Research Questions 
This systematic review aims at summarizing the current state of the art in regression test selection research by 

proposing answers to a set of questions below. The research questions stem from a joint industry-academia 

research project, which aims at finding efficient procedures for regression testing in practice. We searched for 

candidate regression test selection techniques that were empirically evaluated, and in case of lack of such 

techniques, to identify needs for future research. Further, as the focus is on industrial use, issues of scale-up to 

real-size projects and products are important in our review. The questions are: 

RQ1) Which techniques for regression test selection in the literature have been evaluated empirically?   

RQ2) Can these techniques be classified, and if so, how? 

RQ3) Are there significant differences between these techniques that can be established using empirical 

evidence?  

RQ4) Can technique A be shown to be superior to technique B, based on empirical evidence? 

Answers to these research questions are searched in the published literature using the procedures of systematic 

literature reviews as proposed by Kitchenham [29]. 

                                                                 
1 In this extended analysis, some techniques that originally were considered different ones, were considered the same technique. Hence, the number 

of techniques differ from [10]. Further, the quality of two empirical studies was found insufficient in the advanced analysis, why two studies were 
removed. 



 4 

2.2 Sources of information 
In order to gain a broad perspective, as recommended in Kitchenham’s guidelines [29], we searched widely in 

electronic sources. The advantage of searching databases rather than a limited set of journals and conference 

proceedings, is also empirically motivated by Dieste et al. [7]. The following seven databases were covered: 

• Inspec (<www.theiet.org/publishing/inspec>) 

• Compendex (<www.engineeringvillage2.org>) 

• ACM Digital Library (<portal.acm.org>) 

• IEEE eXplore (<ieeexplore.ieee.org>) 

• ScienceDirect (<www.sciencedirect.com>) 

• Springer LNCS (<www.springer.com/lncs>) 

• Web of Science(<www.isiknowledge.com>) 

These databases cover the most relevant journals and conference and workshop proceedings within software 

engineering, as confirmed by Dybå et al. [8]. Grey literature (technical reports, some workshop reports, work in 

progress) was excluded from the analysis for two reasons: the quality of the grey literature is more difficult to 

assess and the volume of studies included in the first searches would have grown unreasonably. The searches in 

the sources selected resulted in overlap among the papers, where the duplicates were excluded primarily by 

manual filtering. 

2.3 Search criteria 
The initial search criteria were broad in order to include articles with different uses of terminology. The key 

words used were <regression> and (<test> or <testing>) and <software>, and the database fields of title and 

abstract were searched. The start year was set to 1969 to ensure that most relevant research within the field 

would be included, and the last date for inclusion is publications within 2006. The earliest primary study 

actually included was published in 1997. Kitchenham recommends that exclusion based on languages should 

be avoided [29]. However, only papers written in English are included. The initial search located 2 923 

potentially relevant papers.   
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2.4 Study Selection 

 
Figure 1. Study selection procedure 

 

In order to obtain independent assessments, four researchers were involved in a three-stage selection process, 

as depicted in Figure 1.  

In the first stage duplicates and irrelevant papers were excluded manually based on titles. In our case, the share 

of irrelevant papers was extremely large since papers on software for statistical regression testing or other 

regression testing could not be distinguished from papers on software regression testing in the database search. 

The term software did not distinguish between the two areas, since researchers on statistical regression testing 

often develop some software for their regression test procedures. After the first stage 450 papers remained.  

In the second stage, information in abstracts was analyzed and the papers were classified along two 

dimensions: research approach and regression testing approach. Research approaches were experiment, case 

study, survey, review, theory and simulation. The two latter types were excluded, as they are not presenting an 

empirical research approach, and the survey and review papers were not considered as being primary studies 

but rather related work to the systematic review. At this stage we did not judge the quality of the empirical 

data. Regression testing approaches were selection, reduction, prioritization, generation, execution and other. 

Only papers focusing on regression test selection were included.   

In the third stage a full text analysis was performed on the 73 papers and the empirical quality of the studies 

was further assessed. The following questions were asked in order to form quality criteria for which studies to 

exclude before the final data extraction: 

Exclusion 
based on 
abstracts 

Exclusion 
based on 
full text 

#73 

#27 

#450 
Exclusion 
based on 
titles 

#2923 

Stage 1 Stage 3 Stage 2 
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• Is the study focused on a specific regression test selection method? E.g. a paper could be excluded that 

presents a method that potentially could be used for regression testing, but is evaluated from another 

point of view.. 

• Are the metrics used and the results relevant for a comparison of methods? E.g. a paper could be 

excluded which only reports on the ability to predict fault prone parts of the code, but not on the fault 

detection effectiveness or the cost of the regression test selection strategy. 

• Is data collected and analyzed in a sufficiently rigorous manner? E.g. a paper could be excluded if a 

subset of components was analyzed and conclusions were drawn based on those, without any 

motivation for the selection. 

These questions are derived from a list of questions, used for a similar purpose, published by Dybå et al. [8]. 

However in our review context, quality requirements for inclusion had to be weaker than suggested by Dybå et 

al. in order to obtain a useful set of studies to compare. The selection strategy was in general more inclusive 

than exclusive. Only papers with very poorly reported or poorly conducted studies were excluded, as well as 

papers where the comparisons made were considered irrelevant to the original goals of this study.  

Abstract analysis and full text analysis were performed in a slightly iterative fashion. Firstly, the articles were 

independently assessed by two of the researchers. In case of disagreement, the third researcher acted as a 

checker. In many cases, disagreement was due to insufficient specification of the criteria. Hence, the criteria 

were refined and the analysis was continued. 

In order to get a measure of agreement in the study selection procedure, the Kappa coefficient was calculated 

for the second stage, which comprised most judgments in the selection. In the second stage 450 abstracts were 

assessed by two researchers independently. In 41 cases conflicting assessments were made which corresponds 

to the Kappa coefficient K = 0,78. According to Landis and Koch [33] this translates to a substantial strength of 

agreement.   

2.5 Data extraction and synthesis 
Using the procedure, described in the previous section, 27 articles were finally selected that reported on 36 

unique empirical studies, evaluating 28 different techniques. The definition of what constitutes a single 

empirical study, and what constitutes a unique technique is not always clear cut. The following definitions have 

been used in our study: 

⋅ Study: an empirical study applying a technique to one or more programs. Decisions on whether to 

split studies with multiple artifacts into different studies were based on the authors’ own classification 
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of the primary studies. Mostly, papers including studies on both small and large programs are 

presented as two different studies. 

⋅ Technique: An empirically evaluated method for regression test selection. If the only difference 

between two methods is an adaption to a specific programming language (e.g. from C++ to Java) they 

are considered being the same technique.   

Studies were classified according to type and size, see Section 3.1. Two types of studies are included in our 

review, experiments and case studies.  We use the following definitions: 

⋅ Experiment: A study in which an intervention is deliberately introduced to observe its effects [55]. 

