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Abstract

Optical spectroscopy is a versatile and powerful tool to probe
translucent materials. In this work, the focus is on characterization
of strongly scattering (turbid) materials by means of time-of-flight
spectroscopy (TOFS). Instrumentation and modelling aspects of
TOFS were investigated and improved, enabling significantly more
accurate spectroscopic measurements.

It was shown that the commonly used diffusion theory fails to
accurately describe time-domain light propagation in e.g. tissue. A
fully scalable Monte Carlo (MC) scheme (WMC) was developed,
enabling MC to replace diffusion models in TOFS data evalua-
tion. Consequently, the accuracy and capabilities of TOFS were
significantly improved. Graphics processing units (GPUs) were in-
troduced for acceleration of MC simulations in general, resulting
in three orders of magnitude speedup. It was shown that proper
utilization of the capabilities of modern GPUs allow similar per-
formance, even for more complex problems.

TOFS in combination with WMC was used in in vivo intersti-
tial spectroscopy of the human prostate, demonstrating the need
for better modelling in many clinical applications. To aid future
interstitial in vivo measurements, a single-fibre TOFS system was
developed and demonstrated in phantom experiments.

Turning to investigations of pharmaceutical samples, a time-of-
flight spectrometer, covering the 650-1400 nm spectral range, was
developed, enabling TOFS for vibrational spectroscopy of solids.
In spatially resolved TOFS measurements, compaction induced
anisotropic light diffusion was observed. This is of great impor-
tance for the application of model-based optical spectroscopic tech-
niques and may, in addition, provide important information about
the sample microstructure. Furthermore, TOFS was used together
with laser-based gas sensing to probe porous solids. Although a
need for better models was revealed, excellent correlation between
optical and actual porosity was demonstrated.
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Populärvetenskaplig
sammanfattning

Denna avhandling handlar om optisk spektroskopi, d.v.s. att med
hjälp av ljus bestämma fysiska och kemiska egenskaper hos ett
prov.

När ljus interagerar med atomer och molekyler absorberas en-
dast ljus av vissa v̊aglängder (färger). Exakt vilka färger som ab-
sorberas är unikt för varje sorts atom eller molekyl och utgör allts̊a
ett sorts ”fingeravtryck”. Genom att noggrant studera spektrat,
d.v.s. hur absorptionen av ljus varierar med v̊aglängden, kan man
bestämma vilka ämnen som finns i ett prov. Om man dessutom
vet hur l̊angt ljuset passerade igenom provet kan man räkna ut
exakt vilken koncentration av ämnent som finns i provet. Detta är
en standardmetod för att mäta koncentrationer av ämnen i genom-
skinliga prover och används idag i oräkneliga tillämpningar världen
över.

G̊ar man över till grumliga prov, som till exempel mjölk blir
situationen lite sv̊arare. Mjölk, liksom papper, snö, moln, vit färg
m.m. f̊ar sin vita färg av att ljuset hela tiden sprids, d.v.s. byter
riktning, när det färdas i materialet. Mängden ljus och vilka
färger som tar sig igenom ett grumligt prov beror allts̊a b̊ade p̊a
hur provet sprider och absorberar ljuset och man kan inte längre
enkelt bestämma provets kemiska komposition.

I denna avhandling används en metod vid namn tidsupplöst
spektroskopi för att optiskt undersöka grumliga material. Metoden
bygger p̊a att man skickar in extremt korta ljuspulser (miljondelars
miljondels sekund l̊anga) i materialet och studerar hur dessa pulser
breddas i tiden när de breder ut sig i det spridande provet. Genom
att jämföra hur pulsena breddas med matematiska modeller av
ljusutbredning kan effekterna av spridning och absorption separ-
eras. Den kemiska kompositionen kan nu bestämmas, samtidigt
som spridningseffekterna ger information om den mikroskopiska
strukturen hos materialet; i fallet mjölk kan t.ex. koncentrationen
och storleken p̊a mjölkens fettpartiklar bestämmas.
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Abstract

I männsklig vävnad, som optiskt beter sig likt mjölk, är
kemisk komposition och mikrostruktur av stort medicinskt
intresse. Optiska metoder har visat sig lovande t.ex. när det
kommer till att upptäcka och behandla cancer. Detta är extra
intressant eftersom ljuset som används är ofarligt för kroppen, till
skillnad mot t.ex. Röntgenstr̊alning. Ytterligare tillämpningar
finns t.ex. i farmaceutisk industri där fr̊agor som: ”Hur mycket
läkemedel finns det i en tablett?” och ”Var i mag-tarmkanalen
kommer läkemedlet att frigöras?” kan besvaras genom analys av
kemisk sammansättning respektive materialstruktur. B̊ada dessa
egenskaper kan potentiellt sett mätas med hjälp av ljus, utan att
man ens behöver röra tabetten.

I avhandlingsarbetet har stort fokus lagts p̊a att förbättra
tidsupplöst spektroskopi. Detta har gjorts genom att utveckla
nya mätinstrument och mätmetoder men framför allt genom att
utveckla och snabba upp de matematiska modellerna som används
för att utvärdera experimentell data. Detta har lett till att bättre
modeller av ljusutbredningen kan användas, d̊a det visade sig att
konventionella modeller inte var tillräckligt exakta. Samman-
fattningsvis ledde detta till mer noggranna resultat och ökade
möjligheter för metoden.

Ytterligare har tidsupplöst spektroskopi använts för att karak-
terisera olika material, t.ex. mänsklig prostatavävnad och tablet-
ter inneh̊allande läkemedel.
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Chapter 1

Introduction

Optical spectroscopy is the subject concerned with the interaction
between matter (atoms and molecules) and electromagnetic energy
[1]. The interaction processes, e.g. absorption and scattering, are
dependent on the energy, or wavelength, of the radiation and this
dependence over a range of energies is called a spectrum. In the
case of absorption, as a result of quantum mechanics, these spec-
tra are unique for different kinds of atoms and molecules. Conse-
quently, measuring the spectra allows detection, identification and
quantification of the chemical composition of samples. Spectro-
scopic techniques play an important role in science and technol-
ogy, and are widely used in physical and analytical chemistry [2],
astronomy [3, 4], remote sensing [5], combustion physics [6] etc.

In addition to revealing the chemical composition of samples,
spectroscopic techniques may be used to determine physical
properties of objects by studying the spectrum of other interac-
tion processes, such as scattering. This is used in, for example,
determining the size distributions of particles in the atmospheres
of distant planets [7], or assessment of pore size distributions in
high density ceramics [8].

This thesis is devoted to optical spectroscopy of turbid mate-
rials, such as biological tissues and pharmaceutical preparations.
In these materials, two interaction processes, absorption and scat-
tering, are simultaneously present. The strong scattering process
makes conventional absorption spectroscopy inapplicable as a sim-
ple transmission spectrum depends on the scattering and absorp-
tion processes in a complex manner. To overcome this problem,
optical time-of-flight spectroscopy (TOFS) is employed.

In TOFS, the time-evolution of a short optical pulse propa-
gating in a turbid material is measured. The temporal shape of
the detected pulse is a signature of the average scattering and
absorption properties of the probed sample. By carefully study-
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1.1 Overview of the scientific work

Physical reality Measurement Measurement data

Physical model Modelled data

Sample (Tissue)

-Microstructure

-Chemical composition

Radiative transport
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Solution
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Diffusion theory

TOFS TOF curves

Simulated TOF curves

Forward model

Time

C
o
u
n
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Time

C
o
u
n
ts

Data evaluation

Figure 1.1. Overview of the process of optical spectroscopy in tur-
bid materials, using time-of-flight spectroscopy (TOFS). Modified from
Nilsson [17].

ing the temporal shape, the strengths of the two processes can
be separated. Measurements over a range of wavelengths yields
the absorption and scattering spectra, which in turn, may be re-
lated to the chemical composition and microstructure of the sam-
ple respectively. TOFS, and related techniques for diffuse optical
spectroscopy (DOS) have found use, for example various aspects
of medicine. The most well known example is the pulse oximeter
[9], a basic and vital tool at every hospital, but more advanced
applications are emerging, such as cancer detection [10, 11] and
aid in, and monitoring, of tumour treatment [12–16].

Although not strictly spectroscopy, single wavelengths mea-
surements using TOFS may also be used to gather valuable in-
formation, such as in material characterisation.

1.1 Overview of the scientific work

Fig. 1.1 provides an overview of the entire TOFS measurement
and evaluation process, which also serves an overview of the work
in this thesis.

In the context of a spectroscopic measurement, the sample, for
example tissue, represents the physical reality. As mentioned in
the previous section the spectroscopic measurements aims to ac-
curately assess the properties, e.g. chemical composition and mi-
crostructure, of the sample. The sample is subject to a measure-
ment, in this case using a TOFS system, resulting in measured
data, i.e. a set of time-of-flight (TOF) curves. In this upper track
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Introduction

of Fig. 1.1 two things are important to note. First, it is of utmost
importance to a have well working instrument, capable of probing
and resolving the sample physical quantities of interest. Second,
while the TOF curves contain information on the sample, the ex-
traction of this information is not straightforward. One way of
relating measurement data to sample properties is by calibration
i.e. by comparing the measured data to previous measurements
performed on samples with known properties. Another way is the
so-called model-based approach, where the data is compared to a
model of the measurement case. The first step in this approach is
to construct a physical model, for example, using mathematics
to describe how nature behaves.

In this thesis the major physical model is radiative transport.
In radiative transport, the transport problem is described using
a differential equation, where the sample properties are described
by a set of coefficients. Several ways of solving this equation ex-
ist, such as diffusion theory and Monte Carlo simulations. In the
calculation of the solution, the measurement geometry etc. is
taken into account, resulting in a set of simulated TOF curves. If
the model is accurate, and the coefficients used in the model are
correct, this modelled data should correspond to the curves mea-
sured by the TOFS system. This problem of creating a physical
model and solving it is called forward modelling, or the forward
problem.

While not trivial, going from left to right in Fig. 1.1 is at least
intuitive; a sample can be measured and the response of a sample
can be mathematically modelled. However, as stated before, the
problem of interest is rather to assess sample properties from a
measurement, i.e. going from right to left. This is called the inverse
problem. The inverse problem may be solved using the forward
model. This is done by first making a guessing the properties of
the sample and using this guess as the input in the forward model,
resulting in a set of curves. The “guess” curves are compared to
the measured curves and a new guess is made, based on how good
the previous guess was. This process is iterated until the best
agreement between the simulated and the measured data is found.
It is evident that the forward model needs to accurately model the
physics and that it needs to be fast in order to be applicable in
this iterative fitting scheme.

3



1.2 Aim and outline of the thesis

1.2 Aim and outline of the thesis

Three general aims can be stated:

(i) To develop and improve the TOFS technique.

(ii) To improve the modelling of light propagation in turbid me-
dia, with emphasis on accurate and fast models for evaluation
of TOFS data.

(iii) To explore the application of TOFS in biological and phar-
maceutical samples.

Detailed descriptions of the scientific contributions, achieved in
pursuit of these goals, are found in the peer-reviewed scientific ar-
ticles that are enclosed at the end of the thesis. The purpose of the
thesis chapters is to put these contributions into a broader context,
and to provide a more thorough understanding of the models used.

The thesis chapters, and their connections to the papers are
outlined below

Chapter 2 outlines the link between the physical reality and the
physical model i.e. how light interacts with turbid media,
such as biological tissue. In order to provide a forward model
which may be solved with realistic effort, the physical real-
ity is reduced to a theory of radiative transport, where the
sample microstructure and chemical composition are reduced
to two interaction coefficients, µs and µa, and a scattering
phase function p(̂s′, ŝ).

Chapter 3 describes the Monte Carlo method, a technique for
solving the radiative transport equation. Monte Carlo solu-
tions are accurate but generally prohibitively slow. In order
to use the technique in TOFS data evaluation, a powerful
variance reduction technique was used in Paper I, result-
ing in a significant improvement of the accuracy of TOFS.
Consequently, Monte Carlo was used in inverse modelling in
Papers VI, and IV. In Papers II, and III, graphics process-
ing units were introduced and explored in order to accelerate
the forward Monte Carlo model for more general problems,
resulting in a performance boost of several orders of magni-
tude. This enabled the simulations presented in Paper IX.

Chapter 4 discusses diffusion theory, a simplification of radiative
transport featuring simple analytical solutions. Diffusion
theory is widely used but suffers from limited validity under
certain conditions. In Papers I, and VI, time-domain dif-
fusion theory was compared to Monte Carlo, revealing large
inaccuracies when using diffusion models to evaluate TOFS
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data. In order to understand why diffusion theory fails, the
approximations in diffusion theory are emphasized using an
alternative derivation of the theory.

Chapter 5 covers various aspects of TOFS, such as instrumenta-
tion, advantages and disadvantages of the technique, possible
applications of TOFS, etc. Papers V, and IX relates to the
instrument aspect of TOFS. In Paper IV TOFS was used to
perform in vivo spectroscopy of the human prostate, and in
Papers VII and VIII TOFS was explored as a tool to assess
structural properties of porous materials.
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Chapter 2

Light-matter interactions and
radiative transport theory

This chapter introduces radiative transport theory (RTT) and the
radiative transport equation (RTE), the fundamental equation of
interest in many applications of diffuse optical spectroscopy. In
order to understand the underlying physics of RTT, the chapter
begins with a brief reminder of how light interacts with matter
and how the scattering coefficient, µs, the absorption coefficient,
µa, and the scattering phase function, p(̂s′, ŝ), relates to the more
fundamental wave theory of light.

In the end of the chapter different ways of solving the RTE and
properties of the solutions are briefly discussed, setting the stage
for Chapter 3 and 4.

2.1 Light-matter interaction

This section gives a very brief introduction to electrodynamics,
highlighting a few important concepts that are needed for the dis-
cussion in the preceding sections.

2.1.1 Electromagnetic wave theory

The fundamental equations describing the behaviour of electro-
magnetic fields are the microscopic Maxwell equations [18] (in SI
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2.1.1 Electromagnetic wave theory

units):

∇×E = −∂B

∂t
, (2.1)

∇×B = µ0J + µ0ε0
∂E

∂t
, (2.2)

∇ ·E =
1

ε0
ρ, (2.3)

∇ ·B = 0, (2.4)

where E and B are the electric and magnetic fields, respectively,
which may vary in space, r, and with time, t. The vacuum per-
mittivity, ε0, and the vacuum permeability, µ0 are fundamental
constants. The charge- and current density are denoted ρ and
J, respectively. In the materials of interest in this thesis, e.g.
biological tissue, the contribution of free currents and charges
are negligible [19]. Therefore, ρ and J describe the microscopic
(“bound”) charges and currents i.e. electron clouds bound to atoms
or molecules. Further, the materials may be considered non-
magnetic (µr = 1, i.e. the permeability of the materials is the
same as that of vacuum, µ0). In conclusion, the charge density
and current density originate from the electric dipoles induced in
the material by the E-field,

ρ = −∇ ·P, (2.5)

J =
∂P

∂t
, (2.6)

where P is the polarization, describing the dipole moment density.
Assuming the medium is linear and isotropic the polarization may
be written

P = ε0χE, (2.7)

where χ is the linear susceptibility which may vary in space and
time. It is convenient to combine Eq. 2.3, 2.5, and 2.7 into

D = ε0E + P = εE, (2.8)

where D is called the electric displacement, and ε is the (complex)
permittivity of the material

ε(r, t) = ε0εr = ε0(1 + χ(r, t)). (2.9)

In absence of free charges

∇ ·D = 0, (2.10)

replaces Eq. 2.3 in the Maxwell equations.
In principle, the Maxwell equations and the complex permit-

tivity ε(r, t) is everything needed to completely characterize the
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behaviour of any system under the assumptions made above.
However, in turbid materials such as tissue, ε varies spatially
on all microscopically relevant length-scales, from nanometres
to micrometres, and may vary in time as well. Hence, both
defining turbid materials on a macroscopic scale, millimetres to
centimetres, as well as solving the equations for such materials
becomes an impossible task. In order to describe the transport of
light on a macroscopic scale, simplifications are necessary.

Taking the curl of Eq. 2.1 leads to a wave equation for the elec-
tric field (the same may be shown for the magnetic field), showing
that in a homogeneous medium electromagnetic energy propagates
as a wave with electric and magnetic field vectors perpendicular
to each other as well as the propagation direction of the wave.
In vacuum, the wave travels with the speed c = 1/

√
ε0µ0 i.e. the

speed of light. In a medium (as described above) the speed of the
wave, called the phase velocity, is vp = c/<(n), where n is the re-
fractive index, n =

√
εrµr. The refractive index is commonly used

in optics to describe the properties of a materials and can, in the
context of this thesis, be treated as an equivalent to the relative
permittivity (as µr = 1).

The Poynting vector, S is a quantity describing the energy per
unit time, per unit area transported by the fields:

S(t) =
1

µ0
(E×B). (2.11)

However, the Poynting vector may fluctuate rapidly. Instead the
time averaged (over several oscillations) Poynting vector is consid-
ered

〈S〉 =
1

2

1

µ0µr
<(E×B∗). (2.12)

2.2 Scattering

Scattering is the physical process that occurs when a propagating
wave encounters an inhomogeneity in the medium in which it
propagates. Consider, for example, a lone atom suspended in free
space. The atom is composed of a positively charged nucleus (e.g.
a proton) surrounded by a negatively charged electron cloud. If
subjected to an oscillating electric field, such as an electromagnetic
wave, the field will accelerate the charges forcing them into an
oscillatory motion. Accelerating charges radiate electromagnetic
energy in all directions; the electromagnetic wave is “scattered”.
This process is true also for aggregates of atoms, molecules, and
even macroscopic collections of molecules i.e. macroscopic objects.
In terms of macroscopic wave propagation scattering may be
seen as a distortion of the wave front of a propagating wave by
an inhomogeneity in the medium, forcing energy of the wave to
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2.2.1 Scattering by a single particle

c) Esca

b) Einc

a) E = Einc + Esca

Figure 2.1. An FDTD simulation
of electromagnetic wave
propagation in 2 dimensions. The
real part of the electric field is
shown (the intensity scale is
optimized for each subfigure) for
the incoming field Einc, a plane
monochromatic wave propagating
from left to right and the field in
presence of a small circular
scatterer E. The scattered field,
Esca = E−Einc is also shown,
showing a spherical wave
propagating outwards from the
scatterer with intensity varying
with the direction. Modified from
[20].

propagate in new directions. The inhomogeneity, if localized,
is called a scatterer. Below, scattering by a single scatterer
is first discussed, followed by a discussion of light propagation
in i medium with many scatterers present, so called multiple
scattering.

