
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A systematic review on regression test selection techniques

Engström, Emelie; Runeson, Per; Skoglund, Mats

Published in:
Information and Software Technology

DOI:
10.1016/j.infsof.2009.07.001

2010

Link to publication

Citation for published version (APA):
Engström, E., Runeson, P., & Skoglund, M. (2010). A systematic review on regression test selection techniques.
Information and Software Technology, 52(1), 14-30. https://doi.org/10.1016/j.infsof.2009.07.001

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.infsof.2009.07.001
https://portal.research.lu.se/en/publications/19ad30fd-f38f-43ea-bd78-e970072fb9c2
https://doi.org/10.1016/j.infsof.2009.07.001

 1

A Systematic Review on Regression Test Selection
Techniques

Emelie Engström
Department of Computer Science

Lund University
SE-221 00 LUND
+46 46 222 88 99

emelie.engstrom@cs.lth.se

Per Runeson
Department of Computer Science

Lund University
SE-221 00 LUND
+46 46 222 93 25

per.runeson@cs.lth.se

Mats Skoglund
Department of Computer Science

Lund University
SE-221 00 LUND

mats.skoglund@cs.lth.se

ABSTRACT
Regression testing is verifying that previously functioning software remains after a change. With the goal of

finding a basis for further research in a joint industry-academia research project, we conducted a systematic

review of empirical evaluations of regression test selection techniques. We identified 27 papers reporting 36

empirical studies, 21 experiments and 15 case studies. In total 28 techniques for regression test selection are

evaluated. We present a qualitative analysis of the findings, an overview of techniques for regression test

selection and related empirical evidence. No technique was found clearly superior since the results depend on

many varying factors. We identified a need for empirical studies where concepts are evaluated rather than small

variations in technical implementations.

1 INTRODUCTION
Efficient regression testing is important, even crucial, for organizations with a large share of their cost in

software development. It includes, among other tasks, determining which test cases need to be re-executed, i.e.

regression test selection, in order to verify the behavior of modified software. Regression test selection involves

a trade-off between the cost for re-executing test cases, and the risk for missing faults introduced through side

effects of changes to the software. Iterative development strategies and reuse are common means of saving time

and effort for the development. However they both require frequent retesting of previously tested functions due

to changes in related code. The need for efficient regression testing strategies is thus becoming more and more

important.

A great deal of research effort has been spent on finding cost-efficient methods for different aspects of

regression testing. Examples include test case selection based on code changes

[1][6][13][17][20][22][43][49][62][64][67] and specification changes [38][40][54][68], evaluation of selection

techniques [48], change impact analysis [44], regression tests for different applications e.g. database

applications [18], regression testing of GUIs and test automation [39], and test process enhancement[31]. To

 2

bring structure to the topics, researchers have typically divided the field of regression testing into i) test

selection, ii) modification identification, iii) test execution, and iv) test suite maintenance. This review is

focused on test selection techniques for regression testing.

Although techniques for regression test selection have been evaluated in previous work[3][15][36][65], no

general solution has been put forward since no technique could possibly respond adequately to the complexity

of the problem and the great diversity in requirements and preconditions in software systems and development

organizations. Neither does any single study evaluate every aspect of the problem; e.g. Kim et al. [27] evaluate

the effects of regression test application frequency, Elbaum et al. [11] investigate the impact that different

modifications have on regression test selection techniques, several studies examine the ability to reduce

regression testing effort [3][11][15][27][36][65][66] and to reveal faults [11][15][27][49].

In order to map the existing knowledge in the field, we launched a systematic review to collect and compare

existing empirical evidence on regression test selection. The use of systematic reviews in the software

engineering domain has been subject to a growing interest in the last years. In 2004 Kitchenham proposed a

guideline adapted to the specific characteristics of software engineering research. This guideline has been

followed and evaluated [5][30][57] and updated accordingly in 2007 [29]. Kitchenham et al. recently published

a review of 20 systematic reviews in software engineering 2004-2007[28].

Ideally, several empirical studies identified in a systematic review evaluate the same set of techniques under

similar conditions on different subject programs. Then there would be a possibility to perform an aggregation

of findings or even meta-analysis and thus enable drawing general conclusions. However, as the field of

empirical software engineering is quite immature, systematic reviews have not given very clear pictures of the

results. In this review we found that the existing studies were diverse, thus hindering proper quantitative

aggregation. Instead we present a qualitative analysis of the findings, an overview of existing techniques for

regression test selection and of the amount and quality of empirical evidence.

There are surveys and reviews of software testing research published before, but none of these has the broad

scope and the extensive approach of a systematic review. In 2004 Do et al. presented a survey of empirical

studies in software testing in general [8] including regression testing. Their study covered two journals and four

conferences over ten years (1994-2003). Other reviews of regression test selection are not exhaustive but

compare a limited number of chosen regression test selection techniques. Rothermel and Harrold presented a

framework for evaluating regression test techniques already in 1996 [48] and evaluated the, by that time,

existing techniques. Juristo et al. aggregated results from unit testing experiments [25] of which some evaluate

regression testing techniques, although with a more narrow scope. Binkley et al. reviewed research on the

 3

application of program slicing to the problem of regression testing [4]. Hartman et al. reports a survey and

critical assessment of regression testing tools [21]. However, as far as we know, no systematic review on

regression test selection research has been carried through since the one in 1996 [48]. An early report of this

study was published in 2008 [12], which here is further advanced especially with respect to the detailed

description of the techniques (Section 3.4), their development history and the analysis of the primary studies

(Section 3.5).1

This paper is organized as follows. In section 2 the research method used for our study is described. Section 3

reports the empirical studies and our analyses. Section 4 discusses the results and section 5 concludes the work.

2 RESEARCH METHOD

2.1 Research Questions
This systematic review aims at summarizing the current state of the art in regression test selection research by

proposing answers to a set of questions below. The research questions stem from a joint industry-academia

research project, which aims at finding efficient procedures for regression testing in practice. We searched for

candidate regression test selection techniques that were empirically evaluated, and in case of lack of such

techniques, to identify needs for future research. Further, as the focus is on industrial use, issues of scale-up to

real-size projects and products are important in our review. The questions are:

RQ1) Which techniques for regression test selection in the literature have been evaluated empirically?

RQ2) Can these techniques be classified, and if so, how?

RQ3) Are there significant differences between these techniques that can be established using empirical

evidence?

RQ4) Can technique A be shown to be superior to technique B, based on empirical evidence?

Answers to these research questions are searched in the published literature using the procedures of systematic

literature reviews as proposed by Kitchenham [29].

1 In this extended analysis, some techniques that originally were considered different ones, were considered the same technique. Hence, the number

of techniques differ from [10]. Further, the quality of two empirical studies was found insufficient in the advanced analysis, why two studies were
removed.

 4

2.2 Sources of information
In order to gain a broad perspective, as recommended in Kitchenham’s guidelines [29], we searched widely in

electronic sources. The advantage of searching databases rather than a limited set of journals and conference

proceedings, is also empirically motivated by Dieste et al. [7]. The following seven databases were covered:

• Inspec (<www.theiet.org/publishing/inspec>)

• Compendex (<www.engineeringvillage2.org>)

• ACM Digital Library (<portal.acm.org>)

• IEEE eXplore (<ieeexplore.ieee.org>)

• ScienceDirect (<www.sciencedirect.com>)

• Springer LNCS (<www.springer.com/lncs>)

• Web of Science(<www.isiknowledge.com>)

These databases cover the most relevant journals and conference and workshop proceedings within software

engineering, as confirmed by Dybå et al. [8]. Grey literature (technical reports, some workshop reports, work in

progress) was excluded from the analysis for two reasons: the quality of the grey literature is more difficult to

assess and the volume of studies included in the first searches would have grown unreasonably. The searches in

the sources selected resulted in overlap among the papers, where the duplicates were excluded primarily by

manual filtering.

2.3 Search criteria
The initial search criteria were broad in order to include articles with different uses of terminology. The key

words used were <regression> and (<test> or <testing>) and <software>, and the database fields of title and

abstract were searched. The start year was set to 1969 to ensure that most relevant research within the field

would be included, and the last date for inclusion is publications within 2006. The earliest primary study

actually included was published in 1997. Kitchenham recommends that exclusion based on languages should

be avoided [29]. However, only papers written in English are included. The initial search located 2 923

potentially relevant papers.

 5

2.4 Study Selection

Figure 1. Study selection procedure

In order to obtain independent assessments, four researchers were involved in a three-stage selection process,

as depicted in Figure 1.

In the first stage duplicates and irrelevant papers were excluded manually based on titles. In our case, the share

of irrelevant papers was extremely large since papers on software for statistical regression testing or other

regression testing could not be distinguished from papers on software regression testing in the database search.

The term software did not distinguish between the two areas, since researchers on statistical regression testing

often develop some software for their regression test procedures. After the first stage 450 papers remained.

In the second stage, information in abstracts was analyzed and the papers were classified along two

dimensions: research approach and regression testing approach. Research approaches were experiment, case

study, survey, review, theory and simulation. The two latter types were excluded, as they are not presenting an

empirical research approach, and the survey and review papers were not considered as being primary studies

but rather related work to the systematic review. At this stage we did not judge the quality of the empirical

data. Regression testing approaches were selection, reduction, prioritization, generation, execution and other.

Only papers focusing on regression test selection were included.

