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Abstract

This thesis describes a number of coherent processes, such as
quantum information processing, superradiance and electromag-
netically induced transparency, which have been experimentally
implemented using rare-earth-ion-doped crystals.

The rare-earths are a class of elements that have in common,
an atomic structure that allows for very long lifetimes as well as co-
herence times, both on optical transitions and on spin transitions.
These ions can be naturally trapped inside host crystals, and with
the phonon vibrations removed by cooling down to cryogenic tem-
peratures (. 4 K), they can be used for a number of different
quantum information processes. Most experiments were carried
out using Pr3+:Y2SiO5 , but also other crystal types were investi-
gated, such as Nd3+:YVO4, and La2(WO4)3. The characterization
of the ions were done with a variety of methods, including among
others, photon echo techniques and electromagnetically induced
transparency.

Quantum computing is a rapidly growing field and there are
still many potential candidates for its implementation. In our
work we have utilized the spin states of the Pr3+ rare-earth ion
as a qubit, and demonstrated arbitrary single qubit gates, which
are important pieces towards a quantum computing realization in
these systems. Most of the experimental work done for the thesis
was carried out using an ensemble approach, that has the advan-
tage of giving a strong readout signal, but for future scaling to
multiple qubits, single instances are more promising, which is dis-
cussed.

Quantum memories are crucial components in applications such
as quantum networks and long distance quantum communication.
In this thesis, work has been done to investigate how quantum
memories can be implemented in rare-earth crystals. In partic-
ular, there are two protocols, CRIB and AFC, which were sug-
gested with rare-earth crystals directly in mind, and both of these
require high optical depth, αL , for maximum recall efficiency. In
this thesis, implications of being in the high αL regime, with phe-
nomena such as superradiance, a collective effect that could cause
the stored light to be immediately reemitted, and slow light effects
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that come from performing the storage inside spectral structured
materials, were investigated.

In order to carry out the phase-sensitive experiments, a laser
system with a very narrow linewidth of ∼ 1 kHz at 606 nm was
constructed, by locking the laser to a semi-persistent spectral hole.
In addition, many experiments required advanced pulse shapes,
such as complex sechyp pulses or pulses obtained from optimal
control theory. In order to be able to accurately create such shapes,
an elaborate system using an arbitrary waveform generator and
two well calibrated AOMs, controlled from a computer, was also
built.
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Populärvetenskaplig
sammanfattning

Målet avhandlingen har varit att undersöka möjligheten att bygga
en kvantdator i kristaller dopade med joner av sällsynta jor-
dartsmetaller. Det har visat sig att s̊adana joner har en väldigt
l̊ang livstid, vilket är en förutsättning för de typer av experi-
ment som har utförts i den här avhandlingen. För att ytterlig-
gare förhindra att de känsliga tillst̊anden i jonerna störs, s̊a har
kristallerna kylts ner till ungefär -271 ◦C (bara 2 grader över ab-
soluta nollpunkten), med hjälp av en kryostat som använder fly-
tande helium. Innan experimenten kunde p̊abörjas, var det även
nödvändigt att bygga en laser med en väldigt stabil frekvens (färg
p̊a ljuset). Man kan säga att, för att kvantdatorexperimenten
skulle lyckas var det tvunget att h̊alla frekensen hos lasern sta-
bil ner till 12:e decimalen, vilket kräver en väldigt hög grad av
kontroll p̊a lasersystemet.

En kvantdator är en slags dator som är begränsad endast av de
kvantmekaniska spelreglerna, vilket betyder att den löser uppgifter
p̊a ett helt annat sätt än en klassisk dator, och därför har po-
tential att bli mycket kraftfullare. Den minsta informationsen-
heten i en klassisk dator är en bit, vilken kan vara antingen 1 eller
0. En motsvarande kvantbit kan ocks̊a vara 1 eller 0, men med
den skillnaden att den kan, med en viss sannolikhet, ocks̊a vara i
b̊ada tillst̊anden samtidigt! Detta är ett s̊a kallat superposition-
stillst̊and, och med hjälp av dessa kan man f̊a en kvantdator att
lösa vissa typer av uppgifter p̊a flera olika sätt samtidigt. Detta
är en av de egenskaper som gör den potentiellt kraftfullare än en
vanlig klassisk dator.

Kvantdatorfältet är fortfarande ungt. Ingen har lyckats f̊a mer
än n̊agra f̊a kvantbitar att samverka, och det finns en mängd
olösta fr̊agor ang̊aende hur man kan skala upp det till att in-
neh̊alla s̊a m̊anga kvantbitar att den kan börja lösa stora prob-
lem. Det är därför fortfarande viktigt att ständigt söka efter nya
möjligheter, och nya sätt att bygga kvantbitarna p̊a, s̊a att n̊agot
sätt i framtiden lyckas bli skalbart. I v̊ara experiment har vi ly-
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ckats visa att joner fr̊an de sällsynta jordartsmetallerna kan erb-
juda s̊adana intressanta möjligheter. Vi visade detta genom att
fullständigt karatärisera en kvantbit i en s̊adan jon, där enskilda
elektrontillst̊and används som 1 eller 0. Vi visade även att man
med hjälp av noggrant kalibrerade ljuspulser fr̊an den stabiliser-
ade lasern, kan utföra grindoperationer p̊a kvantbiten, som t. ex.
NOT-grinden, men vi utförde även mer avancerade grindar som
endast finns i en kvantdator.

P̊a vägen mot realiserandet av en kvantdator har även ett an-
tal andra koherenta processer, som ocks̊a bygger p̊a de kvant-
mekaniska reglerna, stötts p̊a. Dessa innefattar bland annat
s̊a kallad superradians, vilket är en process där m̊anga atomer
samverkar kvantmekaniskt p̊a ett s̊adant sätt att när atomerna
skickar ut ljus (deexciteras) s̊a gör de det mycket snabbare än
atomerna skulle ha gjort om de hade varit ensamma. Andra in-
tressanta fenomen som p̊aträffades var l̊angsamt och snabbt ljus.
Genom att manipulera atomer med olika frekvens p̊a olika sätt
kan man nämligen skapa förh̊allanden där en ljuspuls som skickas
genom materialet g̊ar mycket l̊angsammare eller mycket snab-
bare än den vanliga ljushastigheten. Under tillräckligt extrema
förh̊allanden kan man till och med f̊a toppen p̊a en ljuspuls att
komma ut ur materialet innan den ens har kommit in! Detta in-
nebär inte ett brott mot relativitetsteorin eller mot kausaliteten,
utan betyder istället att man m̊aste vara noggrann med hur man
definierar informationsinneh̊allet i en puls.
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Chapter 1

Introduction

The primary objective of the work done for this thesis has been
to investigate the possibilities of quantum computing in crystals
doped with rare-earth ions. On the road towards this objective,
several types of coherent processes were encountered and, as the
title suggests, this thesis will contain a description of these pro-
cesses. This is a very broad topic, and naturally I have had to
impose some limitations on what to include. In this introduction
I will present the sub-topics that are included and how they relate
to each other. I will also make an effort here to introduce some of
the basic physical concepts in a more popular-science way, in the
hope to make the introduction accessible to a broader audience.
So in that spirit, let us first take a moment to define what the term
coherent in the title means.

1.1 Superposition states and Coherence

Typical macroscopic objects (containing many atoms) that we have
personal experience of, such as a TV set, or a classical bit in a com-
puter, has an either-or behavior in its states. A TV for example,
is either in the state on, or it is off, and similarly, classical bits
can either be in the 1-state or they are in the 0-state. However,
quantum objects (in general containing only a few atoms) can be
in several states at the same time. A quantum mechanical TV,
if it existed, could be in both state on and state off at the same
time, and similarly, quantum mechanical bits, qubits, can be in
both state |1〉 and state |0〉 at the same time, with some respec-
tive probabilities. This type of situation, in which a particle is in
two states at the same time, is called a superposition. Even for a
particle with only two possible states, there is an infinite number
of different combinations to form a superposition. There could,
for example, be a 50% chance of finding an atom in each of two

1



1.1 Superposition states and Coherence

Figure 1.1. A picture of a part of
the dye laser used in the
experiments in Lund. The dashed
box illustrates a magnified part of
the beam were the coherence of
the aligned phases of the light is
schematically drawn.

states, but another situation would be that there is a 90% chance
of finding it in the first state and only 10% chance to find it in the
second state, and so on.

As an additional complexity, each probability comes with an
associated sign. The 10% chance mentioned above, might, for
example, be said to be either +10% or -10%. This bears no signifi-
cance at all when looking only at the single particle, the chance to
detect it in the second state is still the same 10%. This sign how-
ever, called the phase of the superposition, is of great importance
when the particle is interacting with another particle that is also
in a superposition. Depending on the relative signs, the states can
then either cancel each other out, or add together constructively,
and this can then be used to perform what is called quantum com-
putation. This behavior, while it seems very strange when looking
at it with our classical eyes, has been demonstrated and verified
in countless experiments during the past hundred years. There
are several reasons why everyday things do not display this phase,
and one of them is averaging. A macroscopic object consists of
millions of billions of atoms, each with possibly different superpo-
sition states, and our senses will detect only the average value of
all of these when interacting with it.

Another important reason is the scales on which we live. On
the time scale for example, the human resolution is in the order of a
hundredth of a second, whereas many atomic states survive for less
than a millionth of a second, and often, even less than that. And
on a temperature scale, room temperature is around 20◦C, also
known as 293 K, which is very far from the absolute zero point
where the atoms are in their most stable condition. Heat may
basically be regarded as motion of atoms, whether it is in the form
of rotations or vibrations or something else. This movement has
a tendency to affect the phase in a randomizing way, for example
during collisions of two atoms in a gas, and will also have the effect
that the phase becomes lost to us.

Nevertheless, there are macroscopic effects we can see, that can
be explained only by using quantum mechanics. Such an example
is superconductivity, but perhaps the best-known example is the
laser. Comparing the light from a normal source, such as a light
bulb, to that of a laser, one notices how ”well organized” the light
from the laser is. Contrary to a light bulb, all of the light from
the laser travels in the same direction, has the same wavelength
(color), and, if looked at with the proper tools, it has all of its waves
traveling in phase with each other. This behavior is illustrated
in Figure 1.1 and is also the definition of coherent that we were
looking for. When single or multiple quantum systems, such as
photons in the case of the laser, or the atomic states as we discussed
before, all exist with well-defined values of their phase, we say that
they are coherent, and this property is a common denominator to
the different experiments that were done as a base for this thesis.

2



Introduction

1.2 The power of quantum computing

With the additional complexity of quantum systems also comes
(possibly) greater power. In 1982 Richard Feynman [1] showed
that a computer that had access to the full power of the quantum
world could efficiently simulate certain quantum systems, that clas-
sical computers could not do. Further, in 1994 Peter Shor found
an algorithm, designed to run on a quantum computer, that per-
formed prime number factorization in exponentially fewer steps
than any known classical algorithm [2]. Shortly thereafter, Lov
K. Grover found another quantum algorithm that would offer a
quadratic improvement over the best known classical algorithm
when searching an unstructured data base [3]. Even though a
quadratic improvement is nowhere near as powerful as an expo-
nential one, this search routine can be very useful as the following
example will show.

Example

Imagine that you have a phone book with 10 000 persons listed,
sorted according name in the usual way. If someone then gives
you a phone number and asks you to find the person who has
that number, there would be no easy way of performing that
task. With the phone book being completely unstructured when
searching by numbers, you would have no choice but to check
all persons, one by one, until you found the one with the correct
number. On average, you would have to search through half of
the listed persons before finding the one you were looking for.
A classical computer, although making each check faster, would
not have a better method than you, and would thus also have to
go through 5 000 checks on average. Now imagine that you had
the possibility to use a quantum computer with Grover’s search
algorithm, which performs the task with a quadratic speed-up.
Instead of searching half the list, you could now successfully
complete the task using only

√
10000 = 100 checks on average.

Even though this is not the most powerful algorithm, and even
though this example only uses a small database, we already see an
improvement by a factor of 50. When we then add to this, that
the improvement gained from using quantum algorithms becomes
larger the larger the problem is, it is easy to imagine the potential
that a quantum computer could bring.

Although it has not yet been rigorously proven that quantum
computing really offers a fundamental speed-up, the potential of
the computational power demonstrated by this example and the
other methods, has intrigued and motivated many scientists to
investigate it further.

3



1.3 Comments on the outline of the thesis

1.3 Comments on the outline of the thesis

Before the actual experiments could be initiated, a laser operating
at the right wavelength and fulfilling the rigorous requirements
on frequency stability had to be built. Although this construc-
tion took a long time, nearly half the time taken for the work for
this thesis, the work itself was scientifically interesting, and led to
a comprehensive investigation of the coherent processes involved
when locking to spectral holes, presented in Paper I. In addition
to the laser itself, there were also several other technical solutions
that have had a key role in the experiments, and the most impor-
tant of these are discussed in Chapter 4. Following the completion
of the laser, one of the milestones for the thesis work could be car-
ried out in the form of the realization of a single full qubit, verified
by quantum state tomography as described in Paper II. The main
goal of this thesis has been the work towards quantum computing
in rare-earth solids, and the results and conclusions obtained re-
garding this goal are discussed in Chapter 5. To give a background
to the experimental quantum information, in Chapter 2, the basic
theory of coherent light matter interaction is outlined.