Scattering by single particles is the subject of several books
(see e.g. [21–23]). Similarly, multiple scattering is covered by e.g.
[20, 23–26].

In this thesis only elastic scattering is considered, i.e. where
the energy, and thus the wavelength, is conserved in the scattering
process. Several inelastic scattering phenomena also exist, such as
Raman- and Brillouin scattering, but these processes are typically
much weaker than elastic scattering [1] and may be ignored in this
context.

2.2.1 Scattering by a single particle

Here, a single scatterer in an unbounded homogeneous medium is
considered. A plane harmonic wave is incident on the particle, and
is consequently distorted by the presence of the scatterer, creating
a new field. This resulting field, E, may be expressed as the sum
of the incoming field, Einc and the scattered field Esca. This sepa-
ration of the field is purely mathematical, E is the actual physical
field. However, it is evident that energy is transferred from Einc

to Esca and that energy may radiate from the scattering particle
in all directions. This is illustrated in Fig. 2.1 showing the results
of a 2D finite difference time-domain (FDTD) simulation of the
scattering a plane harmonic wave by a small particle.

Due to the limited complexity of the above problem, the
Maxwell equations can be used to solve the problem directly either
analytically or numerically. Early and important contributions in-
clude the work by Rayleigh on scatterers much smaller than the
wavelength of light, e.g. molecules [27, 28] (called Rayleigh scat-
tering) and on spherical scatterers by Mie [29] (Mie scattering).
The scattered field Esca, originating from a plane wave scattered
by a single scatterer, may be characterized by a single parameter:
the differential scattering cross section, ∂σsca. This parameter de-
scribes the angular distribution of the power of the scattered field
(the Poynting vector of the far field scattered field). It should be
noted that the differential scattering cross section, and all param-
eters derived from it, is wavelength dependent ∂σsca = ∂σsca(λ).
The explicit notation of this dependence have been left out for
brevity. Integrating the differential scattering cross section over
all solid angles yields the scattering cross section,

σsca =

∫

4π

∂σscadω
′, (2.13)
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which, avoiding geometrical interpretations, describe the strength
(or probability) of interaction between the incident and scattered
fields. Normalizing the differential scattering cross section with the
scattering cross section yields the (single) scattering phase function

p(̂s′, ŝ) =
∂σsca

σsca
. (2.14)

The scattering phase function is, in essence, a characterization of
the far field of the scattered field. It describes the Poynting vector
of the scattered field, in direction ŝ, far away from the scatterer.
Here, the scattered field originates from a plane wave, propagating
in direction ŝ′, incident on the scatterer. Also, the scattering phase
function is normalized by the interaction strength, so that the
integration over all solid angles is equal to one

∫

4π

p(̂s′, ŝ)dω′ = 1. (2.15)

In conclusion, the elastic interaction between a plane harmonic
wave and a scatterer may be described by the two parameters σsca

and p(̂s′, ŝ).

2.2.2 Single scattering

The results for a single scatterer may be used to solve more diffi-
cult problems. Considering a dilute suspension of scatterers with
the density of scatterers (number density), ρsca, the interaction
between an incident wave and the suspension may be described by
a scattering coefficient

µs = σscaρsca. (2.16)

The scattering coefficient describes the probability of interaction
with the scatterers per unit length travelled. In order to under-
stand the meaning of this, another example is used: A plane wave
is propagating in a direction ŝ′ in the suspension of scatterers.
Travelling an infinitesimal length, ∆x in this medium, the total
interaction between the plane wave and the scatterers is, on aver-
age, µs∆x. The intensity “lost” in this step is

dI = −µs∆xI, (2.17)

where I is the intensity (as described by the Poynting vector) of the
wave. The energy is not really lost, rather it is scattered to all other
directions. Assuming that the amount of energy scattered back
into the direction ŝ′ is negligible, it follows directly from Eq. 2.17
that the intensity, I, of the plane wave will decay exponentially

I = I0 exp(−µsL), (2.18)
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2.2.3 Multiple scattering

L

samplea)

b)

c)

Figure 2.2. Illustration of light
propagating in three different
samples (here light is illustrated
by rays, as in geometrical optics).
In a) there is no scattering, light
passes straight through. In b) the
sample is a dilute suspension of
scatterers, rays are scattered only
once, the single scattering regime.
In c) rays are scattered multiple
times. Only scattered rays are
transmitted. Modified from [31].

where I0 is the incident intensity and L is the total distance trav-
elled. This is illustrated in Fig. 2.2; in a) there are no scatterers
and the transmitted intensity equal the incident intensity. In b)
a few scatterers are present and the transmitted intensity is de-
scribed by Eq. 2.18. The contribution of the intensity of the
scattered waves is negligible. However, in c) the density of scat-
terers is large and the contribution of the scattered field can no
longer be ignored. All the energy of the incident plane wave have
been scattered to new directions, where the energy in turn have
been scattered again by other scatterers. While the plane wave
no longer contributes to the transmission, waves that have been
scattered multiple times do. The analysis of this is the topic of the
next section.

While the approximation to ignore the scattered fields may
seem crude, several problems exist where this, so called, single
scattering, description often is applicable, such as propagation of
light in the earth’s atmosphere [5] and in interstellar atmospheres
[30]. An enlightening example is provided by Rayleigh, who, in
1871, managed to explain the blue appearance of the sky by finding
out that the light originates from single scattering of light by small
particles present in the atmosphere. Such particles, for example
molecules, are much smaller than the wavelength of visible light
and have a scattering cross section dependent on the wavelength
according to σsca ∝ λ−4. The interaction is thus stronger for
blue light which dominates the spectrum when observing scattered
light, i.e. when not looking directly at the sun [27, 28].

2.2.3 Multiple scattering

Continuing the example of light propagating in the atmosphere,
clouds represent the next complication. Clouds may also be con-
sidered a dilute suspension of scatterers, where the scatterers are
small water droplets. However, the appearance of clouds is very
different from that of the blue sky. The white colour of clouds is
characteristic of materials exhibiting multiple scattering of light.
Many everyday objects such as milk, snow, white paint, pharma-
ceutical tablets and paper owes their white appearance to multiple
light scattering.

The difference between clouds and the atmosphere lies both
in the characteristics of the scatterers, water droplets are bigger
than molecules, and the density of scatterers. The result of this
difference is that the scattering coefficient of clouds is significantly
larger than that of the weakly scattering atmosphere. Considering
the transmission of light through the atmosphere, compared to
transmission through a cloud, the two cases can be illustrated by
b) and c) in Fig. 2.2.

The treatment of multiple scattering in the framework of elec-
tromagnetic wave propagation is not trivial. Early work on the
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rigorous treatment of multiple scattering was done by Foldy, who
expressed the total field of scalar waves in the presence of N scat-
terers as the sum of the incident field and the contributions from
each scatter [32]

E(r) = Einc(r) +

N∑

i=1

Esca
i (r). (2.19)

Foldys treatment uses determined positions of all scatterers and
follow directly from Maxwell equations in the first order Born ap-
proximation. In this approximation, the field driving the oscilla-
tions in all dipoles is assumed to be independent of the presence of
all the scatterers. In the next step in Foldys treatment, the scat-
tered fields from each of the scatterers are used as the driving field
of all other scatterers. The field from each scatterer depends on the
field of all other scatterers, resulting in a recursive behaviour. The
solution of iterating the scattered fields ad infinitum is inefficient
and another approach is needed to solve the multiple scattering
problem.

One way to proceed with multiple scattering is to give up the
determined positions of the scatterers, moving to a statistic de-
scription of the scattering medium. This was done already in the
previous section when introducing the scattering coefficient, by
using the density of scatterers. The scattering coefficient may be
defined in the same way when considering multiple scattering. It
is also meaningful to consider an equivalent parameter, the mean
free path

` =
1

µs
. (2.20)

The mean free path may be interpreted in an intuitive way.
Considering the scattered field, propagating as a wave outwards
from its scattered, and a direction ŝ. The mean free path is the
average distance the scattered field propagates in that direction
before it encounters a new scatterer. If the mean free path is
much longer than the wavelength of light, the scattered wave is
approximately equivalent to a plane wave when it encounters the
next scatterer, and the theory of scattering by a single particle
may be used again. However, if the mean free path is short, so
that the scatterers interact in the near field, the theory used
to define the differential cross section, and subsequently derived
parameters, breaks down.

In summary, assuming the scatterers are not to densely packed,
the theory from scattering by a single particle may be utilized and
the average behaviour of a scattering material may be character-
ized using just two parameters, µs and p(̂s′, ŝ). In order to proceed
with the multiple scattering problem, radiative transport theory
will be introduced in Section 2.4, but before that a small detour
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2.2.4 Scattering of light by tissue

will be made in order to investigate scattering of light by tissue
and to introduce the concept of absorption.

2.2.4 Scattering of light by tissue

Looking closely at biological tissue, it is clear that it is not a simple
medium. Biological tissue consist of a flora of molecules, particles
and structures with different properties and sizes, all compacted
together to form a medium with spatial (and temporal) variations
in the refractive index on length scales from nanometres and up,
or, in the words of Schmitt and Kumar, “the structure of the
refractive-index inhomogeneities in a variety of mammalian tis-
sues resembles that of frozen turbulence” [33]. Clearly, tissue is
not a dilute suspension of scatterers and at first glance it seems
like the above description of multiple scattering falls apart. How-
ever, treating the problem of light scattering by tissue from the
point of view of electrodynamics, it may be shown that multiple
scattering theory is still applicable [31, 34, 35], and that tissue,
just like the suspension of discrete scatterers, may be character-
ized by a few parameters. The full explanation of this treatment
is extensive but a few relevant results are summarized here.

The effective refractive index

A water molecule or a water droplet in air acts as a scatterer
of light, however, assembling many water molecules (or droplets)
and light may propagate, virtually without being scattered, in the
resulting body of water. The reason is that the strength of the
scattering process, σsca, depend on the difference in refractive in-
dex between the scatterer and the background. When the scatter-
ing molecules have the same refractive index as the surrounding
medium, the molecules no longer act as scatterers.

In tissue, all the scatterers and structures are compressed into
a continuum, n(r, t). From the point of view of scattering, it is
instructive to express this continuum as

n(r, t) = neff + ne(r, t), (2.21)

where neff is the mean of the refractive index continuum, neff =
〈n(r, t)〉, called the effective refractive index and ne(r, t) is the
variations in refractive index with respect to neff .

For relevant wavelengths of light (600-1000 nm) the effective
refractive index of tissue is ∼ 1.4 [36]. Schmitt and Kumar came
to a similar conclusion (neff ≈ 1.35) adding that the microscopic
variations in refractive index, ne(r, t), of soft tissue vary between
0.04 and 0.1 [37].
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Figure 2.3. An illustration of the
scattering phase function of a
dielectric sphere (Mie scatterer).
Typical for larger scatterers,
forward scattering is dominant.
Multiple side lobes, due to
interference, are visible. Compare
to Fig. 2.1 c) where such lobes are
vaguely visible. The average
cosine of the angle scattering
angle is 〈cos θ〉 = 0.68. Data from
the Mie calculator [40].

The scattering coefficient

The task of defining and calculating a scattering coefficient from
the spatial fluctuations in refractive index describing tissue is a
daunting task. Historically, tissue have been considered equivalent
to a collection of discrete Mie (spherical) scatterers interacting only
in the far field [38, 39]. In a more modern treatment, the scatter-
ing coefficient, and the scattering phase function, are calculated
from the correlation function of the spatial fluctuations (see e.g.
[31, 35, 37]) taking the near field interaction of the structures con-
tributing to the scattering into account. The resulting description
of scattering, surprisingly, shares many similarities with the Mie-
scatterer description, for example, the wavelength dependence of
the scattering coefficient which in both cases is described a power
law

µs = aλ−b. (2.22)

The coefficients a and b are related to the structure of the tissue.
In Mie theory, a and b are directly related to density of scatterers
and scatterer size respectively. The other theory, representing a far
more complex material, does not allow such a direct interpretation.

The scattering phase function

For scattering by physical particles, the scattering phase function
may be calculated with relative ease. For randomly oriented small
particles, i.e. Rayleigh scatterers, the scattering is isotropic. In
case of Mie scattering, the exact shape of the scattering phase
function depends on the size and permittivity of the spherical par-
ticle but, in general, the scattering is dominant in the forward
direction with minor side-lobes, see Fig. 2.3. In general, it is as-
sumed that the scattering phase function is independent of the
propagation direction, i.e. p(̂s′, ŝ) = p(̂s′ · ŝ), which is true, on av-
erage, when the scatterers are randomly oriented. Further, it is
commonly assumed that the scattering probability is symmetric
for the azimuthal angle, φ. That is, the scattering phase function
only depends on the deflection (inclination) angle, θ

p(̂s′, ŝ) = p(cos(θ)). (2.23)

Working with diffuse interstellar radiation, Henyey and Green-
stein invented a scattering phase function to approximate Mie-
scattering, the so-called Henyey-Greenstein function [41]. It may
be regarded as an approximative average of a polydisperse ensem-
ble of Mie-scatterers where the lobes, caused by interference ef-
fects, are cancelled out. The Henyey-Greenstein scattering phase
function is

p(cos θ) =
1

4π

1− g2

(1 + g2 − 2g cos θ)3/2
, (2.24)
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Figure 2.4. The
Henyey-Greenstein scattering
phase function for g = 0.9,
g = 0.7, and g = 0.0 (isotropic).
The g = 0.7 curve may be
compared to Fig. 2.3 as they
(approximately) share the same
g = 〈cos θ〉.

where g, called the anisotropy factor or the g-factor, is the average
of the cosine of the deflection angle,

g = 〈cos θ〉 =

∫

4π

p(̂s′, ŝ) cos θdω′ =

∫

4π

p(̂s′, ŝ)(̂s′ · ŝ)dω′. (2.25)

The Henyey-Greenstein phase function for different values of g is
illustrated in Fig. 2.4.

Despite light scattering in tissue being different from that of
Mie-scatterers, the Henyey-Greenstein function approximates the
scattering phase function of tissue well [31] as forward scattering
is dominant in both cases. The Henyey-Greenstein was introduced
into tissue optics by Jacques et al. [42], and have been successfully
used in countless studies since. The reason for the success will
be explored in Chapter 4 where it is shown that the exact shape
of the scattering phase function does not significantly influence
macroscopic light transport.

2.3 Absorption

Going back to the description of matter as a collection of molecules
(or atoms) as in the beginning of Section 2.2, another prominent
phenomena must also be considered. In addition to re-radiating
energy as a scattered wave, energy may also be absorbed by
the molecule. This happens when the energy of a photon (the
discretized energy of the electromagnetic field) exactly matches
the transition energy of the molecule, causing it to be excited
to a higher electronic, vibrational, or rotational state. For free
molecules, as for example in a gas, the transition energies are well
defined and only photons with certain energies may be absorbed.
In soft matter, such as tissue or granular materials, the random
interactions of the molecules cause a transformation the narrow
energy levels to broad spectral features. The spectral width of ab-
sorption peaks in such materials are typically several nanometres
broad. This difference in the spectral dependence of the absorp-
tion in solids and gases is used in the GASMAS-technique [43],
where the weak absorption of free gases trapped in porous or hol-
low solids can be studied. This was used in the investigation in
Paper VII.

The fate of the absorbed energy is interesting to consider. A
common result of absorption is heating of the absorbing materials.
The absorbed energy may also be re-emitted as light, so called
fluorescence. The re-emission is typically delayed (nano- to mil-
liseconds) and significantly Stokes shifted, making it irrelevant in
the scope of this thesis. It should, however, be mentioned that
fluorescence is a commonly used diagnostic tool in the field of
biomedical optics [44]. The absorbed energy may also be used to
drive a chemical process. For example, in photodynamic therapy
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(PDT) the energy is transferred, via a molecule called a photo-
sensitizer, to an oxygen molecule, creating toxic singlet oxygen
molecules, used to kill cells (e.g. tumors) [45].

2.3.1 The absorption coefficient

Since the absorbed energy is considered lost, the knowledge of the
exact positions of the absorbers may be considered redundant in-
formation. Moving from a deterministic to a stochastic description
of absorption, the absorption coefficient, µa, may be defined as

µa(λ) = σabs(λ)ρabs, (2.26)

where ρabs is the density of absorbers, and σabs(λ) is the cross
section for the absorption process at wavelength λ. The absorption
coefficient describe the probability of absorption per unit length
travelled. Just as for the scattering coefficient, this Poisson process
leads to an exponential decrease in the intensity of a propagating
wave, as described by the famous Beer-Lamberts law

I = I0 exp(−µaL) = I0 exp(−µavt), (2.27)

where L = vt is the propagation distance, t is the propagation
time, and v is the local speed of light.

The wavelength dependence of the absorption coefficient in Eq.
2.26 is emphasised as µa(λ) serves as a “fingerprint” for each
species of molecules. This is important as µa(λ) can reveal the
exact constituents and concentrations thereof in a sample. This is
the foundation of absorption spectroscopy.

In the presence of several absorbing molecule species, so-called
chromophores, the total absorption coefficient is the sum of the
contribution from each chromophore

µa(λ) =
∑

i

σi,abs(λ)ρi,abs. (2.28)

Knowing the absorption cross section of all chromophores,
σi,abs(λ), the concentration of each chromophore may be derived
from a measured absorption spectrum.