In the third stage a full text analysis was performed on the 73 papers and the empirical quality of the studies

was further assessed. The following questions were asked in order to form quality criteria for which studies to

exclude before the final data extraction:

Exclusion
based on
abstracts

Exclusion
based on
full text

#73

#27

#450
Exclusion
based on
titles

#2923

Stage 1 Stage 3 Stage 2

 6

• Is the study focused on a specific regression test selection method? E.g. a paper could be excluded that

presents a method that potentially could be used for regression testing, but is evaluated from another

point of view..

• Are the metrics used and the results relevant for a comparison of methods? E.g. a paper could be

excluded which only reports on the ability to predict fault prone parts of the code, but not on the fault

detection effectiveness or the cost of the regression test selection strategy.

• Is data collected and analyzed in a sufficiently rigorous manner? E.g. a paper could be excluded if a

subset of components was analyzed and conclusions were drawn based on those, without any

motivation for the selection.

These questions are derived from a list of questions, used for a similar purpose, published by Dybå et al. [8].

However in our review context, quality requirements for inclusion had to be weaker than suggested by Dybå et

al. in order to obtain a useful set of studies to compare. The selection strategy was in general more inclusive

than exclusive. Only papers with very poorly reported or poorly conducted studies were excluded, as well as

papers where the comparisons made were considered irrelevant to the original goals of this study.

Abstract analysis and full text analysis were performed in a slightly iterative fashion. Firstly, the articles were

independently assessed by two of the researchers. In case of disagreement, the third researcher acted as a

checker. In many cases, disagreement was due to insufficient specification of the criteria. Hence, the criteria

were refined and the analysis was continued.

In order to get a measure of agreement in the study selection procedure, the Kappa coefficient was calculated

for the second stage, which comprised most judgments in the selection. In the second stage 450 abstracts were

assessed by two researchers independently. In 41 cases conflicting assessments were made which corresponds

to the Kappa coefficient K = 0,78. According to Landis and Koch [33] this translates to a substantial strength of

agreement.

2.5 Data extraction and synthesis
Using the procedure, described in the previous section, 27 articles were finally selected that reported on 36

unique empirical studies, evaluating 28 different techniques. The definition of what constitutes a single

empirical study, and what constitutes a unique technique is not always clear cut. The following definitions have

been used in our study:

⋅ Study: an empirical study applying a technique to one or more programs. Decisions on whether to

split studies with multiple artifacts into different studies were based on the authors’ own classification

 7

of the primary studies. Mostly, papers including studies on both small and large programs are

presented as two different studies.

⋅ Technique: An empirically evaluated method for regression test selection. If the only difference

between two methods is an adaption to a specific programming language (e.g. from C++ to Java) they

are considered being the same technique.

Studies were classified according to type and size, see Section 3.1. Two types of studies are included in our

review, experiments and case studies. We use the following definitions:

⋅ Experiment: A study in which an intervention is deliberately introduced to observe its effects [55].

⋅ Case study: An empirical inquiry that investigates a contemporary phenomenon within its real-life

context, especially when the boundaries between the phenomenon and context are not clearly evident

[69].

Surveys and literature reviews were also considered in the systematic review, e.g. [48] and [25], but rather as

reference point for inclusion of primary studies than as primary studies as such.

Regarding size, the studies are classified as small, medium or large (S, M, L) depending on the study artifact

sizes. A small study artifact has less than 2,000 lines of code (LOC), a large study artifact has more than

100,000 LOC, and a medium sized study artifact is in between. The class limits are somewhat arbitrarily

defined. In most of the articles the lines of code metric is clearly reported and thus this is our main

measurement of size. But in some articles sizes are reported in terms of number of methods or modules,

reported as the authors’ own statement about the size or not reported at all.

The classification of the techniques is part of answering RQ2 and is further elaborated in Section 3.4.

2.6 Qualitative assessment of empirical results
The results from the different studies were qualitatively analyzed in categories of four key metrics: reduction of

cost for test execution, cost for test case selection, total cost, and fault detection effectiveness, see Section

3.5.2. The “weight” of an empirical study was classified according to the scheme in Table 1. A study with more

“weight” is considered contributing more to the overall conclusions. A unit of analysis in an experiment is

mostly a version of a piece of code, while in a case study; it is mostly a version of a whole system or sub-

system.

 8

Table 1. “Weight” of empirical study.

Type and size of study Light empirical study “weight” Medium empirical study
“weight”

Experiment (small)

Case study (small-medium)

Analysis units < 10 Analysis units >= 10

Experiment (medium)

Case study (large)

Analysis units < 4 Analysis units >= 4

The results from the different studies were then divided into six different categories according to the

classification scheme in Table 2. The classification is based on the study “weight” and the size of the difference

in a comparative empirical study. As the effect sizes were rarely reported in the studies, the sizes of the

differences are also qualitatively assessed. The categorization of results was made by two researchers in

parallel and uncertainties were resolved in discussions. Results are presented in Figures 5 – 8 in Section 3.5.

Table 2. Classification scheme for qualitative assessment of the weight of empirical results.

 No difference Difference of small size Difference of large size

Medium empirical
study “weight”

Strong indication of

equivalence between the

two compared techniques

Weak indication that one

technique is superior to

the other

Strong indication that one

technique is superior to

the other

Light empirical study
“weight”

Weak indication of

equivalence between the

two compared techniques

No indication of

differences or similarities

Weak indication that one

technique is superior to

the other

2.7 Threats to validity
Threats to the validity of the systematic review are analyzed according to the following taxonomy; construct

validity, reliability, internal validity and external validity.

Construct validity reflects to what extent the phenomenon under study really represents what the researchers

have in mind and what is investigated according to the research questions. The main threat here is related to

terminology. Since the systematic review is based on a hierarchical structure of terms – regression test/testing

consists of the activities modification identification, test selection, test execution and test suite maintenance –

we might miss other relevant studies on test selection that are not specifically aimed for regression testing.

However, this is a consciously decided limitation, which has to be taken into account in the use of the results.

Another aspect of the construct validity is assurance that we actually find all papers on the selected topic. We

 9

analyzed the list of publication fora and the list of authors of the primary studies to validate that no major

forum or author was missed.

Reliability focuses on whether the data is collected and the analysis is conducted in a way that it can be

repeated by other researchers with the same results. We defined a study protocol setting up the overall research

questions, the overall structure of the study as well as initial definitions of criteria for inclusions/exclusion,

classification and quality. The criteria were refined during the study based on the identification of ambiguity

that could mislead the researchers.

In a systematic review, the decision process for inclusion and exclusion of primary studies is the major focus

when it comes to reliability, especially in this case where another domain (statistics) also uses the term

regression testing. Our countermeasures taken to reduce the reliability threat were to set up criteria and to use

two researchers to classify papers in stages 2 and 3. In cases of disagreement, a third opinion is used. However,

the Kappa analysis indicates strong agreements. One of the primary researchers was changed between stages 2

and 3. Still, the uncertainties in the classifications are prevalent and a major threat to reliability, especially

since the quality standards for empirical studies in software engineering are not high enough. Research

databases is another threat to reliability [8]. The threat is reduced by using multiple databases; still the non-

determinism of some database searches is a major threat to the reliability of any systematic review.

Internal validity is concerned with the analysis of the data. Since no statistical analysis was possible due to the

inconsistencies between studies, the analysis is mostly qualitative. Hence we link the conclusions as clearly as

possible to the studies, which underpin our discussions.

External validity is about generalizations of the findings derived from the primary studies. Most studies are

conducted on small programs and hence generalizing them to a full industry context is not possible. In the few

cases were experiments are conducted in the small as well as case studies in the large, the external validity is

reasonable, although there is room for substantial improvements.

3 RESULTS

3.1 Primary studies
The goal of this study was to find regression test selection techniques that are empirically evaluated. The

papers were initially obtained in a broad search in seven databases covering relevant journals, conference and

workshop proceedings within software engineering. Then an extensive systematic selection process was carried

out to identify papers describing empirical evaluations of regression test selection techniques. The results

presented here thus give a good picture of the existing evidence base.

 10

Out of 2 923 titles initially screened, 27 papers (P1-P27) on empirical evaluations of techniques for regression

test selection remained until the final stage. These 27 papers report on 36 unique studies (S1-S36), see Table 3,

and compare in total 28 different techniques for regression test selection for evaluation (T1-T28), see listing in

Table 8 below, which constitutes the primary studies of this systematic review. Five reference techniques are

also identified (REF1-REF5), e.g. re-test all (all test cases are selected) and random(25) (25% of the test cases

are randomly selected). In case the studies are reported partially or fully in different papers, we generally refer

to the most recent one as this contains the most updated study. When referring to the techniques, we do on the

contrary refer to the oldest, considering it being the original presentation of the technique.