⋅ Case study: An empirical inquiry that investigates a contemporary phenomenon within its real-life 

context, especially when the boundaries between the phenomenon and context are not clearly evident 

[69]. 

Surveys and literature reviews were also considered in the systematic review, e.g. [48] and [25], but rather as 

reference point for inclusion of primary studies than as primary studies as such.  

Regarding size, the studies are classified as small, medium or large (S, M, L)  depending on the study artifact 

sizes. A small study artifact has less than 2,000 lines of code (LOC), a large study artifact has more than 

100,000 LOC, and a medium sized study artifact is in between. The class limits are somewhat arbitrarily 

defined. In most of the articles the lines of code metric is clearly reported and thus this is our main 

measurement of size. But in some articles sizes are reported in terms of number of methods or modules, 

reported as the authors’ own statement about the size or not reported at all. 

The classification of the techniques is part of answering RQ2 and is further elaborated in Section 3.4. 

2.6 Qualitative assessment of empirical results 
The results from the different studies were qualitatively analyzed in categories of four key metrics: reduction of 

cost for test execution, cost for test case selection, total cost, and fault detection effectiveness, see Section 

3.5.2. The “weight” of an empirical study was classified according to the scheme in Table 1. A study with more 

“weight” is considered contributing more to the overall conclusions. A unit of analysis in an experiment is 

mostly a version of a piece of code, while in a case study; it is mostly a version of a whole system or sub-

system. 
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Table 1. “Weight” of empirical study. 

Type and size of study Light empirical study “weight” Medium empirical study 
“weight” 

Experiment (small) 

Case study (small-medium) 

Analysis units < 10 Analysis units >= 10 

Experiment (medium) 

Case study (large) 

Analysis units < 4 Analysis units >= 4 

The results from the different studies were then divided into six different categories according to the 

classification scheme in Table 2. The classification is based on the study “weight” and the size of the difference 

in a comparative empirical study. As the effect sizes were rarely reported in the studies, the sizes of the 

differences are also qualitatively assessed. The categorization of results was made by two researchers in 

parallel and uncertainties were resolved in discussions. Results are presented in Figures 5 – 8 in Section 3.5.  

Table 2. Classification scheme for qualitative assessment of the weight of empirical results. 

 No difference Difference of small size Difference of large size 

Medium empirical 
study “weight” 

Strong indication of 

equivalence between the 

two compared techniques 

Weak indication that one 

technique is superior to 

the other 

Strong indication that one 

technique is superior to 

the other 

Light empirical study 
“weight” 

Weak indication of 

equivalence between the 

two compared techniques 

No indication of 

differences or similarities 

Weak indication that one 

technique is superior to 

the other 

 

2.7 Threats to validity 
Threats to the validity of the systematic review are analyzed according to the following taxonomy; construct 

validity, reliability, internal validity and external validity. 

Construct validity reflects to what extent the phenomenon under study really represents what the researchers 

have in mind and what is investigated according to the research questions. The main threat here is related to 

terminology. Since the systematic review is based on a hierarchical structure of terms – regression test/testing 

consists of the activities modification identification, test selection, test execution and test suite maintenance – 

we might miss other relevant studies on test selection that are not specifically aimed for regression testing. 

However, this is a consciously decided limitation, which has to be taken into account in the use of the results. 

Another aspect of the construct validity is assurance that we actually find all papers on the selected topic. We 
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analyzed the list of publication fora and the list of authors of the primary studies to validate that no major 

forum or author was missed. 

Reliability focuses on whether the data is collected and the analysis is conducted in a way that it can be 

repeated by other researchers with the same results. We defined a study protocol setting up the overall research 

questions, the overall structure of the study as well as initial definitions of criteria for inclusions/exclusion, 

classification and quality. The criteria were refined during the study based on the identification of ambiguity 

that could mislead the researchers.  

In a systematic review, the decision process for inclusion and exclusion of primary studies is the major focus 

when it comes to reliability, especially in this case where another domain (statistics) also uses the term 

regression testing. Our countermeasures taken to reduce the reliability threat were to set up criteria and to use 

two researchers to classify papers in stages 2 and 3. In cases of disagreement, a third opinion is used. However, 

the Kappa analysis indicates strong agreements. One of the primary researchers was changed between stages 2 

and 3. Still, the uncertainties in the classifications are prevalent and a major threat to reliability, especially 

since the quality standards for empirical studies in software engineering are not high enough. Research 

databases is another threat to reliability [8]. The threat is reduced by using multiple databases; still the non-

determinism of some database searches is a major threat to the reliability of any systematic review.  

Internal validity is concerned with the analysis of the data. Since no statistical analysis was possible due to the 

inconsistencies between studies, the analysis is mostly qualitative. Hence we link the conclusions as clearly as 

possible to the studies, which underpin our discussions. 

External validity is about generalizations of the findings derived from the primary studies. Most studies are 

conducted on small programs and hence generalizing them to a full industry context is not possible. In the few 

cases were experiments are conducted in the small as well as case studies in the large, the external validity is 

reasonable, although there is room for substantial improvements. 

3 RESULTS  

3.1 Primary studies 
The goal of this study was to find regression test selection techniques that are empirically evaluated. The 

papers were initially obtained in a broad search in seven databases covering relevant journals, conference and 

workshop proceedings within software engineering. Then an extensive systematic selection process was carried 

out to identify papers describing empirical evaluations of regression test selection techniques. The results 

presented here thus give a good picture of the existing evidence base.  
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Out of 2 923 titles initially screened, 27 papers (P1-P27) on empirical evaluations of techniques for regression 

test selection remained until the final stage. These 27 papers report on 36 unique studies (S1-S36), see Table 3, 

and compare in total 28 different techniques for regression test selection for evaluation (T1-T28), see listing in 

Table 8 below, which constitutes the primary studies of this systematic review. Five reference techniques are 

also identified (REF1-REF5), e.g. re-test all (all test cases are selected) and random(25) (25% of the test cases 

are randomly selected). In case the studies are reported partially or fully in different papers, we generally refer 

to the most recent one as this contains the most updated study. When referring to the techniques, we do on the 

contrary refer to the oldest, considering it being the original presentation of the technique. 