2.3.2 Absorption in tissue

Biological tissue contain a large number of different molecules and
biomolecules. In the visible- and ultraviolet spectral range tis-
sue is highly scattering and absorbing, limiting the applicability of
diffuse optical spectroscopic technique. However, in the near infra-
red (NIR) spectral range, an absorption “window” exist where the
penetration depth of light is in the order of milli- to centimetres.
This spectral window, called tissue optical window [50], is limited
by the absorption of blood (hemoglobin) for shorter wavelengths
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Figure 2.5. The tissue optical window and the absorption spectra of
a few common tissue chromophores: Oxygenated and deoxygenated
hemoglobin [46], water [47], lipids [48], and melanin [49].

(λ < 600 nm) and water for longer wavelengths (λ > 1000 nm).
Prominent chromophores in tissue within this window include: wa-
ter [47], hemoglobin [46], myoglobin [51], lipids [48], cytochromes
[52], melanin [49], and collagen [53, 54]. Fig. 2.5 illustrates the
absorption spectra of a few chromophores in tissue along with the
tissue optical window.

2.4 Radiative transport

With the absorption coefficient, scattering coefficient and the
scattering phase function introduced, the stage is set for radiative
transport theory (RTT) as a way to model multiple scattering.
RTT is a phenomenological theory, based on arguments of energy
conservation. The effects of absorption and scattering, as de-
scribed in the previous sections, are incorporated in a differential
equation describing energy conservation in a small control volume.
This equation, called the radiative transport equation (RTE) or
the Boltzmann equation, is introduced in the next section.

The work on RTT was initiated by Schuster who considered
transport of radiation through a foggy atmosphere [55, 56] and
have since been used in many and diverse fields of physics, for
example, propagation of light in planetary and interstellar atmo-
spheres [23, 30] and neutron transport [57]. RTT was used in early
investigations of light transport in whole blood [58, 59], introduc-
ing the theory to the field of tissue optics, where it generally is
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Figure 2.6. Radiative transport
theory considers conservation of
energy in a volume, V , travelling
in direction ŝ. Energy is lost due
to scattering and absorption, iv),
and gained from scattering, ii), as
well as sources inside V , i).
Energy both enter and exit
through the boundary, iii).

considered the gold standard model [60].

2.4.1 The radiative transport equation

Using the macroscopic optical properties discussed in the previous
sections (the scattering coefficient µs and the absorption coefficient
µa along with a scattering phase function, p(̂s′, ŝ) ) the RTE may
be formulated. The RTE is an equation of energy conservation
which is reached heuristically by considering the change in the
flow of power along direction ŝ inside a small volume, V :

1

v

∂L

∂t
= q

︸︷︷︸
i)

+µs

∫

4π

p(̂s′, ŝ)Ldω′

︸ ︷︷ ︸
ii)

− ŝ · ∇L
︸ ︷︷ ︸

iii)

−L(µs + µa)

︸ ︷︷ ︸
iv)

, (2.29)

where L = L(r, ŝ, t) [W/m2sr] is the radiance, describing the power
per unit area and per steradian flowing in direction ŝ and v is the
energy transport velocity. The terms on the right-hand side of the
equation, illustrated in Fig. 2.6, are:

i) Radiance gain due to sources inside the volume, q = q(r, ŝ, t)
[W/m3sr].

ii) Radiance gain due to scattering from direction ŝ′ into direction
ŝ. µs [m−1] is the scattering coefficient and p(̂s′, ŝ) [-] is the
scattering phase function.

iii) Change in radiance due to energy crossing the volume bound-
ary.

iv) Radiance loss due to scattering (µs) and absorption (µa) re-
spectively.

2.4.2 Relationship between multiple scattering-
and transport theory

The “derivation” of the RTE above is heuristic and is based on
energy conservation. Its relation to wave propagation is contained
in the derivation of the scattering coefficient and scattering phase
function, but all wave properties of the multiple scattering prob-
lem are lost. This lack of rigorous derivation from the Maxwell
equations was noted early [23, 61, 62] and the link between mul-
tiple scattering (i.e. Maxwell) theory and radiative transport have
been an active area of research since.

In RTT, the radiance is treated as a ray of light completely
lacking wave properties just as in geometrical optics. Ishimaru [23],
Wolf [61] and Fante [62] investigated the meaning of the radiance
and concluded that it may, under certain assumptions, be regarded
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as the time averaged Poynting vector in wave theory. However, this
is not a rigorous link between RTT and multiple scattering or wave
theory.

The existence of a formal link between RTT and wave theory
was shown, for example, in the recent work by Mishchenko, where
the vector-RTE is rigorously derived from the Maxwell equations
[63]. For details on the derivation, a summary of the work creating
the formal link as well as discussions on common misconceptions
related to RTT, the reader is directed to the work by Mishchenko
and references therein [20, 25, 26, 63–65].

The loss of wave properties in the RTE has not been consid-
ered a problem in biomedical applications. However, in recent
years, ways to exploit the wave properties of light in turbid ma-
terials have been investigated. For example, coherent/enhanced
backscattering [66, 67] can be observed also in tissues, allowing
the effect to be used e.g. for optical spectroscopy [68]. Phase con-
jugation techniques may be used to enhance transmission through
tissue [69] and time-reversal in combination with ultrasound may
be used to focus light deep inside scattering materials [70]. Further,
scattering materials have recently been used to create high numer-
ical aperture lenses [71]. All the above examples use the fact that
light transport in scattering materials, even tissue, is deterministic
as opposed to the stochastic nature suggested by RTE. Also, these
applications serve as a reminder that light is transported as waves,
not as “rays” or particles as commonly stated.

2.4.3 Solving the radiative transport equation

Despite the drastic simplifications involved in transforming multi-
ple scattering theory to reach RTT, the resulting equation is not
easy to solve. This section gives a brief introduction to some com-
mon solution techniques used to solve the RTE.

Monte Carlo

The Monte Carlo (MC) method involve stochastic numerical sim-
ulations of the RTE by tracing fictional particles through the
medium. In the limit of infinitely many particles traced, MC is
an exact solution to the RTE and is often used as the gold stan-
dard when in the evaluation of other solution techniques. MC will
be covered in Chapter 3.

Spherical harmonics - PN

In this solution method the radiance in expanded in a series of
spherical harmonic functions. The series is truncated after N
terms, (the so called PN -approximation) leaving a system of equa-
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tions which may be solved numerically but at great computational
cost [72, 73]. In certain cases analytical solutions may be found as
shown by Liemert and Kienle [74, 75]. In the limit N → ∞ the
method provides an exact solution to the RTE.

Diffusion theory

Diffusion theory is a special case of the PN method. With N = 1
and some further simplifications, the RTE turns into a diffusion
equation where simple analytical solutions may be found. The
analytical solutions, in combination with the fact that diffusion
in many cases is a sufficiently good approximation of RTT, have
made diffusion solutions the most widely employed theory to solve
the radiative transport problem. Diffusion theory is covered in
Chapter 4.

Simplified spherical harmonics - SPN

In the simplified spherical harmonics method (SPN ), the 1D-PN
equations are transformed to 3D, leaving a set of coupled equa-
tions, much simpler than the 3D PN equivalents [76]. These equa-
tions may be solved numerically, [76–80] or, for simple geometries,
analytically [81]. Contrary to the PN method, in the limit N →∞
the SPN method does not converge towards an exact solution of
the RTE [76].

Discrete ordinates - SN

In the discrete ordinates method, SN , the radiance is discretized
in N angular directions. This transforms the integral in Eq. 2.29
into a sum, converting the RTE into a matrix differential equation
which may be solved numerically [57, 82, 83].

2.4.4 Properties of the solutions to the RTE

While solutions to the RTE may not easily be found, properties
of such solutions may be deduced. An important property of the
RTE and its solutions concerns how absorption is handled. The
Beer-Lambert law states that the intensity of a wave propagating
in an absorbing medium decays exponentially with time (Eq. 2.27)
and the same should thus be true for the solutions of the RTE. If
L0(r, ŝ, t) is the solution to the RTE for a nonabsorbing medium
(µa = 0) with a source described by a Dirac delta function (q =
δrδt), then the expected solution, keeping all properties fixed but
adding absorption (independent of r), should be

L(r, ŝ, t) = L0(r, ŝ, t) exp(−µavt). (2.30)
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Inserting Eq. 2.30 into the RTE reveals that this is the case. This
property have been noted and exploited by several authors, for
example [84–86] and will be used both in Chapter 3 and 4.
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Figure 3.1. Estimation of a
distribution, Ω(x), using Monte
Carlo. The dashed line represents
the true distribution and the solid
grey lines are the estimates of this
distribution, sampled using MC.

Chapter 3

Monte Carlo

The Monte Carlo (MC) method is a simple and widely used tech-
nique to solve many types of problems in, for example, physics
and mathematics. As suggested by the name, the method relies
on sampling stochastic (random) variables and/or simulations of
stochastic processes. That is, it relies on random numbers to es-
timate the solution of the given problem. It is also a numerical
method, typically relying on computers to carry out the necessary
calculations.

A good one-sentence description, by Dunn and Shultis, catches
the essence of Monte Carlo: ”The analysis technique called Monte
Carlo is, in essence, a methodology to use sample means to esti-
mate population means.” [87]. Fig. 3.1 illustrates how MC can be
used to estimate a distribution. In this example, the distribution
is simple, but the MC method is capable of estimating distribu-
tions originating from problems lacking analytical or deterministic
numerical solutions. As the number of observations, N , increase
the MC estimate approaches the true distribution. That is, in the
limit of infinite number of observations, N →∞, the MC solution
is an exact method. In practice, a finite number of observations is
always used. The solution is still exact, but influenced by statisti-
cal noise.

Turning to transport of light in turbid media, the distributions
of interest are, for example, the spatial distribution of absorbed
energy in tissue resulting from a laser pulse, or the temporal dis-
tribution of light transmitted through a pharmaceutical sample.
An estimate of the distribution calculated by “sampling” the RTE
using random numbers. This will be described in the next sec-
tion. As MC gives an exact, albeit noisy, solution to the RTE and
can handle any geometry, it is often considered the gold standard
model of light propagation in turbid materials. As the MC method
is subject to the same approximations as the underlying equation
being solved, a more correct statement would be to consider MC
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a gold standard technique for solving the RTE.
For an introduction to Monte Carlo in general the book by

Dunn and Shultis is recommended [87]. For MC applied to bio-
photonics the book by Welch and van Gemert [60] and the thesis
of Prahl [88] provides good starting points.

3.1 Introduction

The use of the Monte Carlo method to model light transport in
tissue, was introduced by Wilson and Adam in 1983 [89]. Before
that, the MC method had been used to study radiation transport
in other fields, for example neutron transport in nuclear reactors
[90]. The main idea is to reformulate the RTE (Eq. 2.29) as an
equation describing transport of scalar particles. The density of
such particles, propagating in direction ŝ, N = N(r, ŝ, t) [1/m3sr],
relates to the radiance

N(r, ŝ, t) =
L(r, ŝ, t)

Ev
, (3.1)

where E is the energy per particle. Now the RTE reads

1

v

∂N

∂t
= Q+ µs

∫

4π

p(̂s′, ŝ)Ndω′ − ŝ · ∇N −N(µs + µa), (3.2)

where Q = q/Ev [1/sm3sr] is the number of particles emitted per
unit time, volume and steradian. Applying the MC method to the
radiation transport problem described by Eq. 3.2 is now a matter
of tracing particles, from the source described by Q, through the
turbid medium. Inside the medium, the particles are scattered and
absorbed (with probabilities µs and µa per unit length), until they
are absorbed or exit the region of interest. If this procedure is done
for a large number of particles, the traces for these particles may be
considered a good estimate of how the entire population (all parti-
cles) behaves and the transport problem has thus been solved. The
number of particles needed to be traced varies significantly with
the exact problem and the variance reduction techniques applied
(see Section 3.3), but is generally in the order of 104−109 particles
[91]. This constitutes a heavy computational burden making the
technique useless for anything but computers.

In the field of biomedical optics, many groups have developed
MC codes solving more or less specific tasks. The code MCML by
Wang et al. solving the steady-state light transport problem in
multilayered media [91, 92], is probably the most well known and is
often used as a starting point for custom codes. Calculating time-
resolved responses of arbitrary 3D media, the tMCimg code by
Boas et al. [93] has also served a similar purpose for the community.
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Figure 3.2. A flowchart for a
simple MC algorithm, tracing a
single particle.

3.1.1 The photonic confusion

One of the great advantages of the MC method is that the solution
is very intuitive. The problem of solving a difficult equation has
been reduced to a task of tracking particles “bouncing around” in
a medium. However, great care must be taken when implementing
and interpreting MC simulations, remembering the underlying as-
sumptions of the problem to be solved and the relations between
that problem and the actual physical processes.

One great misconception related to MC, concerns to the par-
ticles introduced in Eq. 3.2. It is tempting, and very common, to
say that these particles are photons. However, these particles have
nothing to do with the photons of quantum physics1. In fact, the
particles are just a fiction of the solution method (MC), not real
physical particles. Similarly, MC is just a (mathematical) way of
solving the RTE, not a simulation of an actual physical process.
For further discussions on this “photonic confusion” see the work
by Mishchenko and references therein [20, 64].

The photonic terminology is common in the field of biomedical
optics, as well as in other fields. This unfortunate terminology
was, to some extent, used in Papers I,II,III, and VI.

3.2 Monte Carlo basics

A flowchart of a basic MC algorithm, calculating a sample of the
RTE, is shown in Fig. 3.2. Details of the individual steps are given
below.

Initialize the particle

The particle is initialized, or launched, in accordance with the
source term, Q. The position of the particle is set to that of the
source, typically at the origin of the local coordinate system, and
the initial direction is set. Commonly used sources include the
infinitely narrow collimated beam of particles, incident normal to
a surface, and the isotropic source, where the initial direction is
randomized evenly over 4π solid angles.

Move the particle

The particle will now take a step in the current direction. The
length of this step is decided by the absorption and scattering co-
efficients, µa and µs respectively. Both coefficients describe the

1 Without moving into quantum electrodynamics, a topic far outside the
scope of this thesis, it may be mentioned that there, strictly speaking, is no
such thing as a wave function for a photon and that photons [94]. Photons
may thus not be localized in any classical sense.
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interaction probability per unit length which leads to an exponen-
tial distribution of step lengths. The length of the step to take to
the next scattering event is thus:

ss = − ln(ξ)

µs
, (3.3)

where ξ is a random number, uniformly distributed in the interval
ξ ∈ (0, 1]. Similarly, the length of the step to take to the next
absorption even is:

sa = − ln(ξ)

µa
. (3.4)

Note that ξ, being a random number, changes every time it is used
in the algorithm.

If sa < ss the particle will reach the absorption event before
the scattering event and the particle is absorbed after the step.
Otherwise, if ss < sa, the scattering event is reached first and
the algorithm proceeds. The above implementation relies on the
fact that the absorption process is memoryless. The process does
not care how far the particle has already travelled, the only thing
that matters is that the probability of absorption per unit length
travelled is µa. The process described above will therefore lead to
an exponential distribution of lengths travelled before absorption,
in agreement with Beer-Lamberts law (Eq. 2.27).

Change direction

When the particle reaches a scattering event the particle changes
direction according to the scattering phase function p(̂s′, ŝ). Here,
the scattering phase function is reinterpreted as a probability den-
sity function (PDF) describing the probability that a particle, trav-
elling in direction ŝ′, to be scattered into direction ŝ when interact-
ing with a scattered. As discussed in Section 2.2.4, it is commonly
assumed that p is independent of the current direction, ŝ′, and that
the new direction can be characterized by the deflection angle θ
and the azimuthal angle φ, which are independent. The azimuthal
angle is uniformly distributed in φ ∈ (0, 2π]:

φ = 2πξ. (3.5)

A commonly used distribution for the deflection angle is the
Henyey-Greenstein distribution [41] (Eq. 2.24) which is sampled,
using the uniform random number ξ, from the expression:

cos θ =
1

2g

(
1 + g2 −

(
1− g2

1− g + 2gξ

)2
)
. (3.6)

In case of isotropic scattering (g = 0) Eq. 3.6 is undefined and the
correct expression is instead

cos θ = 2ξ − 1. (3.7)
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ŝr
ŝt

Figure 3.3. A particle propagating
in direction ŝi incident on a
boundary. The particle is either
reflected or transmitted, resulting
in a direction change to ŝr or ŝt
respectively.

The new direction of the particle is now calculated from the two
angles θ and φ.

Boundary conditions

By tracing particles in the process described above, keeping track
of where the particles have been or where they were absorbed, MC
provides a way to solve the RTE in an infinite medium. However,
in many cases the medium is not infinite and a way to handle
transitions between different materials is needed. In the limit of
geometrical optics, i.e. all spatial features are much larger than
the wavelength, the transition between to regions with refractive
indices ni and nt may be described by Fresnel reflection. The Fres-
nel reflection coefficient, R(θi), averaged over different polarization
directions, is

R(θi) =
1

2

(
sin2(θi − θt)
sin2(θi + θt)

+
tan2(θi − θt)
tan2(θi + θt)

)
, (3.8)

where θi and θt are the angles of incidence and transmission re-
spectively ( see Fig. 3.3) calculated using Snell’s law

ni sin θi = nt sin θt. (3.9)

In case the step length, s = min(ss, sa), is longer than the step
required to reach a boundary the particle is moved to the boundary.
There, a uniformly distributed random number is compared to the
reflection coefficients; if ξ > R(θi) the particle is transmitted and
changes direction according to Eq. 3.9, otherwise the particle is
reflected of the boundary. After this the process continues as usual.

Time-domain simulations

Time-domain simulations are easily accommodated in the current
scheme. At initialization the time for the particle is set to zero.
After each step the time is incremented by step length divided by
the current velocity of the particle, v.

3.3 Variance reduction techniques

The MC process described in the previous section is a simple, yet
rigorous, way to solve the radiative transport problem. It is, how-
ever, rarely applied in the way described above. Consider, for
example, a material with µs ≈ µa, where the solution far away
from the source is of interest. It is evident that few particles will
take more than a few steps before being absorbed, hence requiring
a large amount of particles to be simulated for the MC method
to provide a solution with acceptable statistics. To approach the
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problem, several variance reduction techniques have been devel-
oped to aid the MC method in reaching less noisy solutions while
tracing fewer particles. Many different such techniques exist [87],
some of which are applicable to MC in general, and some of which
provide significant advantages in specific problems. Two great
examples of variance reduction techniques, applied to problems in
biomedical optics, are [95] and [96], where efficient handling of dis-
tant sources and simulations involving fluorescence are presented,
respectively. In the following sections a few variance reduction
techniques, relevant to this thesis, are explained.