Table 3. Primary studies, S1-S36, published in papers P1-P27, evaluation techniques T1-T28.
Study
ID

Publica-
tion ID

Reference Techniques Artifacts Type of
study

Size of
study

S1 P1 Baradhi and Mansour
(1997) [2]

T4, T5, T6,
T11, T12
REF1

Own unspecified Exp S

S2 P2 Bible et al. (2001) [3] T7, T8
REF1

7x Siemens, Small constructed programs, constructed,
realistic non-coverage based test suites

Exp S

S3 P2 Bible et al. (2001)[3] T7, T8
REF1

Space, Real application, real faults, constructed test cases Exp S

S4 P2 Bible et al. (2001) [3] T7, T8
REF1

Player, One module of a large software system constructed
realistic test suites

Exp M

S5 P3 Elbaum et al. (2003)
[11]

 T2, T4, T18
REF1

Bash, Grep, Flex and Gzip, Real, non-trivial C program,
constructed test suites

CS
(Mult)

M

S6 P4 Frankl et al. (2003)
[14]

T7, T10
REF1

7xSiemens, Small constructed programs, constructed,
realistic, non-coverage based test suites

Exp S

S7 P5 Graves et al. (2001)
[15]

T1, T2, T7
REF1, REF2,
REF3, REF4

7xSiemens, Small constructed programs, constructed,
realistic non-coverage based test suites; space, Real
application, real faults, constructed test cases; player, One
module of a large software system constructed realistic
test suites

Exp S M

S8 P6 Harrold et al. (2001)
[19]

T15
REF1

Siena, Jedit, JMeter, RegExp, Real programs, constructed
faults

Exp S

S9 P7 Kim et al. (2005)[27] T2, T7, T8
REF1, REF2,
REF3, REF4

7xSiemens, Small constructed programs, constructed,
realistic non-coverage based test suites; Space, Real
application, real faults, constructed test cases

Exp S

S10 P8 Koju et al. (2003)
[32]

T15
REF1

Classes in .net framework, Open source, real test cases Exp S

S11 P9 Mansour et al. (2001)
[36]

T4, T5, T6,
T12

20 small sized Modules Exp S

S12 P10 Mao and Lu (2005)
[38]

T16, T17, T24
REF1

Triangle, eBookShop, ShipDemo, Small Constructed
programs

CS S

S13 P11 Orso et al. (2004)
[41]

T9, T15, T19
REF1

Jaba, Daikon, JBoss, Real-life programs, original test suites Exp M L

 11

S14 P12 Pasala and Bhowmick
(2005) [42]

T20
REF1

Internet Explorer (client), IIS (web server), application
(app. Server), An existing browser based system, real test
cases

CS NR

S15 P13 Rothermel and
Harrold (1997) [49]

T7
REF1

7xSiemens, Small constructed programs, constructed,
realistic non-coverage based test suites

Exp S

S16 P13 Rothermel and
Harrold (1997) [49]

T7
REF1

Player, One module of a large software system constructed
realistic test suites

Exp M

S17 P14 Rothermel and
Harrold (1998) [50]

T7
REF1

7xSiemens, Small constructed programs, constructed,
realistic non-coverage based test suites

Exp S

S18 P14 Rothermel and
Harrold (1998) [50]

T7
REF1

7xSiemens, Small constructed programs, constructed,
realistic non-coverage based test suites

Exp S

S19 P14 Rothermel and
Harrold (1998) [50]

T7
REF1

7xSiemens, Small constructed programs, constructed,
realistic non-coverage based test suites;

Exp S

S20 P14 Rothermel and
Harrold (1998) [50]

T7
REF1

Player, One module of a large software system constructed
realistic test suites

Exp M

S21 P14 Rothermel and
Harrold (1998) [50]

T7
REF1

Commerercial, Real application, real test suite Exp S

S22 P15 Rothermel et al.
(2002)[45]

T8, T18
REF1

Emp-server, Open-source, server component, constructed
test cases; Bash Open-source, real and constructed test cases

Exp M

S23 P16 Rothermel et al.
(2004)[46]

T2, T8, T18
REF1

Bash, Open-source, real and constructed test cases Exp M

S24 P16 Rothermel et al.
(2004) [46]

T2, T8, T18
REF1

Emp-server, Open-source, server component, constructed
test cases

Exp M

S25 P17 Skoglund and
Runeson (2005) [56]

T9, T21
REF1

Swedbank, Real, large scale, distributed, component-based,
J2EE system, constructed, scenario-based test cases

CS L

S26 P18 Vokolos and Frankl
(1998) [65]

T10
REF1

ORACOLO2, Real industrial subsystems, real modifications,
constructed test cases

CS M

S27 P19 White and Robinson
(2004) [61]

T3
REF5

14 real ABB projects, Industrial, Real-time system CS L

S28 P19 White and Robinson
(2004) [61]

T9
REF5

2 real ABB projects, Industrial, Real-time system CS L

S29 P20 White et al. (2005)
[60]

T3, T9, T25 OO-telecommunication software system CS S

S30 P20 White et al. (2005)
[60]

T3, T9, T25 OO – real-time software system CS L

S31 P21 Willmor and Embury
(2005)[63]

T7, T22, T23
REF1

Compiere, James, Mp3cd browser, Open source systems,
real modifications

CS NR

S32 P22 Wong et al.
(1997)[66]

T13
REF1

Space, Real application, real faults, constructed test cases CS S

S33 P23 Wu et al. (1999) [67] T14
REF1

ATM-simulator, small constructed program CS S

S34 P23 Wu et al. (1999) [67] T14
REF1

Subsystem of a fully networked supervisory control and data
analysis system

CS M

S35 P24, P25,
P26

Zheng et al. (2005)
[71], Zheng et al.
(2006) [72] Zheng
(2005) [70]

 T26, T28
REF1

ABB-internal, Real C/C++ application CS M

S36 P27, P25 Zheng et al. (2006)
[74], Zheng et al.
(2006) [72]

T27, T28
REF1

ABB-internal, Real C/C++ application CS M

 12

In most of the studies, the analyses are based on descriptive statistics. Tabulated data or bar charts are used as a

basis for the conclusions. In two studies (S23 and S24), published in the same paper (P16) [46] statistical

analysis is conducted, using ANOVA.

3.2 Analyses of the primary studies
In order to explore the progress of the research field, and to validate that the selected primary studies

reasonably cover our general expectations of which fora and which authors should be represented, we analyze,

as an extension to RQ1, aspects of the primary studies as such: where they are published, who published them,

and when. As defined in Section 2.5, a paper may report on multiple studies, and in some cases the same study

is reported in more than one paper. Different researchers have different criteria for what constitutes a study. We

have tried to apply a consistent definition of what constitutes a study. This distribution of studies over papers is

shown in Table 4. Most papers (18 out of 27) report a single study, while few papers report more than one.

Two papers report new analyses of earlier published studies. Note that many of the techniques are originally

presented in papers without empirical evaluation, hence these papers are not included as primary studies in the

systematic review, but referenced in Section 3.3 as sources of information about the techniques as such (Table

8).

Table 4. Distribution of number of papers after the number of studies each paper reports
reported studies in each paper # papers # studies

0 (re-analysis of another study) 2 0

1 18 18

2 5 10

3 1 3

5 1 5

Total 27 36

The number of identified techniques in the primary studies is relatively high compared to the number of

studies, 28 techniques were evaluated in 36 studies. Table 5 presents the distribution of number of studies in

which different techniques occur. One technique was present in 14 different studies, another technique in 8

studies etc. 14 techniques only appear in one study, which is not satisfactory when trying to aggregate

information from empirical evaluations of the techniques.

Table 5. Distribution of techniques after occurrences in number of studies
Represented in
number of
studies

Number of
techniques

14 1

 13

8 1

5 2

4 1

3 2

2 7

1 14

Total 28

Table 6 lists the different publication fora in which the articles have been published. It is worth noting

regarding the publication fora, that the empirical regression testing papers are published in a wide variety of

journals and conference proceedings. Limiting the search to fewer journals and proceedings would have missed

many papers, see Table 6.

The major software engineering journals and conferences are represented among the fora. It is not surprising

that a conference on software maintenance is on the top, but we found, during the validity analysis, that the

International Symposium on Software Testing and Analysis is not on the list at all. We checked the

proceedings specifically and have also noticed that, for testing in general, empirical studies have been

published there, as reported by Do et al. [8], but apparently not on regression test selection during the studied

time period.

Table 6. Number of papers in different publication fora
Publication Fora Type # %

International Conference on Software Maintenance Conference 5 18.5

ACM Transactions of Software Engineering and Methodology Journal 3 11.1

International Symposium on Software Reliability Engineering Conference 3 11.1

International Conference on Software Engineering Conference 3 11.1

Asia-Pacific Software Engineering Conference Conference 2 7.4

International Symposium on Empirical Software Engineering Conference 2 7.4

IEEE Transactions of Software Engineering Journal 1 3.7

Journal of Systems and Software Journal 1 3.7

Software Testing Verification and Reliability Journal 1 3.7

Journal of Software Maintenance and Evolution Journal 1 3.7

ACM SIGSOFT Symposium on Foundations of SE Conference 1 3.7

Automated Software Engineering Conference 1 3.7

Australian SE Conference Conference 1 3.7

International Conf on COTS-based Software Systems Conference 1 3.7

Int. Conference on Object-Oriented Programming, Systems, Languages, and
Applications

Conference 1 3.7

Total 27 100

 14

Table 7 lists authors with more than one publication. In addition to these 17 authors, five researchers have

authored or co-authored one paper each. In the top of the author’s list, we find the names of the most prolific

researchers in the field of regression test selection (Rothermel and Harrold). It is interesting to notice from the

point of view of conducting empirical software engineering research, that there are two authors on the top list

with industry affiliation (Robinson and Smiley).