 

Table 3. Primary studies, S1-S36, published in papers P1-P27, evaluation techniques T1-T28. 
Study 
ID 

Publica-
tion ID 

Reference Techniques Artifacts Type of 
study 

Size of 
study  

S1 P1 Baradhi and Mansour 
(1997)  [2] 

T4, T5, T6, 
T11, T12 
REF1 

Own unspecified Exp S 

S2 P2 Bible et al. (2001) [3]  T7, T8 
REF1 

7x Siemens, Small constructed programs, constructed, 
realistic non-coverage based test suites 

Exp S 

S3 P2 Bible et al. (2001)[3]  T7, T8 
REF1 

Space, Real application, real faults, constructed test cases Exp S 

S4 P2 Bible et al. (2001) [3]  T7, T8 
REF1 

Player, One module of a large software system constructed 
realistic test suites 

Exp M 

S5 P3 Elbaum et al. (2003) 
[11] 

 T2, T4, T18 
REF1 

Bash, Grep, Flex and Gzip, Real, non-trivial C program, 
constructed test suites 

CS 
(Mult) 

M 

S6 P4 Frankl et al. (2003) 
[14] 

T7, T10 
REF1 

7xSiemens, Small constructed programs, constructed, 
realistic, non-coverage based test suites 

Exp S 

S7 P5 Graves et al. (2001) 
[15] 

T1, T2, T7 
REF1, REF2, 
REF3, REF4  

7xSiemens, Small constructed programs, constructed, 
realistic non-coverage based test suites; space, Real 
application, real faults, constructed test cases; player, One 
module of a large software system constructed realistic 
test suites 

Exp S M 

S8 P6 Harrold et al. (2001) 
[19] 

T15 
REF1 

Siena, Jedit, JMeter, RegExp, Real programs, constructed 
faults 

Exp S 

S9 P7 Kim et al. (2005)[27] T2, T7, T8 
REF1, REF2, 
REF3, REF4 

7xSiemens, Small constructed programs, constructed, 
realistic non-coverage based test suites; Space, Real 
application, real faults, constructed test cases 

Exp S 

S10 P8 Koju et al. (2003) 
[32] 

T15 
REF1 

Classes in .net framework, Open source, real test cases Exp S 

S11 P9 Mansour et al. (2001) 
[36] 

T4, T5, T6, 
T12 

20 small sized Modules Exp S  

S12 P10 Mao and Lu (2005) 
[38] 

T16, T17, T24 
REF1 

Triangle, eBookShop, ShipDemo, Small Constructed 
programs 

CS S 

S13 P11 Orso et al. (2004) 
[41] 

T9, T15,  T19 
REF1 

Jaba, Daikon, JBoss, Real-life programs, original test suites Exp M L 
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S14 P12 Pasala and Bhowmick 
(2005) [42] 

T20 
REF1 

Internet Explorer (client), IIS (web server), application 
(app. Server), An existing browser based system, real test 
cases 

CS NR 

S15 P13 Rothermel and 
Harrold (1997) [49] 

T7 
REF1 

7xSiemens, Small constructed programs,  constructed, 
realistic non-coverage based test suites 

Exp S 

S16 P13 Rothermel and 
Harrold (1997) [49] 

T7 
REF1 

Player, One module of a large software system constructed 
realistic test suites 

Exp M 

S17 P14 Rothermel and 
Harrold (1998) [50] 

T7 
REF1 

7xSiemens, Small constructed programs, constructed, 
realistic non-coverage based test suites 

Exp S 

S18 P14 Rothermel and 
Harrold (1998) [50] 

T7 
REF1 

7xSiemens, Small constructed programs, constructed, 
realistic non-coverage based test suites 

Exp S 

S19 P14 Rothermel and 
Harrold (1998) [50] 

T7 
REF1 

7xSiemens, Small constructed programs, constructed, 
realistic non-coverage based test suites; 

Exp S 

S20 P14 Rothermel and 
Harrold (1998) [50] 

T7 
REF1 

Player, One module of a large software system constructed 
realistic test suites 

Exp M 

S21 P14 Rothermel and 
Harrold (1998) [50] 

T7 
REF1 

Commerercial, Real application, real test suite Exp S 

S22 P15 Rothermel et al. 
(2002)[45] 

T8, T18 
REF1 

Emp-server, Open-source, server component, constructed 
test cases; Bash Open-source, real and constructed test cases 

Exp M 

S23 P16 Rothermel et al.  
(2004)[46] 

T2, T8, T18 
REF1 

Bash, Open-source, real and constructed test cases Exp M 

S24 P16 Rothermel et al.  
(2004) [46] 

T2, T8, T18 
REF1 

Emp-server, Open-source, server component, constructed 
test cases 

Exp M 

S25 P17 Skoglund and 
Runeson (2005) [56] 

T9, T21 
REF1 

Swedbank, Real, large scale, distributed, component-based, 
J2EE system, constructed, scenario-based test cases 

CS L 

S26 P18 Vokolos and Frankl 
(1998) [65] 

T10 
REF1 

ORACOLO2, Real industrial subsystems, real modifications, 
constructed test cases 

CS M 

S27 P19 White and Robinson 
(2004) [61] 

T3 
REF5 

14 real ABB projects, Industrial, Real-time system CS L 

S28 P19 White and Robinson 
(2004) [61] 

T9 
REF5 

2 real ABB projects, Industrial, Real-time system CS L 

S29 P20 White et al. (2005) 
[60]  

T3, T9, T25 OO-telecommunication software system CS S 

S30 P20 White et al. (2005) 
[60]  

T3, T9,  T25 OO – real-time software system CS L 

S31 P21 Willmor and Embury 
(2005)[63]  

T7, T22, T23 
REF1  

Compiere, James, Mp3cd browser, Open source systems, 
real modifications 

CS NR 

S32 P22 Wong et al. 
(1997)[66]  

T13 
REF1 

Space, Real application, real faults, constructed test cases CS S 

S33 P23 Wu et al. (1999) [67] T14 
REF1 

ATM-simulator, small constructed program CS S 

S34 P23 Wu et al. (1999) [67]  T14 
REF1 

Subsystem of a fully networked supervisory control and data 
analysis system 

CS M 

S35 P24, P25, 
P26 

Zheng et al. (2005) 
[71], Zheng et al. 
(2006) [72] Zheng 
(2005) [70] 

 T26, T28 
REF1 

ABB-internal, Real C/C++ application CS M 

S36 P27, P25 Zheng et al. (2006) 
[74], Zheng et al. 
(2006) [72] 

T27, T28 
REF1 

ABB-internal, Real C/C++ application CS M 
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In most of the studies, the analyses are based on descriptive statistics. Tabulated data or bar charts are used as a 

basis for the conclusions. In two studies (S23 and S24), published in the same paper (P16) [46] statistical 

analysis is conducted, using ANOVA. 

3.2 Analyses of the primary studies 
In order to explore the progress of the research field, and to validate that the selected primary studies 

reasonably cover our general expectations of which fora and which authors should be represented, we analyze, 

as an extension to RQ1, aspects of the primary studies as such: where they are published, who published them, 

and when. As defined in Section 2.5, a paper may report on multiple studies, and in some cases the same study 

is reported in more than one paper. Different researchers have different criteria for what constitutes a study. We 

have tried to apply a consistent definition of what constitutes a study. This distribution of studies over papers is 

shown in Table 4. Most papers (18 out of 27) report a single study, while few papers report more than one. 

Two papers report new analyses of earlier published studies. Note that many of the techniques are originally 

presented in papers without empirical evaluation, hence these papers are not included as primary studies in the 

systematic review, but referenced in Section 3.3 as sources of information about the techniques as such (Table 

8).  