3.3.1 Implicit capture

Implicit capture is a very popular variance reduction technique
in radiation transport MC simulations. In fact, it is so widely
used that it is synonymous with MC simulation and a standard
way of handling absorption, as opposed to the rigorous approach
described in the previous section. It was used early by Witt [97],
considering multiple scattering in nebulae, and have since found
use in biomedical optics, for example by Wilson and Adam [89],
Prahl [88], and in MCML [91, 92].

The implicit capture technique involves launching and tracing
packets of particles instead of one by one. At launch, each packet
is assigned an initial weight W0. The packet is traced with a step
length distribution determined by the total attenuation coefficient,
µt = µs + µa. After each step the weight of the packet is reduced
by ∆W

Wi+1 = Wi −∆W = Wi

(
1− µa

µt

)
. (3.10)

The packets are traced until they either escape though a boundary,
or until the weight reaches a threshold limit (e.g. W0/1000). In
order to conserve energy, the termination of the packets is handled
by a so-called roulette routine. When the packet weight falls below
the threshold limit, there is a one in m chance that the packet will
survive. If the packet survives the roulette, its weight is increased
m times. If not, the packet is terminated.

While the implicit capture technique is used in almost all avail-
able Monte Carlo codes in the biomedical optics field, it is often
forgotten that, as pointed out by Swartling [98], the technique is
approximative. In the limits µs/µa → 0 and µs/µa → ∞ the
implicit capture technique converges towards the correct solution
but for µs ≈ µa the technique is not equivalent to the rigorous
approach. This inconsistency is briefly discussed in Paper I.
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Figure 3.4. The particle paths are
determined by the scattering
coefficient, the scattering phase
function and the sequence of
random numbers. Using the same
random number sequence while
rescaling µs yields identical, albeit
rescaled paths. All spatial
distances and time are both
rescaled as shown. Adapted from
[99].

3.3.2 White Monte Carlo

The White Monte Carlo (WMC) technique has its foundation in
two properties of the RTE:

i) To any time-resolved simulation performed with µa = 0, ab-
sorption may be added afterwards using the Beer-Lambert
law (see Section 2.4.4 and Eq. 2.30).

ii) In any simulation performed with µa = 0, the scattering coef-
ficient, µs, may be rescaled by rescaling the spatial and tem-
poral coordinates. In certain simple geometries lacking spa-
tially dependent features, such as infinite and semi-infinite
media, this method proves particularly useful. The scaling
relations are illustrated in Fig. 3.4.

Combining the two properties it is evident that the result of a single
MC simulation, in an appropriate geometry, may be rescaled and
attenuated to accommodate any combination of µs and µa. The
rescaling is virtually instantaneous, allowing the otherwise slow
MC-method to be applied to iterative inverse problems. The scal-
ing properties of MC simulations, and possible combination with
the Beer-Lambert law, have been mentioned or investigated theo-
retically by several authors [89, 96, 99–103]. In Paper I a WMC
model was implemented and used in evaluation of TOFS data.
The scaling effect, mentioned by Xu et al. [103], was overcome by
detecting particles individually and it was shown that MC-based
evaluation significantly improve the performance of TOFS in in-
terstitial geometries. Paper VI extends the investigations to the
semi-infinite case, resulting in an important contribution in the
characterization of the medphot-phantoms [104]. In Paper IV
the model introduced in Paper I was used to evaluate in vivo data
from human prostate, solving the modelling related problem in a
previous study [105].

3.3.3 Spatial convolutions

Simulating a spatially extended source, e.g. a Gaussian beam inci-
dent on a semi infinite medium, it is evident that accounting for the
source size in the packet initialization stage is not a particularly
efficient strategy. Instead, running a simulation with a spatial im-
pulse source (collimated beam) and convolving the solution with
the source shape, has the potential of significantly reducing the
noise in the direction of the convolution [88, 106]. In addition, as
any spatial features scales with the rescaling of µs, the convolution
method provides a way to handle extended sources in the WMC
scheme. A convolution method to handle extended sources and
detectors was thus used in Paper I.
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3.4 Hardware accelerated Monte Carlo

The variance reduction techniques described in Section 3.3 are all
mathematical/numerical tricks or simplifications that help reduce
the variance in the MC solutions for a fixed number of traced
particles, hence reducing the computational time required to reach
a solution with a certain variance. Another approach to speed up
the simulation time is to accelerate the computations themselves
by using faster and/or more efficient hardware.

Zolek et al. investigated approximations of trigonometric and
logarithmic functions, optimizing MC code for the calculations
modern CPUs are good at, providing a ∼ 4× speedup [107] . Using
field programmable gate arrays (FPGAs) Lo et al. achieved ∼ 40×
speedup compared to a high-end CPU [108].

However, the key to even faster simulations lie in the move from
serial to parallel computations. Considering the basic MC routine
described in Section 3.2 it is obvious that the particles does not
interact with each other, nor do they change the medium in which
they travel, i.e. the traces of individual particles are independent.
This independence implies that the particles may be traced in par-
allel as opposed to serially or simultaneously. Early parallelization
of MC code was done using clusters of computers connected over a
network [109, 110]. Shen and Wang recently exploited the stream-
ing SIMD extensions (SSE), a set of instructions for x86 CPUs for
doing parallel computations, and the multiple cores available in
modern CPUs to speed up MC-simulations [111]. While the ben-
efit of such an effort is significant, the effort to write such highly
specialized code can be put to better use by writing code for an
architecture designed for parallel computations.

3.4.1 GPU-accelerated Monte Carlo

In recent years, GPUs have evolved from highly specialized hard-
ware to a general purpose parallel computation unit [112, 113]. In
Paper II, GPUs were, for the first time, used to accelerate MC
simulations of light propagation in turbid media, resulting in a
1000× speedup over the conventional CPU-based approach.

In CPUs, a steady flow of instructions and data must be main-
tained in order for the processor to be used optimally. This is
achieved using caching, branch prediction etc. In GPUs the sili-
con, and power, is used to achieve high raw computational power
and high bandwidth for parallel operations, resulting in signifi-
cantly higher computational performance as long as all operations
can be done in an organized and parallel manner. As shown in
Paper II this is the case for simple radiative transport problems.
For more advanced problems, such recording the internal spatial
distribution of absorbed energy as done by MCML, utilizing the
parallel nature of the GPU becomes more tricky. The major prob-
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lem lies in the implicit capture variance reduction technique where
every particle have to write (deposit the absorbed weight) to a ran-
dom position in memory every step, an operation unsuitable for
parallelization. This, and other problems of how to best utilize
GPUs for MC simulations is the topic of Paper III. It is shown
that the proper use of the features of modern GPUs allow com-
plex simulation problems to be solved several orders of magnitude
faster on GPUs compared to modern CPUs. Moreover, it should
be emphasized, that in many applications where simulation speed
is of importance, such as iterative data evaluation, the entire spa-
tial distribution inside a medium is rarely of interest. Considering
e.g. only light exiting a medium, each particle requires only a sin-
gle random memory write, instead of one per step, completely
eliminating the problem.

The benefits of using GPU-accelerated Monte Carlo, combined
with the very rapid development of new and significantly improved
GPUs, suggest that GPU MC will become a standard method in
radiative transport MC problems. Since Paper II several authors
have made contributions to the field and several codes and tools
have been made publicly available e.g. [114–119].

The use of GPU-accelerated MC enabled the simulation per-
formed in Paper IX. There, the amount of particles re-entering a
small fibre inserted in an infinite, scattering medium was studied.
The results of such an MC simulation was used in the evaluation
of TOFS data from a single-fibre setup.
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Figure 4.1. Illustration of the
breakdown of diffusion theory.
Despite using the same optical
properties, the solution provided
by diffusion theory deviates
significantly from that of a Monte
Carlo simulation (Infinite
geometry, 15 mm source-detector
separation, µ′s = (1− g)µs=7.5
cm−1 and µa=0.5 cm−1).
Adapted from Paper I.

Chapter 4

Diffusion Theory

In this chapter diffusion theory of light transport is discussed. First
the traditional derivation of the diffusion equation (DE) from RTE
is outlined, followed by a discussion of the approximations made
in the derivation. In order to understand the approximations, the
diffusion equation is also derived using an intuitive random walk
approach, providing better understanding of the approximations.
The approximations, and the validity of diffusion theory, from the
point of view of the alternative derivation, are discussed. The
purpose of this is to highlight the need to use better light trans-
port models (e.g. Monte Carlo) in many domains of light transport
where diffusion theory fails to accurately model the physics.

Finally, solutions to the DE and anisotropic diffusion are briefly
discussed.

4.1 Introduction

Diffusion theory is a popular and widely used model of light trans-
port in turbid media. As shown in the next section, under certain
approximations the RTE reduces to a simple diffusion equation,
providing simple and numerically inexpensive, or even analytical,
solutions to the light transport problem. The drawback of diffu-
sion theory is limited validity. Under certain conditions e.g. high
absorption and/or weak scattering , diffusion theory breaks down.
This breakdown of diffusion theory, noted and discussed by many
authors e.g. [57, 120–124], is illustrated in Fig. 4.1. However, in
many applications, diffusion theory is a sufficiently good model.
In order to know when diffusion may and may not be applied, it is
imperative to understand the underlying assumptions and approx-
imations of the theory. An attempt at explaining the approxima-
tions is given in the following sections. Alternatively, as explored
in Papers I, and VI, the breakdown of diffusion theory may be
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quantified using numerical and experimental investigations.

4.2 The P1- and diffusion-approximation

In this section, the derivation of the diffusion equation, following
the derivation by Durduran et al. [86], is outlined. For more
details the reader is directed to any of the many sources providing
such, e.g. [23, 86, 125]. Here, as explored in [86], the diffusion
equation is derived in the absence of absorption. As explained in
Section 2.4.4, absorption may always be added at a later stage.

In order to reduce the RTE to a diffusion equation, the radiance
is expanded in an infinite series of spherical harmonics. The series
is then truncated in the so called PN -approximation, keeping only
the terms up to Nth order. In the P1-approximation only the
zeroth and first order terms are kept

L(r, ŝ, t) ≈ 1

4π
Φ(r, t) +

3

4π
F(r, t) · ŝ, (4.1)

where

Φ(r, t) =

∫

4π

L(r, ŝ, t)dω, (4.2)

is the fluence rate [W/m2] and

F (r, t) =

∫

4π

L(r, ŝ, t)̂sdω, (4.3)

is the flux [W/m2]. Further, the source is assumed to be isotropic

q(r, ŝ, t) =
1

4π
q0(r, t) [W/m3]. (4.4)

Inserting Eq. 4.1 and Eq. 4.4 into the RTE (Eq. 2.29, with µa = 0)
yields two coupled equations; one by integrating over all ŝ and the
other by first multiplying by ŝ before integrating over all ŝ.

1

v

∂Φ(r, t)

∂t
+∇F(r, t) = q0(r, t), (4.5)

(
1

v

∂

∂t
+ µ′s

)
F(r, t) +

1

3
∇Φ(r, t) = 0, (4.6)

where the property described in Eq. 2.25 was used. Also, a new
coefficient, called the reduced scattering coefficient1, µ′s = (1−g)µs
[m−1], was introduced. Assuming that the temporal change in flux

1 µ′s is also called the transport scatting coefficient and may be interpreted
as the equivalent scattering coefficient when the scattering is isotropic (g = 0).
The reduced scattering coefficient relates to the transport mean free path
`∗ = 1/µ′s [m].
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is negligible, i.e. ∂F/∂t = 0, Eq. 4.6 reduces to Fick’s first law of
diffusion

F(r, t) = −1

v
D∇Φ(r, t), (4.7)

where D is the diffusion coefficient2 [m2/s]

D =
v

3µ′s
. (4.8)

Inserting Eq. 4.7 into Eq. 4.5 yields the diffusion equation (DE)

∂Φ(r, t)

∂t
−∇D(r)∇Φ(r, t) = vq0(r, t). (4.9)

The solution to the diffusion equation, in an infinite three-
dimensional medium with D(r) = D and q0(r, t) = E0δrδt is

Φ(r, t) = vE0 (4πDt)
−3/2

exp

(−r2

4Dt

)
. (4.10)

4.2.1 Assumptions and simplifications

The assumptions and simplifications made in the derivation of
the DE are not always easy to follow. A few simplifications, such
as the P1-truncation and ignoring the contribution of ∂F/∂t are
explicit but are not easily interpreted. In addition, it is often
claimed, with varying motivations, that in order for diffusion to
be valid, the scattering must dominate the absorption, µ′s � µa,
and that solutions are only valid far from the source, see e.g.
[60]. These two restrictions, along with an alternative view on the
truncation will be explained in the following sections.

The assumption ∂F/∂t = 0 have been investigated by several
authors [86, 121, 126], concluding that the assumption is valid for
frequencies3 ω � µ′sc.

If the DE is derived without assuming µa = 0, a diffusion
coefficient D = v/(3(µ′s + µa)) is reached, which is in violation
of the property of the RTE discussed in Section 2.4.4. The issue
has been thoroughly discussed by several authors [85, 86, 127–
129] promoting the definition in Eq. 4.8. Pierrat et al. concluded
that, in time-domain solutions, the diffusion coefficient indeed is
independent of absorption, but that in, steady state, it is not [130].

2 In the field of biomedical optics diffusion coefficient is often denoted
D = 1/(3µ′s) [m] which is more accurately described as the diffusion length.

3 The frequency, ω, is related to time via the Fourier transform. See
Section 5.3.3 for a brief introduction to frequency-domain measurements.
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Figure 4.2. Four steps of a
random walk in two dimensions.
Each step is si long and the
projection of the step onto the
x-axis is ∆xi. Note that ∆xi may
be either positive or negative,
depending on the direction of the
step.

4.3 Alternative derivation

In order to better understand the approximations made to reach
the diffusion equation (Eq. 4.9), here, an alternative derivation is
presented, based on the early work on random walks by Bachelier
[131] and Einstein [132]. An excellent tutorial covering the subject
is provided by Vlahos et al. [133]. The book by Hughes is also
recommended [134].

Consider an ensemble of particles, walking randomly in 3 di-
mensions. The particles takes short steps of random length, s,
where s is considered a random variable. The average time for
each step is 〈∆t〉 = 〈s/v〉, where 〈 〉 denotes the expectation value
(or average). The spatial distribution of particles, at time t, in a
fixed direction, for example, the x-direction in a Cartesian coordi-
nate system, is described by f(x, t) [m−1]. The projections of the
steps onto this axis are denoted ∆x, see Fig. 4.2. ∆x is a ran-
dom variable with a distribution given by the function q∆x(∆x).
q∆x(∆x) is a probability density function, which is normalized

+∞∫

−∞

q∆x(∆x)d∆x = 1. (4.11)

Also, while the steps ∆xi and ∆xi+1 generally are dependent, the
expectation value of ∆x is zero

〈∆x〉 = 0. (4.12)

This is easily realized by noting that for an isotropic distribution of
particle directions, q∆x(∆x) is symmetric, q∆x(∆x) = q∆x(−∆x)
(this will be further explained in Appendix A).

Assuming that the time to complete a step, 〈∆t〉, is constant
the distribution of particles after a step relates to the distribution
before the step like:

f(x, t+ 〈∆t〉) =

+∞∫

−∞

f(x+ ∆x, t)q∆x(∆x)d∆x. (4.13)

If the step ∆x is small, f(x+ ∆x, t) may be expanded in a Taylor
series around x.

f(x+ ∆x, t) = f(x, t) + ∆x
∂f(x, t)

∂x
+

∆x2

2!

∂2f(x, t)

∂x2
+ . . . (4.14)
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Inserting Eq. 4.14 into Eq. 4.13, yields

f(x, t+ 〈∆t〉) =

+∞∫

−∞

f(x, t)q∆x(∆x)d∆x

+

+∞∫

−∞

∆x
∂f(x, t)

∂x
q∆x(∆x)d∆x (4.15)

+

+∞∫

−∞

∆x2

2!

∂2f(x, t)

∂x2
q∆x(∆x)d∆x+ . . .

= f(x, t)

+∞∫

−∞

q∆x(∆x)d∆x

+
∂f(x, t)

∂x

+∞∫

−∞

∆xq∆x(∆x)d∆x (4.16)

+
1

2!

∂2f(x, t)

∂x2

+∞∫

−∞

∆x2q∆x(∆x)d∆x+ . . .

The integral terms in Eq. 4.16 are simply the central moments4 of
the distribution q∆x(∆x). Since q∆x(∆x) is symmetric, all the odd
order central moments are zero. The zeroth order central moment
is equal to unity (Eq. 4.11) and the second central moment is the
variance5 of the step length distribution

+∞∫

−∞

∆x2q∆x(∆x)d∆x = σ2
∆x. (4.17)

Truncating the series in Eq. 4.16 to include only the first two
non-zero moments gives:

f(x, t+ 〈∆t〉) ≈ f(x, t) +
σ2

∆x

2

∂2f(x, t)

∂x2
. (4.18)

4 The k:th central moment, µk, of a distribution f(x) is given by

µk =

+∞∫
−∞

xkf(x)dx.

5 The variance, σ2, of a distribution f(x) is

σ2 =

+∞∫
−∞

(x− 〈f(x)〉)2f(x)dx.

Since 〈∆x〉 = 0 (Eq. 4.12), for the distribution q∆x(∆x) the variance is equal
to the second central moment, σ2 = µ2.
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Rearranging and dividing both sides by 〈∆t〉 gives

f(x, t+ 〈∆t〉)− f(x, t)

〈∆t〉 =
σ2

∆x

2〈∆t〉
∂2f(x, t)

∂x2
. (4.19)

Identifying the left hand side of Eq. 4.19 as the definition of the
derivative (when 〈∆t〉 → 0, which is true as 〈∆t〉 is assumed small)
a 1D-diffusion equation is reached

∂f(x, t)

∂t
= Dx

∂2f(x, t)

∂x2
, (4.20)

with the diffusion coefficient

Dx =
σ2

∆x

2〈∆t〉 . (4.21)

The solution to Eq. 4.20 in infinite space, where the source is an
isotropic pulse of unitary strength (q0(x, t) = δxδt) is a Gaussian

f(x, t) =
1√

4πDxt
exp

( −x2

4Dxt

)
, (4.22)

where f(x, t) is the probability to find a particle at x at time t.