Table 7. Researchers and number of publications
Name # Name #

Rothermel G. 9 Baradhi G. 2

Harrold M. J. 5 Frankl P. G. 2

Robinson B. 5 Kim J. M. 2

Zheng J. 4 Mansour N. 2

Elbaum S. G. 3 Orso A. 2

Kallakuri P. 3 Porter A. 2

Malishevsky A. 3 White L. 2

Smiley K. 3 Vokolos F. 2

Williams L. 3

The regression test selection techniques have been published from 1988 to 2006, as shown in Figure 2 and

Table 8. The first empirical evaluations were published in 1997 (one case study and three experiments), hence

the empirical evaluations have entered the scene relatively late. 12 out of the 28 techniques have been

originally presented and evaluated in the same paper: T12-S11 and T13-S32 (1997); T14-S33-S34 (1999); T18-

S5 (2003); T19-S13 (2004),; T20-S14; T21-S25; T23-S31; T25-S29-S30 and T26-S35 (2005); T27-S33 and

T28-S35 (2006).

Figure 2. Accumulated number of published techniques, case studies and experiments.

 15

We conclude from this analysis that there are only a few studies comparing many techniques in the same study,

making it hard to find empirical data for a comprehensive comparison. However, some small and medium-

sized artifacts have appeared as a de-facto benchmark in the field [8], enabling comparison to some extent of

some techniques.

Most of the expected publication fora are represented, and one that is not represented, but was expected, was

specifically double checked. Similarly, well known researchers in the field were among the authors, hence we

consider the selected primary studies as being a valid set. It is clear from the publication analysis that the

techniques published during the later years are published with empirical evaluations to a higher degree than

during the earlier years, which is a positive trend in searching for empirically evaluated techniques as defined

in RQ1.

3.3 Empirically evaluated techniques (RQ1)

3.3.1 Overview
Table 8 lists the 28 different regression test selection techniques (T1-T28), in chronological order according to

date of first publication. In case the studies are reported partially or fully in different papers, we generally refer

to the original one. In case a later publication has added details that are needed for exact specification of the

technique, both references are used.

This list is specifically the answer to the first research question: which techniques for regression test selection

existing in the literature have been evaluated empirically (RQ1). In this review, the techniques, their origin and

description, are identified in accordance to what is stated in each of the selected papers, although adapted

according to our definition of the what constitutes a unique technique in Section 2.5.

Table 8. Techniques for regression test selection
Technique Origin Description Evaluated in study

T1 Harrold and Soffa (1988) [20] Dataflow-coverage-based S7

T2 Fischer et al. (1981) [13] Hartman and Robson
(1988) [22]

Modification-focused, minimization, branch and
bound algorithm

S5, S7, S9, S23, S24

T3 Leung and White (1990) [35] Procedural-design firewall S27, S29, S30

T4 Gupta et al. (1992) [16] Coverage-focused, slicing S1, S5, S11

T5 White and Leung (1992) [62] Firewall S1, S11

T6 Agraval et al. (1993)[1] Incremental S1, S11

T7 Rothermel and Harrold (1993)[47] Viewing statements, DejaVu S2 -S4, S6, S7, S9, S15 –
S21, S31

T8 Chen and Rosenblum (1994) [6] Modified entity - TestTube S2 - S4, S9, S22 - 24

T9 Pei et al. (1997) [43] White and Abdullah (1997)
[59]

High level – identifies changes at the class and
interface level

S13, S25, S28 -S30

 16

T10 Vokolos and Frankl (1997) [64] Textual Differing - Pythia S6, S26

T11 Mansour and Fakih (1997) [37] Genetic algorithm S1

T12 Mansour and Fakih (1997) [37] Simulated annealing S1, S11

T13 Wong et al. (1997) [66] Hybrid: modification, minimization and
prioritization- based selection

S32

T14 Wu et al. (1999) [67] Analysis of program structure and function-calling
sequences

S33, S34

T15 Rothermel et al. (2000) [51] Harrold et al. (2001)
[19] Koju et al. (2003) [32]

Edge level - identifies changes at the edge level S8, S10, S13

T16 Orso et al. (2001) [40] Use of metadata to represent links between
changes and Test Cases

S12

T17 Sajeev et al. (2003) [54] Use of UML (OCL) to describe information
changes

S12

T18 Elbaum et al. (2003) [11] Modified-non-core Same as T8 but ignoring core
functions

S5, S22

T19 Orso et al. (2004) [41] Partitioning and selection Two Phases S13

T20 Pasala and Bhowmick (2005) [42] Runtime dependencies captured and modeled into
a graph (CIG)

S14

T21 Skoglund and Runeson (2005) [56] Change based selection S25

T22 Willmor and Embury (2005)[63] Test selection for DB-driven applications
(extension of T7) combined safety

S31

T23 Willmor and Embury (2005) [63] Database safety S31

T24 Mao and Lu (2005) [38] Enhanced representation of change information S12

T25 White et al. (2005) [60] Extended firewall additional data-paths S29, S30

T26 Zheng (2005)[71] I-BACCI v.1 S35

T27 Zheng et al. (2006)[74] I-BACCI v.2 (firewall + BACCI) S36

T28 Zheng et al. (2006) [74] I-BACCI v.3 S35, S36

REF1 Leung and White (1989) [34] Retest-all S1 - S10, S12 – S24, S26,
S31 - S36

REF2 Random (25) S7, S9

REF3 Random (50) S7, S9

REF4 Random (75) S7, S9

REF5 Intuitive, experience based selection S27, S28

3.3.2 Development history

The historical development chain gives some advice on which techniques are related and how they are

developed, see Figure 3. There are three major paths, beginning with T3, T7 and T8 respectively.

 17

Figure 3. Evolution of techniques

One group of techniques is the firewall techniques where dependencies to modified software parts are isolated

inside a firewall. Test cases covering the parts within the firewall are selected for re-execution. The first

firewall technique (T3) for procedural languages was presented by Leung and White in 1990 [35]. An empirical

evaluation used a changed version (T5). The technique was adapted to object-oriented languages T9 in two

similar ways [43][59] and further enhanced and extended in the I-BACCI technique (T25-T28). It has also been

adapted to Java (T21).

Another group of techniques is based on a technique invented by Rothermel and Harrold for procedural

languages in 1993 [47] (T7), sometimes referred to as DejaVu. This technique has later been adopted to object-

oriented languages T15 (for C++ [51], and for Java[19][32]) and also further extended for MSIL code [32].

Through technique T19 it has also been combined with techniques from the group of firewall techniques.

Extended techniques that cope with database state have also been created T22 and T23 [63].

The firewall techniques are based on relationships to changed software parts. Different granularities of parts

have been used, such as dependencies between modules, functions or classes. There exist techniques that are

not stated in their presentations to be based on the firewall technique but still make use of dependencies

between software parts. T8, T14 and T18 all utilize the relations between functions and T20 use dependencies

between components (DLL:s).

In addition to the three major groups, there are other techniques which share some similarities with either

group, although not being directly derived from one of them.

 18

Using the dependency principle between larger parts, such as functions or classes, lead to that all test cases

using the changed part are re-executed even though the actual modified code may not be executed. Using a

smaller granularity gives better precision but are usually more costly since more analysis is needed. The

smallest granularity is the program statements, segments, or blocks. The relationships between these smallest

parts may be represented by creating control flow graphs where the control flow from one block to another may

be seen as a relationship between the two blocks. This principle is for example used in the group of techniques

based on Rothermel and Harrold’s technique T7, see above, but is also used in the firewall technique T5. T10

also use program blocks for its test selection. An extension of this principle where the variables are also taken

into account is used in the techniques T2, T4, T6, T11-T13, in various ways.

Another group of techniques are those using specifications or metadata of the software instead of the source

code or executable code. T17 use UML specifications, and T16 and T24 use metadata in XML format for their

test case selection.

3.3.3 Uniqueness of the techniques

There is a great variance regarding the uniqueness of the techniques identified in the studied papers. Some

techniques may be regarded as novel at the time of their first presentation, while others may be regarded as

only variants of already existing techniques. For example in [3] a regression test selection techniques is

evaluated, T8, and the technique used is based on modified entities in the subject programs. In another

evaluation, reported on in [11] it is stated that the same technique is used as in [3] but adapted to use a different

scope of what parts of the subjects programs that is included in the analysis, T18. In [3] the complete subject

programs are included in the analysis; while in [11] core functions of the subject programs are ignored. This

difference of scope probably has an effect on the test cases selected using the two different approaches. The

approach in which core functions is ignored is likely to select fewer test cases compared to the approach where

all parts of the programs are included. It is not obvious whether the two approaches should be regarded as two

different techniques or if they should be regarded as two very similar variants of the same technique. We chose

the former option.

Some techniques evaluated in the reviewed papers are specified to be used for a specific type of software, e.g.

Java, T15 and T19 [19][41], component based software, T17, T20, T24 and T28 [38][42][72][74], or database-

driven applications, T22, [63]. It is not clear whether they should be considered one technique applied to two

types of software, or two distinctly different techniques. For example, a technique specified for Java, T15, is

presented and evaluated in [19]. In [58] the same technique is used on MSIL (MicroSoft Intermediate

Language) code, however adapted to handle programming language constructs not present in Java. Thus, it can

be argued that the results of the two studies cannot be synthesized in order to draw conclusions regarding the

 19

performance of neither the technique presented in [19], nor the adapted version, used in [32]. However, we

chose to classify them as the same technique.