Table 4. Distribution of number of papers after the number of studies each paper reports 
# reported studies in each paper # papers # studies 

0 (re-analysis of another study) 2 0 

1 18 18  

2 5 10 

3 1 3 

5 1 5 

Total 27 36 

 

The number of identified techniques in the primary studies is relatively high compared to the number of 

studies, 28 techniques were evaluated in 36 studies. Table 5 presents the distribution of number of studies in 

which different techniques occur. One technique was present in 14 different studies, another technique in 8 

studies etc. 14 techniques only appear in one study, which is not satisfactory when trying to aggregate 

information from empirical evaluations of the techniques. 

Table 5. Distribution of techniques after occurrences in number of studies 
Represented in 
number of 
studies 

Number of 
techniques 

14 1 
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8 1 

5 2 

4 1 

3 2 

2 7 

1 14 

Total 28 
 

Table 6 lists the different publication fora in which the articles have been published. It is worth noting 

regarding the publication fora, that the empirical regression testing papers are published in a wide variety of 

journals and conference proceedings. Limiting the search to fewer journals and proceedings would have missed 

many papers, see Table 6.  

The major software engineering journals and conferences are represented among the fora. It is not surprising 

that a conference on software maintenance is on the top, but we found, during the validity analysis, that the 

International Symposium on Software Testing and Analysis is not on the list at all. We checked the 

proceedings specifically and have also noticed that, for testing in general, empirical studies have been 

published there, as reported by Do et al. [8], but apparently not on regression test selection during the studied 

time period. 

Table 6. Number of papers in different publication fora 
Publication Fora Type # % 

International Conference on Software Maintenance Conference 5 18.5 

ACM Transactions of Software Engineering and Methodology Journal 3 11.1 

International Symposium on Software Reliability Engineering Conference 3 11.1 

International Conference on Software Engineering Conference 3 11.1 

Asia-Pacific Software Engineering Conference Conference 2 7.4 

International Symposium on Empirical Software Engineering Conference 2 7.4 

IEEE Transactions of Software Engineering Journal 1 3.7 

Journal of Systems and Software Journal 1 3.7 

Software Testing Verification and Reliability Journal 1 3.7 

Journal of Software Maintenance and Evolution Journal 1 3.7 

ACM SIGSOFT Symposium on Foundations of SE Conference 1 3.7 

Automated Software Engineering Conference 1 3.7 

Australian SE Conference Conference 1 3.7 

International Conf on COTS-based Software Systems Conference 1 3.7 

Int. Conference on Object-Oriented Programming, Systems, Languages, and 
Applications 

Conference 1 3.7 

Total  27 100 
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Table 7 lists authors with more than one publication. In addition to these 17 authors, five researchers have 

authored or co-authored one paper each. In the top of the author’s list, we find the names of the most prolific 

researchers in the field of regression test selection (Rothermel and Harrold). It is interesting to notice from the 

point of view of conducting empirical software engineering research, that there are two authors on the top list 

with industry affiliation (Robinson and Smiley). 

Table 7. Researchers and number of publications 
Name #  Name # 

Rothermel G. 9  Baradhi G. 2 

Harrold M. J. 5  Frankl P. G. 2 

Robinson B. 5  Kim J. M. 2 

Zheng J. 4  Mansour N. 2 

Elbaum S. G. 3  Orso A. 2 

Kallakuri P. 3  Porter A. 2 

Malishevsky A. 3  White L. 2 

Smiley K. 3  Vokolos F. 2 

Williams L. 3  

The regression test selection techniques have been published from 1988 to 2006, as shown in Figure 2 and 

Table 8. The first empirical evaluations were published in 1997 (one case study and three experiments), hence 

the empirical evaluations have entered the scene relatively late. 12 out of the 28 techniques have been 

originally presented and evaluated in the same paper: T12-S11 and T13-S32 (1997); T14-S33-S34 (1999); T18-

S5 (2003); T19-S13 (2004),; T20-S14; T21-S25; T23-S31; T25-S29-S30 and T26-S35 (2005); T27-S33 and 

T28-S35 (2006).  

 

Figure 2. Accumulated number of published techniques, case studies and experiments. 
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We conclude from this analysis that there are only a few studies comparing many techniques in the same study, 

making it hard to find empirical data for a comprehensive comparison. However, some small and medium-

sized artifacts have appeared as a de-facto benchmark in the field [8], enabling comparison to some extent of 

some techniques.  

Most of the expected publication fora are represented, and one that is not represented, but was expected, was 

specifically double checked. Similarly, well known researchers in the field were among the authors, hence we 

consider the selected primary studies as being a valid set. It is clear from the publication analysis that the 

techniques published during the later years are published with empirical evaluations to a higher degree than 

during the earlier years, which is a positive trend in searching for empirically evaluated techniques as defined 

in RQ1.  

3.3 Empirically evaluated techniques (RQ1) 

3.3.1 Overview 
Table 8 lists the 28 different regression test selection techniques (T1-T28), in chronological order according to 

date of first publication. In case the studies are reported partially or fully in different papers, we generally refer 

to the original one. In case a later publication has added details that are needed for exact specification of the 

technique, both references are used.  

This list is specifically the answer to the first research question: which techniques for regression test selection 

existing in the literature have been evaluated empirically (RQ1). In this review, the techniques, their origin and 

description, are identified in accordance to what is stated in each of the selected papers, although adapted 

according to our definition of the what constitutes a unique technique in Section 2.5. 

Table 8. Techniques for regression test selection 
Technique Origin  Description Evaluated in study 

T1 Harrold and Soffa (1988) [20] Dataflow-coverage-based S7 

T2 Fischer et al. (1981) [13] Hartman and Robson 
(1988) [22] 

Modification-focused, minimization, branch and 
bound algorithm 

S5, S7, S9, S23, S24 

T3 Leung and White (1990) [35]  Procedural-design firewall S27, S29, S30 

T4  Gupta et al. (1992) [16] Coverage-focused, slicing S1, S5, S11 

T5 White and Leung (1992) [62] Firewall S1, S11 

T6 Agraval et al. (1993)[1] Incremental S1, S11 

T7 Rothermel and Harrold (1993)[47]  Viewing statements, DejaVu S2 -S4, S6, S7, S9, S15 – 
S21, S31 

T8 Chen and Rosenblum (1994) [6] Modified entity - TestTube S2 - S4, S9, S22 - 24 

T9 Pei et al. (1997) [43] White and Abdullah (1997) 
[59] 

High level – identifies changes at the class and 
interface level 

S13, S25, S28 -S30 
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T10 Vokolos and Frankl (1997) [64] Textual Differing - Pythia S6, S26 

T11 Mansour and Fakih (1997) [37] Genetic algorithm S1 

T12 Mansour and Fakih (1997) [37] Simulated annealing S1, S11 

T13 Wong et al. (1997) [66] Hybrid: modification, minimization and 
prioritization- based selection 