In the course of the work, there has also been a strong aspect
of international collaboration. In the ever ongoing search for bet-
ter quantum computing materials, the suitability of Zeeman lev-
els for quantum information investigated in Paper III, was done
together with a group from Geneva. Similarly, together with a
group from Paris, a material of high magnetic moment density
was characterized in Paper IV, and its viability for further coher-
ent experiments was demonstrated in Paper V, by the observation
of electromagnetically induced transparency. This phenomenon,
and others that are also derived from manipulating the dispersion
profile, are described in Chapter 7. Other considerations regard-
ing material properties, and a description of rare-earth-ion-doped
crystals in general, are given in Chapter 3. Finally, together with
expertise from Kazan in Russia, the impact of high optical depth
for quantum memories was reported in Paper VI. Quantum mem-
ories are discussed further in Chapter 6, and an important mecha-
nism in materials of high optical depth, superradiance, is explained
in some detail in Chapter 8.
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Chapter 2

Light-matter interaction

In this chapter I will introduce the basic ideas and equations for
dealing with coherent light-matter interaction. I will start with
Maxwell’s equations describing the interaction focused on the elec-
tric field, followed by the Bloch equations describing it with the
atomic state in focus, and finally combine these pictures in the
Maxwell-Bloch equations. As we shall see, the Bloch picture is
also very useful for visualizing the state of a two-level system.
There will also be an introduction to the general ways of describ-
ing quantum states and entanglement.

2.1 Maxwell’s equations

The starting point for the description of light as an electromagnetic
wave is the set of equations known as Maxwell’s equations. They
were put together in 1884 by Oliver Heaviside, after Maxwell’s
addition of the displacement current term, ∂D/∂t, in 1861. The
four equations are [4]:

∇ ·D = ρf , (2.1)
∇ ·B = 0, (2.2)

∇×E = −∂B
∂t
, (2.3)

∇×H = Jf +
∂D
∂t

. (2.4)

Here, Jf is the free current density and D is called the electric dis-
placement field. This field is a way of expressing how matter with
susceptibility χ reacts to an electric field according to D = ε0E+P ,
where P = ε0χE is the induced polarization in the material. This
can be intuitively understood by regarding the atom as a positive
nucleus surrounded by a negatively charged electron cloud. In the
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2.1.1 Slowly varying envelope approximation (SVEA)

Figure 2.1. The positive nucleus
and the center of the negative
electron cloud are separated by an
external electric field, E. This
polarization of charges is known
as the electric dipole moment, p.

presence of the electric field from the light, charges will be sep-
arated and thus the equilibrium positions of the nucleus and the
electrons will be displaced relative to each other. This charge sep-
aration is the material polarization, and will give rise to a dipole
moment p = qd, where q is the value of the charges and d the dis-
tance between them. This mechanism is illustrated in Figure 2.1.

The crystals that we are using will be discussed in more detail
in Chapter 3 but in general we can assume that their conductivity
is low, and that they are not magnetized. We can then combine
Maxwell’s equations (see e.g. [4]), to get the electromagnetic wave
equation:

−∇2E +
1
c2
∂2E
∂t2

= −µ∂
2P
∂t2

, (2.5)

where E is the total electric field including the light frequency, i.e.

E(z, t) =
1
2
E(z, t)ei(kz−ωt)ex + complex conj., (2.6)

if the light propagates in the z-direction, and is polarized in the
x-direction. E is the complex amplitude of the envelope of a pulse,
and k is the wave number, k = ω/c. In the wave equation, c is the
speed of light in the material and can be expressed in terms of the
permittivity, ε, and permeability, µ, according to c = 1/

√
µε.

2.1.1 Slowly varying envelope approximation
(SVEA)

In most cases, the envelope of a light pulse varies much more slowly
than the field itself. For example, with a wavelength of 606 nm,
the frequency of the electromagnetic oscillation is 495 THz, while
the envelope changes in our schemes occur typically at MHz fre-
quencies, i.e. ∼ 8 orders of magnitude slower. In this regime the
wave equation, Equation (2.5), can be written

∂E
∂z

+
1
c

∂E
∂t

= i
ω

2εc
P, (2.7)

where the second order derivatives have been assumed to be very
small due to the slow changes, and where the fields only come in
as the pulse envelopes, E and P.

2.2 Bloch sphere

So far we have only looked at the interaction from the point of view
of the light, how it changes when it passes through a medium. A
clear and intuitive picture of what happens to the atoms, can be
gained from the Bloch equations. Let us for simplicity first assume
that we are working only with two-level systems. This is not a
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Figure 2.2. The Bloch sphere with
a vector inscribed that
demonstrates the two
characterizing angles, θ, and φ.

serious restriction as the equations can be extended to include
more levels when needed, as is done for instance in Paper I.

An arbitrary superposition state of a system with two levels, a
ground state |g〉 and an excited state |e〉, can be written in Dirac
notation as

|ψ〉 = α |g〉+ eiωtβ |e〉 , (2.8)

where α and β are the complex probability amplitudes for find-
ing the system in each level. Here, the phase factor that follows
the electron cloud oscillations is explicitly stated, with ω as the
angular frequency corresponding to the energy difference between
the two levels, ω = Ege/~. If we for simplicity assume that we
are in a reference frame following this optical rotation, we can
write the arbitrary state as stationary, |ψ〉 = α |0〉 + β |1〉. Also,
since the system must exist somewhere, there is a conservation of
population, which can be expressed as |α|2 + |β|2 = 1.

In order to visualize this two-level state, we can rewrite the
expression slightly, replacing the probability amplitudes, α and β,
by two mathematical parameters, θ and φ:

|ψ〉 = cos
θ

2
|g〉+ eiφ sin

θ

2
|e〉 . (2.9)

This expression is equivalent to Equation (2.8), and it can be
noted, for example, that the conservation requirement is still ful-
filled, since cos2 θ

2 + sin2 θ
2 = 1. The advantage of this is that the

two parameters, θ and φ, can be visualized in a very useful way
as the angles of an arbitrary vector on the unit sphere. This is
known as the Bloch sphere representation and is demonstrated in
Figure 2.2. Even though the equations in this chapter can be ex-
tended to more levels, there is no known extension of the sphere
picture to include more than two levels.

2.2.1 Density matrices

For calculations, it is usually convenient to express the equations
using density matrix formalism, so I will give a brief introduction
to that here. For a very good and extensive walk through of this
formalism, see Nielsen and Chuang [5]. First, let us describe the
two states, |g〉 and |e〉, with corresponding vectors that span a 2×2
qubit space:

|e〉 = |0〉 =
[

1
0

]
; |g〉 = |1〉 =

[
0
1

]
. (2.10)

Note here in particular, that |0〉 is chosen to be the excited state
and |1〉 the ground state, despite what one might intuitively expect.
This choice is made so that for matrix operators, the first column
will act on |0〉 and the second will act on |1〉, which is the normal
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2.2.2 Bloch Equations

convention in linear algebra. The definition of the density matrix,
ρ, is what is called the outer product of the wave function

ρ = |ψ〉 〈ψ| , (2.11)

where |ψ〉 = 〈ψ|† is the Hermitian conjugate, which is the com-
bined operation of a complex conjugate and a transpose. With
the definition of the base vectors above, the density matrix of an
arbitrary state in this reference frame now becomes

ρ =
[
α
β

] [
α∗ β∗

]
=
[
|α|2 αβ∗

βα∗ |β|2
]

=
[
ρ11 ρ12

ρ21 ρ22

]
. (2.12)

In this 2×2 matrix the diagonal elements represent the population
distribution between the two states and the off-diagonal elements
represent the coherent phase if the state is in a superposition.
We can now define three new variables which have a very clear
connection to the Bloch sphere introduced in the previous section.





u = ρ12 + ρ∗21,
v = i(ρ12 − ρ∗21)
w = ρ11 − ρ22.

(2.13)

The interpretation of these variables is that w measures the degree
of excitation of an atom, with w = 1 being in the excited state,
|0〉, and w = −1 being in the ground state, |1〉, while the quantity

u− iv = 2ρ12, (2.14)

describes the phase of the state, and the u- and v-axis span the
equator plane in the Bloch sphere, as seen in Figure 2.2.

2.2.2 Bloch Equations

Taking the time derivatives of variables (u, v, w) in Equation (2.13)
above, and using the equation of motion for the atomic system in
a field (see [4]), we get





u̇ = − u
T2
− δv + ΩImw,

v̇ = δu− v
T2

+ ΩRew

ẇ = −ΩImu− ΩRev − w+1
T1

,
(2.15)

where it has been assumed that the ground state, w = −1, is the
equilibrium state, to which the system will decay at a rate of Γ1 =
1/T1. The difference between the light frequency and the atomic
resonance frequency is called detuning and is denoted by δ, while
T2 is the phase decay time. The two different decay mechanisms
with time scales of T1 and T2, warrants further discussion and will
be explained in more detail in Section 2.3. The coupling between
the field and the atom is expressed by the Rabi frequency

Ω(t) =
µegE(t)

~
, (2.16)
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Light-matter interaction

where µeg is the dipole moment for the transition, and E is the
complex electric field amplitude, as before. The Rabi frequency
has the property that it expresses the angular velocity of a state
in the Bloch sphere, and is determined by the amplitude of the
light. Thus, for a pulse with a duration of t, the total angle, or
pulse area, Θ, by which a state is changed due to the effects of the
light, is given by

Θ =
∫ t

0

ΩRe(t′)dt′. (2.17)

If the pulse is a square pulse, then the expression is simply reduced
to Θ = ΩRe · t.

2.2.3 Maxwell-Bloch equations

In the Maxwell wave equation (Equation (2.7)) the atoms were
described by the polarization, P. We have seen that the Bloch
vector, (u, v, w), is very convenient for describing the atoms, and
so it makes sense to rewrite the wave equation (see e.g. [6, 7]),
with the polarization picture replaced by the Bloch picture:

∂Ω0

∂z
+
n

c

∂Ω0

∂t
=
iα0

2π

∫ ∞

−∞
g(δ)(u− iv)dδ. (2.18)

The electric fields have now been replaced by the complex Rabi
frequency, and g(δ) is a function describing the distribution of
atoms as a function of detuning, δ. This equation, together with
Equations (2.15) form the Maxwell-Bloch equations which is the
starting point for calculations in some of the chapters or Papers
included in this thesis.

2.3 Decay mechanisms

In the Bloch equations above we noticed two different decay terms,
either proportional to 1/T1 or to 1/T2. The difference between
these two will be explained in this section, with examples taken
from the ion-doped crystals that we have used, which will be fur-
ther detailed in the next chapter.

2.3.1 Lifetime, T1

T1 is the lifetime of the excited state, i.e. how long it takes on
average before an atom in an excited state has decayed to a lower
lying state. The fact that it decays at all is not at all obvious,
and although this is usually discussed in basic courses in atomic
physics I will dwell on it briefly for the sake of completeness of the
overall discussion.

When an electric field, in the form of a photon with an energy
corresponding to the difference between two levels in an atom,
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2.3.2 Coherence time, T2

appears near the atom, the field couples the two levels by means
of induced dipole moments, as was described before. This coupling
gives rise to a probability for the atom to make a transition to the
other state. If the final state has a higher energy than the initial
state, the excitation energy is taken from the photon, which is
absorbed in the process. On the other hand, if the final state has
lower energy, the excess energy difference is released in the form of
another photon. It turns out that this new photon has exactly the
same properties as the first in terms of frequency, phase and spatial
mode. This is the process that is known as stimulated emission
and is the foundation of lasers for example.

However, even in the absence of such a starting field, the atom
still has a chance of decaying to the lower state. This is caused
by vacuum fluctuations, which essentially are randomly, out-of-
nothing-created photons that will disappear again after a short
time inversely proportional to their energy and which is given by
Heisenberg’s uncertainty relation, ∆t & ~/∆E. These sponta-
neously created photons have the roll of catalyst field, and again a
coupling is created that can allow a transition. The probability for
this transition to happen is governed by the overlap of the matrix
elements for the two states coupled by the field, which is described
by its Hamiltonian, H, 〈g|H |e〉. In a more intuitive formulation,
the transition probability is determined by ”how similar” the two
states are geometrically, with respect to the charge distribution.

2.3.2 Coherence time, T2

The lifetime decay describes an energy loss mechanism for the
atom, but there are perturbations that change the state position
on the Bloch sphere, without constituting an energy loss. These
mechanisms are known as decoherence, or phase noise. The time
that the state keeps its phase, the coherence time, is usually de-
noted as T2.

The following is intended to give a more intuitive understanding
of decoherence: imagine that you have a quantum state in a super-
position. It will then oscillate with the frequency of the separation
of the two levels involved (motivated in Section 8.1). The exact
energy of the levels will be dependent on the fields in the surround-
ings, including those coming from other electrons, the nucleus or
other atoms close by. For example, if the spin of a nearby atom
gets a random flip, the surrounding field will change slightly, caus-
ing an energy shift of the levels, and thus a shift of the oscillating
frequency. This shift in frequency is unknown to us, and thus if in
a measurement we were trying to establish the phase of the sys-
tem, by comparing it to a reference such as a laser, we would no
longer have perfect agreement. There is a discrepancy in the rota-
tion frequency between the atom and our reference, and we cannot
determine the correct phase. This is the process known as deco-
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Light-matter interaction

herence, and is thus intimately related to our knowledge of what
happens to the atom, because any process that can be predicted
and compensated for, will not contribute to the decoherence.

It is obvious that the phase of the superposition will ultimately
be limited by the lifetime, because when the system relaxes to the
ground state, the phase is lost. This is expressed by T2 ≤ 2T1,
with equality if there are no other sources for decoherence than
the lifetime decay.

When an atom decays to the ground state and sends out a
photon, the phase of that photon will depend on the phase of the
atomic charge distribution. In the case of a strongly dephasing
environment, the phase of the light will also change significantly,
and we can understand that the homogeneous spectral width of the
light, Γh, is given by the coherence time of the atom, T2, rather
than the lifetime, according to

Γh =
1
πT2

. (2.19)

2.4 Entanglement

One of the most important differences in the quantum world com-
pared to the classical one, is the ability for two states to be en-
tangled. Entanglement is best described as a form of non-classical
correlation between two objects, that can be potentially far away
from each other, and can be looked upon as a new physical re-
source, just like charge or mass. This section will serve as a brief
introduction to entangled states.