There are also techniques specified in a somewhat abstract manner, e.g. techniques that handle object-oriented

programs in general, e.g. T14 [67]. However, when evaluating a technique, the abstract specification of a

technique must be concretized to handle the specific type of subjects selected for the evaluation. The

concretization may look different depending on the programming language used for the subject programs. T14

is based on dependencies between functions in object-oriented programs in general. The technique is evaluated

by first tailoring the abstract specification of the technique to C++ programs and then performing the

evaluation on subject programs in C++. However, it is not clear how the tailoring of the specification should be

performed to evaluate the technique using other object-oriented programming languages, e.g. C# or Java. Thus,

due to differences between programming languages, a tailoring made for one specific programming language

may have different general performance than a tailoring made for another programming language.

3.4 Classification of Techniques (RQ2)
In response to our second research question (RQ2), we are looking for some kind of classification of the

regression test selection techniques. As indicated in Figure 3, there exist many variants of techniques, gradually

evolved over time. Some suggested classifications of regression test techniques exist. Rothermel and Harrold

present a framework for analyzing regression test selection techniques [48], including evaluation criteria for the

techniques: inclusiveness, precision, efficiency and generality. Graves et al. [15] present a classification

scheme where techniques are classified as Minimization, Safe, Dataflow-Coverage-based, Ad-hoc/Random or

Retest-All techniques. Orso et al. [41] separate between techniques that operate at a higher granularity e.g.

method or class (called high-level) and techniques that operate at a finer granularity, e.g. statements (called

low-level). In this review we searched for classifications in the papers themselves with the goal of finding

common properties in order to be able to reason about groups of regression testing techniques.

One property found regards the type of input required by the techniques. The most common type of required

input is source code text, e.g. T1-8, T10-12 and T18. Other types of code analyzed by techniques are

intermediate code for virtual machines, e.g. T9, T13-15 and T21, or machine code, e.g. T24 and T26. Some

techniques require input of a certain format, e.g. T16 (meta data) and T17 (OCL). Techniques may also be

classified according to the type of code used in the analysis (Java, C++…). A third type of classification that

could be extracted from the papers regards the programming language paradigm. Some techniques are specified

for use with procedural code, e.g. T1, T2, T7, T8, and T18, while other techniques are specified for the object-

oriented paradigm, e.g. T9, T13-17, and T21-T23 some techniques are independent of programming language,

e.g. T3, T19, and T26-28.

 20

The most found property assigned to regression test selection techniques is whether they are safe or unsafe.

With a safe technique the defects found with the full test suite are also found with the test cases picked by the

regression test selection technique. This property may be used to classify all regression test selection

techniques into either safe or unsafe techniques. Re-test all is an example of a safe technique since it selects all

test cases, hence, it is guaranteed that all test cases that reveal defects are selected. Random selection of test

cases is an example of an unsafe technique since there is a risk of test cases revealing defects being missed. In

our study seven techniques were stated by the authors to be safe, T7, T8, T10, T15, and T21-24. However, the

safety characteristic is hard to achieve in practice, as it e.g. assumes determinism in program and test execution.

A major problem, in addition to finding a classification scheme is applying the scheme to the techniques. The

information regarding the different properties is usually not available in the publications. Hence, we may only

give examples of techniques having the properties above based on what the authors state in their publications.

The properties reported for each technique is presented in Table 9.

Table 9. Overview of properties for each technique.
 Applicability Method Properties

Technique Type of
Language

Type of
Software

Input Approach Granularity Detection
Ability

Cost Reduction

T1 Ind IM CF Stm

T2 Proc SC CF Stm Min

T3 Proc SC FW Module

T4 Proc SC Slicing Stm Min

T5 Proc SC FW Module

T6 Proc SC Slicing Stm

T7 Proc SC CF Stm Safe

T8 Proc SC Dep Func Safe

T9 OO IM FW Class

T10 Proc SC Stm Safe

T11 Proc SC CF Stm

T12 Proc SC CF Stm

T13 Proc SC Stm Min

T14 OO SC Dep Func

T15 OO IM CF Stm Safe

T16 OO Comp Spec CF Stm

T17 OO Comp Spec

T18 Proc SC Dep Func

T19 OO IM FW+CF Class+Stm

T20 Ind Comp BIN Dep Comp

T21 OO IM FW Class

T22 OO DB SC CF Stm Safe

T23 OO DB SC CF Stm Safe2

2 Safe only in DB-state

 21

T24 OO Comp BIN +Spec Dep Stm Safe

T25 OO SC? FW Class

T26 Ind Comp BIN FW Func

T27 Ind Comp BIN+SC FW Func

T28 Ind Comp BIN+SC FW Func

 Proc=
Procedural
language
Ind =
Independent
OO = Object
oriented

Comp =
Component
based
DB =
Database
driven

SC = Source
code
IM =
Intermediate
code for
virtual
machines
BIN =
Machine
code
Spec =
Input of a
certain
format

CF = Control
flow
FW = Fire
wall
Slicing
Dependency
based

Stm =
statement
Func =
Function
Class
Module
Component

Safe

Min =
Minimization

3.5 Analysis of the Empirical Evidence (RQ3)
Once we have defined which empirical studies exist and a list of the techniques they evaluate, we continue with

the third research question on whether there are significant differences between the techniques (RQ3). We give

an overview of the primary studies as such in Subsection 3.5.1. Then we focus on the metrics and evaluation

criteria used in different studies (3.5.2).

3.5.1 Types of empirical evidence
Table 10 overviews the primary studies by research method, and the size of the system used as subject. We

identified 21 unique controlled experiments and 15 unique case studies. Half of the experiments are conducted

on the same set of small programs [23], often referred to as the Siemens programs, which are made available

through the software infrastructure repository3 presented by Do et al. [8]. The number of large scale real life

evaluations is sparse. In this systematic review we found four (S25, S27, S28, S30). Both types of studies have

benefits and encounter problems, and it would be of interest to study the link between them, i.e. does a

technique which is shown to have great advantages in a small controlled experiment show the same advantages

in a large scale case study. Unfortunately no complete link was found in this review. However, the move from

small toy programs to medium sized components, which is observed among the studies, is a substantial step in

the right direction towards real-world relevance and applicability.

3 http://sir.unl.edu

 22

Table 10. Primary studies of different type and size
Type of studies Size of

subjects
under study

Number of
studies

%

Experiment Large 1 3

Experiment Medium 7 19

Experiment Small 13 36

Case study Large 4 11

Case study Medium 5 14

Case study Small 4 11

Case study Not reported 2 6

 Total 36 100

The empirical quality of the studies varies a lot. In order to obtain a sufficiently large amount of papers, our

inclusion criteria regarding quality had to be weak. Included in our analysis was any empirical evaluation of

regression test selection techniques if relevant metrics were used and a sufficiently rigorous data collection and

analysis could be followed in the report, see 2.4 for more details. This was independently assessed by two

researchers.

An overview of the empirically studied relations between techniques and studies are shown in Figure 4. Circles

represent techniques and connective lines between the techniques represent comparative studies. CS on the

lines refers to the number of case studies conducted in which the techniques are compared, and Exp denotes the

number of experimental comparisons. Some techniques have not been compared to any of the other techniques

in the diagram: T13, T14 and T20. These techniques are still empirically evaluated in at least one study,

typically a large scale case study. If no comparison between proposed techniques is made, the techniques are

compared to a reference technique instead, e.g. the retest of all test cases, and in some cases a random selection

of a certain percentage of test cases is used as a reference as well. The reference techniques are not shown in

Figure 4 for visibility reasons.

Researchers are more apt to evaluate new techniques or variants of techniques than to replicate studies, which

is clearly indicated by that we identified 28 different techniques in 27 papers. This gives rise to clusters of

similar techniques compared among them selves and techniques only compared to a reference method such as

re-test all.

 23

Figure 4. Techniques related to each other through empirical comparisons

Three clusters of techniques have been evaluated sufficiently to allow for meaningful comparison, see Figure 4;

C1: T2, T7, T8 and T18, C2: T4, T5, T6 and T12, and C3: T3, T9 and T25. Each of these pair of techniques has

been compared in at least two empirical studies. However, not all studies are conducted according to the same

evaluation criteria, nor is the quality of the empirical evidence equally high. Therefore we classified the results

with respect to empirical quality, as described in Section 2.6, and with respect to evaluation criteria, as desribed

below.

 24

3.5.2 Evaluation criteria
Do and Rothermel proposed a cost model for regression testing evaluation [9]. However, this model requires

several data which is not published in the primary studies. Instead, we evaluated the results with respect to each

evaluation criterion separately. We identified two main categories of metrics: cost reduction and fault detection

effectiveness. Five different aspects of cost reduction and two of fault detection effectiveness have been

evaluated in the primary studies. Table 11 gives an overview of the extent to which the different metrics are

used in the studies. Size of test suite reduction is the most frequent, evaluated in 76% of the studies. Despite

this, it may not be the most important metric. If the cost for performing the selection is too large in relation to

this reduction, no savings are achieved. In 42% of the studies the total time (test selection and execution) is

evaluated instead or as well. The effectiveness measures are either related 1) to test cases, i.e. the percentage of

fault-revealing test cases selected out of all fault-revealing test cases, or 2) to faults, i.e. the percentage of faults

out of all known ones, detected by the selected test cases.