S32 

T14 Wu et al. (1999) [67] Analysis of program structure and function-calling 
sequences 

S33, S34 

T15 Rothermel et al. (2000) [51] Harrold et al. (2001) 
[19] Koju et al. (2003) [32] 

Edge level - identifies changes at the edge level S8, S10, S13 

T16 Orso et al. (2001) [40] Use of metadata to represent links between 
changes and Test Cases  

S12 

T17 Sajeev et al. (2003) [54] Use of UML (OCL) to describe information 
changes 

S12 

T18 Elbaum et al. (2003) [11] Modified-non-core Same as T8 but ignoring core 
functions  

S5, S22 

T19 Orso et al. (2004) [41] Partitioning and selection  Two Phases S13 

T20 Pasala and Bhowmick (2005) [42] Runtime dependencies captured and modeled into 
a graph (CIG) 

S14 

T21 Skoglund and Runeson (2005) [56] Change based selection S25 

T22 Willmor and Embury (2005)[63] Test selection for DB-driven applications 
(extension of T7) combined safety 

S31 

T23 Willmor and Embury (2005) [63] Database safety S31 

T24 Mao and Lu (2005) [38] Enhanced representation of change information S12 

T25 White et al. (2005) [60] Extended firewall additional data-paths S29, S30 

T26 Zheng (2005)[71] I-BACCI v.1 S35 

T27 Zheng et al. (2006)[74] I-BACCI v.2 (firewall + BACCI) S36 

T28 Zheng et al. (2006) [74] I-BACCI v.3 S35, S36 

REF1 Leung and White (1989) [34] Retest-all S1 - S10, S12 – S24, S26, 
S31 - S36 

REF2  Random (25) S7, S9 

REF3  Random (50) S7, S9 

REF4  Random (75) S7, S9 

REF5  Intuitive, experience based selection S27, S28 

 

  

3.3.2 Development history 

The historical development chain gives some advice on which techniques are related and how they are 

developed, see Figure 3. There are three major paths, beginning with T3, T7 and T8 respectively. 
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Figure 3. Evolution of techniques 

One group of techniques is the firewall techniques where dependencies to modified software parts are isolated 

inside a firewall. Test cases covering the parts within the firewall are selected for re-execution. The first 

firewall technique (T3) for procedural languages was presented by Leung and White in 1990 [35]. An empirical 

evaluation used a changed version (T5). The technique was adapted to object-oriented languages T9 in two 

similar ways [43][59] and further enhanced and extended in the I-BACCI technique (T25-T28). It has also been 

adapted to Java (T21). 

Another group of techniques is based on a technique invented by Rothermel and Harrold for procedural 

languages in 1993 [47] (T7), sometimes referred to as DejaVu. This technique has later been adopted to object-

oriented languages T15 (for C++ [51], and for Java[19][32]) and also further extended for MSIL code [32]. 

Through technique T19 it has also been combined with techniques from the group of firewall techniques. 

Extended techniques that cope with database state have also been created T22 and T23 [63]. 

The firewall techniques are based on relationships to changed software parts. Different granularities of parts 

have been used, such as dependencies between modules, functions or classes. There exist techniques that are 

not stated in their presentations to be based on the firewall technique but still make use of dependencies 

between software parts. T8, T14 and T18 all utilize the relations between functions and T20 use dependencies 

between components (DLL:s).  

In addition to the three major groups, there are other techniques which share some similarities with either 

group, although not being directly derived from one of them.  
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Using the dependency principle between larger parts, such as functions or classes, lead to that all test cases 

using the changed part are re-executed even though the actual modified code may not be executed. Using a 

smaller granularity gives better precision but are usually more costly since more analysis is needed. The 

smallest granularity is the program statements, segments, or blocks. The relationships between these smallest 

parts may be represented by creating control flow graphs where the control flow from one block to another may 

be seen as a relationship between the two blocks. This principle is for example used in the group of techniques 

based on Rothermel and Harrold’s technique T7, see above, but is also used in the firewall technique T5. T10 

also use program blocks for its test selection. An extension of this principle where the variables are also taken 

into account is used in the techniques T2, T4, T6, T11-T13, in various ways. 

Another group of techniques are those using specifications or metadata of the software instead of the source 

code or executable code. T17 use UML specifications, and T16 and T24 use metadata in XML format for their 

test case selection. 

3.3.3 Uniqueness of the techniques 

There is a great variance regarding the uniqueness of the techniques identified in the studied papers. Some 

techniques may be regarded as novel at the time of their first presentation, while others may be regarded as 

only variants of already existing techniques. For example in [3] a regression test selection techniques is 

evaluated, T8, and the technique used is based on modified entities in the subject programs. In another 

evaluation, reported on in [11] it is stated that the same technique is used as in [3] but adapted to use a different 

scope of what parts of the subjects programs that is included in the analysis, T18. In [3] the complete subject 

programs are included in the analysis; while in [11] core functions of the subject programs are ignored. This 

difference of scope probably has an effect on the test cases selected using the two different approaches. The 

approach in which core functions is ignored is likely to select fewer test cases compared to the approach where 

all parts of the programs are included. It is not obvious whether the two approaches should be regarded as two 

different techniques or if they should be regarded as two very similar variants of the same technique. We chose 

the former option. 

Some techniques evaluated in the reviewed papers are specified to be used for a specific type of software, e.g. 

Java, T15 and T19 [19][41], component based software, T17, T20, T24 and T28 [38][42][72][74], or database-

driven applications, T22, [63]. It is not clear whether they should be considered one technique applied to two 

types of software, or two distinctly different techniques. For example, a technique specified for Java, T15, is 

presented and evaluated in [19]. In [58] the same technique is used on MSIL (MicroSoft Intermediate 

Language) code, however adapted to handle programming language constructs not present in Java. Thus, it can 

be argued that the results of the two studies cannot be synthesized in order to draw conclusions regarding the 
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performance of neither the technique presented in [19], nor the adapted version, used in [32]. However, we 

chose to classify them as the same technique. 

There are also techniques specified in a somewhat abstract manner, e.g. techniques that handle object-oriented 

programs in general, e.g. T14 [67]. However, when evaluating a technique, the abstract specification of a 

technique must be concretized to handle the specific type of subjects selected for the evaluation. The 

concretization may look different depending on the programming language used for the subject programs. T14 

is based on dependencies between functions in object-oriented programs in general. The technique is evaluated 

by first tailoring the abstract specification of the technique to C++ programs and then performing the 

evaluation on subject programs in C++. However, it is not clear how the tailoring of the specification should be 

performed to evaluate the technique using other object-oriented programming languages, e.g. C# or Java. Thus, 

due to differences between programming languages, a tailoring made for one specific programming language 

may have different general performance than a tailoring made for another programming language.  