2.4.1 Two-qubit states

As mentioned before, an arbitrary single qubit state can be ex-
pressed as |Ψ〉 = α |g〉+ β |e〉. If we consider two qubits, they can
have a number of different states, and it is interesting to consider
a state in particular looking like:

|Ψ〉 =
|eg〉+ |ge〉√

2
. (2.20)

Just like the single qubit state, this state is in a superposition;
either the first qubit is excited and the second is in the ground
state or the second qubit is excited and the first is in the ground
state. Making a measurement on the two qubit system will tell
what it is for any particular case, but every time it is random and
each case has the probability |1/

√
2|2 = 1/2, very similar to the

single qubit case.
It becomes interesting however, when we ask the question:

What are the individual states of each qubit? Since we already
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2.4.2 Implications

know how to express an arbitrary single qubit, we may try to ex-
press two qubits as

|Ψ12〉 = (α1 |g〉+ β1 |e〉)(α2 |g〉+ β2 |e〉)
= α1α2 |gg〉+ α1β2 |ge〉+ β1α2 |eg〉+ β1β2 |ee〉

(2.21)

Comparing this state with the desired state given in Equa-
tion (2.20), we can try to identify the values of the four coefficients
that would produce such a state. The desired state contains nei-
ther |gg〉 nor |ee〉 terms, so at least one of the α’s as well as at least
one of the β’s must be zero. But, on the other hand, the desired
state does contain the two mixed terms, |eg〉 and |ge〉, and from
that we gather that none of the coefficients can be zero. This con-
tradiction means that we cannot express the state as a product of
any two single qubit states. The interpretation is that it is simply
not possible to speak of such a state as Equation (2.20), in terms
of the individual qubit states. Or, expressed in other words, the
full information of this state can only be obtained from looking
at the combined, two qubit system, and not from any of its parts
separately, i.e. the sum is here indeed greater than its parts.

2.4.2 Implications

It is also interesting to consider the implications of these multi-
ple object correlations. Let us say that we create the state in
Equation (2.20), but we now send the two qubits far away, say
1 km away, a very macroscopic distance. If the transportation is
free from decoherence, then the state is still entangled, and it is
still undecided (until the moment of measuring) which qubit is in
which state. If a person now measures the state of qubit 1 to be
in the ground state, then it is instantly decided that the second
qubit, 1 km away, is in the excited state, and any measurements
thereafter will agree with this. Einstein did not like this notion
that the decision on the second qubit state seemed to have trav-
eled faster than the speed of light, and called it ”Spooky action
at a distance”. He, together with Podolsky and Rosen, wrote in
1935 the famous EPR-paper [8], in which they asked the question
whether quantum mechanics could really be considered a complete
description of nature, if it behaved like this.

I will not go into a full discussion of this, but the problem can
essentially be resolved by removing local realism from the set of
assumptions that we require from physical systems. One interpre-
tation of this is that we should accept that an entangled state is
not two objects that have a distant correlation, but rather that it
is one system that manifest itself in two spatial points, i.e. it is
non-local.
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Figure 2.3. a) shows the time
domain pulse shape of a square
pulse (blue line) and a gaussian
pulse (green line). In b) the
Fourier transform of the signals in
a) is shown, together with a
spectral atomic feature (red lines)

2.5 Interaction with specific pulse types

There are many ways to shape the light pulses that interact with
the atoms, and as we will see in this section, some shapes have
very useful properties for our purposes.

2.5.1 Square pulses

The simplest pulse we can think of is the square pulse. One that
has a constant amplitude for a given duration, τ , and is zero ev-
erywhere else. When interacting with atoms in a certain frequency
range however, this pulse type is not very efficient. This can be
seen by looking at the Fourier transform of the pulse, which is
shown in Figure 2.3. The sharp edges of the square pulse gives
rise to high frequency terms, and a significant part of the energy
in the pulse will either miss the atoms entirely, or have undesired
effects on the atoms outside the interesting region. The meaning
of spectral atomic regions and how to create them is explained in
Chapter 3.

2.5.2 Gaussian pulses

A slightly more sophisticated approach is Gaussian-shaped pulses.
Since the Fourier transform of a Gaussian is another Gaussian, we
can put the pulse energy to much better use. However, the energy
distribution is still not perfect, because atoms at the center of the
pulse will be subject to a higher Rabi frequency than atoms at
the edge (see Figure 2.3b), and so the light will affect different
atoms differently. Furthermore, if an inhomogeneous distribution
of atoms are excited then they will dephase during the excitation
duration, since a gaussian pulse does nothing to prevent this.

2.5.3 Sechyp pulses

When dealing with inhomogeneously broadened atomic ensembles,
it is very convenient to employ more complicated pulses than the
ones previously mentioned. It was discovered originally in the
NMR field [9, 10] that complex hyperbolic secant pulses, or sechyp
for short, can be used to compensate completely for the inhomo-
geneities, and this has been adapted to the optical regime [11].
The sechyp pulse shape is defined as

Ω(t) = Ω0sech(βt)1+iµ, (2.22)

where β and µ are real parameters and Ω0 is the Rabi frequency
at the center. The real part of Equation (2.22) gives the envelope
of the pulse

Ωreal(t) = Ω0sech(βt). (2.23)
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Figure 2.4. The blue line shows
the hyperbolic secant (sechyp)
function which is the amplitude
envelope of the complex sechyp
function. The green line is the
chirp of the pulse, given by the
hyperbolic tangent function.
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Figure 2.5. The blue line is the
transfer efficiency of a sechyp
pulse as a function of detuning.
The red lines indicate the spectral
distribution of the atoms. The
dashed red line is the ensemble of
interest and the solid line is atoms
further away that we wish to
avoid.

The time derivative of the complex angle of Equation (2.22) gives
the instantaneous angular frequency of the light:

∂φ(t)
∂t

= µβ tanh(βt), (2.24)

where the convention that the phase of e−iφ(t) is φ(t) has been
used. The amplitude envelope and frequency chirp is shown in
Figure 2.4.

The somewhat abstract parameters µ and β can be directly
related to the more tangible duration (with respect to intensity)
and frequency width (Hz) of the pulse according to

tFWHM = 2
β arcsech

√
1
2 ≈ 1.76

β

νwidth = µβ
π .

. (2.25)

These sechyp pulses can transfer an ensemble of atoms between
two states without any inhomogeneous dephasing. This gives a
very high transfer efficiency, which is illustrated in Figure 2.5. As
can be seen, the pulse is very flat around the ensemble, ensuring
that all atoms experience the same Rabi frequency, and then have
a very low transfer efficiency outside the range of the chirp width
so that unwanted excitations are kept to a minimum. In addition,
it turns out that these pulses are also robust against fluctuations in
Rabi frequency, which is experimentally very convenient.

2.6 Readout technique

In most of the experiments described in this thesis, a special coher-
ent absorption technique has been used for reading out the spectral
structure of the atoms, and the idea behind this technique will be
discussed in this section.

The basic idea of the technique is to scan the laser in frequency
across the spectral structure and detect the transmission after the
sample. For slow scan rates, i.e. slow compared to the coherence
time of the atoms, the result of the scan will be very straight
forward, giving the transmission profile of the structure. However,
for fast scan rates, in addition to the transmission, the detected
light after the sample will also contain coherent radiation from
the atoms previously excited during the scan. This total signal is
more complicated and it requires some post-processing to deduce
the real spectral structure. An example of the total detected signal
is shown in Figure 2.6. The following will not be a mathematically
stringent proof of the technique, but rather an attempt to justify
the main steps of the idea. For a more complete description, see
Ref. [12].
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Figure 2.6. A linearly chirped
pulse sent through the material as
it is detected. The beatings come
from the interference between the
pulse and the coherent radiation
from the atoms (Free induction
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Figure 2.7. The signal from
Figure 2.6 after it has gone
through the deconvolution
procedure. For details of this
procedure, see the text. The three
absorption peaks correspond to
the three transitions in Pr3+

which is discussed further in
Chapter 3.

Readout technique

The light-matter interaction here can be described by Equa-
tion (2.7), the wave equation. We can neglect the term 1

c
∂E0
∂t

as it will be small, and furthermore, if we assume a thin crystal,
we can remove the z dependence from the polarization and write
the electric field coming out of the material as

Eout(t) = Ein(t) +
iπν0

ε0c
P (t) · dz. (2.26)

The polarization, P (t), depends on the incoming field at an earlier
time, through the complex susceptibility, χ, as explained in Sec-
tion 2.1, where the imaginary part of χ is the absorption coefficient
that we are interested in, α = Im(χ). In the time domain, the po-
larization can be written P (t) = ε0

∫∞
0
χ(τ)E(t−τ)dτ , where χ(τ)

is the time-domain Fourier components of the susceptibility. We
can now rewrite Equation (2.26) as

Eout(t) = Ein(t) + iπdzk0

∫ ∞

0

χ(τ)Ein(t− τ)dτ, (2.27)

where we can see that the outgoing field depends only on the in-
coming field and on the shape of the material, χ(τ). In addition,
we can recognize that the integral in Equation (2.27) is a convolu-
tion, (χ ∗ Ein)(t). The best way to deal with convolutions is by a
Fourier transform, F , since it turns into a product in the frequency
plane, F(χ ∗Ein)(t) = χ(ν) ·EFin(ν). The Fourier transform of the
input field, EFin(ν), is fully known, and can be compensated for by
division. The idea to retrieve the spectral shape from our signal
can be formulated

α(ν) = F−1

(F(Eout(t))
EFin(ν)

)∣∣∣∣
κt=ν

= F−1

(
χIm(ν) · EFin(ν)

EFin(ν)

)∣∣∣∣
κt=ν

,

(2.28)
where κ is the chirp rate of the input field.

Now, the description above uses E-fields, but the actual de-
tected signal is of course the intensity, and we need to square the
expression in Equation (2.27) to get a correct treatment. The
result of this would be more complicated expressions, but the in-
tuitive point that we can use the Fourier plane to compensate for
the chirp of the incoming field will still be true, and so I will leave
it at that.

To recapitulate, a chirped pulse is sent through the material
and the total signal of scan + coherent transmission from the atoms
is detected. This signal is Fourier transformed, divided by the
known input field, transformed back, and rescaled through κt = ν,
with the result of α(ν) being obtained. An example of such a
deconvoluted waveform is shown in Figure 2.7.
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Figure 3.1. Radial part of the
wave function for orbitals of
different angular momentum.
Energetically lower, filled shells,
are shielding the inner active
shells.

Chapter 3

Rare-earth-ion-doped crystals

The material used throughout the experiments related to this the-
sis is rare-earth-ion-doped crystals (REICs). The aim of this chap-
ter is to discuss some features of these crystals that will be impor-
tant in the following chapters. In general, there is a whole range
of rare-earth elements that could be valid as qubits, for example
erbium (Er), europium (Eu) and thulium (Tm), but in this thesis
the focus has been on working with praseodymium (Pr). The use-
ful rare-earth elements all belong to the Lanthanides, which range
from element 57 up to 71 in the periodic system. In Figure 3.2
all the relevant rare-earth ions are listed with their energy level
diagrams.

These rare-earth ions can then be doped into host crystals
such as Y3Al5O12 (yttrium aluminium garnet, YAG) or Y2SiO5

(yttrium silicate, YSO). The host material affects the properties
slightly, but most of the structure of the free ions is retained, since
the main contribution comes from spin-orbit interaction and not
crystal field interaction. A general, and for our purposes very use-
ful, property of the rare-earths, is that the active electronic shells
are shielded from the environment. There are 13 lanthanides that
do not have full 4f shells, and they can all make inner 4f-4f tran-
sitions. The 5s and 5p shells are both full and energetically lower,
but because of lower angular momentum, and thus less elliptic-
ity, they are spatially outside (see Figure 3.1) the active 4f shell,
acting as a shield against some dephasing mechanisms. A good
overview of the spectroscopy of rare-earths in crystals was given
by Macfarlane and Shelby [13] in 1987.
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Figure 3.2. Energy level diagram for all rare-earth ions. They were
measured by Deike et al. [14], and correspond to trivalent ions doped
into LaCl3 crystals. The figure is reproduced from [15].

18



Rare-earth-ion-doped crystals

4.8 MHz
±5/2
±3/2
±1/2

±1/2

±3/2

±5/2

4.6 MHz

10.2 MHz

17.3 MHz

3H4(1)

1D2(1)

494.726THz

±1/2 ±3/2 ±5/2e

±1/2

±3/2

±5/2

g

0.56 0.38 0.06

0.39 0.60 0.01

0.05 0.02 0.93

a

b

Figure 3.3. Properties for
Pr3+:Y2SiO5 . In a the level
structure of Pr3+ is shown and b
contains the relative oscillator
strengths for all 9 possible
transitions.

Another way of utilizing ions for quantum computing purposes
is trapping them artificially in, for example, ion traps or MOTs
(magneto-optical traps). These techniques have been very suc-
cessful in quantum computing, but using naturally trapped ions
in these types of host crystals does offer some advantages. Exper-
imentally, dealing with crystals is simpler than working with ion
traps, which require well aligned magnetic fields for trapping as
well as a very high vacuum. In addition, in ion traps, the ions
are forced to be well separated because they are addressed spa-
tially and there is a minimum laser focus. In crystal lattices on
the other hand, the ions can have as little as sub-nanometer sep-
arations, which enables strong ion-ion, and thus also qubit-qubit,
interactions. For rare-earth-ion-doped solids the addressing can be
done spectrally, as discussed in Section 3.4.

3.1 Why work with the Rare-earths?

The main reason for choosing rare-earths for coherent quantum
experiments, is long coherence times. Free rare-earth ions have
long lifetimes due to forbidden transitions to the ground state,
which become weakly allowed due to interactions with the crys-
tal field of the host material. Long lifetimes also give potentially
long coherence times. Some of the rare-earths are also what are
called non-Kramers’ doublets, whose electronic angular moments
are quenched by the crystal field, which means that they have no
first-order Zeeman or hyperfine interactions. This, together with
the outer shell shielding, means they couple only weakly to the
dephasing environment, ensuring that the coherence time, T2, is
as long as possible. It should be noted that, to obtain these good
coherence properties it is necessary to keep the crystals at liquid
helium temperatures, i.e. < 4 K. Above this temperature, crystal
lattice phonons contribute strongly to decoherence mechanisms.