Several of the studies concerning reduction of number of test cases are only compared to retest all (S8, S10,

S14-S21, S26, S32-S34)[19][32][42][49][50][65][66][67] with the only conclusion that a reduction of test

cases can be achieved, but nothing on the size of the effect in practice. This is a problem identified in

experimental studies in general [26]. Many studies evaluating time reduction are conducted on small programs,

and the size of the differences is measured in milliseconds, although there is a positive trend, over time,

towards using medium-sized programs. Only 30% of the studies consider both fault detection and cost

reduction. Rothermel proposed a framework for evaluation of regression test selection techniques [48] which

have been used in some evaluations. This framework defines four key metrics, inclusiveness, precision,

efficiency, and generality. Inclusiveness and precision corresponds to test case-related fault detection

effectiveness and precision, respectively, in Table 11. Efficiency is related to space and time requirements and

varies with test suite reduction as well as with test execution time and test selection time. Generality is more of

a theoretical reasoning, which is not mirrored in the primary studies.

Table 11. Use of evaluation metrics in the studies
 Evaluated Metrics Number % Rothermel framework [48]

Test suite reduction 29 76 Efficiency

Test execution time 7 18 Efficiency
Test selection time 5 13 Efficiency
Total time 16 42 Efficiency

Cost Reduction

Precision (omission of non-fault revealing tests) 1 3 Precision

Test case-related detection effectiveness 5 13 Inclusiveness Fault Detection Effectiveness

Fault-related detection effectiveness 8 21

 25

3.6 Comparison of Techniques (RQ43)

In response to our fourth research question (RQ4) we are analyzing the empirically evaluated relations between

the techniques by visualizing the results of the studies. Due to the diversity in evaluation criteria and in

empirical quality this visualization cannot give a complete picture. However, it may provide answers to specific

questions: e.g. Is there any technique applicable in my context proven to reduce testing costs more than the one

we use today?

Our taxonomy for analyzing the evidence follows the definitions in Table 2. Grey arrows indicate light weight

empirical result and black arrows indicate medium weight result. A connection without arrows in the figures

means that the studies have similar effect, while where there is a difference, the arrow points to the technique

that is better with respect to the chosen criterion. A connection with thicker line represents more studies. In

section 3.6.1, we report our findings regarding cost reduction and in section 3.6.2 regarding fault detection.

Note that the numbers on the arrows indicate number of collected metrics, which may be more than one per

study.

3.6.1 Cost reduction
Figure 5 reports the empirically evaluated relations between the techniques regarding the cost reduction,

including evaluations of execution time as well as of test suite reduction and precision.

The strongest evidence can be found in cluster C1, where T2 provides most reduction of execution costs. T7,

T8 and T18 reduce the test suites less than T2, and T8 among those reduces execution cost less than T18. All

techniques however, reduce test execution cost compared to REF1 (re-test all), which is a natural criterion for a

regression test selection technique.

In cluster C2, there is strong evidence that T6 and T12 have similar cost for test execution. On the other hand,

there is a study with weaker empirical evidence, indicating that T12 reduces execution cost more than T6.

The rest of the studies show rather weak empirical evidence, showing that the evaluated techniques reduce test

execution cost better than re-test all.

 26

Figure 5. Empirical results for Cost Reduction, including Test Execution Time, Test Suite Reduction and Precision.

One component of the cost for regression test selection is the analysis time needed to select which test cases to

re-execute. The selection time is reported separately for a small subset of the studies, as shown in Figure 6.

The left group primarily tells that T19 has less selection time than T15, and in C1, T8 has less analysis time

than T7.

 27

The results from cluster C2 shows mixed messages. T4 has in most cases the shortest selection time, although it

in one study is more time consuming than T6. The selection time is hence dependent on the subject programs,

test cases and types of changes done.

Figure 6. Empirical results for Test Selection Time

In Figure 7, the total time for analysis and execution together is shown for those studies where it is reported. It

is worth noting that some regression test selection techniques actually can be more time consuming than re-test

all (T7, T8, T10). Again, this is case dependent, but it is interesting to observe that this situation actually arises

under certain conditions.

Other relations are a natural consequence of the expansion of certain techniques. T9 (Object oriented firewall)

is less time consuming than T25 (extended OO firewall with data paths). Here an additional analysis is

conducted in the regression test selection.

 28

Figure 7. Empirical results for Total Time

3.6.2 Fault detection effectiveness
In addition to saving costs, regression test selection techniques should detect as many as possible of the faults

found by the original test suite. Evaluations of test case-related as well as fault-related detection effectiveness

are presented Figure 8.

Some techniques are proven to be safe, i.e. guarantees that the fault detection effectiveness is 100% compared

to the original test suite (see Section 3.4). This property is stated to hold for seven techniques: T7, T8, T10,

T15, T22, T23 and T24.

T7 and T8 within C2 are also those that can be found superior or equal from Figure 8, which is in line with the

safe property. T4 in C2 tends also to be better or equal to all its reference techniques. However, for the rest, the

picture is not clear.

 29

Figure 8. Empirical results for Fault Detection Effectiveness

4 DISCUSSION

4.1 The reviewed studies

The overall goal with the study was to identify regression test selection techniques and systematically assess

the empirical evidence collected about those techniques. As the selection of a specific technique is dependent

on many factors, the outcomes of empirical studies also depend on those factors. However only few factors are

specifically addressed in the empirical studies and hence it is not possible to draw very precise conclusions.

Nor is it possible to draw general conclusions. Instead we have conducted mostly qualitative assessments of the

empirical studies. From those we try to aggregate recommendations of which regression test selection

techniques to use.

 30

A comparison of the techniques in cluster C1 indicates that the minimization technique, T2, is the most

efficient in reducing time and/or number of test cases to run. However this is an unsafe technique (see Section

3.4) and all but one of six studies report on significant losses in fault detection. When it comes to safe

techniques, T7 is shown to be the most efficient in reducing test cases. However analysis time for T7 is shown

to be too long (it exceeds the time for rerunning all test cases) in early experiments, while in later experiments,

it is shown to be good. Hence, there is a trade-off between cost reduction and defect detection ability. This is

the case in all test selection, and none of the evaluated technique seems to have done any major breakthrough

in solving this trade-off.

It is interesting to notice that the technique T7 is not changed between the studies that show different results on

selection time, but the subject programs on which the experiments are conducted are changed. The subject

programs is one factor that heavily impacts on the performance of some techniques. This emphasizes the

importance of the regression testing context in empirical studies, and may also imply that specific studies have

to be conducted when selecting a technique for a specific environment.

As mentioned before, many techniques are incremental improvements of existing techniques, which are

demonstrated to perform better. For example, T25 is an extension of T9, with better fault detection at the cost

of total time. This is a pattern shown in many of the studies: improvements may be reached, but always at a

price for something else.

4.2 Implications for future studies
The standards for conducting empirical studies, and which measures to evaluate, differ greatly across the

studies. Rothermel and Harrold proposed a framework to constitute the basis for comparison [48], but it is not

used to any significant level in later research. Hence, it is not possible to conduct very strict aggregation of

research results, e.g. through meta analysis. It is however not necessarily the ultimate goal to compare specific

techniques. More general concepts would be more relevant to analyze, rather than detailed implementation

issues.

Examples of such concepts to evaluate are indicated in the headings of Table 9. Applicability: are different

techniques better suited for different languages or programming concepts, or for certain types of software?

Method: are some selection approaches better suited to find faults, independently of details in their

implementation? Which level of granularity for the analysis is effective – statement, class, component, or even

specification level? Other concepts are related to process, product and resources factors [53]. Process: How

frequent should the regression testing cycles be? At which testing level is the regression testing most efficient:

 31

unit, function, system? Product: Is regression testing different for different types and sizes of products?

Resources: Is the regression testing different with different skills and knowledge among the testers?

In the reviewed studies, some of these aspects are addressed: e.g. the size aspect, scaling up from small

programs to medium-sized [50], the level of granularity of the change analysis [3], as well as testing frequency

[27] and the effect of changes [11]. However, this has to be conducted more systematically by the research

community.

Since the outcomes of the studies depend on many different factors, replication of studies with an attempt to

keep as many factors stable as possible is a means to achieve a better empirical foundation for evaluation of

concepts and techniques. The use of benchmarking software and test suites is one way of keeping factors stable

between studies [8] However, in general, the strive for novelty in each research contribution tends to lead to a

lack of replications and thus a lack of deeper understanding of earlier proposed techniques.

A major issue in this review is to find the relevant information to compare techniques. Hence, for the future, a

more standardized documentation scheme would be helpful, as proposed by e.g. Jedlitschka and Pfahl [24]for

experiments and Runeson and Höst [52] for case studies. To allow enough detail despite page restrictions,

complementary technical reports could be published on the empirical studies.

5 CONCLUSIONS AND FUTURE WORK
In this paper we present results from a systematic review of empirical evaluations of regression test selection

techniques. Related to our research questions we have identified that:

RQ1, there are 28 empirically evaluated techniques on regression test selection published,

RQ2. these techniques might be classified according to: applicability on type of software and type of

language; details regarding the method such as which input is required, which approach is taken and

on which level of granularity is changes considered; and properties such as classification in

safe/unsafe or minimizing/not minimizing.

RQ3. the empirical evidence for differences between the techniques is not very strong, and sometimes

contradictory, and

RQ4. hence there is no basis for selecting one superior technique. Instead techniques have to be tailored

to specific situations, e.g. initially based on the classification of techniques.