3.4 Classification of Techniques (RQ2) 
In response to our second research question (RQ2), we are looking for some kind of classification of the 

regression test selection techniques. As indicated in Figure 3, there exist many variants of techniques, gradually 

evolved over time. Some suggested classifications of regression test techniques exist. Rothermel and Harrold 

present a framework for analyzing regression test selection techniques [48], including evaluation criteria for the 

techniques: inclusiveness, precision, efficiency and generality. Graves et al. [15] present a classification 

scheme where techniques are classified as Minimization, Safe, Dataflow-Coverage-based, Ad-hoc/Random or 

Retest-All techniques. Orso et al. [41] separate between techniques that operate at a higher granularity e.g. 

method or class (called high-level) and techniques that operate at a finer granularity, e.g. statements (called 

low-level). In this review we searched for classifications in the papers themselves with the goal of finding 

common properties in order to be able to reason about groups of regression testing techniques. 

One property found regards the type of input required by the techniques. The most common type of required 

input is source code text, e.g. T1-8, T10-12 and T18. Other types of code analyzed by techniques are 

intermediate code for virtual machines, e.g. T9, T13-15 and T21, or machine code, e.g. T24 and T26. Some 

techniques require input of a certain format, e.g. T16 (meta data) and T17 (OCL). Techniques may also be 

classified according to the type of code used in the analysis (Java, C++…). A third type of classification that 

could be extracted from the papers regards the programming language paradigm. Some techniques are specified 

for use with procedural code, e.g. T1, T2, T7, T8, and T18, while other techniques are specified for the object-

oriented paradigm, e.g. T9, T13-17, and T21-T23 some techniques are independent of programming language, 

e.g. T3, T19, and T26-28.   
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The most found property assigned to regression test selection techniques is whether they are safe or unsafe. 

With a safe technique the defects found with the full test suite are also found with the test cases picked by the 

regression test selection technique. This property may be used to classify all regression test selection 

techniques into either safe or unsafe techniques. Re-test all is an example of a safe technique since it selects all 

test cases, hence, it is guaranteed that all test cases that reveal defects are selected. Random selection of test 

cases is an example of an unsafe technique since there is a risk of test cases revealing defects being missed. In 

our study seven techniques were stated by the authors to be safe, T7, T8, T10, T15, and T21-24. However, the 

safety characteristic is hard to achieve in practice, as it e.g. assumes determinism in program and test execution. 

A major problem, in addition to finding a classification scheme is applying the scheme to the techniques. The 

information regarding the different properties is usually not available in the publications. Hence, we may only 

give examples of techniques having the properties above based on what the authors state in their publications. 

The properties reported for each technique is presented in Table 9. 

Table 9. Overview of properties for each technique. 
 Applicability Method Properties 

Technique Type of 
Language 

Type of 
Software 

Input Approach Granularity Detection 
Ability 

Cost Reduction 

T1 Ind  IM CF Stm   

T2 Proc  SC CF Stm  Min 

T3 Proc  SC FW Module   

T4 Proc  SC Slicing Stm  Min 

T5 Proc  SC FW Module   

T6 Proc  SC Slicing Stm   

T7 Proc  SC CF Stm Safe  

T8 Proc  SC Dep Func Safe  

T9 OO  IM FW Class   

T10 Proc  SC  Stm Safe  

T11 Proc  SC CF Stm   

T12 Proc  SC CF Stm   

T13 Proc  SC  Stm  Min 

T14 OO  SC Dep Func   

T15 OO  IM CF Stm Safe  

T16 OO Comp Spec CF Stm   

T17 OO Comp Spec     

T18 Proc  SC Dep Func   

T19 OO  IM FW+CF Class+Stm   

T20 Ind Comp BIN Dep Comp   

T21 OO  IM FW Class   

T22 OO DB SC CF Stm Safe  

T23 OO DB SC CF Stm Safe2  

                                                                 
2 Safe only in DB-state 
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T24 OO Comp BIN +Spec Dep Stm Safe  

T25 OO  SC? FW Class   

T26 Ind Comp BIN FW Func   

T27 Ind Comp BIN+SC FW Func   

T28 Ind Comp BIN+SC FW Func   

 Proc= 
Procedural 
language 
Ind  = 
Independent 
OO = Object 
oriented 

Comp = 
Component 
based 
DB = 
Database 
driven 
 

SC = Source 
code 
IM = 
Intermediate 
code for 
virtual 
machines 
BIN = 
Machine 
code 
Spec = 
Input of a 
certain 
format 

CF = Control 
flow 
FW = Fire 
wall 
Slicing 
Dependency 
based 

Stm = 
statement 
Func = 
Function 
Class 
Module 
Component 

Safe 
 

Min = 
Minimization 
 
 

 

3.5 Analysis of the Empirical Evidence (RQ3) 
Once we have defined which empirical studies exist and a list of the techniques they evaluate, we continue with 

the third research question on whether there are significant differences between the techniques (RQ3). We give 

an overview of the primary studies as such in Subsection 3.5.1. Then we focus on the metrics and evaluation 

criteria used in different studies (3.5.2).  

3.5.1 Types of empirical evidence 
Table 10 overviews the primary studies by research method, and the size of the system used as subject. We 

identified 21 unique controlled experiments and 15 unique case studies. Half of the experiments are conducted 

on the same set of small programs [23], often referred to as the Siemens programs, which are made available 

through the software infrastructure repository3 presented by Do et al. [8].  The number of large scale real life 

evaluations is sparse. In this systematic review we found four (S25, S27, S28, S30). Both types of studies have 

benefits and encounter problems, and it would be of interest to study the link between them, i.e. does a 

technique which is shown to have great advantages in a small controlled experiment show the same advantages 

in a large scale case study. Unfortunately no complete link was found in this review. However, the move from 

small toy programs to medium sized components, which is observed among the studies, is a substantial step in 

the right direction towards real-world relevance and applicability. 

                                                                 
3 http://sir.unl.edu 
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Table 10. Primary studies of different type and size 
Type of studies Size of 

subjects 
under study 

Number of 
studies  

% 

Experiment Large 1  3 

Experiment Medium 7  19 

Experiment Small 13 36 

Case study Large 4 11 

Case study Medium 5 14 

Case study Small 4 11 

Case study Not reported 2 6 

 Total 36 100 
 

The empirical quality of the studies varies a lot.  In order to obtain a sufficiently large amount of papers, our 

inclusion criteria regarding quality had to be weak. Included in our analysis was any empirical evaluation of 

regression test selection techniques if relevant metrics were used and a sufficiently rigorous data collection and 

analysis could be followed in the report, see 2.4 for more details. This was independently assessed by two 

researchers.  

An overview of the empirically studied relations between techniques and studies are shown in Figure 4. Circles 

represent techniques and connective lines between the techniques represent comparative studies. CS on the 

lines refers to the number of case studies conducted in which the techniques are compared, and Exp denotes the 

number of experimental comparisons. Some techniques have not been compared to any of the other techniques 

in the diagram: T13, T14 and T20. These techniques are still empirically evaluated in at least one study, 

typically a large scale case study. If no comparison between proposed techniques is made, the techniques are 

compared to a reference technique instead, e.g. the retest of all test cases, and in some cases a random selection 

of a certain percentage of test cases is used as a reference as well. The reference techniques are not shown in 

Figure 4 for visibility reasons. 