Another important feature is the availability of a small hyper-
fine splitting of the electronic states. This occurs for the rare-
earths that have non-zero nuclear spin, which couples by second
order hyperfine or quadrupole interaction. Relaxation between the
hyperfine levels in the electronic ground state is even less allowed,
and with such a metastable character, they are very good for quan-
tum information processing. For this, at least two hyperfine states
are needed, representing the |0〉- and |1〉-states, but some of the
protocols, like quantum computing, also require additional hyper-
fine levels to act as auxiliary states, |aux〉, into which the ions are
temporarily put during the process. This will be explained further
in Section 3.7.

The host crystal will affect the size of the hyperfine splitting,
and for Pr3+:Y2SiO5 , which is the crystal used most extensively
in our experiments, the splitting is shown in Figure 3.3a.
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3.2 Crystal properties

3.2 Crystal properties

The rare-earth-ion crystals are produced by mixing the appropriate
amounts of the elements involved, in gaseous form, in a chamber.
By controlling the temperature and pressure, the crystal growth
process can be regulated.

The Y2SiO5 crystal has a monoclinic crystal structure, which
is a rectangular prism with a parallelogram as its base. The unit
cell is 1.04 × 0.67 × 1.25 nm3, contains 8 molecules, and thus 16
yttrium atoms. There are two non-equivalent yttrium sites, which
means that for Pr3+-doped crystals the praseodymium can also
end up in two different sites. Roughly 90% of these occupy site
1, which has a wavelength of 605.813 nm. The rest are in site
2 which is 2 nm away, at 607.770. For our experiments, we are
interested only in site 1, which has a transition dipole moment of
2.5·10−32 Cm [16]1. The Pr3+ ion in this host also has a permanent
electric dipole moment, which for each site can be oriented in two
energetically equivalent directions, and the angle between the two
directions is 24.8◦. It is assumed that the transition dipole moment
is oriented along the same directions as the permanent one, but in
experiments, the crystal is most often just rotated until maximum
absorption is obtained, which should be half-way between the two
directions, getting an equal contribution from both.

3.3 Homogeneous linewidth

For Pr3+:Y2SiO5 , the transition 1D2 → 3H4 has a population
decay rate of 1

10 ms at liquid helium temperatures. From that
level however, most ions do not decay directly to the ground state,
but via some of the intermediate states (see Figure 3.2), resulting
in a total lifetime of T1 = 164 µs. As mentioned in the previous
chapter, the lifetime gives an upper limit to the coherence time
of the state in the form of T2 ≤ 2T1, with equality if there are
no other significant sources of dephasing than state decay. For
rare-earths however, there are usually also some other dephasing
mechanisms, such as crystal field fluctuations caused by random
spin flips of neighboring atoms. The effects of the spin flips can
be minimized by choosing a crystal host that has atoms with low
nuclear magnetic moments. One can also apply external magnetic
fields, either with low strength to make sure ground and excited
states do not shift, or shift equally, to first order, or with high
magnetic strength to prevent spin flips altogether.

For Pr3+:Y2SiO5 , T2 of the electronic transition is about
110 µs [17], giving a spectral width of 2.8 kHz according to Equa-
tion (2.19), which is very narrow for a solid state material. This

1This value can also be expressed as 7.5 · 10−3 Debye, which is a common
unit for dipole moment.
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Rare-earth-ion-doped crystals

value was measured in photon echo experiments, where the data
was extrapolated to zero excitation energy. With increasing pulse
energy the number of excited atoms is increased, and since the
permanent dipole moment is different for the ground and ex-
cited states the fields in the crystal will change as atoms are ex-
cited, causing extra dephasing. This is called spectral diffusion
or excitation-induced broadening. As an example, for a reason-
able excitation energy of about 1 mW focused down to a spot with
a diameter of 100 µm, the coherence time was halved to about
50 µs [17]. These values are obtained in zero external magnetic
field, and with an applied field of 7.7 mT the coherence time is
increased to 150 µs. Other rare-earths can have even longer coher-
ence times, for example 6.4 ms reported in Er3+ :Y2SiO5 [18].

3.4 Inhomogeneous broadening

The line broadening mechanisms described so far are all homoge-
neous, meaning they are caused by something that affects all atoms
the same way. The rare-earth ions however, also exhibit inhomo-
geneous broadening, caused by the fact that all ions are situated in
different positions in the crystal where different crystal fields ex-
ist. The crystal fields are spatially dependent, partially because of
manufacturing imperfections, but also because the Pr3+ ion has a
different size than the Y3+ ion it is replacing in the lattice, which
causes unavoidable deviations from the perfect crystal lattice in
its proximity. As mentioned in the previous section, the homoge-
neous linewidth is of the order of kHz, which can be compared to
the inhomogeneous width of ∼5 GHz in the case of Pr3+:Y2SiO5 .

In many other type of experiments, inhomogeneous broadening
is unwanted and can reduce the accuracy of measurements, or call
for additional experimental complications to remove it, but in our
case it is found to be very useful. For the quantum computing
scheme, it is in fact the main mechanism for addressing multiple
qubits. Even a small laser focus with a diameter of ∼ 10 µm, will,
with a standard doping concentration of 0.05 %, contain in the
order of 1012 Pr3+ ions, which cannot be spatially separated by
the laser. But with the inhomogeneous broadening they can be
further separated if addressed spectrally. With a kHz homogeneous
linewidth and a GHz inhomogeneous width, the maximum number
of available frequency channels is about 106, giving a high potential
for many qubits. In practice however, there are some scaling issues
in utilizing this power, which will be discussed in Chapter 5.

3.5 Hyperfine levels

The rare-earth elements that have a nuclear spin greater than 1/2
also have a hyperfine splitting of all electronic levels. Pr3+ for
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3.6 Ion-ion interactions

Figure 3.4. Bang-bang pulse
sequence can be used to cancel
random frequency shifts. We start
with the desired state at 1, then a
frequency shift of +∆ω causes a
rotation counter clockwise
compared to our reference frame
onto the position 2. Here, a fast
π-pulse is applied that takes the
state over to 3. The direction of
rotation has not changed if the
noise is on a slower timescale than
the flips and the state will thus
rotate towards position 4. The
-π-pulse is applied and the state is
back to the original one, with the
phase error due to noise canceled
out.

example, has a nuclear spin of 5/2 and thus each electronic level
is split into 6 hyperfine states, labeled |±1/2〉, |±3/2〉 and |±5/2〉,
which at zero magnetic field are two-fold degenerate to yield only
3 resolvable levels. One must be cautious however, when applying
magnetic fields to increase the coherence time as described above,
because this will also lift the degeneracy of the levels, which may
not always be convenient.

The lifetime of the hyperfine levels is much longer than for
the electronic states. For Pr3+:Y2SiO5 for example, (T1)hf is 90
s, and (T2)hf is about 500 µs at zero field and as high as 860 ms
for non-zero fields [19, 20]. It is also possible to further decouple
the quantum state from the dephasing environment by the use
of what is called bang-bang pulses. In this technique [20], if one
has a quantum state in a superposition that is to be preserved,
a sequence of pulses with a pulse area of alternating π and −π
can be sent in. This periodical flipping can strongly reduce the
effects of any dephasing mechanisms that happen on a time-scale
longer than the period of the flips. As discussed in Section 2.3.2,
dephasing mechanisms are changes in the environment, such as
nearby spin flips, that cause the energy levels to shift slightly,
which also changes the oscillation frequency of the superposition
state. The π-flips will cause the sign of this frequency error also
to flip, which will make the total phase of the state accumulate
as much positive contributions as negative ones, strongly reducing
the phase error. This procedure is further explained in the caption
to Figure 3.4.

The splitting of the hyperfine levels is of the order of 10 MHz
for Pr3+:Y2SiO5 (see Figure 3.3) but it can be up to GHz in other
host materials or for other ions. There is also an inhomogeneous
broadening of the hyperfine states, which we have measured to be
about 16 kHz. This was measured by putting the hyperfine levels
into a superposition and measure the decay of the resulting beating
by probing on the optical transition at different time intervals.

3.6 Ion-ion interactions

The same permanent dipole moment that was responsible for the
excitation-induced frequency shift described earlier in Section 3.3,
is also very useful for getting qubit-qubit interactions in the quan-
tum computing scheme. The idea is that if a target qubit has
a certain frequency width, for example 100 kHz, we want to find
a similar control qubit, that when excited, shifts the center fre-
quency of the target by more than its width. A laser pulse on the
original target qubit frequency will then no longer interact with
it, and we can use this for conditional operations between the two
qubits. The shift declines as the cube of the distance, and for our
materials some rule of thumb values are: at a 1 nm ion separation
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Figure 3.6. In a) the starting
situation is shown, with all the
ions in the inhomogeneous profile
in thermal equilibrium. After the
hole-burning pulse sequence, a
spectral pit is formed.

the shift is approximately 1 GHz, at a 10 nm separation it is 1 MHz
and so on. For a qubit width of 100 kHz, the maximum distance
the ions are allowed to be separated for the scheme to work is then
about 20 nm. At greater distances the shift will be insufficient to
be able to distinguish between shifted and unshifted ions. The ion-
ion interaction will also be discussed in Section 5.4, in connection
with two-qubit gates.

3.7 Hole-burning techniques

A very useful technique for dealing with inhomogeneous atomic
systems is spectral hole-burning. The simplest case of hole-burning
is a two-level system where the absorption coefficient is decreased
as a result of atoms being transferred to the excited state by, for
instance, a laser. This is also called transient hole-burning, since
the effect will disappear as soon as the atoms decay back to the
ground state. There are also other types of more persistent hole-
burning, which involve optical pumping of atoms to additional
metastable levels, as in the case of Pr3+ which we are interested
in. If the absorption is bleached in this way, it means that there
are now more atoms absorbing on the other level, to which they
decayed. The peak in the absorption profile that this gives rise
to is called an anti-hole. In Figure 3.5 a full array of holes and
anti-holes is shown.

3.7.1 Spectral pit creation

By scanning the laser in frequency it is possible to create a wide
hole, known as a spectral pit, illustrated in Figure 3.6. The max-
imum pit width is determined by the splitting of the hyperfine
states and the fact that the atoms have to be in one of the states.
The total splitting of the ground states is 27 MHz (see Figure 3.3),
but then, because of the inhomogeneity of the relative position of
the excited states, the maximum width is reduced by the excited
state splitting of 9 MHz, down to 18 MHz.

The straight edges that the pit in Figure 3.6 has, is not an opti-
mal solution. Atoms just outside the pit can still be off-resonantly
excited by pulses of frequencies inside the pit, as has been discussed
in Ref. [21]. To limit this effect, we must attempt to make sure
that atoms are put into states which are as far away from the pit
as possible, as demonstrated in Figure 3.7. If we burn only inside
the pit, the structure would look like the one in Figure 3.6, shown
by a thin dashed line in Figure 3.7, where the selected atoms exist
in both |3/2〉 and |5/2〉. With additional burning pulses outside
the pit, followed by more inside the pit, we can transfer all atoms
out to |5/2〉, i.e. as far away as possible. The pit edge will now
become stepped, as shown by the solid line.
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Figure 3.7. Improved pit burning
scheme. By cleverly selected
burning pulses, we can ensure
that atoms are as far away from
the pit as they possibly can, by
moving them out to the ±5/2
state in the case of atoms with
these particular level positions.

It should be pointed out that in the above discussion and in
the figures, the ions were thought to have a higher frequency than
the center of the pit. Ions with lower frequency than the center
should, of course, be shifted towards even lower frequencies, in
order to get as far away as possible. This would mean that they
end up in the |1/2〉-state, after the improved pit creation pulses.

3.7.2 Experimental implementation

The actual pulse sequence that is used to create a spectral pit is
not trivial and very dependent on the particular level structure of
the given ion and host material. For Pr3+:Y2SiO5 the burn pulses
we employed are listed in Table 3.1.

Pulse νstart/MHz νend/MHz Ωrel
BurnPit1 +31.85 +24.15 3/2g → 1/2e
BurnPit2 +23.85 +16.15 3/2g → 5/2e
BurnPit3 +15.95 +7.65 3/2g → 5/2e
BurnPit4 +23.85 +16.15 3/2g → 5/2e
BurnPit5 -16.85 -9.15 5/2g → 5/2e
BurnPit6 -8.85 -1.15 5/2g → 1/2e
BurnPit7 +15.95 +7.65 3/2g → 5/2e
BurnPit8 +7.35 -1.10 3/2g → 5/2e
BurnPit9 -1.10 +7.35 5/2g → 1/2e
BurnPit10 +7.65 +15.95 5/2g → 1/2e

Table 3.1. List of pulses used for the pit burning sequence, with start
and end frequencies. The column of Ωrel lists the primary target tran-
sition of the scan, for the purpose of matching the rabi frequency to the
relative oscillator strength. Note that pulses number 2 and 4 are the
same, as is pulses 3 and 7.

The pulses listed in Table 3.1 are of a special type which we
have called SechScan. As the name implies it is a cross between a
simple frequency scanned pulse, and a sechyp pulse. The start and
end frequencies specified in the list are the values for the linear scan
part in the middle of the pulse. To this otherwise square-shaped
scan we have then added rounded edges in the form of a sechyp
shape for the amplitude and a tanhyp shape for the chirp. The
reason for rounding of the edges in this manner is to avoid sharp
temporal features, which would result in high order frequency com-
ponents. The fitting between the linear and the sechyp parts have
been done with splines that check for continuity of the function,
as well as of the subsequent derivatives. These pulses are then
repeated in an iterative sequence in the following manner:

1 Repeat 60 times:
BurnPit5, BurnPit6

24



Rare-earth-ion-doped crystals

P
o
p
u
la

ti
o
n
 (

a
rb

.u
)

A
b
s
o
rp

ti
o
n
 (
α

L
)

Frequency (MHz)

-20 -10 0 10 20 30
0

0.5

1

1.5

2

2.5

-20 -10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

absorbing from ±1/2

absorbing from ±3/2

absorbing from ±5/2

Figure 3.8. Theoretical simulation
of a pit-burning sequence in a),
and the same sequence detected in
the lab in part b. The ∼ 18 MHz
that has zero αL is the bottom of
the pit, while anything non-zero is
outside.