We have identified some basic problems in the regression testing field which hinders a systematic review of the

studies. Firstly, there is a great variance in the uniqueness of the techniques identified. Some techniques may be

presented as novel at the time of their publications and others may be regarded as variants of already existing

 32

techniques. Combined with a tendency to consider replications as second class research, the case for

cooperative learning on regression testing techniques is not good. In addition to this, some techniques are

presented in a rather general manner, e.g. claimed to handle object-oriented programs, which gives much space

for different interpretations on how they may be implemented due to e.g. different programming language

constructs existing in different programming languages. This may lead to different (but similar)

implementations of a specific technique in different studies depending on e.g. the programming languages used

in the studies.

As mentioned in Section 1, to be able to select a strategy for regression testing, relevant empirical comparisons

between different methods are required. Where such empirical comparisons exist, the quality of the evaluations

must be considered. One goal of this study was to determine whether the literature on regression test selection

techniques provides such uniform and rigorous base of empirical evidence on the topic that makes it possible to

use it as a base for selecting a regression test selection method for a given software system.

Our study shows that most of the presented techniques are not evaluated sufficiently for a practitioner to make

decisions based on research alone. In many studies, only one aspect of the problem is evaluated and the context

is too specific to be easily applied directly by software developers. Few studies are replicated, and thus the

possibility to draw conclusions based on variations in test context is limited. Of course even a limited evidence

base could be used as guidance. In order for a practitioner to make use of these results, the study context must

be considered and compared to the actual environment into which a technique is supposed to be applied.

Future work for the research community is 1) focus more on general regression testing concepts rather than on

variants of specific techniques; 2) encourage systematic replications of studies in different context, preferably

with a focus on gradually scaling up to more complex environments; 3) define how empirical evaluations of

regression test selection techniques should be reported, which variation factors in the study context are

important.

6 ACKNOWLEDGMENTS
The authors acknowledge Dr. Carina Andersson for her contribution to the first two stages of the study. The

authors are thankful to librarian Maria Johnsson for excellent support in the search procedures. We appreciate

review comments from Prof. Sebastian Elbaum and the anonymous reviewers, which substantially have

improved the paper. The work is partly funded by the Swedish Governmental Agency for Innovation Systems

under grant 2005-02483 for the UPPREPA project, and partly funded by the Swedish Research Council under

grant 622-2004-552 for a senior researcher position in software engineering.

 33

7 REFERENCES

[1] Agrawal, H., Horgan, J.R., Krauser, E.W., and London, S.A. 1993. Incremental regression testing. In Proceedings. Conference on
Software Maintenance 1993. CSM-93 (Cat. No.93CH3360-5). IEEE Comput. Soc. Press, 348-57.

[2] Baradhi, G. and Mansour, N. 1997. A comparative study of five regression testing algorithms. Software Engineering Conference, 1997.
Proceedings. 1997 Australian. 174-182.

[3] Bible, J., Rothermel, G., and Rosenblum, D.S. 2001. A comparative study of coarse- and fine-grained safe regression test-selection
techniques. ACM Transactions on Software Engineering and Methodology. 10(2), 149-183.

[4] Binkley, D. 1998. The application of program slicing to regression testing. Information and Software Technology. 40(11-12), 583-94.
[5] Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., and Khalil, M. 2007. Lessons from applying the systematic literature review

process within the software engineering domain. Journal of Systems and Software. 80(4), 571-83.
[6] Chen, Y.-F., Rosenblum, D.S., and Vo, K.-P. 1994. Test tube: A system for selective regression testing. In Proceedings - International

Conference on Software Engineering. IEEE, Los Alamitos, CA, USA, 211-220.
[7] Dieste, O., Grimán, A., and Juristo, N. 2008. Developing search strategies for detecting relevant experiments. Empirical Software

Engineering.
[8] Do, H. Elbaum, S. and Rothermel, G. Supporting controlled experimentation with testing techniques: An infrastructure and its potential

impact, Empirical Software Engineering, An International Journal, V. 10, No. 4, October 2005
[9] Do, H. and Rothermel, G., An empirical study of regression testing techniques incorporating context and lifecycle factors and improved

cost-benefit models, Proceedings of the ACM SIGSOFT Symposium on Foundations of Software Engineering, November 2006, pages
141-151.

[10] Dybå, T., Dingsöyr, T., and Hanssen, G.K. 2007. Applying Systematic Reviews to Diverse Study Types: An Experience Report. In First
International Symposium on Empirical Software Engineering and Measurement, 2007, ESEM 2007. 225-234.

[11] Elbaum, S., Kallakuri, P., Malishevsky, A., Rothermel, G., and Kanduri, S. 2003. Understanding the effects of changes on the cost-
effectiveness of regression testing techniques. Software Testing, Verification and Reliability. 13(2), 65-83.

[12] Engström, E., Skoglund, Mats, Runeson, Per. 2008. Empirical Evaluations of Regression Test Selection Techniques: A Systematic
Review. ESEM 08

[13] Fischer, K., Raji, F., and Chruscicki, A. 1981. A methodology for retesting modified software. In NTC '81. IEEE 1981 National
Telecommunications Conference. Innovative Telecommunications - Key to the Future. IEEE, 6-3.

[14] Frankl, P.G., Rothermel, G., Sayre, K., and Vokolos, F.I. 2003. An empirical comparison of two safe regression test selection techniques.
Empirical Software Engineering, 2003. ISESE 2003. Proceedings. 2003 International Symposium on. 195-204.

[15] Graves, T.L., Harrold, M.J., Kim, J.M., Porter, A., and Rothermel, G. 2001. An empirical study of regression test selection techniques.
ACM Transactions on Software Engineering and Methodology. 10(2), 184-208.

[16] Gupta, R., Harrold, M.J., and Soffa, M.L. 1992. An approach to regression testing using slicing. In Conference on Software Maintenance
1992 (Cat.No.92CH3206-0). IEEE Comput. Soc. Press, 299-308.

[17] Gupta, R., Harrold, M.J., and Soffa, M.L. 1996. Program slicing-based regression testing techniques. Software Testing, Verification and
Reliability. 6(2), 83-111.

[18] Haftmann, F., Kossmann, D., and Lo, E. 2007. A framework for efficient regression tests on database applications. VLDB Journal. 16(1),
145-64.

[19] Harrold, M.J., Jones, J.A., Tongyu, L., Donglin, L., Orso, A., Pennings, M., Sinha, S., Spoon, S.A., and Gujarathi, A. 2001. Regression
test selection for Java software. In SIGPLAN Not. (USA). ACM, 312-26.

[20] Harrold, M.J. and Souffa, M.L. 1988. An incremental approach to unit testing during maintenance. In Proceedings of the Conference on
Software Maintenance - 1988 (IEEE Cat. No.88CH2615-3). IEEE Comput. Soc. Press, 362-7.

[21] Hartmann, J. and Robson, D.J. 1988. Approaches to regression testing. In Proceedings of the Conference on Software Maintenance - 1988
(IEEE Cat. No.88CH2615-3). IEEE Comput. Soc. Press, 368-72.

[22] Hartmann, J. and Robson, D.J. 1990. Techniques for selective revalidation. IEEE Software. 7(1), 31-6.
[23] Hutchins, M., Foster, H., Goradia, T., and Ostrand, T. 1994. Experiments on the effectiveness of dataflow- and control-flow-based test

adequacy criteria. In ICSE-16. 16th International Conference on Software Engineering (Cat. No.94CH3409-0). IEEE Comput. Soc. Press,
191-200.

[24] Jedlitschka, A.and Pfahl, D. 2005. Reporting Guidelines for Controlled Experiments in Software Engineering, In Proceedings of ACM/
IEEE International Symposium on Empirical Software Engineering, pp 95-104

[25] Juristo, N., Moreno, A.M., Vegas, S., and Solari, M. 2006. In search of what we experimentally know about unit testing [software testing].
IEEE Software. 23(6), 72-80.

[26] Kampenes Vigdis, B., Dybå, T., Hannay Jo, E., and Sjöberg Dag, I.K. 2007. A systematic review of effect size in software engineering
experiments. Information and Software Technology. 49(11-12), 1073-1073.

[27] Kim, J.-M., Porter, A., and Rothermel, G. 2005. An empirical study of regression test application frequency. Software Testing,
Verification and Reliability. 15(4), 257-279.

 34

[28] Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., and Linkman, S. 2009. Systematic literature reviews in software
engineering - A systematic literature review. Information and Software Technology. Volume 51(Issue 1), Pages 7-15.

[29] Kitchenham, B.A. 2007. Guidelines for performing Systematic Literature reviews in Software Engineering Version 2.3. Technical Report
S.o.C.S.a.M. Software Engineering Group, Keele University and Department of Computer Science University of Durham.

[30] Kitchenham, B.A., Mendes, E., and Travassos, G.H. 2007. Cross versus within-company cost estimation studies: a systematic review.
IEEE Transactions on Software Engineering. 33(5), 316-29.

[31] Klosch, R.R., Glaser, P.W., and Truschnegg, R.J. 2002. A testing approach for large system portfolios in industrial environments. Journal
of Systems and Software. 62(1), 11-20.

[32] Koju, T., Takada, S., and Doi, N. 2003. Regression Test Selection based on Intermediate Code for Virtual Machines. In Conference on
Software Maintenance. Institute of Electrical and Electronics Engineers Inc., 420-429.