Researchers are more apt to evaluate new techniques or variants of techniques than to replicate studies, which 

is clearly indicated by that we identified 28 different techniques in 27 papers. This gives rise to clusters of 

similar techniques compared among them selves and techniques only compared to a reference method such as 

re-test all.  
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Figure 4. Techniques related to each other through empirical comparisons 

Three clusters of techniques have been evaluated sufficiently to allow for meaningful comparison, see Figure 4; 

C1: T2, T7, T8 and T18, C2: T4, T5, T6 and T12, and C3: T3, T9 and T25. Each of these pair of techniques has 

been compared in at least two empirical studies. However, not all studies are conducted according to the same 

evaluation criteria, nor is the quality of the empirical evidence equally high. Therefore we classified the results 

with respect to empirical quality, as described in Section 2.6, and with respect to evaluation criteria, as desribed 

below. 
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3.5.2 Evaluation criteria 
Do and Rothermel proposed a cost model for regression testing evaluation [9]. However, this model  requires 

several data which is not published in the primary studies. Instead, we evaluated the results with respect to each 

evaluation criterion separately. We identified two main categories of metrics: cost reduction and fault detection 

effectiveness. Five different aspects of cost reduction and two of fault detection effectiveness have been 

evaluated in the primary studies. Table 11 gives an overview of the extent to which the different metrics are 

used in the studies. Size of test suite reduction is the most frequent, evaluated in 76% of the studies. Despite 

this, it may not be the most important metric. If the cost for performing the selection is too large in relation to 

this reduction, no savings are achieved. In 42% of the studies the total time (test selection and execution) is 

evaluated instead or as well. The effectiveness measures are either related 1) to test cases, i.e. the percentage of 

fault-revealing test cases selected out of all fault-revealing test cases, or 2) to faults, i.e. the percentage of faults 

out of all known ones, detected by the selected test cases. 

Several of the studies concerning reduction of number of test cases are only compared to retest all (S8, S10, 

S14-S21, S26, S32-S34)[19][32][42][49][50][65][66][67] with the only conclusion that a reduction of test 

cases can be achieved, but nothing on the size of the effect in practice. This is a problem identified in 

experimental studies in general [26]. Many studies evaluating time reduction are conducted on small programs, 

and the size of the differences is measured in milliseconds, although there is a positive trend, over time, 

towards using medium-sized programs. Only 30% of the studies consider both fault detection and cost 

reduction. Rothermel proposed a framework for evaluation of regression test selection techniques [48] which 

have been used in some evaluations. This framework defines four key metrics, inclusiveness, precision, 

efficiency, and generality. Inclusiveness and precision corresponds to test case-related fault detection 

effectiveness and precision, respectively, in Table 11. Efficiency is related to space and time requirements and 

varies with test suite reduction as well as with test execution time and test selection time. Generality is more of 

a theoretical reasoning, which is not mirrored in the primary studies. 

Table 11. Use of evaluation metrics in the studies 
 Evaluated Metrics Number % Rothermel framework [48] 

Test suite reduction 29 76 Efficiency 

Test execution time  7 18 Efficiency 
Test selection time 5 13 Efficiency 
Total time 16 42 Efficiency 

Cost Reduction 

Precision (omission of non-fault revealing tests) 1 3 Precision 

Test case-related detection effectiveness 5 13 Inclusiveness Fault Detection Effectiveness 

Fault-related detection effectiveness 8 21  
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3.6 Comparison of Techniques (RQ43) 
 

In response to our fourth research question (RQ4) we are analyzing the empirically evaluated relations between 

the techniques by visualizing the results of the studies. Due to the diversity in evaluation criteria and in 

empirical quality this visualization cannot give a complete picture. However, it may provide answers to specific 

questions: e.g. Is there any technique applicable in my context proven to reduce testing costs more than the one 

we use today?    

Our taxonomy for analyzing the evidence follows the definitions in Table 2. Grey arrows indicate light weight 

empirical result and black arrows indicate medium weight result. A connection without arrows in the figures 

means that the studies have similar effect, while where there is a difference, the arrow points to the technique 

that is better with respect to the chosen criterion. A connection with thicker line represents more studies. In 

section 3.6.1, we report our findings regarding cost reduction and in section 3.6.2 regarding fault detection. 

Note that the numbers on the arrows indicate number of collected metrics, which may be more than one per 

study. 

3.6.1 Cost reduction 
Figure 5 reports the empirically evaluated relations between the techniques regarding the cost reduction, 

including evaluations of execution time as well as of test suite reduction and precision.  

The strongest evidence can be found in cluster C1, where T2 provides most reduction of execution costs. T7, 

T8 and T18 reduce the test suites less than T2, and T8 among those reduces execution cost less than T18. All 

techniques however, reduce test execution cost compared to REF1 (re-test all), which is a natural criterion for a 

regression test selection technique. 

In cluster C2, there is strong evidence that T6 and T12 have similar cost for test execution. On the other hand, 

there is a study with weaker empirical evidence, indicating that T12 reduces execution cost more than T6. 

The rest of the studies show rather weak empirical evidence, showing that the evaluated techniques reduce test 

execution cost better than re-test all. 
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Figure 5. Empirical results for Cost Reduction, including Test Execution Time, Test Suite Reduction and Precision.  

One component of the cost for regression test selection is the analysis time needed to select which test cases to 

re-execute. The selection time is reported separately for a small subset of the studies, as shown in Figure 6. 

The left group primarily tells that T19 has less selection time than T15, and in C1, T8 has less analysis time 

than T7.  
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The results from cluster C2 shows mixed messages. T4 has in most cases the shortest selection time, although it 

in one study is more time consuming than T6. The selection time is hence dependent on the subject programs, 

test cases and types of changes done. 

  

Figure 6. Empirical results for Test Selection Time 

In Figure 7, the total time for analysis and execution together is shown for those studies where it is reported. It 

is worth noting that some regression test selection techniques actually can be more time consuming than re-test 

all (T7, T8, T10). Again, this is case dependent, but it is interesting to observe that this situation actually arises 

under certain conditions.  

Other relations are a natural consequence of the expansion of certain techniques. T9 (Object oriented firewall) 

is less time consuming than T25 (extended OO firewall with data paths). Here an additional analysis is 

conducted in the regression test selection. 
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Figure 7. Empirical results for Total Time 

3.6.2 Fault detection effectiveness 
In addition to saving costs, regression test selection techniques should detect as many as possible of the faults 

found by the original test suite. Evaluations of test case-related as well as fault-related detection effectiveness 

are presented Figure 8. 

Some techniques are proven to be safe, i.e. guarantees that the fault detection effectiveness is 100% compared 

to the original test suite (see Section 3.4). This property is stated to hold for seven techniques: T7, T8, T10, 

T15, T22, T23 and T24.  