2 Repeat 30 times:
BurnPit1-4, BurnPit6-10

3 Repeat 20 times:
BurnPit1-4, BurnPit6

4 Repeat 30 times:
BurnPit7-10

It is important to note that there is a waiting time of about 1 ms
after every single burn pulse, to allow the system time to decay
back to the ground state. The number of times each sub-sequence
is repeated is determined by the relative decay probabilities to the
different levels, to which the system will decay. The values listed
are not the only ones possible, one could imagine other values, but
these are simply the ones we actually used.

A simulation of the system (described in [21]), was found very
useful in the search for the exact burning sequence and while test-
ing different combinations of pulses. The result of the simulation
for the list of pulses above is shown in Figure 3.8a, and the b part
corresponds to the experimental implementation of the same pulse
sequence. As can be seen, the steps that were a result of the im-
proved pit-burning scheme, match very well in frequency but not
in height. The reason for the step height discrepancy is that the
y-axis in a) is the number of atoms, while it is the absorption in
b). In an absorption measurement, the relative oscillator strength
also needs to be factored in, and steps with low heights thus stem
from transitions with low oscillator strengths.

3.7.3 Peak creation

After a wide pit has been created, a narrow selection of ions is
burnt back into the pit to act as a qubit. Inside the pit, the qubit
ions are now well separated from all other ions, which means that
the effects of the interacting laser pulses, on non-qubit ions, is kept
to a minimum. The pulses used to create the peak are two sechyp
pulses, the first one on the |5/2〉g → |5/2〉e transition, exciting ions
outside the pit with a frequency width given by the sechyp pulse
parameters. This pulse is then followed by a sechyp pulse on the
|5/2〉e → |1/2〉g transition, bringing the ions to the ground state.
Inside the pit, all ions now exist in a single ground state level,
i.e. the system has been initialized to |0〉, as shown in Figure 3.9.
There is a reason for choosing |5/2〉 as the intermediate excited
state, and not any of the others. For this particular state, the first
transition (|5/2〉g → |5/2〉e) can use a very low laser intensity, since
this transition has a very high oscillator strength. Low intensity
means better performance, since we thereby reduce effects such as
power broadening and off-resonant excitations. The price we pay
for this is that the deexcitation (|5/2〉e → |1/2〉g) will require high
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Figure 3.3b. The three peaks
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laser power, because the oscillator strength on this transition is
complimentarily weak. This is however not a problem, because
the frequency for this transition is inside the pit, where no other
ions are located, and consequently, the effects of power broadening
and off-resonant mechanisms are greatly reduced.

An experimental readout scan with peaks inside the pit is
shown in Figure 3.10. The figure shows the qubit initialized to
the |0〉-state, which is the starting point for most experiments in
this thesis.
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Chapter 4

The experimental system

Having atoms that have a very long coherence time is important in
quantum computing, as described in the previous chapter, but the
coherence time of the atoms means nothing if the device that con-
trols them cannot retain its own phase. It was therefore necessary
to construct a laser at the right wavelength, with at least the same
phase stability as the Pr3+ ions used for the qubits. A system to
create the advanced pulse shapes needed for the experiments was
also developed and will be discussed in this chapter.

4.1 Choice of laser source

There are many different types of lasers available on the market,
ranging from compact lasers like the diode laser, used in everything
from CD-players to pumps for bigger lasers, up to the carbon diox-
ide laser, which is a high power industrial gas laser, but each of
these lasers function only in a very restricted wavelength region.
Depending on the exact mechanism of the lasing for each type they
also have varying degrees of natural stability. For example, solid
state lasers, such as the diode laser or neodymium-based lasers are
naturally more stable than discharge lasers, such as the argon ion
laser or liquid based lasers such as the dye laser. Therefore, solid
state lasers would be a preferable choice of source for coherent
experiments, but unfortunately there was no solid state solution
available that could reach the desired wavelength of 606 nm. There
are diode lasers available down to 633 nm at room temperature,
which can be taken down further by cooling with liquid nitrogen.
This was tested but it was possible to reach only about 612 nm.
There is then a large gap of available wavelengths down to about
400 nm, where GaN lasers have just recently become available.
The best option was therefore deemed to be a dye laser, with an
extra stabilization system.
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4.1.1 Dye laser

4.1.1 Dye laser

The laser used in most of the experiments for this thesis is an exter-
nally stabilized, continuous dye laser, based on the commercially
available Coherent 699-21 ring cavity dye laser. The dye used is
Rhodamine 6G, which can be tuned to 606 nm at the edge of its
tunable range. This dye is dissolved in ethylene glycol, pumped
through a narrow nozzle at 4-5 bar pressure, and kept at a tempera-
ture of 8◦ C, using an active temperature stabilization system. For
a given cavity alignment it is important to keep parameters such
as dye pressure and viscosity, and thus temperature, constant, be-
cause any changes can lead to the dye jet changing position, which
will negatively affect the stability of the laser.

The dye is pumped by a Verdi V6 system, which is a
neodymium laser at 532 nm giving 6 W power, which in turn is
pumped by a 20 W array of laser diodes at 800 nm. With all intra-
cavity components mounted, the dye laser will give a maximum
output power of about 600 mW at 606 nm when it is optimally
aligned. From the original dye laser a number of things have been
altered or added. The nozzle as well as the holder for the pump
mirror have been replaced by an assembly made by Radiant dyes,
for increased performance. An intra-cavity EOM (Electro-optic
modulator) with very low losses, was added, to be used as an ac-
tuator for the stabilization system described in the next section.
To this end the error signal from the internal locking system of the
dye laser, was also changed to include a signal from our external,
more accurate, error signal.

4.2 Laser stabilization

The stabilization of the laser was done using a coherent hole-
burning technique, rather than as usual, by locking to a fixed cav-
ity. The theory that was developed with regards to this technique
is described in Paper I, while the electronics that was constructed
is discussed in detail in the thesis of Lars Rippe [22], who designed
them.

4.2.1 Introduction to the locking system

A schematic overview of the dye laser stabilization system is pre-
sented in Figure 4.1, and a real picture of it is shown as Figure 4.2.
The original Coherent dye laser has an internal stabilization sys-
tem, which can keep the linewidth of the laser at about 1 MHz. The
task of our stabilization system is to further narrow this linewidth
down to about 1 kHz. Due mostly to the liquid jet, dye lasers are
not the most naturally stable lasers. Nevertheless dye lasers have
been used in the past for extreme stabilization down to a linewidth
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Figure 4.1. Overview of the laser stabilization system. Detection of a 50
MHz modulation of a part of the laser beam that has gone through gives
rise to an error signal which can be fed through a series of feedback filters
on different time scales, and onto the laser correcting any frequency
errors.

of about 0.5 Hz [23, 24], although that required an extreme exper-
imental setup as well.

There are some advantages of locking to a spectral hole rather
than to a cavity. For example, when locking to a cavity, it is very
important to stabilize the cavity itself, as any vibrations or vari-
ations of length will directly limit the stability. Variations of the
cavity length can be particularly detrimental because for high fi-
nesse cavities the light makes many roundtrips, greatly increasing
the effect of a change in length. Cavities are therefore typically
made of Ultra Low Expansion glass (ULE), in addition to requir-
ing temperature stabilization down to an accuracy of mK. When
locking to a spectral hole, this is not an issue since the potential
stability is mainly determined by the coherence time of the atoms.
On the other hand, a cryostat setup is needed to cool the atoms
for spectral hole locking, but it can still be regarded as a bonus,
since the coherence time and thus the stability is not effected by
temperature changes of the atoms (once you go below 4− 5 K).

Another interesting benefit of locking to holes, is related to
coupling the light to the locking mechanism. For cavities, high
stability requires high finesse, which makes it very difficult for the
light to get coupled into the cavity, maybe even impossible for the
initially broad laser, in fact, a pre-lock system may be required, to
narrow the laser enough to get it into the cavity. This is taken care
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Figure 4.2. Picture showing the laser stabilization setup.

of automatically for spectral holes, since at the start when the laser
is broad, the spectral hole is also broad, and as the laser narrows
the hole narrows, acting like a form of self-regulating finesse.

4.2.2 Theoretical overview

Our locking system is based on getting a response from the atoms
that gives an indication of the size of the phase error of the light,
if there is any. This section will give a brief introduction to what
happens in the locking crystal and what the atomic response, the
system transfer function, looks like. This function can then be
used to create a feedback filter in the form of a series of control
loops.
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Transfer function

As illustrated in Figure 4.1 the light beam from the laser goes
first through an EOM and then the crystal with the Pr3+ ions, to
be detected further on. The EOM is modulated with a 50 MHz
sinusoidal signal from a stable local oscillator. The light after the
EOM can be seen as a carrier wave plus two sidebands at ±50
MHz. If the light could originally be written as a complex Rabi
frequency, Ω0e

−iω0t, then after the EOM, it can be expressed as

Ω(t) = Ω0e
−i(ω0t+m sin(ωmt))

≈ Ω0

[
J0(m) + J1(m)e−iωmt − J1(m)eiωmt

]
e−iω0t,

(4.1)

where m is the modulation index, the strength of the sidebands,
and ωm = 2π ·50 MHz is the modulation frequency. The lower line
in this equation is obtained by expansion of the signal in terms of
Bessel functions, and it is here assumed that the modulation index
is so low that higher order terms can be neglected.

The light at these three frequency components then enters the
crystal where atoms at the same three frequencies start getting
excited. Within the coherence time of the atoms, the excitation
essentially puts the atoms into a superposition state. As is ex-
plained in Section 8.1, this will cause the atoms to radiate coher-
ently along the same mode as the incoming light (although with
the opposite phase). Some light will be absorbed by the atoms
and give rise to this coherent radiation, but some light will pass
through the crystal unaffected. After the crystal we therefore have
six light field components, three from the atoms and three from
the unaffected laser light. These six components will create a total
beat pattern that can be detected in the form of the intensity, i.e.
I ∝ |Ωtot(t)|2. If there is a sudden phase error, ε, in the laser, then
the three unaffected components will change accordingly, but the
three components from the atom radiation will still radiate at the
original frequency, with the original phase. This change to half of
the components in the total beat pattern, will naturally also give
rise to a change in the beat pattern itself. A harmonic phase error,
ε sinωt, can be introduced as a modulation to an otherwise stable
laser, i.e. we replace ω0t in Equation (4.1) by a resulting laser
phase

ϕlaser = ω0t+ ε sinωt. (4.2)

The total resulting light intensity coming out of the crystal was
calculated in Paper I, where the details can be found. Here only
the result will be given:

Iout(t) = 4IinJ0J1Re [T (ω)] εω cosωt · sinωmt, (4.3)

where

T (ω) =
ηc(ω)ηs(0)eiφc(ω) − ηc(0)ηs(ω)eiφs(ω)

iω + 1
Thole

. (4.4)
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Here, Thole is the lifetime of the hole, and φi(ω) and ηi(ω), with
i = c for the carrier and s for sideband, is the phase change and
attenuation respectively, that arise from the interaction of the light
with the atoms as it passes through the crystal. The explicit ex-
pressions for these are not important for the discussion here, but
can be found in Paper I. What is essential in the total signal,
Equation (4.3), is that it oscillates with frequency, ωm, and that
the amplitude of this oscillation is proportional to the phase error,
ε.

A further aspect of the lifetime of the hole, Thole, should be
noted. With no other influence, the lifetime of the hole would be
the lifetime of the hyperfine states, which is more than 1 minute.
This is a very slow, natural refilling rate, which can be compared to
the hole digging rate, which is given by the laser intensity. Doing
so, one would see that if we relied only in the natural lifetime the
hole would soon be burnt all the way to the bottom, at which point
the error signal would fail due to lack of interacting atoms left at
that frequency. In order to prevent this from happening, an RF
repumping system was created. A system of RF coils was put close
to the crystal, and the coils were doubly resonant with both the
10.2 MHz and the 17.3 MHz hyperfine transitions. Varying the
strength of the RF power provides a very convenient way to fine
tune the hole lifetime, which in turn also tunes the depth of the
locking hole.

Feedback response

In Equation (4.2) a phase error was introduced and we see that
this gives an instantaneous laser frequency of

∂ϕlaser
∂t

= ω0 + εω cosωt. (4.5)

In the total light intensity in Equation (4.3) we can directly identify
the instantaneous frequency error εω cosωt, and we see that T (ω)
acts as a transfer function, mapping this error onto the detected
light intensity. Given this transfer function, we can now design a
feedback circuit that compensates for the error. It is known from
control theory that if the total response of the system, including
both the transfer function of the atoms and our feedback filters,
is proportional to 1

iω for all frequencies, then the system is sta-
ble [25]. The full spectral response of T (ω) was analyzed and for
high frequencies (ω > Γhole >> 1/Thole) a suitable analog circuit
was constructed. Similarly, for errors of low frequency (ω < Γhole)
a digital processing card was programmed with a correcting re-
sponse function. As an example of how to pick such a correcting
response function, we can consider the denominator of the T (ω),

1
iω+ 1

Thole

, which is dominating for low frequencies. This part can
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be stabilized with a feedback filter of the form 1/τ+iω
iω , since

1
iω + 1

Thole

· 1/τ + iω

iω
=

1
iω
, (4.6)

if τ = Thole. The value of τ can be chosen easily on a digital
processing card, and for the fast analog response systems, similar
critical constants can be tuned by choosing correct resistors and
capacitors [22].