While the steps of an individual particle in different directions
clearly are dependent, the behaviour of the distribution of particles
is not. Hence, the probability to find a particle at r (i.e. in 3
dimensions) at time t is

f3D(r, t) = f(x, t) ∗ f(y, t) ∗ f(z, t)

=
1√

4πDxt
exp

( −x2

4Dxt

)
∗ 1√

4πDyt
exp

( −y2

4Dyt

)

∗ 1√
4πDzt

exp

( −z2

4Dzt

)

= (4πt)
−3/2

(DxDyDz)
−1/2

∗ exp

[
− 1

4t

(
x2

Dx
+
y2

Dy
+
z2

Dy

)]
. (4.23)

The particle concentration, ρ, is ρ(r, t) = Nf3D(r, t) [m−3], where
N is the number of particles launched. Further the relationship
between the particle concentration and the fluence is given by

Φ(r, t) = vEρ(r, t) = vE0f3D(r, t), (4.24)

where E is the energy per particle and E0 = EN is the total
energy launched. In isotropic media (Dx = Dy = Dz = D) and
with, x2 + y2 + z2 = r2, Eq. 4.23 may be written (compare with
Eq. 4.10)

Φ(r, t) = vE0 (4πDt)
−3/2

exp

(−r2

4Dt

)
. (4.25)
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4.3.1 The diffusion coefficient

While the two different ways of deriving the DE in the previous
sections reach the same expression for the DE and its solution in
infinite isotropic media, the expressions for the diffusion coeffi-
cient (Eq. 4.8 and Eq. 4.21) are not obviously identical. Here,
a random walk-approach to the diffusion coefficient is presented,
based on the tutorial by Vlahos et al. [133]. The approach was
also explored by Zaccanti et al. [135] and Gandjbakhche et al. [136]

Consider a single particle doing a random walk in 3 dimensions.
Using a Cartesian coordinate system, the position of the particle
along one of the directions, for example, the x-direction, after n
steps, is

xn = ∆x1 + ∆x2 + ∆x3 + ...+ ∆xn =

n∑

k=1

∆xk, (4.26)

where the increments ∆xi are random variables as illustrated in
Fig. 4.2.

The mean square displacement 〈x2
n〉 is simply the mean of Eq.

4.26 squared:

〈x2
n〉 = 〈(∆x1 + ∆x2 + ...+ ∆xn)2〉. (4.27)

In this context, as 〈xn〉 = 0, the mean square displacement of a sin-
gle particle is the same as the variance for the particle distribution.

Now, considering the solution to the 1D-diffusion equation, Eq.
4.22, it is apparent that the solution is identical to a Gaussian
(normal) distribution with mean zero and variance 2Dxt. Since
the variance of the distribution is 〈x2

n〉 it follows that

〈x2(t)〉 = 2Dxt. (4.28)

It was previously assumed that t = n〈∆t〉, where n is the number
of steps and 〈∆t〉 is the mean of the step time distribution. Hence

〈x2
n〉 = 2Dxn〈∆t〉, (4.29)

or

Dx =
〈x2
n〉

2n〈∆t〉 . (4.30)

The problem of calculating the diffusion coefficient is thus a matter
of calculating 〈x2

n〉. Using an elementary rule of arithmetics of
random variables6 Eq. 4.27 may be written

〈x2
n〉 =

n∑

j=1

(
n∑

k=1

〈∆xj∆xk〉
)
. (4.31)

6 If X and Y are random variables (dependent or independent), 〈X+Y 〉 =
〈X〉+ 〈Y 〉 holds.
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4.3.1 The diffusion coefficient

When 〈∆xi〉 = 0, the expectation value 〈∆xj∆xk〉 is the covari-
ance7 of the two random variables, ∆xj and ∆xk. The covariance
matrix, Σjk is

Σjk = cov(∆xj ,∆xk) = 〈∆xj∆xk〉. (4.32)

Eq. 4.31 simply is the sum of all the elements in the covariance
matrix Σjk. Details on how to calculate and sum the covariance
matrix is available in Appendix A. Here the important results are
summarized.

For isotropic scattering (g = 0) the sum of the covariance ma-
trix, and hence the variance of the particle distribution after n
steps, becomes

〈x2
n〉 = n〈∆x2

i 〉 =
2n

3µ2
s

. (4.33)

Assuming constant transport speed, v, the time each step takes is
∆ti = si/v ⇒ 〈∆t〉 = 1/(vµs) = `/v.

Using Eq. 4.30 the diffusion coefficient for isotropic scattering
may be calculated:

Dx =
〈x2
n〉

2n〈∆t〉 =

2n
3µ2

s

2n 1
vµs

=
v

3µs
, (4.34)

or, noting that σ2
∆x = 〈∆x2

i 〉

Dx =
〈x2
n〉

2n〈∆t〉 =
n〈∆x2

i 〉
2n〈∆t〉 =

σ2
∆x

2〈∆t〉 . (4.35)

Eq. 4.34 and Eq. 4.35 correspond to Eq. 4.8 (with g = 0) and
Eq. 4.21 respectively and their equality have thus been shown.

In case of anisotropic scattering (g 6= 0) the sum of the covari-
ance matrix can be calculated approximately

〈x2
n〉 =

n∑

j=1

(
n∑

k=1

Σjk

)
n�1≈ 2n

3µ2
s(1− g)

. (4.36)

Using the approximative sum, the diffusion coefficient for
anisotropic scattering is

Dx =
〈x2
n〉

2n〈∆t〉 =

2n
3µ2

s(1−g)
2n 1

vµs

=
v

3µs(1− g)
=

v

3µ′s
, (4.37)

which is the same as Eq. 4.8.

7 The covariance of two random variables, X and Y is: cov(X,Y ) =
〈(X − 〈X〉)(Y − 〈Y 〉)〉 = 〈XY 〉 − 〈X〉〈Y 〉

40



Diffusion Theory

g = 0.0
g = 0.5
g = 0.9V

ar
ia

nc
e

〈x
2 n
〉[

cm
2
]

0.00

0.05

0.10

Time [ps]
0 10 20 30 40 50

Figure 4.3. The exact variance,
〈x2

n〉, calculated using Eq. A.19.
The reduced scattering coefficient
was fixed at µ′s = 10 cm−1 and
the transport velocity was set to
c. For different values of g, a
small difference is found for early
times but for larger times the
difference is negligible.

Fig. 4.3 illustrates how the exact variance (〈x2
n〉), calculated

using Eq. A.19, grows with time for different values of g while
the reduced scattering coefficient is fixed at µ′s = 10 cm−1. In the
approximation n � 1, (Eq. A.13) the variance is independent of
g, i.e. regardless of g the variance is expected to follow the line for
g = 0. Except for very early times, this is a good approximation.

4.4 Aspects of the diffusion approximation

The alternative derivation of the diffusion equation along with the
derivation of the diffusion equation reveals valuable information on
the approximations and simplifications made that are not obvious
when taking the conventional approach. In this section aspects of
the diffusion equation, its solution and the approximations made
to derive it are discussed in light of the alternative derivation.

4.4.1 Diffusion and the central limit theorem

The central limit theorem (CLT) states that the sum of many
independent random variables, with finite mean and variance,
tend to a Gaussian distribution. Considering Eq. 4.26 and
isotropic scattering (i.e. independent random variables, ∆xi) it is
obvious that the solution after many steps (large n) is a Gaussian,
i.e. Eq. 4.22. In the case of anisotropic scattering, where the
random variables are no longer independent, the traditional CLT
does not hold. However, the CLT can be extended to include
certain “weak” dependencies, see e.g. [137]. Also, diffusion theory
suggest that the distribution will still tend to a Gaussian. As for
the CLT, the first requirement for the DE is that the number of
steps must be large, n� 1.

In order to investigate the number of steps required for diffu-
sion to be valid, it is imperative to understand the approximations
made in the derivation of the diffusion equation. While the impli-
cations of the P1-approximation are unclear, the approximation in
Eq. 4.18 is that the higher order moments of the step length dis-
tribution are ignored. From the argument regarding the CLT, this
approximation is the same as ignoring the higher order moments of
the particle distribution. Since the distribution is symmetric the
second most dominant moment is the fourth moment of the distri-
bution, µ4(n) = 〈x4

n〉. It can be shown, using the same method as
in Appendix A, that the fourth order moment, using the Henyey-
Greenstein phase scattering function (Eq. 2.24), is exactly equal
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Figure 4.4. Excess kurtosis, γ2 as
a function of time for g = 0.0, 0.5,
0.7, 0.8, 0.9, and 0.95. While γ2 is
independent of the scattering
coefficient, µs a constant µ′s = 10
cm−1 was used to transform from
number of steps n, to time t:
t = n(1− g)/(cµ′s).

to

〈x4
n〉 =

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

〈∆xi∆xj∆xk∆xl〉

=
4

15µ4
s

(
A+ nB + n2C + gnD + ngnE + g2nF

)

(g − 1)4(g + 1)2
,

(4.38)

where A, B, C, D, E, and F are polynomials of g

A = −16g + 6g2 + 60g3 + 30g4,

B = 13− 20g − 38g2 + 20g3 + 25g4,

C = 5− 10g2 + g4,

D = 16g − 6g2 − 60g3 − 38g4,

E = 8g − 2g2 − 18g3 + 2g4 + 10g5,

F = 8g4.

(4.39)

In the derivation of Eq. 4.38, the second and third moment of the
Henyey-Greenstein phase scattering function were used.

The excess kurtosis is a measure of how the fourth moment of
a distribution differs from that of a normal distribution and may
thus be used as a measure of the breakdown of diffusion theory. It
is defined as

γ2 =
µ4

µ2
2

− 3 =
〈x4
n〉

〈x2
n〉2
− 3, (4.40)

where µ4 = 〈x4
n〉 and µ2 = σ2 = 〈x2

n〉, are the fourth and sec-
ond moments of the distribution, calculated using Eq. 4.38 and
A.19 respectively. The number 3 originates from the kurtosis of
the Gaussian distribution. A distribution converging towards a
Gaussian distribution should hence converge towards γ2 = 0. The
excess kurtosis of the spatial particle distribution in one direction
is illustrated in Fig. 4.4 for g = 0.0 through 0.95. It is evident
that the distribution converges towards a Gaussian distribution
fastest for g ≈ 0.7. For g ' 0.7, γ2 < 0 and the distribution is
said to be platykurtic. For g / 0.7, γ2 > 0 and the distribution is
leptokurtic.

Contrary to the intuitive result, the case with isotropic scat-
tering, g = 0 where the random steps are independent, exhibit the
slowest convergence. This is a result of the conversion from num-
ber of steps to time. For a fixed valued of the reduced scattering
coefficient, g = 0 means longer and fewer steps compared to larger
values of g. In conclusion, the CLT favours many, weakly depen-
dent, steps, rather than fewer, but independent, steps. A balance
between the independence of consecutive steps and the number of
steps seems to be found for g ≈ 0.7, where the excess kurtosis
quickly converges to zero.
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Figure 4.5. Spatial distributions
at 100 ps for g = 0, 0.7, and 0.95,
calculated using MC. The reduced
scattering coefficient was fixed at
µ′s = 10 cm−1. The dashed line
shows the Gaussian distribution,
i.e. the solution provided by
diffusion theory. The variance of
all four curves is the same.

To visualize the meaning of the excess kurtosis, the spatial dis-
tributions, simulated using MC, at t = 100 ps, for g = 0.0, 0.7
and 0.95 are shown in Fig. 4.5. Here, the variance of all distri-
butions are identical. Still, the shapes of the distributions differ
from each other. A Gaussian distribution with the same variance
is also shown, as this represents the solution from diffusion theory.
As expected, the curve for g = 0.7 follow the Gaussian closely,
where as the other curves deviate. This deviation between radia-
tive transport (MC) and diffusion theory is a direct consequence of
the truncation of the higher order moments of the step length dis-
tribution (in Eq. 4.18) and is a major influence on the breakdown
of diffusion theory.

4.4.2 Time domain

The first assumption in the alternative derivation was that the
time for a particle to complete a step is 〈∆t〉 = 〈s/v〉. This can
be seen as a discretization of time, where the time a particle has
propagated is proportional to the number of steps

tn = n〈∆t〉. (4.41)

This means that, in diffusion, time is discretized rather than con-
tinuous as in RTT. In the continuous time-domain, the time each
step takes, ∆ti, depends on the particle velocity, v, and the length
of each step, si (exponentially distributed)

∆ti =
si
v
. (4.42)

The time a particle has propagated after n steps is actually

t =

n∑

i=1

∆ti =
1

v

n∑

i=1

si. (4.43)

The treatment of random walks with continuous, instead of dis-
cretized time, has been done by Weiss and co-workers [138, 139].
This so called continuous-time random walk (CTRW), treats ran-
dom walk on a lattice with either constant transport velocity (step
lengths and time is coupled using Eq. 4.42) or random waiting
times (time and step lengths are decoupled).

In the limit of many steps, Eq. 4.41 and 4.43 converge. The
intermediate regime, where n is not large, can be explored using
the Erlang distribution [140]. This distribution describes the sum
of n identically distributed exponential random variables, and may
be used to transform the discretized time of diffusion to continu-
ous time. The transformation is approximate as the step lengths
already have been decoupled from the actual time. The PDF of
the Erlang distribution is

fn(t) =
tn−1e−t/µ1

µn1 (n− 1)!
, (4.44)
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Figure 4.6. The fluence predicted
by diffusion theory in discretized
time, Φn, and in continuous time,
Φt. Here, r = 10 mm, g = 0.0 ,
µ′s = 10 cm−1, µa = 0, and
neff =1.5. A small difference is
observed for early times.

where, t is the time, n is the number of steps, and µ1 = 〈si〉/v =
1/(µsv) is the mean of the exponential distribution. The fluence
in continuous time, Φt(r, t) is the sum of the fluence after a certain
number of steps, Φn(r, n) = Φ (r, n〈∆t〉) (where Φ(r, t) comes from
Eq. 4.10), multiplied by the Erlang distribution, summed over all
n

Φt(r, t) =

∞∑

n=1

Φn(r, n)fn(t). (4.45)

Fig. 4.6 illustrates Φt(t) and Φn(t) for g = 0 showing a small
discrepancy for early times. For larger values of g, the difference
disappears. As in the previous section, it is clear that diffusion
favours many smaller steps. The discrepancy between the discrete
(number-of-steps) and continuous time domain is, in this context,
small and is thus a minor contributor to the breakdown of diffusion
theory.

4.4.3 Absorption

In the literature on diffusion theory for light transport, it is stated
that µa � µ′s is required for diffusion theory to hold. The state-
ment may be traced back to the field of neutron transport, where
it is explained that the single-scattering albedo, a = µs/(µa +µs),
must be close to unity for the P1 approximation to hold [57]. How-
ever, as shown in the previous sections, diffusion theory will fail
when the number of steps is small, even in the absence of ab-
sorption. Absorption is added to the diffusion theory solution,
Eq. 4.25, by multiplication with Beer-Lamberts law, Eq. 2.27. It
is clear that longer paths are penalized as the absorption is in-
creased, as illustrated in Fig. 4.7. Increasing the absorption will
cause particles that have taken shorter paths, i.e. taken fewer steps,
to dominate the solutions, causing diffusion theory to break down.
It is clear that µa � µ′s still holds as a condition for the validity of
diffusion, but the fundamental condition is that n must be large.

4.4.4 The diffusion coefficient

The question regarding whether or not the diffusion coefficient
depends on the absorption coefficient [85, 86, 127–130], may be
answered using the derivation of the diffusion coefficient in Section
4.3.1. The diffusion coefficient describe how the variance of the
spatial distribution (Eq. 4.22) grows in time. The variance of the
distribution after n number of steps can be calculated exactly using
Eq. A.19. In the limit n → ∞ the discrete and continuous time
domains are equivalent, as previously discussed. Considering the
spatial distribution at time t, adding absorption, by multiplying
with exp(−µavt), does not change the shape of the distribution
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Figure 4.7. The fluence rate for
different levels of absorption, µa
= 0.0, 0.1, 0.2, 0.3, and 0.4 cm−1.
Other parameters: r = 1.0 cm,
µ′s = 10 cm−1, neff = 1.5. When
increasing the absorption, the
resulting TOF distribution is
increasingly dominated by earlier
particles.

as t is the same for all particles, regardless of how far they have
travelled from the source. It is clear that the variance of the spatial
distribution is independent of absorption.

It should, however, be noted that for fewer number of steps,
the discrete and continuous time domains are not equivalent. Here,
the spatial distribution after n steps, comprise particles that have
propagated different lengths. The ones farther away from the
source are likely to have taken longer steps and should thus be
penalized to a greater extent by absorption. Thus, adding absorp-
tion changes the shape of the spatial distribution.

4.4.5 Similarity relation

Regardless of method of deriving the DE it is found that the
diffusion coefficient only depend on the reduced scattering
coefficient, µ′s = µs(1 − g). This means that, in the diffusion
approximation, µs and g are inseparable and the behaviour of the
model is fully determined by µ′s. This relationship is called the
similarity relation [141].

Pifferi et al. briefly investigated the similarity relation in the
time domain using MC simulations, concluding that the difference
in curve shapes was small as long as 0.7 < g < 0.9 [99]. Kienle
and Patterson came to a similar conclusion, stating that the dif-
ference in curve shapes was small as long as g > 0.8 [101]. Study-
ing steady-state reflectance at small source-detector separations,
Mourant et al. noted that different phase scattering functions gave
different results despite exhibiting the same g-factor [142]. Similar
results were also reached other authors, e.g. [143, 144].