T7 and T8 within C2 are also those that can be found superior or equal from Figure 8, which is in line with the 

safe property. T4 in C2 tends also to be better or equal to all its reference techniques. However, for the rest, the 

picture is not clear. 



 29 

 

Figure 8. Empirical results for Fault Detection Effectiveness 

4 DISCUSSION 

4.1 The reviewed studies 
 

The overall goal with the study was to identify regression test selection techniques and systematically assess 

the empirical evidence collected about those techniques. As the selection of a specific technique is dependent 

on many factors, the outcomes of empirical studies also depend on those factors. However only few factors are 

specifically addressed in the empirical studies and hence it is not possible to draw very precise conclusions. 

Nor is it possible to draw general conclusions. Instead we have conducted mostly qualitative assessments of the 

empirical studies. From those we try to aggregate recommendations of which regression test selection 

techniques to use. 
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A comparison of the techniques in cluster C1 indicates that the minimization technique, T2, is the most 

efficient in reducing time and/or number of test cases to run. However this is an unsafe technique (see Section 

3.4) and all but one of six studies report on significant losses in fault detection. When it comes to safe 

techniques, T7 is shown to be the most efficient in reducing test cases. However analysis time for T7 is shown 

to be too long (it exceeds the time for rerunning all test cases) in early experiments, while in later experiments, 

it is shown to be good. Hence, there is a trade-off between cost reduction and defect detection ability. This is 

the case in all test selection, and none of the evaluated technique seems to have done any major breakthrough 

in solving this trade-off. 

It is interesting to notice that the technique T7 is not changed between the studies that show different results on 

selection time, but the subject programs on which the experiments are conducted are changed. The subject 

programs is one factor that heavily impacts on the performance of some techniques. This emphasizes the 

importance of the regression testing context in empirical studies, and may also imply that specific studies have 

to be conducted when selecting a technique for a specific environment. 

As mentioned before, many techniques are incremental improvements of existing techniques, which are 

demonstrated to perform better. For example, T25 is an extension of T9, with better fault detection at the cost 

of total time. This is a pattern shown in many of the studies: improvements may be reached, but always at a 

price for something else.  

4.2 Implications for future studies 
The standards for conducting empirical studies, and which measures to evaluate, differ greatly across the 

studies. Rothermel and Harrold proposed a framework to constitute the basis for comparison [48], but it is not 

used to any significant level in later research. Hence, it is not possible to conduct very strict aggregation of 

research results, e.g. through meta analysis. It is however not necessarily the ultimate goal to compare specific 

techniques. More general concepts would be more relevant to analyze, rather than detailed implementation 

issues. 

Examples of such concepts to evaluate are indicated in the headings of Table 9. Applicability: are different 

techniques better suited for different languages or programming concepts, or for certain types of software?  

Method: are some selection approaches better suited to find faults, independently of details in their 

implementation? Which level of granularity for the analysis is effective – statement, class, component, or even 

specification level? Other concepts are related to process, product and resources factors [53]. Process: How 

frequent should the regression testing cycles be?  At which testing level is the regression testing most efficient: 
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unit, function, system? Product: Is regression testing different for different types and sizes of products? 

Resources: Is the regression testing different with different skills and knowledge among the testers? 

In the reviewed studies, some of these aspects are addressed: e.g. the size aspect, scaling up from small 

programs to medium-sized [50], the level of granularity of the change analysis [3], as well as testing frequency 

[27] and the effect of changes [11]. However, this has to be conducted more systematically by the research 

community.  

Since the outcomes of the studies depend on many different factors, replication of studies with an attempt to 

keep as many factors stable as possible is a means to achieve a better empirical foundation for evaluation of 

concepts and techniques. The use of benchmarking software and test suites is one way of keeping factors stable 

between studies [8] However, in general, the strive for novelty in each research contribution tends to lead to a 

lack of replications and thus a lack of deeper understanding of earlier proposed techniques.  

A major issue in this review is to find the relevant information to compare techniques. Hence, for the future, a 

more standardized documentation scheme would be helpful, as proposed by e.g. Jedlitschka and Pfahl [24]for 

experiments and Runeson and Höst [52] for case studies. To allow enough detail despite page restrictions, 

complementary technical reports could be published on the empirical studies. 

5 CONCLUSIONS AND FUTURE WORK 
In this paper we present results from a systematic review of empirical evaluations of regression test selection 

techniques. Related to our research questions we have identified that: 

RQ1, there are 28 empirically evaluated techniques on regression test selection published, 

RQ2. these techniques might be classified according to: applicability on type of software and type of 

language; details regarding the method such as which input is required, which approach is taken and 

on which level of granularity is changes considered; and properties such as classification in 

safe/unsafe or minimizing/not minimizing. 

RQ3. the empirical evidence for differences between the techniques is not very strong, and sometimes 

contradictory, and 

RQ4. hence there is no basis for selecting one superior technique. Instead techniques have to be tailored 

to specific situations, e.g. initially based on the classification of techniques. 

We have identified some basic problems in the regression testing field which hinders a systematic review of the 

studies. Firstly, there is a great variance in the uniqueness of the techniques identified. Some techniques may be 

presented as novel at the time of their publications and others may be regarded as variants of already existing 
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techniques. Combined with a tendency to consider replications as second class research, the case for 

cooperative learning on regression testing techniques is not good. In addition to this, some techniques are 

presented in a rather general manner, e.g. claimed to handle object-oriented programs, which gives much space 

for different interpretations on how they may be implemented due to e.g. different programming language 

constructs existing in different programming languages. This may lead to different (but similar) 

implementations of a specific technique in different studies depending on e.g. the programming languages used 

in the studies.  

As mentioned in Section 1, to be able to select a strategy for regression testing, relevant empirical comparisons 

between different methods are required. Where such empirical comparisons exist, the quality of the evaluations 

must be considered. One goal of this study was to determine whether the literature on regression test selection 

techniques provides such uniform and rigorous base of empirical evidence on the topic that makes it possible to 

use it as a base for selecting a regression test selection method for a given software system.   

Our study shows that most of the presented techniques are not evaluated sufficiently for a practitioner to make 

decisions based on research alone. In many studies, only one aspect of the problem is evaluated and the context 

is too specific to be easily applied directly by software developers. Few studies are replicated, and thus the 

possibility to draw conclusions based on variations in test context is limited. Of course even a limited evidence 

base could be used as guidance. In order for a practitioner to make use of these results, the study context must 

be considered and compared to the actual environment into which a technique is supposed to be applied.  

Future work for the research community is 1) focus more on general regression testing  concepts rather than on 

variants of specific techniques; 2) encourage systematic replications of studies in different context, preferably 

with a focus on gradually scaling up to more complex environments; 3) define how empirical evaluations of 

regression test selection techniques should be reported, which variation factors in the study context are 

important. 
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