An interesting quantitative result was also obtained in Paper I.
When locking to cavities, the optimal modulation index is 1.08 [26],
while we obtained an optimal value of 0.56 for locking to spectral
holes. The reason that the optimal value is less in the spectral
hole case is that the error signal depends partly on the difference
between the depth of the holes burnt by the carrier and those
burnt by the sidebands, and a lower modulation index increases
this difference.

4.3 Pulse-shaping system

The quantum computation scheme is based on using light pulses
as gates for the operations. In order to compensate for inhomo-
geneities in both the spectral and the spatial domain, relatively
advanced shapes for the pulses are required. As explained in Sec-
tion 2.5, sechyp pulses can be used to achieve this compensation,
and so we will need a system that can to a very high accuracy cre-
ate this shape, and in our system this is done by AOMs. For the
qubit rotation experiment (Paper II), we also require the option to
drive two transitions simultaneously, both |0〉 → |e〉 and |1〉 → |e〉,
and in order to do this we opted for a two-AOM setup, where the
sechyp shape can be created in the first AOM, and where a second
AOM is run with the sum of the two involved frequencies, effec-
tively creating a sechyp pulse for each of the two transitions. A
schematic of the experimental setup is shown in Figure 4.3.

The pulse shapes are created in Matlab on the computer, and
sent to the AOM’s using a 2-channel, 1 GS/S Tektronix 520 Arbi-
trary Waveform Generator (AWG), via some RF amplifiers. The
oscilloscope is a 4-channel TDS540 Tektronix, with 1 GS/s sam-
pling rate, and the detectors are Thorlabs PDB150A, which have
a switchable gain function, that can be changed from a gain of
103 and bandwidth 150 MHz in 5 steps to a gain of 107 with a
bandwidth of 0.1 MHz.

4.3.1 Acousto-optic modulators

An acousto-optic modulator (AOM) is a crystal with a piezo-
electric element attached to it that can run at RF frequencies to
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Figure 4.4. An AOM in a double
pass configuration, seen from both
side and top view. The advantage
of the setup is that it cancels out
spatial movement due to
frequency shifts.
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Figure 4.3. An overview of the experimental setup. Approximately 4
% of the light is picked off for the locking system. The rest goes on
through two AOMs, which create the pulses, and over to the experi-
mental crystal, via an optical fiber, where it can be detected.

induce wave patterns in the crystal. The sound waves created in-
side the crystal act as a Bragg grating, diffracting the light as it
passes through. This Bragg grating also moves along the crystal,
and the light that is reflected from the grating, is also doppler-
shifted in the process. Another way of looking at this is to consider
the sound wave as phonons. The light photons then have a chance
of colliding with a phonon as it passes through the crystal, and if
that happens it would pick up the phonon momentum, which, just
as for classical particles, changes both its direction and energy, i.e.
its frequency.

The spatial position of the diffracted beam will depend on the
current RF frequency, and if the pulse shape contains a frequency
chirp, the resulting beam will move spatially during the course of
the chirp. To prevent this beam walk, a double pass configuration
can be used, where the photons pass through the AOM twice,
picking up phonons each time. The effect of this is a frequency
shift twice as large, but, with a suitable alignment one can ensure
that the changes of the direction for the first and second pass
cancel out. A double pass setup can either be implemented using
polarizers and λ/4-plates, or with non-orthogonal incoming and
outgoing beams, which is done in our case, as seen in Figure 4.4.

Both our AOM’s are from AA, made of TeO2, which have a
sound velocity of 4200 m/s. The first AOM has a center frequency
of 200 MHz and a bandwidth of 100 MHz, for a total of 200 MHz
bandwidth after the double pass, and the second AOM has a center
frequency of 360 MHz and a bandwidth of 200 MHz.
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Figure 4.5. Graph showing the
intensity in the diffracted beam as
a function of RF power. The
arrows illustrate that a function is
needed to find the RF power for
any pulse intensity value.

4.3.2 Calibration system

The diffraction efficiency is typically about 50− 80 % per pass, at
maximum RF power, which is about 2 W. The efficiency changes
with RF frequency, and scales with RF power according to

Idiff ∝ sin2
(
c
√
PRF

)
, (4.7)

where c is a scaling coefficient. This behavior is illustrated in Fig-
ure 4.5. The sechyp (and other) pulses needed, can have greatly
varying intensities. To make sure that any intensity can be accu-
rately produced, we need a function that, given a desired intensity,
returns the corresponding RF power, and does so correctly for any
RF frequency. Simply using Equation (4.7) is not accurate enough,
since we require the error to be at least less than 1 % over a cal-
ibration range of more than six orders of magnitude in intensity.
In addition, Equation (4.7) does not account for the RF frequency
dependence. To get such a function, PRF = f(Ilight, νRF ), a cali-
bration system was designed.

The calibration system is connected to both the waveform gen-
erator that controls the AOM’s and to the oscilloscope that re-
ceives the signals from the detectors. Since the intensity of the
diffracted beam depends on two variables, it is convenient to keep
one variable constant and scan the other, while reading the result
on the detector. And since we want the intensity to scale over
six orders of magnitude, the RF power should be kept constant
while the 200 MHz total bandwidth of the AOM is covered. This
operation is then repeated for numerous values of the RF power.
The advantage of keeping the RF power constant for each scan
is that the detectors can be kept at a suitable trans-impedance
gain throughout the scan, and be changed only between the scans,
which greatly increases the accuracy over such a large dynamic
range. In order to keep the calibration system fully automatic,
a motor, physically switching the gain on the detector, was con-
trolled via pulse-width modulation [27] through one pin on the
serial port on the computer. The oscilloscope gain was also con-
trolled by the calibration program, and obtained via an algorithm
that analyzed each resulting scan, repeating a previous scan with
new settings if required.

With this method the function Ilight = f−1(PRF , νRF ) is
obtained, which has the geometrical shape of a surface in a 3-
dimensional space. To get the desired function, f , we need to in-
vert this surface with respect to the two variables Ilight and PRF .
After the inversion the function must be stored in such a way that
it can be called very efficiently. It is not uncommon for pulses in
our experiments, to be around 100 µs, which with a 1 GS/s rate,
corresponds to 100 000 sample points on the AWG. Since the func-
tion f needs to compute the required RF power for each sample
point, for potentially very many pulses, it becomes clear that this
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operation must be very efficient while maintaining the high accu-
racy. We therefore chose to store, not the function directly, but
rather a logarithmic lookup table of it. In log space the function
is almost completely linear (at least in the PRF variable), and any
function calls can be computed very efficiently from a few points
in the lookup table using simple linear interpolation techniques,
which greatly speeds up the process. An example of a calibration
surface is given in Figure 4.6.

A special calibration for the second AOM is also required. As
mentioned earlier, the task of the second AOM is to split the pulses
in frequency to match the two qubit transitions. This operation
causes an additional non-linear change to the dependence of the
intensity on the RF power, because the two frequency components
will ”steal” power from each other at high total RF powers. This
can be compensated for by a two-color scan that varies the am-
plitude for both frequency components, and for each value of one
component, records the corresponding value of the other compo-
nent.

4.3.3 Pulse sequence interface

Given that the pulses themselves are fairly advanced, each with
many control parameters, and that the timing between them would
also be important for some pulse sequences, it was clear that soft-
ware that could manage this in a fast and flexible way would be re-
quired. The exact pulse sequences will be described in more detail
in Chapter 5, but a few words can be said here about the timing re-
quirements for the sequence. If we put the atoms in a superposition
of the ground and excited state, the phase of that state will oscillate
with a frequency corresponding to the energy difference between
the two states. The exact frequency of the atoms that are targeted
by the laser pulse is given by νatom = νlaser + 2 · νAOM1 + νAOM2,
since the laser frequency is shifted when it passes through the AOM
system. If we make two successive coherent operations on the
atoms it is clear that the relative phase of the light and the atoms
is important. The same light pulse could for example drive the
atoms up just as well as down in the Bloch sphere, depending only
on this relative phase. Thus, we need to keep track of the phase
evolution that the atoms go through because of their oscillation.
During whatever time, τ , we wait between the two coherent pulses,
the atoms will have evolved a total phase of φatom = νatomτ , while
the laser has only gained a phase of φlaser = νlaserτ . The AOM’s
do not evolve by themselves while we wait for the next pulse, and
so, to be able to set the second pulse to the correct phase, this dif-
ference φAOMs = (2νAOM1 + νAOM2)τ , must be added manually
in the program to any coherent pulses.

The software, besides handling simple communication to the
oscilloscope and waveform generator, is divided into two sections.
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In one section, all the parameters of all pulses to be used in the
current sequence, are defined, and in the other section the ordering
of each pulse within the sequence is listed. The pulse parameters
include for example duration, amplitude and center frequency, and
specialized parameters such as the β and µ coefficients for sechyp
pulses. Most of the parameters are decided only by individual op-
timization of each pulse, but some parameters, such as the starting
phase of the pulse, is more complicated to determine. As discussed
above, the phase of a pulse may depend, for example, on the time
since the previous pulse was sent in, meaning that there are pa-
rameters that depend on their position in the sequence. To handle
this dependence, both the pulse definition list and the sequence
list are usually generated from a Matlab script that can keep track
of the atom - laser phase discrepancy created by the AOM’s.

4.4 Other equipment

4.4.1 Lab environment

The room that contains the stabilized system and the experimental
crystal and detection system, is temperature as well as humidity
stabilized. The optical table with the stabilized laser is housed in
a clean room, class 100. The clean room is from Terra Universal,
with the MAC 10 IQ HEPA filters and fan units from Envirco.
The DC motor fan units were specially selected because of low
noise, only 48 dB, producing low vibrations as well as providing
comfortable working conditions.

4.4.2 Cryostats

As can be seen in the experimental setup, Figure 4.3, there is a
need for two cryostats, one for the locking crystal and one for
the experimental crystal. Both cryostats are made by Oxford In-
struments, but function slightly differently. The cryostat for the
locking system is a flow cryostat, in which a constant flow of he-
lium fluid cools down a coldfinger, which then in turn cools down
the crystal. There is no direct contact between the helium and the
crystal, which makes it important that the coldfinger is very effi-
ciently in touch with the crystal. The crystal mount is in fact a part
of the coldfinger, and encloses the sides of the crystal very closely,
where thermally conducting vacuum grease is used to bridge any
small remaining gaps between the mount and the crystal. During
the experiments it turned out that in order to get the crystal tem-
perature low enough, we were forced to tighten the mount screws
so much that the mechanical pressure on the crystal significantly
changed the inhomogeneous Pr3+ absorption profile. There was
an average shift of the absorption line in the order of GHz (the
same order as Γinh), but more interestingly, because the pressure
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was unevenly distributed, there appeared a strong spatial depen-
dence of the line across the crystal. This caused the total width of
the line to be roughly doubled and when scanning the frequency
across the structure, the spatial inhomogeneity could be seen even
with naked the eye as a dark band of absorption moving across the
crystal.

The cryostat for the experimental crystal is a bath cryostat,
which means that the crystal is fully submerged in liquid helium.
This provides good cooling power, but requires the chamber to be
pumped down to a pressure of less than ∼50 mbar in order to cool
the helium to below 2.17 K, at which it becomes a superfluid. In
the superfluid regime the helium boils without producing bubbles,
which ensures a clean passage for the light pulses, as bubbles in the
helium would scatter the light quite significantly. This cryostat is
also equipped with superconducting magnets capable of generating
a magnetic field of up to 8 T. This magnetic field could be used
to increase the coherence time in the material, as explained in
Chapter 3.
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Chapter 5

Quantum computing

In this chapter the ideas of rare-earth quantum computing
(REQC), on which this thesis is centered, will be discussed. When
describing subsections of the quantum computing scheme, such as
qubit creation or detection, it is useful to compare them to gen-
eral requirements for any quantum computer to work satisfactorily.
Such requirements were discussed over several years and finally
summarized by David DiVincenzo in 2000 in a very influential pa-
per [28], where he lists what became known as the DiVincenzo
criteria. The list consists of five points that are directly related
to quantum computing and an additional two that are related to
quantum communication. In this chapter I will first go through
the parts of our quantum computing scheme in detail, and then
summarize it by comparing it to the DiVincenzo criteria. The goal
is to be able to highlight especially strong or weak points, and to
help plan the direction of future efforts.

5.1 Introduction

The quantum computing field could be said to have been started in
1982 when Feynman first suggested the idea that perhaps the only
thing that could ever hope to simulate a system based on quan-
tum mechanical rules, was a quantum computer only limited by
the same rules [1]. At the heart of his argument is the fact that a
quantum system, based on our current understanding, requires re-
sources that increase exponentially with the size of the problem, in
order to be accurately specified on a classical computer. Feynman
was considering how to correctly simulate probabilistic systems,
and found that perhaps the only way to do that both correctly
and accurately, was by using the naturally probabilistic quantum
computing, but another example, the best known, is that of Shor’s
algorithm. In 1994 Peter Shor published a concrete quantum algo-
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Figure 5.1. The two ground state
levels in Pr3+ serve as a qubit, as
indicated by the Bloch sphere.
Operations on the qubit states are
done via the optically excited
state.

rithm for factorizing numbers into their prime components, which
use only polynomial resources, compared to the best known clas-
sical algorithm that requires resources that increase exponentially
with the size of the problem. Even though Grover’s algorithm for
searching unstructured databases also offers some speed-up com-
pared to its classical counterparts, Shor’s factorization algorithm
is the only known example for which the actual complexity class of
the problem is changed by utilizing the quantum rules. It should
be pointed out that it is still unknown whether quantum comput-
ers really offer a fundamental speed-up, i.e. is they possess the
ability to change the complexity class of a problem, or whether it
just happens that no one to date has found sufficiently good clas-
sical algorithms. Shor’s algorithm however, makes a very strong
point in favor of a real fundamental improvement.