The result above are easily interpreted in terms of moments
of the spatial distribution. The variance (second moment) of the
spatial distribution depend only on the first order moment of the
scattering phase function, i.e. g. This is the origin of the similarity
relation. However, when entering a region where diffusion theory
breaks down, the spatial distribution does depend on the higher
order moments. For larger g-factors, diffusion breaks down “later”,
explaining the observed applicability limits of the similarity rela-
tion. How the breakdown manifests itself depend on the higher
order moments of the spatial distribution, which in turn depend
on the higher order moments of the scattering phase function. For
example, in the calculation of the excess kurtosis (Eq. 4.38) the
second and third moments of the Henyey-Greenstein distribution
was used.

Making the connection back to Section 2.2.4, it is now clear
why the Henyey-Greenstein scattering phase function can be suc-
cessfully applied to problems of light propagation in complex bi-
ological tissue. For macroscopic problems, only the first moment
of the scattering phase function, g, will significantly influence the
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Figure 4.8. a) single or b)
multiple source representation of
a directed source incident on a
boundary. In b) the strengths of
the sources decay exponentially
with the depth.

results and, according to the similarity relation, in many cases g
is not even relevant.

The similarity relation was used in the MC-based evaluation
scheme in Paper I. Clearly being used in a region where diffusion
theory is known to break down, the application of the similarity
relation was still successfully. A possible explanation for this is
that a reasonable guess for g was used in the MC simulations. In a
small range of g as suggested above, the excess kurtosis is similar,
i.e. the deviation from a Gaussian is similar.

4.4.6 Conclusions from the alternative derivation

In the analysis of the approximations in diffusion theory, it may be
concluded that the fundamental requirement for diffusion theory
is that the number of step must be large, or equivalently that only
late times can be considered. Absorption attenuates late light and
must thus be small. The fluence close to the source is dominated
by early light and it is therefore preferable to consider light far
away from the source in order to be able to use diffusion theory.

At very late times, the distribution of light is independent of
all the moments of the step length distribution and hence the scat-
tering phase function. Here, it is clear that the diffusion coefficient
is independent of the absorption. At intermediate times, the first
moment, g, comes into play and diffusion theory starts to break
down. Diffusion favours larger values of g and the breakdown oc-
curs more easily for isotropic scattering. Finally, at earlier times,
even higher order moments of the scattering phase function mat-
ters and the Henyey-Greenstein function may no longer be used
without further analysis.

4.5 Solving the diffusion equation

This section deals with solutions to the diffusion equation in vari-
ous geometries. An excellent overview of different geometries and
boundary conditions is given by Moulton [145].

4.5.1 Source representation

In the derivation of the DE, it was assumed that the source
was isotropic i.e. radiating equally in all directions. In actual
measurements this is rarely the case. Consider for example a
collimated beam of light incident on a scattering medium or light
being delivered to the medium using an optical fibre. In both
cases the incident light has an initial direction. The most common
way of handling this problem is by approximating the directed
source by an isotropic point source at a distance zs = 1/µ′s from
the actual source, in the direction of the source [146, 147], see Fig.
4.8 a). This is motivated by zs being the mean of the exponential

46



Diffusion Theory

distribution of the first (isotropic equivalent) scattering events.
The approximation works well far away from the source but close
to the source the approximation is crude. A better approximation
of the source is to model the directed source as a distribution
of isotropic sources with strengths proportional to exp(−zµ′s),
where z is the distance from the source [148], see Fig. 4.8 b).
A third approach is given by Xu et al. [149] who considers the
cumulants of the spatial distribution in the direction of the source.
Since the source has an initial direction the distribution is no
longer symmetric and the odd order moments will no longer vanish.

Throughout the rest of the section only the first of the above
source representations (isotropic) will be used.

4.5.2 Infinite medium

The solution to the DE in a macroscopically homogeneous (D(r) =
D), infinite medium with an isotropic point source has already
been given in Eq. 4.10 and Eq. 4.25. Including absorption the
solution is

Φ(r, t) = vE0(4πDt)−3/2 exp

(−r2

4Dt
− µavt

)
. (4.46)

Considering the stationary case the solution is8

∞∫

0

Φ(r, t)dt = E0
3µ′s
4πr

exp(−µeffr), (4.47)

where µeff =
√

3µ′sµa [m−1] is the effective attenuation coefficient.

In Paper I, Eq. 4.46 is compared to the WMC model and the
validity of time-domain diffusion theory in infinite geometries is
investigated.

4.5.3 Semi-infinite medium

Light propagation in half-space geometries introduces the problem
of appropriately handling boundaries between different media, for
example, between a scattering media and air. At the boundary
light is reflected back into the scattering medium due to the mis-
match in refractive index, as described for a smooth boundary and
unpolarized light by Eq. 3.8. Numerous papers on how to treat

8 As pointed out by e.g. Pierrat et al. [130], the appropriate way to find the
steady-state solutions to the diffusion equation is rather to state the steady-
state diffusion equation and solving it instead of integrating the time-domain
results. However, the difference between the two methods is, in the context of
this thesis, negligible.
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boundary conditions in the diffusion approximation have been pub-
lished over the years [145, 146, 150–152], many of them sharing
the method of using series of positive and negative sources to ac-
count for the losses introduced by the boundary. These sources are
equivalent to the solution to DE in infinite media. Here, the ex-
trapolated boundary condition [84, 90, 153] (EBC) is considered.
In the EBC, a positive source is introduced at a distance zs into
the scattering medium, as described in Section 4.5.1. A negative
source is introduced outside the medium to create a virtual bound-
ary with zero fluence at a distance −zb from the actual boundary,
see Fig. 4.9. The location of the virtual boundary is set so that
the flux through the boundary, integrated over all angles, approxi-
mates the boundary condition [122, 146, 153]. In time-domain the
solution becomes

Φ(r, t) =
cE0 exp(−µact)

(4πDt)
3/2

[
exp

(−r2
+

4Dt

)
− exp

(−r2
−

4Dt

)]
, (4.48)

where

r+ =
√
ρ2 + (z − zs)2, (4.49)

r− =
√
ρ2 + (z + zs + 2zb)2. (4.50)

Considering the diffuse reflectance i.e. light that exit the
medium after one or more scattering events, a commonly mea-
sured quantity, it is appropriate to consider the flux through the
boundary, R(ρ, t) = −D∇Φ(r, t) · (−ẑ)‖z=0 [145] or weighted com-
binations of the flux and the fluence [122, 153].

The methods of handing boundaries and represent sources are
approximate and may introduce restrictions on the applicability
of diffusion theory. In Paper VI the accuracy of diffusion model
of time resolved diffuse reflectance was investigated. The diffusion
model, using the EBC boundary condition, was found inaccurate
in many cases when compared to the WMC model. However, dif-
fusion did not perform significantly worse than in infinite media,
as investigated in Paper I.

4.5.4 Other geometries

The concept of mirroring sources may be extended to accommo-
date several boundaries, for example a slab geometry which re-
quires an infinite series of positive and negative sources [84, 146].
Analytical solutions for other geometries, such as cylinders and
spheres also exist [145] and when it comes to more difficult geome-
tries, or for inhomogeneous optical properties, numerical methods
such as the finite element method may be applied [154, 155].
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a)

b)

Figure 4.10. Example of
materials with isotropic and
anisotropic transport properties.
In a) the scattering particles are
randomly oriented, resulting in a
macroscopic isotropic behaviour.
In b) the particles exhibit
statistical alignment, resulting in
anisotropic transport of waves,
i.e., anisotropic diffusion.
Modified from Bret [156].

4.6 Anisotropic diffusion

Anisotropic diffusion, not to be confused with anisotropic scat-
tering, is observed when the diffusion coefficient is dependent on
the direction. In a macroscopic picture, it means that light will
propagate at different rates in different directions.

In order to understand why anisotropic diffusion occurs, con-
sider, for example, the scattering of light by an asymmetric parti-
cle, such as a prolate spheroid. Depending on the size and prop-
erties of the particle, the differential scattering cross section may
depend on the orientation of the particle relative to the incident
plane wave. This means that the scattering cross section and the
phase scattering function may be direction-dependent. Fig. 4.10 a)
illustrates a collection of randomly oriented such particles. Despite
the assumed direction dependency of the scattering by individual
particles, the random orientation of the particles ensures that the
resulting wave transport is isotropic. However, when the particles
are statistically aligned, as illustrated in b), the lack of randomness
causes the wave transport to become anisotropic.

Anisotropic diffusion can be observed in many materials such as
aligned nematic liquid crystals [157–159], porous semiconductors
[160], stretched plastics [161, 162], and wood [163–165]. Due to
the anisotropic microstructure of many kinds of biological tissues,
anisotropic light transport can be observed there as well, for ex-
ample, muscle [166], bone [167], teeth [168], skin [169], and arterial
walls [170].

In Paper VIII, anisotropic diffusion of light was observed in
compacted granular porous media. Due to the radial symme-
try of the samples, the anisotropy cannot be observed in steady
state reflectance or transmission measurements. Instead, spa-
tially resolved time-domain measurements were made, revealing
the anisotropic transport behaviour.

4.6.1 Anisotropic transport modelling

A solution to the anisotropic diffusion problem was stated in Eq.
4.23 and 4.24. A time-domain anisotropic diffusion equation, re-
sulting in the same solution, was given in [159].

Anisotropic radiative transport may also be modelled using, for
example, Monte Carlo methods [171]. The simulation is straight-
forward, but requires p(̂s′, ŝ) and µs(̂s) to be explicitly defined. In
addition, the relationship between these two parameters and the
diffusion coefficients is not trivial [162, 172]. In this context, the
random-walk based derivation of the diffusion coefficient in Section
4.3.1, provides an intuitive picture of the link between p(̂s′, ŝ) and
µs(̂s), and the diffusion coefficients.
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Figure 5.1. Illustration of the
temporal broadening of pulses
propagating in turbid media. In
the random walk picture, particles
experience paths of different
lengths as they are scattered
multiple times. The distribution
of different paths cause the
transmitted pulse to be broadened
in time. Modified from [125].

Chapter 5

Time-of-flight spectroscopy

Absorption spectroscopy is a versatile and widely employed tool
to investigate constituents of samples. In conventional optical ab-
sorption spectroscopy, a transmission spectrum, i.e. the wavelength
dependent transmission coefficient, is measured and compared to
known spectra of different molecules. This allows identification of
the molecules present in the sample. Further, if the path length
through the sample is known, the concentration of the identified
molecules may be calculated, as suggested by Eq. 2.27 and 2.26.
In the absence of scattering, for example, in a glass of water or
wine, measuring the path length experienced by the wave of light
is trivial, as light passes straight through.

In contrast to clear media, the presence of scatterers compli-
cates the approach of absorption spectroscopy as the path length
no longer is well defined. This is easily understood in the context
of Monte Carlo simulations of the RTE, where light propagation
through a turbid sample can be seen as a random walk of fictional
energy particles. As illustrated in Fig. 5.1, considering transmis-
sion through a turbid slab, some particles will take a short path
while some will make a longer excursion, resulting in a temporal
broadening of the transmitted pulse. In time-of-flight spectroscopy
(TOFS) the time evolution of a pulse transmitted through a tur-
bid medium is recorded. Evaluation of the data, for example, by
comparing it to a physical model of light transport such as Monte
Carlo or diffusion theory, allows separation of the scattering and
absorption properties of the sample. Once separated from the
scattering properties, the absorption information may, just as in
the simpler case, be used to identify and quantify the absorbers
present in the sample. In addition, the scattering properties, often
merely considered an aggravating factor, contains information on
the microstructure of the sample.

In this chapter, some aspects of the TOFS technique will be
explained, such as instrumentation, advantages and applications.
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5.1 Introduction

TOFS has its origins in the field of atmospheric optics where
time-resolved propagation of light in clouds was investigated in
the early 1970’s [173, 174]. Investigating more strongly scattering
and significantly smaller samples, Shimizu et al. presented their
experimental results of measurements of densely packed latex
spheres in 1979 [175]. While these results enabled measurements
of materials such as tissue, the breakthrough for TOFS in
biomedical applications came in the late 1980’s when Chance and
coworkers presented application of TOFS to measure hemoglobin
and myoglobin in tissue [176, 177].

5.2 Instrumentation

The enabling technology for the experiment of Shimizu et al. was
the advent of fast pulsed lasers, able to generate pulses with dura-
tion of picoseconds (10−12 s) or less [175]. In the biomedical and
pharmaceutical applications considered here, the time-scale of the
broadening of the pulses is in the range of hundreds of picoseconds
to a few nanoseconds. To accurately measure the temporal shape
of the pulse, both the source and the detection system must work
on a time-scale much shorter than this. Over the years, the in-
struments involved in TOFS have been significantly improved and
simplified, allowing faster, more accurate, and less expensive mea-
surement systems with significantly expanded capabilities. In this
section, a few relevant detection systems and sources are briefly
mentioned.

5.2.1 Detection system

In Papers I, VI, IV,V, and VII a detection scheme called time-
correlated single photon counting (TCSPC) was used. The sub-
ject of TSCPS is thoroughly covered in the book by Becker [178].
Briefly, TCSPC, as the name implies, is based on the detection of
individual photons. The time of arrival of the photons, compared
to a reference pulse, are measured electronically and a histogram
of arrival times is built up by sequential measurements of many
photons. The method is statistical, in the same sense Monte Carlo
simulations are statistical, and is subject to the same drawbacks;
the recorded TOF curves are noisy, and, due to limitations in de-
tectors and counting electronics, the acquisition time is typically
long (several seconds for a single measurement). An advantage of
the TCSPC technique is that it allows measurements even when
the signal to be measured is very weak. Also, it allows large dy-
namic range measurements, limited by the detector, or ultimately,
the statistical noise.
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The detectors for TCSPC must be sensitive enough to detect
single photons, yet be fast enough for accurate timing of the detec-
tion. Due to clever electronics in the TCSPC system (a unit called
a constant fraction discriminator) the timing accuracy may be a
few picoseconds, despite the temporal response of typical detec-
tors being several nanoseconds long. In Papers I, VI, IV, V, VII,
and VIII micro channel plate-photomultiplier tube (MCP-PMT)
detectors were used. In particular, in Paper V a system based on
TCSPC and dual MCP-PMTs was described, extending the us-
able spectral range of TOFS up to 1400 nm, thus covering a range
important for vibrational spectroscopy of solid samples [179].

In the last few years, single photon avalanche photodiode
(SPAD) detectors have emerged as a competitive alternative to
PMT detectors [178, 180–182]. Modern SPAD’s may feature
virtually zero dark noise and allow higher count rates, and thus
shorter acquisition times, but offer a much smaller detection area
limiting the use in some cases, e.g. fibre based TOFS systems.
Further, SPAD’s may be combined with fast electronically
controlled gating of the bias voltage, enabling measurement with
very large dynamic range [182]. Such time-gating techniques
have recently been used to realize TOFS at small source-detector
separations [183] and were used in Paper IX to demonstrate
the possibilities to do TOFS with a single fibre, used to both
deliver and collect light from the sample. SPAD detectors based
on InGaAs instead of Silicon, are currently under development
[184], possibly extending the advantage of SPAD detectors to the
spectroscopically important region above 1000 nm.

While TCSPC-based systems are limited to measuring one or
a few wavelengths at a time, alternative techniques exist simulta-
neously measure TOF distributions for several wavelengths simul-
taneously. Streak-cameras is an example of such a technique and
its use in TOFS was the topic of the thesis by Abrahamsson [185].
Other notable detection techniques rely on electronic [186] (used
e.g. for time resolved imaging) or optical [159, 175, 187, 188] time
gating. Using the latter, remarkable temporal resolution, ∼ 10 fs,
may be achieved [188, 189].

5.2.2 Sources

In Papers I, VI, and IV a TOFS system based on pulsed narrow-
bandwidth diode lasers was utilized. Using a limited number of
carefully selected fixed wavelength sources allows for some basic
spectroscopy but access to the entire spectrum is clearly desirable,
a problem approached by several authors [190–194]. Today, ps-
pulsed supercontinuum sources are commercially available. Such a
system was used, in combination with two acousto-optical tunable
filters (AOTFs), in Paper V, to allow spectral filtering in the entire
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∼ 600− 1550 nm range.
The aspect of spectral filtering was investigated by Farina et al.

showing that the bandwidth of the filtered pulses must be ac-
counted for when employing broadband TOFS systems [195].

5.3 Relationship to other techniques

In order to understand the advantages of the TOFS method for
assessment of optical properties, it is helpful to consider its relation
to other techniques for diffuse optical spectroscopy. Here, a few
such techniques are considered.

5.3.1 Spatially resolved steady-state

Spatially resolved steady-state is a technique where the fluence
or flux is measured at several distances from the source, enabling
deduction of the optical properties of the sample by comparison to
a light propagation model [147, 148, 196, 197]. Despite limitations,
the technique is widely popular due to its simplicity and low cost.

Considering light propagating in an unbounded, homoge-
neously scattering and absorbing material, far away from the
source. In the diffusion approximation, the fluence distribution
in steady state (i.e. a continuous source) is given by Eq. 4.47
while the spatial and temporal distribution is given by Eq. 4.46.
In steady state, the shape of the spatial distribution is given by
r−1 exp(−µeffr). The absolute fluence level is proportional to µ′s.
As µeff depend on both the absorption and scattering coefficients,
the two coefficients may not be separated by the shape of the spa-
tial distribution alone. In order to separate absorption and scat-
tering, it is required to measure the absolute fluence level (relative
to the source), a cumbersome experimental task [198], or to mea-
sure fluence rate at a distance close to the source where diffusion
is known to break down.

In the time-domain, at a fixed r, it is evident that the effect
on temporal shape by the diffusion coefficient and absorption co-
efficient are different. While the absolute fluence level also carry
information related to the scattering, the temporal shape of the
transmitted pulse carries all the information needed to assess both
the diffusion and absorption coefficient. In conclusion, by making
measurements in the time-domain, both the scattering and absorp-
tion properties of a material may be deduced from a single mea-
surement without the need to measure absolute light intensities.
The shape dependency on scattering and absorption is illustrated
in Fig. 5.2.