[33] Landis, J.R. and Gary, G.K. 1977. The Measurement of Observer Agreement for Categorical Data. Biometrics. 33(1), 159-174.
[34] Leung, H.K.N. and White, L. 1990. Insights into testing and regression testing global variables. Journal of Software Maintenance:

Research and Practice. 2(4), 209-22.
[35] Leung, H.K.N. and White, L. 1990. A study of integration testing and software regression at the integration level. In Proceedings.

Conference on Software Maintenance 1990 (Cat. No.90CH2921-5). IEEE Comput. Soc. Press, 290-301.
[36] Mansour, N., Bahsoon, R., and Baradhi, G. 2001. Empirical comparison of regression test selection algorithms. The Journal of Systems

and Software. 57(1), 79-90.
[37] Mansour, N. and El-Fakih, K. 1997. Natural optimization algorithms for optimal regression testing. In Proceedings - IEEE Computer

Society's International Computer Software & Applications Conference. IEEE, Los Alamitos, CA, USA, 511-514.
[38] Mao, C. and Lu, Y. 2005. Regression testing for component-based software systems by enhancing change information. In Proceedings.

12th Asia-Pacific Software Engineering Conference. IEEE Computer Society, 8 pp.
[39] Memon, A.M. 2004. Using tasks to automate regression testing of GUIs. In IASTED International Conference on Artificial Intelligence

and Applications - AIA 2004. ACTA Press, 477-82.
[40] Orso, A., Harrold, M.J., Rosenblum, D., Rothermel, G., Soffa, M.L., and Do, H. 2001. Using component metacontent to support the

regression testing of component-based software. In Proceedings IEEE International Conference on Software Maintenance. ICSM 2001.
IEEE Comput. Soc, 716-25.

[41] Orso, A., Nanjuan, S., and Harrold, M.J. 2004. Scaling regression testing to large software systems. In Softw. Eng. Notes (USA). ACM,
241-51.

[42] Pasala, A. and Bhowmick, A. 2005. An approach for test suite selection to validate applications on deployment of COTS upgrades. In
Proceedings - Asia-Pacific Software Engineering Conference, APSEC. IEEE Computer Society, Los Alamitos, CA 90720-1314, United
States, 401-407.

[43] Pei, H., Xiaolin, L., Kung, D.C., Chih-Tung, H., Liang, L., Toyoshima, Y., and Chen, C. 1997. A technique for the selective revalidation
of OO software. Journal of Software Maintenance: Research and Practice. 9(4), 217-33.

[44] Ren, X., Shah, F., Tip, F., Ryder, B.G., and Chesley, O. 2004. Chianti: A tool for change impact analysis of java programs. In 19th Annual
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA'04. Association for Computing
Machinery, New York, NY 10036-5701, United States, 432-448.

[45] Rothermel, G., Elbaum, S., Malishevsky, A., Kallakuri, P., and Davia, B. 2002. The impact of test suite granularity on the cost-
effectiveness of regression testing. In Proceedings - International Conference on Software Engineering. Institute of Electrical and
Electronics Engineers Computer Society, 130-140.

[46] Rothermel, G., Elbaum, S., Malishevsky, A.G., Kallakuri, P., and Xuemei, Q. 2004. On test suite composition and cost-effective
regression testing. ACM Transactions on Software Engineering and Methodology. 13(3), 227-331.

[47] Rothermel, G. and Harrold, M.J. 1993. A safe, efficient algorithm for regression test selection. Software Maintenance ,1993. CSM-93,
Proceedings., Conference on. 358-367.

[48] Rothermel, G. and Harrold, M.J. 1996. Analyzing regression test selection techniques. IEEE Transactions on Software Engineering. 22(8),
529-51.

[49] Rothermel, G. and Harrold, M.J. 1997. A safe, efficient regression test selection technique. ACM Transactions on Software Engineering
and Methodology. 6(2), 173-210.

[50] Rothermel, G. and Harrold, M.J. 1998. Empirical studies of a safe regression test selection technique. IEEE Transactions on Software
Engineering. 24(6), 401-19.

[51] Rothermel, G., Harrold, M.J., and Dedhia, J. 2000. Regression test selection for C++ software. Journal of Software Testing Verification
and Reliability. 10(2), 77-109.

[52] Runeson, P. and Höst, M. Guidelines for conducting and reporting case study research in software engineering, Empirical Software
Engineering, 14(2):131-164, 2009.

[53] Runeson, P., Skoglund, M. and Engström, E. Test Benchmarks – what is the question?, TestBench Workshop at International Conference
on Software Testing, Verification and Validation, Lillehammer, Norway, April 2008.

[54] Sajeev, A.S.M. and Wibowo, B. 2003. Regression test selection based on version changes of components. In Tenth Asia-Pacific Software
Engineering Conference. IEEE Comput. Soc, 78-85.

 35

[55] Shadish, T., Cook, T., and Campbell, D. 2002. Experimental and Quasi-Experimental Designs - for Generalized Causal Inference. 2 ed,
Boston: Houghton Mifflin Company. 623.

[56] Skoglund, M. and Runeson, P. 2005. A case study of the class firewall regression test selection technique on a large scale distributed
software system. In 2005 International Symposium on Empirical Software Engineering (IEEE Cat. No. 05EX1213). IEEE, 10 pp.

[57] Staples, M. and Niazi, M. 2007. Experiences using systematic review guidelines. The Journal of Systems & Software. 80(9), 1425-
37.

[58] Toshihiko, K., Shingo, T., and Norihisa, D. 2003. Regression test selection based on intermediate code for virtual machines. In
Proceedings International Conference on Software Maintenance ICSM 2003. IEEE Comput. Soc, 420-9.

[59] White, L. and Abdullah, K. 1997. A firewall approach for the regression testing of object-oriented software. Software Quality Week
[60] White, L., Jaber, K., and Robinson, B. 2005. Utilization of extended firewall for object-oriented regression testing. In IEEE International

Conference on Software Maintenance, ICSM. IEEE Computer Society, Los Alamitos, CA 90720-1314, United States, 695-698.
[61] White, L. and Robinson, B. 2004. Industrial real-time regression testing and analysis using firewalls. Software Maintenance, 2004.

Proceedings. 20th IEEE International Conference on. 18-27.
[62] White, L.J. and Leung, H.K.N. 1992. A firewall concept for both control-flow and data-flow in regression integration testing. In

Conference on Software Maintenance 1992 (Cat.No.92CH3206-0). IEEE Comput. Soc. Press, 262-71.
[63] Willmor, D. and Embury, S.M. 2005. A safe regression test selection technique for database-driven applications. In Proceedings of the

21st IEEE International Conference on Software Maintenance. IEEE Comput. Soc, 421-30.
[64] Vokolos, F.I. and Frankl, P.G. 1997. Pythia: a regression test selection tool based on textual differencing. In Reliability, Quality and

Safety of Software-Intensive Systems. IFIP TC5 WG5.4 3rd International Conference. Chapman & Hall, 3-21.
[65] Vokolos, F.I. and Frankl, P.G. 1998. Empirical evaluation of the textual differencing regression testing technique. In Proceedings.

International Conference on Software Maintenance (Cat. No. 98CB36272). IEEE Comput. Soc, 44-53.
[66] Wong, W.E., Horgan, J.R., London, S., and Agrawal, H. 1997. A study of effective regression testing in practice. In Proceedings. The

Eighth International Symposium on Software Reliability Engineering (Cat. No.97TB100170). IEEE Comput. Soc, 264-74.
[67] Wu, Y., Chen, M.-H., and Kao, H.M. 1999. Regression testing on object-oriented programs. In Proceedings 10th International Symposium

on Software Reliability Engineering (Cat. No.PR00443). IEEE Comput. Soc, 270-9.
[68] Yanping, C., Robert, L.P., and Sims, D.P. 2002. Specification-based regression test selection with risk analysis. Proceedings of the 2002

conference of the Centre for Advanced Studies on Collaborative research. IBM Press.
[69] Yin, R.K. 2003. Case Study Research - Design and Methods Applied Social Research Methods Series, ed. D.J.R. Leonard Bickman. Vol.

5, London: Sage Publications.
[70] Zheng, J. 2005. In regression testing selection when source code is not available. Proceedings of the 20th IEEE/ACM international

Conference on Automated software engineering. ACM.
[71] Zheng, J., Robinson, B., Williams, L., and Smiley, K. 2005. An initial study of a lightweight process for change identification and

regression test selection when source code is not available. In Proceedings - International Symposium on Software Reliability
Engineering, ISSRE. IEEE Computer Society, 225-234.

[72] Zheng, J., Robinson, B., Williams, L., and Smiley, K. 2006. Applying regression test selection for COTS-based applications. In
Proceedings - International Conference on Software Engineering. Institute of Electrical and Electronics Engineers Computer Society,
Piscataway, NJ 08855-1331, United States, 512-521.

[73] Zheng, J., Robinson, B., Williams, L., and Smiley, K. 2006. An initial study of a lightweight process for change identification and
regression test selection when source code is not available. In Proceedings. 16th IEEE International Symposium on Software Reliability
Engineering. IEEE Computer Society, 10 pp.

[74] Zheng, J., Robinson, B., Williams, L., and Smiley, K. 2006. A lightweight process for change identification and regression test selection in
using COTS components. In Proceedings - Fifth International Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems.
Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 137-143.