It can also be mentioned that the classical algorithms we do
have are very good for small systems, and it will probably require
a relatively large system before a quantum computer could win out
on calculations like factoring, maybe several hundreds of qubits.
With today’s experimental situation we are very far from this, but
long before a full quantum computer is realized, one could perform
quantum simulations. A specific quantum simulation could not be
used for generic purpose computation, but would rather consist of
a controllable quantum system, that behaving in the same way as
another, perhaps uncontrollable, system under investigation. Such
a quantum simulation system could become useful and better than
classical implementations already at a level of a few qubits, and is
therefore the type of quantum application that would first become
available, much sooner than full quantum computation. In addi-
tion, as conventional technology is moving closer and closer to the
quantum scale, a general investigation of quantum effects becomes
important even for classical systems, and this further motivates
the study of few-qubit systems.

5.2 Single qubits

The main idea underlying the implementation of qubits in rare-
earth ions was already mentioned in Chapter 3. Due to long co-
herence times, the best choice of qubit states are two hyperfine
levels, as is illustrated by the Bloch sphere in Figure 5.1. In the
present work the |±1/2〉-level in the ground state was chosen to
represent the |0〉-state and |±3/2〉 to represent the |1〉 state. One
could imagine that operations between the two qubit levels could
be carried out with radio frequency fields, coupling the levels di-
rectly, but then the advantage of the inhomogeneous broadening
in these materials would be lost. RF fields would target all atoms
in the field distribution, whereas a laser working on the broadened
optical transitions could select a very narrow spectral subpopula-
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Figure 5.2. The qubit initialized
to the |0〉-state. The experimental
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peaks corresponding to the three
possible transitions to the exited
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tion of the atoms. Such a well-defined, spectral subpopulation can
be used as a single qubit, with the narrowness ultimately limited
by the homogeneous width, which is about 1 kHz for Pr3+. The
number of qubit channels that could maximally be created is given
by how many that fits into the inhomogeneous distribution, which
is GHz/kHz ≈ 106. However, there are several practical elements
that limit this further, as will be seen later in this chapter.

5.2.1 Initialization

For quantum computing, the first step that should be taken, is
to initialize the system to a controlled reference state. In our
case this can be done with the hole-burning techniques described
in Section 3.7, as shown in Figure 3.10, and again in Figure 5.2.
In the current scheme, an ensemble of ∼ 109 ions is used as a
qubit. This ensemble has about 170 kHz inhomogeneous width,
and a variable αL , but for the quantum computing experiments
an optical depth of αL ≈ 0.6 was used. The inhomogeneous width
corresponds to an effective coherence time of T∗2 = 1/π170kHz ≈
2µs. Given that most of the operating pulses have a duration of
the same order as T∗2, using simple pulses would give a significant
decoherence. To avoid this, the specially designed sechyp pulses
have been employed, as discussed in Section 2.5. Due to the nature
of the amplitude envelope and frequency chirp of these pulses, all
dephasing effects during a pulse transfer is negated, and the typical
single pulse transfer efficiency from one ground state to an excited
state is about 97 %. In order to perform a real qubit gate operation
however, we need pulses that target both of the qubit levels, and
can create superposition states, which the sechyp pulses cannot
do directly. In Ref. [11], the concept of dark state transfers was
introduced, which is the technique that was used for the quantum
state tomography experiments in Paper II, and will be explained
in the following.

5.2.2 Dark state pulses

As a starting point for the explanation of the dark state scheme,
Figure 5.1 is used. Two fields will be on at the same time, one
resonant with the |0〉 → |e〉 transitions, with a Rabi frequency of
Ω0, and the other field resonant with the |1〉 → |e〉, with a Rabi
frequency of Ω1. In order to identify what happens to the states
when they are coupled by two fields that are on at the same time
we can look at some simple rate equations (see e.g. Scully and
Zubairy [29]):





ċ0 = iΩ0(t)
2 eiφ0ce

ċ1 = iΩ1(t)
2 eiφ1ce

ċe = iΩ0(t)
2 eiφ0c0 + iΩ1(t)

2 eiφ1c1

(5.1)
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φ, which is the phase difference
between the two fields, as defined
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Figure 5.4. Using dark state
transfers as qubit gate operations.
The Bright state ions are taken to
the excited state and back down
along a different path, gaining a
phase factor that then
corresponds to a rotation in the
computational basis. See the text
for more information.

where ci are the complex amplitude coefficients for each of the
three levels involved, and φi is a phase factor associated with each
of the two fields. The two transitions will have different oscillator
strengths, but this can be compensated for by tuning the ampli-
tude of each E-field such that the Rabi frequencies for the two
transitions are matched, i.e. Ω1 = Ω2 = ΩR. We can then rewrite
the last line in Equation (5.1) as

ċe = i
ΩR(t)

2
(
eiφ0c0 + eiφ1c1

)
. (5.2)

From this we see that for given values of the two field phases,
φ1 − φ0 = φ, there exist certain states, c0,d and c1,d, such that
the expression in Equation (5.2) is zero. And the interpretation
that the time derivative of the excited state population is zero, is
that the light field does not couple to those particular states at all.
For that reason, the states ci,d are called dark states. An angle of
φ = 180◦ away from the dark states, are the bright states, which
couple fully to the excited state via the light, and we can change
the system description into a new basis defined as

{
|B〉 = 1√

2

(
|0〉 − e−iφ |1〉

)

|D〉 = 1√
2

(
|0〉+ e−iφ |1〉

) (5.3)

where |B〉 and |D〉 are the bright and the dark state respectively,
for a given phase difference φ. As can be seen, these are states on
the xy-plane in the qubit Bloch sphere, which is also illustrated in
Figure 5.3.

The main idea for using this dark state mechanics to implement
qubit gates is outlined in Figure 5.4. Note that the Bloch sphere
drawn in this figure does not have the same poles as previous
spheres. The north pole is the electronically excited state, while
the south pole is the bright state, |B〉, since this is a representation
of the ions that do interact with the light. For the rest of the
discussion, a dark state pulse, also sometimes referred to as a two-
color pulse, is a pulse that contains both field components (ν1

and ν2 in Figure 5.1), i.e. a pulse that contains two colors. It
should also be kept in mind that the shape of each field component
is still that of a sechyp, to compensate for the dephasing due to
inhomogeneous broadening. First, a dark state pulse is sent in with
a certain phase relation between the two fields, φ = φ1 − φ0. This
is the upgoing path in Figure 5.4 designated ’1’, which will excite
all atoms from the bright state to the excited state. Next, a second
dark state pulse is sent in, again with the same φ, but this time
with an added overall phase factor of θ+π. The effect of the second
two-color pulse is that the excited atoms will be deexcited again,
back down to the bright state, but along a different path, marked
’2’. As seen in the figure, the paths will be separated by an angle, θ,
and the net action on the bright state by this combined operation
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is an acquired phase shift, |B〉 → eiθ |B〉. The extra π in the
overall phase factor mentioned above can be explained as follows:
Without any extra angle at all added, the second dark state pulse
would just continue the Rabi flopping on the |B〉 → |e〉 transition
started by the first pulse, going down on the Bloch sphere surface
along a path opposite to where it came up. With only an angle
of π added, it will then instead go down exactly the same way
as it came up, and thus, now with θ + π added, it will go down
along a path shifted exactly by an angle of θ compared to where
it went up. It is important that the relative phase between the
two fields of each pulse, φ, is kept constant for both pulses, since
φ determines the dark/bright state basis, and thus, which states
are targeted by the operation.

We now know that the action of such a pulse sequence in the
dark state basis is |B〉 → eiθ |B〉. After a straightforward basis
change, we can see that in the computational basis (|0〉, |1〉), this
operation corresponds to

Udark = eiθ/2
[

cos(θ/2) ieiφ sin(θ/2)
ie−iφ sin(θ/2) cos(θ/2)

]
. (5.4)

As it turns out, the above matrix is a unitary operation that per-
forms a rotation by an angle θ, around any vector on the equator
plane of the qubit Bloch sphere, specified by φ. It is also true, that
by such rotations alone, repeated if necessary, one can execute any
arbitrary single qubit gate operation, which was our goal. As an
example, if both θ and φ are set to π, a NOT gate is obtained.

It may also be said that as the bright state is being transferred
to the excited state, the ions will pick up an additional phase
factor due to the optical inhomogeneous broadening. This can be
understood by noting that the bright state is a superposition in
the computational basis and transferring this to the excited state,
will create a general superposition containing the |0〉, |1〉 and |e〉-
states. Such a superposition based on an ensemble of ions with
different detunings, will pick up a phase factor that increases with
the time spent in the excited state. This phase factor however, can
be compensated for, since in general, a phase factor is irrelevant
if it appears in front of all terms. And by performing a dark state
operation on the dark state, with θ = 0, i.e. where path ’2’ in
Figure 5.4 just retraces path ’1’, we can get the rest of the state
wave function to pick up exactly the same phase, which can then
be disregarded.

5.2.3 Optimal control theory pulses

Introduction

Even though single qubit gate operations were realized with good
efficiency (see Section 5.3.1) using the dark state approach de-
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scribed above, the total pulse sequence needed to perform the gate
operation takes some time. Two dark state pulses are needed to
infer the θ-angle on the bright states, and an additional two pulses
are needed to compensate for the detuning-based phase shift on
the dark states. Each two-color pulse was in our experiments 4.4
µs long. This time is set by requirements on the sechyp shape to
maintain an adiabatic action on the ions during the transfer, and
cannot easily be reduced for a given peak width. Four pulses times
4.4 µs is almost 18 µs in total, which will contribute to decoher-
ence from the optical dephasing and maybe from inhomogeneous
hyperfine broadening. One way to reduce this gate time is to use
other pulses with other shapes than a sechyp, to compensate for
the optical inhomogeneity. Then the concept of optimal control
theory is a promising route.

The basic concept of optimal control theory is to minimize a
cost function determined by the physical system, given a set of ex-
perimental constraints. In our case we are interested in performing
qubit gate operations, so the physical system includes the ion and
all its relevant levels, the light field of the laser, and all equations
that describe the interaction between these. Our goal is to find
a new pulse shape that performs the desired gate operations with
as high fidelity as possible, and in as short a duration as possible.
Given this goal, there are also additional constraints set by our
experimental equipment. The bandwidth, i.e. the maximum chirp
rate, is limited in our AOMs that produce the pulses, and must
to be taken into account. Similarly, the laser intensity is limited
and can also fluctuate with time. The pulses should therefore be
robust to changes in the Rabi frequency, i.e. they should give a
high fidelity within a certain range, say ±10% of the optimum
Rabi frequency. It should also be mentioned that pulses designed
by optimal control theory have recently been implemented in other
systems (ion-traps), in order to demonstrate such robustness [30].

Implementation

As the task of minimizing the complicated cost function can be
quite demanding, it is natural to try to do it numerically on a
computer. This was also done in our case by a theoretical group
in Munich, who are specialized in this area. After discussing how
to implement the physical system and the constraints, they were
able to obtain several new pulses for different objectives. As has
been said, the end goal is to obtain single pulse qubit gates, but
even though at the time of writing this has not yet been achieved,
we have gained some partial results that will be discussed in this
section. A full gate would require the optimal control pulse to
interact with at least three levels, the two qubit levels and one
excited state. As it turned out, this is more difficult than creating
a pulse which interacts only with two levels, one ground state
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Figure 5.5. Amplitude shape of two optimal control transfer pulses with
different bandwidth. Red line is the theoretically desired shape, blue
line is the experimentally detected shape. The green line shows the
beating pattern that was used to measure the pulse.

hyperfine level, and one excited state level. Therefore, to test
whether the system has been implemented correctly, it is good to
start with an optimal control pulse designed to simply transfer the
population from one ground state to one excited state. Examples
of such pulses are displayed in Figure 5.5, where the amplitude is
shown, and in Figure 5.6, where the corresponding phase chirp is
shown. In both of these figures, the red line marks the theoretically
desired shapes.

To verify that these pulses could be implemented correctly by
the AOMs and the calibration system, an interference experiment
was setup to detect the exact shapes of the generated pulses. In
each test, the optimal control pulse was overlapped with a ref-
erence beam that was shifted 20 MHz, and the resulting beating
was used to obtain information about both the amplitude and
the phase content of the pulses. The beating was analyzed us-
ing a method by which the signal is Fourier transformed, and in
the Fourier plane all negative values are removed, and then trans-
formed back. The result is a complex signal of the form A(t)eiφ(t),
where the amplitude of the original signal, A(t), and the phase of
the beating φ(t), can be obtained in a direct manner. The beating
itself is shown in Figure 5.5 in green, and the resulting amplitude
and phase of the experimental optimal control pulse are shown in
blue in Figures 5.5 and 5.6, respectively. The difference between
the two pulses displayed is the bandwidth, which is 2 and 16 MHz
respectively. For the higher bandwidth pulse it was possible to
obtain a shorter duration, keeping the same theoretical transfer
efficiency. All in all, five optimal control pulses, designed for the
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Figure 5.7. Efficiency of a transfer
from |±1/2g〉 to |±3/2e〉, using
optimal control pulses of different
maximally allowed bandwidths.

same purpose (two-level population transfer), with similar theoret-
ical efficiencies, but using different maximally allowed bandwidths,
were created. The bandwidths used were 1, 2, 4, 8 and 16 MHz,
and the pulses had a corresponding duration of 8, 4, 2, 2 and 2
µs, respectively. When applied experimentally to a peak of ions,
all pulses, except the one with a bandwidth of 16 MHz, achieved
the expected high transfer efficiency (of about 95%), as plotted in
Figure 5.7.