Moving away from model-based data evaluation, it is also pos-
sible to deduce optical or physical properties of a sample using
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Figure 5.2. An illustration of how absorption and scattering changes
the shape of the TOF-curves, measured experimentally of tissue simu-
lating phantoms (see Section 5.5.3) In the upper figure, absorption was
increased in small steps by adding ink. The effect on the added absorp-
tion is an increased decay rate, as predicted by Beer-Lamberts law, Eq.
2.27. In the lower figure, increasing the scattering causes the detected
pulses to arrive later and to be broadened. The dashed lines indicate
the instrument response function (IRF) of the system. Modified from
[125].

calibrations. This requires measurements on a large set of sam-
ples with varying, but known, properties. A measurement of an
unknown sample may later be compared to the database of mea-
surements on known samples, and the properties of the unknown
sample may thus be estimated. Such calibration-based techniques,
combined with steady state measurements, are common, for exam-
ple, in so-called near-infra red spectroscopy (NIRS) of pharmaceu-
tical samples [179]. A disadvantage of this approach is the un-
defined behaviour when measurements are made on samples that
lie outside of the range covered by the calibration database. The
technique is thus sensitive to changes in, for example, the scat-
tering properties of the sample, caused by small changes in the
microstructure.

In conclusion, the TOFS technique, albeit slow, and relatively
expensive and complex, allows straightforward separation of the
effects of scattering and absorption in a sample from a single mea-
surement. The TOFS technique uses models of light propagation,
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rather than calibrations, for data evaluation and is thus capable
of handling virtually any combination of optical properties.

A notable difference between the steady-state and time-domain
measurements is the difference in the properties measured. TOFS
gives a measure of the dynamic properties of light transport
while steady-state measurements probe the static properties. The
(reduced) scattering coefficient is a static property, governing step
lengths while the diffusion coefficient is a dynamic property, also
taking the energy transport velocity into account. The energy
transport velocity is generally assumed the be the same as the
phase velocity1, v = vp = c/neff . This allows µ′s to be derived
from TOFS measurements by assuming an effective refractive
index of the material. This assumption was made in Papers I, IV,
V, VI, VII, and IX. Alternatively, time-domain and steady-state
techniques may be used together to gain knowledge of the energy
transport velocity [199, 200].

5.3.2 Scatter correction

In scatter correction techniques, a spectrum, obtained from a
steady-state measurement, is corrected for the contribution due
to scattering. This correction is often model-based and relies on
the smooth and predictable spectrum of the scattering process,
µ′s ∝ λ−b, as discussed in Section 2.2.4. Using this a priori in-
formation, the entire scattering spectrum can be estimated if the
(reduced) scattering coefficient is know for a few discrete wave-
lengths. Hence, combining broadband steady state techniques with
discrete wavelength systems e.g. TOFS, yields a powerful combi-
nation. This kind of scattering correction has been explored by
several authors, for example in studies of pharmaceutical prepara-
tions by Abrahamsson et al. [201] and in clinical studies of breast
tumour detection [202–204].

Another way of doing scatter correction is to leave the pa-
rameters of the scattering spectrum as free parameters in a data
evaluation fitting procedure, see e.g. [205].

5.3.3 Frequency-domain

In the frequency-domain (FD) technique, an intensity modulated
source is used. At the detector, the change in amplitude (demod-
ulation) and phase shift, compared to the source function is mea-
sured [204, 206, 207]. Doing this measurement for all modulation
frequencies, the frequency domain technique would be equivalent

1In general this assumption holds. However, in certain materials, for ex-
ample, where the scatterers are well defined in size and shape, the resonant
behaviour of the scattering is no longer averaged out, resulting in a behaviour
where the energy transport velocity differs from the phase velocity [199].
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Figure 5.3. A simplified flowchart
of the iterative fitting procedure.

to the time-domain technique. The results of the two techniques,
TOF curves, and phase and demodulation frequency spectra, are
related by the Fourier transform. In order to extract optical prop-
erties, and separate absorption and scattering, all frequencies are
not needed. In fact, a measurement at a single frequency carries
enough information to extract µa and D (or µ′s) but, in general,
increasing the number of frequencies and including higher frequen-
cies increases the accuracy [121].

Advantages of the FD technique, in discrete wavelength mea-
surements, is relaxed requirements for the optical and electrical
system, allowing simpler and cheaper systems [208]. Furthermore,
if just a few frequencies are needed, the measurement time may
be significantly reduced. Compared to TOFS, some of the draw-
backs of FD are the lack of higher frequency information and the
requirement for more light to reach the detector. Time domain
measurements are thus preferable for fundamental studies of light
propagation while frequency domain systems are more suitable, for
example, in large scale clinical trials [202].

5.4 Data evaluation

In order to assess optical properties from TOFS measurements,
data evaluation is required. This, so called inverse problem, is a
non-trivial but crucial step in the process of TOFS measurements
and deserves attention. Some aspects of TOFS data evaluation
were thoroughly discussed in the thesis of Svensson [125].

In the previous chapters, the forward model of light trans-
port in turbid media was discussed. Radiative transport theory
was introduced as a physical model of the reality, where the com-
plex medium was reduced to three parameters i.e. µs, p(̂s

′, ŝ), and
µa. This model was solved using Monte Carlo or diffusion theory,
where the temporal response of a sample may be calculated, given a
set of the three parameters and a specific geometry. Together, this
constitutes the forward model. However, in the inverse problem, a
temporal response (a TOF curve) is given and the optical parame-
ters corresponding to that curve are sought. As the forward model
depends on the optical properties in a complex (non-linear) way,
the problem may not be solved using ordinary regression analysis.
Instead, methods such as iterative minimization of the sum-of-
squares must be used to solve the inverse problem. The problem
turns into the minimization of the function

χ2(µ′s, µa) =

N∑

i=1

(
yi − y(µ′s, µa, ti)

σi

)2

, (5.1)

where yi is the experimental data, ti the corresponding time, and
σi are weights of the data points. The function y(µ′s, µa, ti) is the
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forward model, convolved with the instrument response function
(IRF). The IRF is an important aspect of TOFS, as it accounts
for the temporal broadening of the system itself, caused by finite
temporal length of the laser pulses, the temporal response of the
detctors, electronic timing jitter, etc. The IRF also serves the
important role of a timing reference for the recorded TOFS curves.

Fig. 5.3 illustrates a simplified flowchart of the iterative fitting
procedure. The difficulty lies in intelligently updating the fitting
parameters each iteration. A popular and commonly used method
for solving this minimization problem is the Levenberg-Marquardt
method [209].

The iterative nature of the data evaluation implies that the
forward model will have to be evaluated for several sets of optical
properties before the optimal fit is found. This introduces a con-
straint on the models used in evaluation; the evaluation time of
the model must be short in order for the data evaluation to finish
in reasonable time. In any case, the model used must be appro-
priate. As discussed in Chapter 4, under conditions relevant to
tissue measurements, diffusion models break down, in particular
in presence of strong absorption. Diffusion models should, despite
their attractive analytical form, be avoided in evaluation of mea-
surements where there is a risk of diffusion breakdown. The issues
of model accuracy and evaluation speed were addressed in Papers I
and VI, introducing a fully scalable MC model used to evaluate
TOFS data. It was shown that improved modelling, e.g. Monte
Carlo, is required in many situations of measurements of tissue,
in order to accurately measure optical properties. In cases where
WMC rescaling is not possible, Paper II provides a major step to-
wards enabling MC-based data evaluation in arbitrary geometries,
by significantly reducing the simulation time in MC.

Other evaluation methods, besides iterative fitting also exist
[210, 211]. In particular, in the early days of TOFS a popular
method of data evaluation was to extract µa from the slope of
the late part of the TOFS curve [176, 177, 212, 213], assumed
independent of the scattering coefficient at late times (compare to
Fig. 5.2). While theoretically possible, this method is hard to
use in practice as it requires very large dynamic range in order
to collect data at sufficiently late times. The method is related
to the ideas presented in Paper IX, where this the eight orders
of dynamic range provided by the SPAD-based detection scheme,
clearly resolves this late part. Still, iterative fitting proved to be a
far superior evaluation scheme as it allows data from earlier times
to be used as well.
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5.5 Estimating physical properties

In the previous sections, aspects on TOFS instrumentation and
TOFS data evaluation, were discussed, i.e. how TOFS curves are
measured and how the optical properties, µ′s and µa, may be as-
sessed. Much effort is spent assuring accurate evaluation of these
properties. The properties in themselves are of interest, for exam-
ple, in fundamental studies of light propagation as well as for solv-
ing the forward problem in various applications. However, from a
spectroscopic point of view, the optical properties are valuable as
they can be used to assess the physical properties of a measured
sample, such as chemical composition.

5.5.1 Absorption spectroscopy

Absorption spectroscopy relies on an accurately measured absorp-
tion spectrum, µa(λ). The total absorption spectrum is the sum
of the absorption spectra of the different absorbers, weighted by
their concentrations, as described by Eq. 2.28. Knowing the spec-
tra of the absorbers (chromophores) present in the sample, this
equation turns into a linear system of equations. The quantities of
the absorbers may be calculated by solving the system of equation.
For the system to be determined, at least as many measurements
of µa, at different wavelengths, as there are major absorbers, are
required. Therefore, in applications of absorption spectroscopy of
tissue, for example, studying the oxygenation of blood only a few
wavelengths needs to be measured (see Fig 2.5). In Paper IV, a
four wavelength TOFS system was used to measure the oxy- and
deoxyhemoglobin concentration in human prostate in vivo.

In order to improve the accuracy in the absorption spec-
troscopy, it is preferable to work with an overdetermined system,
i.e. measuring the full spectrum. In Paper V a so-called white
light system was introduced, capable of measuring the absorption
coefficient in the entire 650 − 1400 nm range. The system is in-
tended for applications involving pharmaceutical samples where
the important spectral information (absorption peaks) is located
in the NIR range (> 1000 nm).

An interesting twist on absorption spectroscopy, called double-
differential spectroscopy, was introduced to the field of tissue spec-
troscopy, by Kukreti et al. [214]. There, the measured absorption
spectrum was compared to that of presumed healthy tissue from
the same patient, revealing small, but significant, differences with
potential use as optical biomarkers for tumours.

5.5.2 Assessing structural properties

At a first glance it appears as if the presence of scattering in
a sample is just an aggravation in the application of absorption
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Figure 5.4. A scattering
spectrum of a tablet made of
epoxy and TiO2, measured using
the dual-PMT system described
in Paper V. The solid line
illustrates the scattering power
law fit: µ′s = 261 ∗ (λ/µm)−1.47.
Adapted from Paper V.

spectroscopy. However, as discussed in Section 2.2, the scattering
properties are intimately linked to the microstructure of the scat-
tering material, as microscopic variations in the refractive index
are the source of scattering. Clearly, in the process of reducing the
complex microstructure of e.g. tissue, to one or a few parameters,
a lot of information is lost. In biological tissue, the source of the
microscopic variations in refractive index, are cells and organelles.
The scattering spectrum hence carries information about the struc-
tures that contributes the most to the refractive index variations,
for example, cell nuclei and mitochondria [215, 216], and collagen
[11]. A scattering spectrum of a tablet phantom is shown in Fig.
5.4. Just as in the case of tissue, the microstructure is complex
and cannot be considered a collection if independently scattering
particles. Still, the scattering exhibit a power law behaviour.

In colloidal suspensions of scattering particles, the analysis of
structural information is straightforward. In case of spherical scat-
terers, Mie theory may be used to infer the size and concentration
of the scatterers from the scattering spectrum [38, 217].

The study of anisotropic transport properties is another, not
strictly spectroscopic, way of revealing sample microstructural pa-
rameters [162].

Turning to fundamental investigations of the interaction of elec-
tromagnetic waves and strongly scattering materials, the mean free
path, energy transport velocity and effective refractive index are
properties of great interest [200, 218].

5.5.3 Phantoms

In order to evaluate, improve, and compare instruments, as well
as theoretical models, access to objects with known and/or con-
trollable optical properties is essential. A review of such objects,
called “phantoms”, was recently published [219]. Below, two com-
monly used phantom designs are briefly discussed as they were
extensively use in the work in this thesis.

Perhaps the most common phantom design in the field of
biomedical optics is the liquid phantom, based on water and In-
tralipid [220, 221], and an absorber. Intralipid is the name of a
commercially available lipid emulsion, i.e. lipid microparticles in
water, much like common milk. The scattering properties of an
Intralipid based phantom may be calculated approximately [220],
or calculated using a batch specific calibration [222]. To incorpo-
rate absorption, for example blood [223] or ink [224] may be added.
These liquid phantoms have the advantage that the scattering and
absorption may be modified at any time, by adding more Intralipid
or absorber by diluting the phantom. This was used to perform
added absorber and added scatterer series in Papers I and IX.
Measurement from such series are shown in Fig. 5.2.
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A second kind of phantom is the solid phantom, based on an
epoxy resin as bulk material, with titanium dioxide particles added
for scattering and toner ink added as absorber [225]. The finished
phantoms are durable and stable, but their optical properties may
not be changed. Such phantoms were created in the medphot
initiative, aiming to investigate the performance of diffuse optical
spectroscopy instruments in an international collaboration [104].
In Paper VI this set of phantoms was characterized using TOFS
in combination with WMC data evaluation, demonstrating the
necessity of improved modelling in TOFS data evaluation.

5.6 Applications of TOFS

The spectroscopic applications of TOFS are intimately linked to
those of diffuse optical spectroscopy (DOS) in general, which are to
numerous to count. Due to the amount of information provided by
TOFS (the full time of flight histogram), the technique is primarily
used in more fundamental, or piloting, studies of DOS or funda-
mental studies of light propagation. In e.g. medical applications,
unless all the information provided by TOFS is needed, simpler
techniques are generally applied. In this section a few pharmaceu-
tical and biomedical applications are highlighted. In addition to
those fields, TOFS has been applied in various other studies, for
example, studies of agricultural produce [226, 227], measurements
of optical thickness of clouds [228], and spectroscopic studies of
wood [163, 229]. Also, TOFS is an essential tool in the funda-
mental understanding of wave propagation in complex media, for
example, in the search for Anderson localization [230, 231].

5.6.1 Pharmaceutical applications

Near-infrared spectroscopy (NIRS) has, over the last decades,
evolved into an important tool in the analysis of pharmaceuti-
cal preparations [179]. NIRS, commonly based on steady state
measurements of the transmission or reflectance spectrum, allows
accurate quantitative chemometry, i.e. identification and quantifi-
cation of active pharmaceutical components in tablets. Being an
optical technique, the measurements are fast, inexpensive, non-
destructive, and requires little or no sample preparation. The com-
plication of scattering is generally handled by calibration, making
the method sensitive for changes in the sample microstructure.
The microstructure is an important parameter in pharmaceutical
manufacturing of durable and robust tablets, and for dissolution
dynamics of tablets in the gastro-intestinal system [179].

In order to separate the absorption and scattering properties,
measurement techniques that rely on model based data evalua-
tion have recently gained interest. A review of such techniques
and their application was recently published [232]. Instruments
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for diffuse optical spectroscopy in time-domain [233], frequency-
domain [234], and spatially resolved steady state [197] have been
explored, all of them relying on isotropic diffusion theory for data
evaluation. In Paper VIII the use of isotropic models is ques-
tioned, as it is shown that light propagation in compacted gran-
ular media is anisotropic. In such materials, used in pharma-
ceutical tablets as filler materials, the anisotropy originates from
an anisotropic microscopic pore structure, induced by compaction
[235, 236]. While this is a complication in modelling, it also shows
that optical methods may provide a valuable and non-destructive
way of probing this microstructure. This topic is also explored in
Paper VII where TOFS was used in combination with the GAS-
MAS technique [43, 237] in an investigation of how light interacts
with porous solids. Although revealing the need for better mod-
elling in order to realize accurate model-based optical porosimetry,
excellent correlation between optical porosity and actual porosity,
measured by a standard, but destructive, reference technique, is
shown. On a final note regarding optical measurements of the
microstructure of porous samples; as in the case of tissue, these
materials are clearly not a collection of independent scatterers.
Still, a power-law behaviour of the scattering is observed, with
coefficients related to the pore structure [238, 239].

5.6.2 Biomedical applications

Optical mammography

The one medical application of TOFS, and related DOS tech-
niques, that perhaps have received the most attention over the
years is so-called optical mammography. Here, optical spectro-
scopic techniques are employed, either in point measurements or in
a tomographic manner, in search of malignancies. [202, 214, 240–
244]. In breast tissue, scattering is reasonably weak and the ab-
sorption small enough to allow optical penetration depths of a few
centimetres. Thus, an entire breast may be probed non-invasively
in either transmission or reflection geometries. However, as light
scatter in tissue, the spatial resolution in such measurements is
coarse, in particular in comparison to conventional X-ray based
mammography measurements. Optical techniques, however, of-
fers several advantages; light within the tissue optical window is
non-ionizing and, at intensities used in TOFS, completely harm-
less. Also, optical techniques are spectroscopic, providing several
opportunities for contrast. Absorption of blood, water, and lipids
all provide contrast [202, 214, 242–244]. The scattering spectrum
have also been shown to provide contrast between tissue types,
as well as between normal and malignant breast tissue [245–248].
In addition to the potential application of optical mammography,
this optical contrast, providing information on tissue composition
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and structure, is currently being evaluated as a tool to follow and
predict the tissue response in cancer treatment [14].

Interstitial in vivo spectroscopy

TOFS have successfully been applied to in vivo measurements of
the human prostate, proving its value in spectroscopic measure-
ments of blood rich internal organs, see e.g. [105] and Paper IV.
These studies were motivated by the potential application of pho-
todynamic therapy (PDT) treatment of prostate cancer. PDT re-
lies on three things for successful necrosis/apoptosis. i) The pres-
ence of molecular oxygen ii) an appropriate light dose, and finally
iii) the presence of a photosensitizer, a light activated molecule,
converting oxygen into toxic singlet oxygen. Thus, in PDT dosime-
try accurate measurements of the tissue oxygenation are beneficial.
Also, in order to calculate the light dose, the optical properties of
the tissue are also of interest. An overview of interstitial PDT
for prostate cancer treatment and PDT dosimetry can be found in
[249, 250].

The oxygenation in tumours is not only of interest in PDT.
Treatment outcome of other modalities, such as radiotherapy,
brachytherapy, and some forms of chemotherapy, is significantly
influenced by the amount of oxygen present in the tumour. See,
for example the review by Vaupel et al. [251].

Motivated by minimally invasive interstitial absorption spec-
troscopy, a single-fibre TOFS system was demonstrated in Pa-
per IX.

Hemodynamics and functional measurements

In addition to the previously presented applications, optical mea-
surements related to the presence, and dynamics, of blood have
many other applications. As an example, TOFS have been ap-
plied to the study of hemodynamics and metabolism in the infant
brain [252–254]. As shown by Chance et al. despite the strong
scattering of bone, TOFS can be used to non-invasively probe the
hemoglobin oxygenation in the adult human brain [177]. This
have opened the field of TOFS for functional measurements, such
as hemodynamic changes due to cerebral activity [255–257].
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Appendix A

The covariance matrix

In this appendix, the sum of the covariance matrix (Eq. 4.31)
is calculated. The problem may be divided into tree parts, cal-
culating the diagonal elements of the covariance matrix, 〈∆x2

i 〉,
calculating the non-diagonal elements of the matrix, 〈∆xi∆xj〉,
and finally calculating the sum of all the elements in the matrix.
To help solve the first two problems, Fig. A.1 illustrates two steps
in a 3D random walk and the angles involved in calculating ∆xi.
si is the step length and αi is the angle between the direction at
step i and the x-axis. The step increments in the x-direction, ∆xi
are simply the step length si projected onto the x-axis

∆xi = si cosαi. (A.1)

y

x
αi αi+1

si

si+1

θi+1

φi+1

∆xi ∆xi+1

Figure A.1. Two steps in a random walk in three dimensions, along
with the projections of the steps onto the x-axis. The direction of the
second step is determined by the direction of the former step as well as
the deflection angle θi+1 and the azimuthal angle φi+1 (see Section 3.2).
The angles αj are the angles between the step direction and the x-axis.
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A.0.3 〈∆x2
i 〉

The step lengths si are independent random variables. As si fol-
lows an exponential distribution with the rate µs, the first four
moments of si are: 〈si〉 = 1/µs, 〈s2

i 〉 = 2/µ2
s, 〈s3

i 〉 = 6/µ3
s, and

〈s4
i 〉 = 24/µ4

s.
The next direction angle, αi+1, can be expressed as a function

of the cosine of the current direction angle, αi, the deflection angle,
θi+1, and the azimuthal angle, φi+1:

cosαi+1 = cos θi+1 cosαi + cosφi+1 sin θi+1 sinαi. (A.2)

The two angles, θn and φn can be considered independent random
variables. Also, for m 6= n, θn and θm, are independent. The same
holds for φn and φm.

Assuming that the distribution of directions is isotropic at
all times (basically, isotropic source or late enough so that the
angular distribution have reached equilibrium in an isotropic
medium) the distribution of step lengths projected onto an axis
is uniform. That is, the cosine of the angle α is uniformly dis-
tributed ∈ [−1, 1]. Hence, cosαi has the following raw moments:
〈cosαi〉 = 0, 〈cos2 αi〉 = 1/3, 〈cos3 αi〉 = 0, 〈cos4 αi〉 = 1/5.

Three rules are great to keep in mind for the calculations ahead:

� For all even distributions, all the odd moments are zero.

� For two random variables, X and Y , 〈X + Y 〉 = 〈X〉 + 〈Y 〉
always holds.

� For independent random variables, 〈XY 〉 = 〈X〉〈Y 〉 also
holds.

A.0.3 〈∆x2
i 〉

The diagonal elements of the covariance matrix are

〈∆x2
i 〉 = 〈s2

i cos2 αi〉 = 〈s2
i 〉〈cos2 αi〉 =

2

µ2
s

1

3
. (A.3)

A.0.4 〈∆xi∆xj〉
The non-diagonal elements of the covariance matrix are not trivial
as the random variables ∆xi and ∆xj (i 6= j) are dependent, as
clearly shown by Eq. A.2. For simplicity j = i + 1 is initially
considered

〈∆xi∆xi+1〉 = 〈si cosαisi+1 cosαi+1〉
= 〈si〉〈si+1〉〈cosαi cosαi+1〉.

(A.4)
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The term containing the dependency, 〈cosαi cosαi+1〉 may be
rewritten using Eq. A.2

〈 cosαi cosαi+1〉 =

= 〈cosαi(cos θi+1 cosαi + cosφi+1 sin θi+1 sinαi)〉
= 〈cos θi+1 cos2 αi + cosφi+1 sin θi+1 sinαi cosαi〉
= 〈cos θi+1 cos2 αi〉+ 〈cosφi+1 sin θi+1 sinαi cosαi〉
= 〈cos θi+1〉〈cos2 αi〉+ 〈cosφi+1〉〈sin θi+1〉〈sinαi cosαi〉.

(A.5)

The azimuthal angle φ is uniformly distributed in (0, 2π]. Thus,
cosφ is an even function and 〈cosφi〉 = 0. The average cosine of
the deflection angle is g = 〈cos θj〉, as described in Section 2.2.2,

〈∆xi∆xi+1〉 = 〈si〉〈si+1〉〈cos θi+1〉〈cos2 αi〉

=
1

µs

1

µs
g

1

3
=

g

3µ2
s

.
(A.6)

The same approach may be used for j = i+ a

〈∆xi∆xi+a〉 = 〈si cosαisi+a cosαi+a〉
= 〈si〉〈si+a〉〈cosαi cosαi+a〉.

(A.7)

The term 〈cosαi cosαi+a〉 may be approached as before

〈 cosαi cosαi+a〉 =

= 〈cosαi(cos θi+a cosαi+(a−1) + cosφi+a sin θi+a sinαi+(a−1))〉
= 〈cos θi+a cosαi cosαi+(a−1) + cosφi+a sin θi+a sinαi+(a−1) cosαi〉
= 〈cos θi+a cosαi cosαi+(a−1)〉+ 〈cosφi+a sin θi+a sinαi+(a−1) cosαi〉
= 〈cos θi+a〉〈cosαi cosαi+(a−1)〉+ 〈cosφi+a〉〈sin θi+a〉〈sinαi+(a−1) cosαi〉
= g〈cosαi cosαi+(a−1)〉.

(A.8)

Every iteration, a 〈cosφ〉-term appears and removes the involved
part. Also, every iteration a factor g appears in front of the final
expression. Iterating Eq. A.8 a times yields

〈cosαi cosαi+a〉 = ga〈cos2 αi〉, (A.9)

which in turn gives

〈∆xi∆xi+a〉 =
ga

3µ2
s

. (A.10)
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A.0.5 The sum of the covariance matrix

Using Eq. A.10 and Eq. A.10 the covariance matrix may be stated

Σjk =
1

3µ2
s




2 g g2 ... gn−1

g 2 g ... gn−2

g2 g 2 ... gn−3

... ... ... ... ...

gn−1 gn−2 gn−3 ... 2



. (A.11)

In order to calculate the sum of the matrix, the sum 1 + g + g2 +
g3 + ...+ gn is recognized as a geometrical series which, for g < 1,
and assuming that n is large, may be calculated using

∞∑

k=0

gk =
1

1− g . (A.12)

The sum of the covariance matrix calculated approximately

〈x2
n〉 =

n∑

j=1

(
n∑

k=1

Σjk

)
n�1≈ 2n

3µ2
s(1− g)

. (A.13)

Exact covariance matrix sum

The sum of the covariance matrix may also be calculated exactly

〈x2
n〉 =

n∑

j=1

(
n∑

k=1

Σjk

)
=

1

3µ2
s

(
n−1∑

k=0

2(n− k)gk

)
. (A.14)

The new sum is identified as two geometric series

n−1∑

k=0

2(n− k)gk = 2n

n−1∑

k=0

gk − 2

n−1∑

k=0

kgk

= 2(n+ 1)

n−1∑

k=0

gk − 2

n∑

k=1

kgk−1.

(A.15)

Using
n∑

k=0

gk =
1− gn+1

1− g , (A.16)

and
n∑

k=1

kgk−1 =
1− gn+1

(1− g)2
− (n+ 1)gn

1− g , (A.17)

the sum can be calculated

n−1∑

k=0

2(n− k)gk =
2(n+ 1)

1− g − 2
1− gn+1

(1− g)2
. (A.18)
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Finally

〈x2
n〉 =

2

3µ2
s

(
n+ 1

1− g −
1− gn+1

(1− g)2

)
. (A.19)

A.0.6 Dimensionality

It is of interest to briefly mention the role of dimensionally when
calculating 〈x2

n〉 and hence the diffusion coefficient. The influence
of dimensionality enters the calculations when considering the pro-
jection of the step length si onto the x-axis. In three dimensions
the projection is given by Eq. A.1 in combination with Eq. A.2.

Considering a random walk in 2D the azimuthal angle disap-
pears i.e. cosαi+1 = cos(αi+θi+1). cosαi+1 is no longer uniformly
distributed. Instead αi+1 is uniformly distributed in [0, 2π) and
the moments of the projections are 〈cosαi〉 = 0, 〈cos2 αi〉 = 1/2
etc. Similarly in 1D, no angles exist and the “projection” is either
1 or -1. The first and second moments of this distribution are zero
and one respectively.

In conclusion, the sum of the covariance matrix may be gener-
alized to N dimensions by replacing the 1/3 factor that appears
in Eq. A.19 (or Eq. A.13). The approximative expression for the
diffusion coefficient in N dimensions is (from Eq. 4.37)

Dx =
〈x2
n〉

2n〈∆t〉 =

2n
Nµ2

s(1−g)
2n 1

vµs

=
v

Nµs(1− g)
=

v

Nµ′s
. (A.20)
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Comments on the papers

I White Monte Carlo for time-resolved photon
migration
E. Alerstam, S. Andersson-Engels, and T. Svensson.
Journal of Biomedical Optics 13, 041304 (2008).

This paper reports on the development of a White Monte
Carlo (WMC) based scheme for evaluation of experimental
time-of-flight data. The paper shows the need to replace dif-
fusion modelling in the evaluation of data in a wide range
of optical properties, relevant for many clinical applications.
Experimental investigations using intralipid are illustrates
the improved performance of the WMC model in an inter-
stitial configuration.

I developed the MC code and the fast code for post-
processing of the MC simulation data. I did a major part
of the experimental work and did the data analysis. I wrote
a minor part of the manuscript.

II Parallel computing with graphics processing units
for high-speed Monte Carlo simulation of photon
migration
E. Alerstam, T. Svensson, and S. Andersson-Engels.
Journal of Biomedical Optics 13, 060504 (2008).

This letter introduces the use of graphics processing units
(GPUs) to accelerate Monte Carlo simulations of light trans-
port in turbid media. The benefit of using GPUs for Monte
Carlo simulations is demonstrated by running a simulation
in a semi-infinite geometry showing a speedup of three orders
of magnitude. Issues related to GPU- and parallel program-
ming, such as random number generation, are addressed.

I came up with the idea to test GPUs for our Monte Carlo
simulation needs, did the programming and validation, and
I wrote a major part of the manuscript.
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III Next-generation acceleration and code optimization
for light transport in turbid media using GPUs
E. Alerstam, W. C. Y. Lo, T. D. Han, J. Rose,
S. Andersson-Engels, and L. Lilge.
Biomedical Optics Express 1, 658-675 (2010).

In this paper, the work in Paper II is expanded. A GPU
version of a popular Monte Carlo program (MCML [92]) is
presented and several issues with writing GPU accelerated
light transport Monte Carlo codes are addressed. Methods
to make the best use of the capabilities of modern GPUs are
presented, showing that significant acceleration (∼ 600× in
this case) is possible even for more complicated simulations.

I co-developed the code and did a major part of the valida-
tion. I prepared major parts of the manuscript.

IV Towards accurate in vivo spectroscopy of the
human prostate
T. Svensson, E. Alerstam, M. Einarsdótt́ır, K. Svanberg,
and S. Andersson-Engels.
Journal of Biophotonics 1, 200-203 (2008).

This letter reports on the use of the WMC modelling de-
veloped in Paper I for evaluation of TOFS-based prostate
spectroscopy. Due to the relatively high absorption and low
scattering of the prostate, this paper shows that diffusion
modelling, as used in a previous study [105], will induce sig-
nificant errors in derived optical properties. Due to an im-
portant improvement in the measurement of the instrument
response function, the data from the previous study could
not be re-evaluated with the WMC model and the paper is
thus based on new data.

I took part in the experimental work, was responsible for
data evaluation, and I took part in writing the manuscript.

72



Comments on the papers

V Near-infrared photon time-of-flight spectroscopy of
turbid materials up to 1400 nm
T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson,
S. Folestad and S. Andersson-Engels.
Review of Scientific Instruments 80, 063105 (2009).

This paper describes a TOFS instrument, based on TCSPC
technology, capable of measuring in the spectral range from
650 up to 1400 nm. This is achieved by using dual MCP-
PMT detectors in combination with a super-continuum fibre
laser in combination with a dual AOTF spectral filtering
system. In pharmaceutical applications it is imperative to
reach up into the region above 1000 nm where the spectral
features of the pharmaceutical constituents are prominent.

I participated in the design and construction of the system,
including characterization of the laser source and spectral
filtering system.

VI Improved accuracy in time-resolved diffuse
reflectance spectroscopy
E. Alerstam, S. Andersson-Engels and T. Svensson.
Optics Express 16, 10434-10448 (2008).

In this paper the WMC model from Paper I is used to in-
vestigate the need for improved modelling in time-resolved
diffuse reflectance measurements, i.e. in semi-infinite geome-
tries. The importance of proper modelling is further dis-
cussed. Experiments were conducted on a set of interna-
tionally used reference samples [104] and the resulting char-
acterization of the reference samples is thus an important
contribution to the medphot initiative for performance as-
sessment of photon migration instruments.

I was responsible for the experimental work and the data
analysis. I made substantial contributions to manuscript
preparation.
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VII Optical porosimetry and investigations of the
porosity experienced by light interacting with
porous media
T. Svensson, E. Alerstam, J. Johansson, and
S. Andersson-Engels.
Optics Letters 35, 1740-1742 (2010).

In this letter TOFS is used in combination with laser-based
gas sensing to investigate how light interacts with porous
materials. In comparison with a standard, but destructive,
porosimetry technique it is found that the non-intrusive op-
tical technique underestimates the sample porosity but also
that there is a strong correlation between results. The need
for improved modelling is emphasised.

I participated in the experimental work and contributed to
the data evaluation and analysis.

VIII Observation of anisotropic diffusion of light in
compacted granular porous materials
E. Alerstam, and T. Svensson.
(2011) arXiv 1111.1700v1, to be submitted.

In this work, the observation of anomalous diffusion of light
in compacted granular porous materials is reported. It is
shown that an anisotropic diffusion model may explain the
anomalous behaviour suggesting that the micro-structure of
the samples is anisotropic, a conclusion supported by mea-
surements using other modalities. These findings introduce
a problem to model based optical techniques to character-
ize e.g. compacted pharmaceutical samples but also suggest
that important structural properties may be revealed by non-
destructive optical techniques.

I was responsible for the experimental setup and measure-
ments. I did the modelling-related work, such as data eval-
uation, and I helped prepare the samples. I made minor
contributions to the manuscript.
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IX Toward single-fiber diffuse optical time-of-flight
spectroscopy
E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli,
D. Contini, A. Dalla Mora, A. Tosi, F. Zappa and A. Pifferi.
(2011) Manuscript in preparation.

This manuscript describes our work towards a novel TOFS
system, capable of interstitial spectroscopic measurements
using a single fibre to deliver light to and collect light from
the sample. The intention is to simplify clinical interstitial
measurements by alleviating the need to use, and keep track
of the positions of, multiple fibres, reducing the invasiveness
of the measurement. Using Monte Carlo simulations and
phantom experiments it is shown that the effect of scattering
and absorption properties are separable and that the absorp-
tion coefficient may be accurately assessed in a wide range of
clinically relevant optical properties. Apart from theoretical
proof of principle, a single Monte Carlo simulation is used as
part of the forward model in the data evaluation.

I initiated the collaboration and did Monte Carlo simulations
to prove the concept. I participated in the experimental de-
sign and took part in all experimental work. I did the data
evaluation and analysis, and contributed to a major part of
the manuscript.

75





Acknowledgements

First, I would like to express my deepest gratitude to Stefan
Andersson-Engels for guiding me though my Ph.D. studies. Thank
you for giving me this great opportunity and for giving me the free-
dom to explore my ideas. Your enthusiasm and positive attitude
have meant a lot to me and I will always be grateful for your
support and encouragement.

I would like to thank my co-supervisors: Katarina Svan-
berg for your help and, in particular, for your hospitality and
support during conferences. Jonas Johansson for your encour-
agement and for sharing your interesting problems. And last,
but certainly not least, Tomas Svensson in whom I found a
true friend. Thanks for all the enlightening discussions, all the
support you have given me, and all the great times we have shared.

Thanks to all my colleagues and friends in the Biophotonics
group; in particular, Pontus Svenmarker for being an outstanding
travelling companion, and Johan Axelsson for interesting discus-
sions, and for your encouragement during the writing of this thesis.
Can Xu, Haiyan Xie, Haichun Liu, Dmitry Khoptyar, and Emilie
Krite-Svanberg - present members of the group, thank you for your
friendship and our exciting work together.

I would also like to thank all my colleagues at the Atomic
Physics Division, both former and present, for providing a friendly
and stimulating environment. In particular, I would like to thank
Marcus Dahlström for our interesting physics discussions and
Märta Lewander for pleasant lunch and coffee breaks. Teaching
with Johan Mauritsson have been a true pleasure. Thank you
very much for the opportunity to do so, as well as for the pleasant
wine tastings.

Our collaborators outside of the Physics department: the kind
and helpful members of the brachytherapy team at Lund Univer-
sity Hospital, our colleagues at polytecnico di Milano, and our
GPU-MCML collaborators at University of Toronto. Thank you
all!

Having Markus Nilsson and Johannes Töger around, simulta-
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