The reason why the high bandwidth pulse failed is still not
entirely clear, but is at this point believed to be related to the
involvement of other levels. In the experiment, |±3/2〉 was used
as the excited state, and one can note the closest other level is
|±1/2〉, which is 4.6 MHz away (cf. Figure 3.3). Thus, as long as
the bandwidth of the pulse is lower than ∼ 2 · 4.6 = 9.2 MHz, the
pulse interacts only with the two levels involved in the transfer.
We see that the 16 MHz pulse has a larger bandwidth than this,
and will in fact interact with all three excited hyperfine states,
which creates a much more complicated situation than when only
two levels are involved. This can also bee seen by the shapes of
the pulse, as the pulses of bandwidth 1 through 8 MHz all have a
very similar shape, with a clear peak around the center, like the
upper one in Figure 5.5. The 16 MHz bandwidth one however,
looks completely different, with several sub-peaks, illustrating a
more complicated behavior. The exact appearance of it cannot
in general be intuitively explained, because of the nature of the
optimal control algorithm, and in fact the solutions obtained are
not necessarily unique or even at the global maximum. Another
explanation of the poor efficiency of the 16 MHz pulse that was
explored was whether the double pass AOM had problems to gen-
erate the high bandwidth, but this is not believed to be the main
problem. As mentioned above, the final goal of full qubit pulses
has, as yet not been achieved. Since these would necessarily also
involve more than two levels, it is possible that the failure of these
is related to that of the high bandwidth, therefore this is an issue
that will require a continuing effort in the future.

5.3 Detection and characterization

For all qubit experiments, the detection was done by absorption
measurement, although the use of fluorescence techniques is also a
possibility. The advantage of fluorescence is that the background
signal can be made very low, which in general makes a very high
sensitivity possible. On the other hand fluorescence occurs with-
out a specific direction, so the spatial collection efficiency will be
one limitation. Another problem is that the qubit ions have very
long lifetimes (one of the major reasons why we use them in the
first place) which in turn means slow readouts. With absorption
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measurement, the readout can be scanned very fast, as discussed
in Section 2.6, but with a straightforward measurement, the back-
ground light is often very high, giving poor a signal-to-noise ratio
(SNR) when low absorptions are being detected. However, sev-
eral experimental techniques have been demonstrated by others to
improve the SNR, such as frequency modulation spectroscopy [31]
or by removing the background by staying on a dark fringe in an
interferometer, as described recently in [32]. In principle however,
any refinement technique used should be easily combinable with
the fast chirp readout method, in order not to lose this advantage.

What has been described so far is pure population detection,
which corresponds to measuring the z-axis on the qubit Bloch
sphere. To measure along the other axes there are a few possibil-
ities. One could, for example, use phase-sensitive methods, such
as heterodyne detection of the free induction decay or Raman het-
erodyne detection, as in [20]. In our qubit experiments however,
we have chosen to simply perform additional operations, rotating
the whole Bloch sphere such that the x- and y-axis turn into the
z-axis, and then perform a population measurement. In the fol-
lowing, the sequence of pulses used to completely characterize the
qubit will be described.

5.3.1 Quantum state tomography

A qubit can be conveniently described using the Bloch sphere,
which suggests that if one has a qubit in an arbitrary state, i.e.
with a vector pointing in an arbitrary direction, it can be com-
pletely described by measuring the projection of the state onto
the three principal axes. Furthermore, from Chapter 2 we know
that the density matrix is another good way of representing the
state of a qubit. The density matrix of a qubit can be obtained by
the use of (see e.g. [33])

ρ =
tr(ρ)I + tr(Xρ)X + tr(Y ρ)Y + tr(Zρ)Z

2
, (5.5)

where X, Y and Z correspond to the Pauli matrices, which to-
gether with the identity, I, span the 2× 2 qubit space. The above
equation is useful because the traces correspond to actual physical
measurements. For example, tr(Zρ) means measuring the projec-
tion of the unknown state onto the Z axis, which will yield a value
between -1 and +1, and the same for the other axes. Of course,
for implementations where the qubit consists of single quantum
states, one can only get a value of either +1 OR -1, upon measure-
ment. One then needs many copies of the same state, or must redo
the experiment many times, in order to build up enough statistics
to get a more accurate number for the real value. For the en-
semble approach that we used, the statistics are obtained from a
single measurement, since we in principle have ∼ 109 single qubits
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working in parallel during the experiment. The advantage of this
approach is a much stronger and faster readout signal, since one
does not have to worry about single ion detection. The major
drawback of ensembles is poor scaling for many qubits, which will
be discussed later. In addition, there are some techniques that
can improve the estimation of the density matrix from experimen-
tal results, such as the Maximum Likelihood Method, which are
unavailable in an ensemble approach.

As mentioned above, with a simple absorption measurement
we can really only measure the population, i.e. the z-axis. To
measure, for example, the projection onto the x-axis, we then em-
ploy the dark state pulses to rotate the unknown state such that
after the rotation, a z-measurement gives the same information as
an x-measurement would have done before the rotation, i.e. the
state is effectively rotated by 90◦. To concretize the ideas of qubit
gates with dark state pulses and characterization with quantum
state tomography, an example with a particular state, is described
below.

Example: Tomography of (|0〉 − |1〉)
√

2

Starting from a situation in which all atoms are initialized to the
|1/2g〉 level, i.e. the |0〉 state, we first need to apply a dark state
operation to create the desired superposition state. With our def-
inition of the Bloch sphere, the starting state |0〉 is character-
ized by a vector pointing north, i.e. z = 1. The desired state,
(|0〉 − |1〉) /

√
2, is then given by a vector pointing in the direction

of the negative x-axis, and we understand that to create this state,
we need to perform a 90◦ rotation around the negative y-axis (or
alternatively, a -90◦ rotation around the positive y-axis). This can
be accomplished by setting φbright = 90◦ and θbright = −90◦ in
Equation (5.4), which gives an appropriate rotation matrix1. This
creates the state, but all bright state ions have now in addition ac-
quired a detuning-dependent phase shift, and we compensate for
this, as mentioned above, by performing an identity operation on
what was earlier the dark state ions. Recalling that φ determines
the rotation axis and θ the rotation angle, this can be done by
putting φdark = φbright + 180◦, with θdark = 0◦.

The state has now been created and we can characterize it using
the quantum state tomography described. For this, the full exper-
iment is repeated three times, one for each axis to be measured.
Z-measurement is trivial, being given by a direct absorption mea-
surement. To measure the x-projection, we need to first make a 90◦

rotation around the negative y-axis, since this operation will rotate
the x-axis onto the z-axis. Similarly, before the y-measurement, a

1for additional motivation regarding the relation between the angles and
the matrix representation see e.g. section 4.2 in Nielsen and Chuang [5]

48



Quantum computing

90◦ rotation around the positive x-axis is performed. The three re-
sulting absorption measurements are displayed in Figure 5.9. From
this figure, the traces from Equation (5.5), needed to calculate the
density matrix of the state, can be obtained. Since the y-axis in
the figures is αL , which is directly proportional to the number of
absorbing ions, the number of ions in each qubit state can be ob-
tained by numerically calculating the area under the peaks. Each
peak area then has to be divided by the oscillator strength for
that corresponding transition in order to compensate for different
transition strengths. The traces can then be obtained from

tr(Zρ) =
(ZAREA)|0〉→|1/2e〉 − (ZAREA)|1〉→|1/2e〉
(ZAREA)|0〉→|1/2e〉 + (ZAREA)|1〉→|1/2e〉

, (5.6)

and similarly for the other measurements. Note that it is possible
to obtain a second set of traces from using the transitions to the
|3/2e〉-state from both qubit states. This can be used to reduce er-
rors, and to gain information about ions left in the excited state as
a residue from the dark state transfers. Analysis has shown how-
ever, that there does not appear to be any significant population
left in the excited state. It can also be noted that the tr(ρ)I part
of Equation (5.5) has a normalizing meaning, in the sense that for
a pure state where no atoms have decayed to states that are not
measured, this term will simply be the identity matrix. In our
experiments we have used the fact that we know that the lifetime
of the hyperfine states is very long compared to the experiment
time, together with the fact that the branching ratio to the aux-
iliary state (the only state not measured) is very low, in order to
be able to assume that there is no non-measured decay. We now
have access to all the information needed to create the density ma-
trix. For the particular state in this example, corresponding to the
measurements shown in Figure 5.9, we get

ρexp =
[

0.49 −0.37− 0.04i
−0.37− 0.04i 0.51

]
. (5.7)

The fidelity for the experiment can then be defined as

Ftot = 〈ψtheor |ρexp|ψtheor〉 . (5.8)

Here, |ψtheor〉 = (|0〉 − |1〉) /
√

2, and the fidelity can be easily cal-
culated in our example to be Ftot = 0.87. This is the total fidelity
for the experiment, including two gates, one to create the state,
and one for readout. Another interesting value is the fidelity for
a single gate, which is obtained as Fgate =

√
Ftot = 0.93, in this

example. Other states were prepared and analyzed in a similar
fashion in Paper II, and all gate fidelities were found to be above
90%, which is a very good result. A visualization of the states
analyzed in the paper is given in Figure 5.10, where all measured
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Figure 5.10. Quantum state
tomography was performed to
characterize six created states
(along the axes). The
experimentally obtained density
matrices were used to produce the
state vectors inside the Bloch
sphere.
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Figure 5.11. The truth table of a
classical XOR gate shown in a),
while the matrix representation of
a quantum CNOT is showed in b).

states have been inscribed into the Bloch sphere. There are six
states in total, corresponding to the desired states which are lo-
cated along both the positive and negative direction of each of the
three axes.

5.4 Two-qubit investigations

One of the end goals for the ensemble approach to quantum com-
puting has been to achieve a two qubit gate, such as the Controlled-
NOT (CNOT). This has unfortunately not yet been achieved, but
some partial results have been obtained, and some considerations
regarding future efforts will be discussed here. The classical ver-
sion of the CNOT is called exclusive-OR (XOR) and has a truth
table which is given in Figure 5.11a. The CNOT is important since
it is a part of a set of gates that constitutes a universal quantum
computer, i.e. having access only to those gates, one can imple-
ment any quantum algorithm. The operation matrix formulation
of the CNOT is given in Figure 5.11b, and even though one usu-
ally refers to one of the qubits as control and the other one as
target, one can note that this gate is symmetric with regards to
the qubits. In this section I will first present the general idea for
qubit-qubit interactions in our scheme, followed by a description of
how to carry out the CNOT protocol, concluding with discussions
on the current experimental situation.

5.4.1 Creating entanglement

The mechanism for creating qubit entanglement in rare-earth crys-
tals is dipole-dipole interaction between near-lying ions, illustrated
in Figure 5.12. Two ions are shown each belonging to different
qubit ensembles, with different resonance frequencies. The Pr3+

ions have a permanent dipole moment, but its value changes de-
pending on the state it is in. Thus, if one of the ions, say the
one designated control ion, is excited, with the associated change
in dipole field, the other ion has its level structure rearranged
slightly through the Stark effect. This causes the second ion to get
out of resonance with a potential target ion operation pulse, which
constitutes a good way of producing conditional operations.

Figure 5.12 illustrates the principle for the physical interaction
between single ions, but in a large crystal where∼ 109 ions are used
for each qubit, it is also necessary to have a protocol that can select
the ions that are close enough to experience the interaction. The
induced Stark shift decreases as the cube of the distance between
the ions. The frequency shift must be large enough to move the
ions clearly away from the gate pulse frequencies, i.e. in the order
of 1 MHz, and, as mentioned in Section 3.6, this suggests that
the ions should be within ∼ 10 nm from each other. This is only
true for a fraction, of the order of 1%, of all the ions in the original
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Figure 5.13. The idea behind the distillation, namely, selecting only
those ions that are close enough to be strongly interacting. First, a
target and a control region are chosen, then the control region is excited
which causes all target ions to shift their resonance by an amount given
by their distance from the nearest control ion. In frame 3), all ions
still visible in frame 2), i.e. those that did no shift sufficiently, have
been pumped away to the |aux〉 state. Finally, in frame 4), the control
ions have been taken back down to the ground state, and the ions that
shifted away will return to their previous frequencies. Experimental
figures taken from Ref. [34].

qubit. To find those ions, a distillation scheme was put forward and
demonstrated [34]. The main idea behind the scheme is illustrated
in Figure 5.13, and is described in the caption to this figure. First,
the control ions are excited, which allows all non-interacting target
ions to be removed. After that however, the reverse procedure
must be applied; the remaining target ions must be excited such
that the control ions can be distilled in the same way.

5.4.2 CNOT scheme

In words, the action of the CNOT gate should be the following: If
the control qubit is in the |0〉-state, nothing should happen to the
target, but if the control qubit is in the |1〉-state, a NOT operation
should be applied to the target qubit. And, since this is a quantum
gate, if the control qubit is in a superposition, e.g. (|0〉+ |1〉) /

√
2,

the target qubit will also end up in a superposition, in fact, the
two qubits will then become entangled. Note that in the ensemble
approach, this entanglement occurs pairwise between the single
ions, and upon readout, the average state will be probed. The full
density matrix of the state can then be obtained in the same man-
ner as for single qubits, by applying appropriate rotations before
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Figure 5.14. Illustration of the
REQC CNOT scheme. In the
upper part, the control qubit is in
the |0〉-state, which means that
the control ions will become
excited. This will cause a shift on
the target ions, and all subsequent
target pulses will not be resonant.
In the lower part, the control
qubit is in the |1〉-state, and will
thus not be excited, which causes
the NOT operation to be carried
out on the target qubit.

the readout.
Figure 5.14 illustrates the two cases of the CNOT where either

the control qubit is in the |0〉-state (upper part), or in the |1〉-state
(lower part). Here again, the advantage of using frequency as the
means for selecting the different qubits becomes clear. The qubits
can have any state on the qubit levels, and the optical transition
acts as a way of switching on or shutting off the interaction between
the qubits.

5.4.3 Current status

Some introductory ion-ion control experiments were done in 2005
[34], in which a narrow qubit peak was shifted by a broad range
of control ions, i.e. an asymmetric action. A typical qubit peak
is about 200 kHz, whereas the control intervals used in the article
were up to 20 MHz, which shifted approximately half of the ions
enough to be useful. A real CNOT gate should, as mentioned,
be symmetric, meaning that the control interval should be a peak
with the same width as the target qubit. This will decrease the
control interval, and thus the number of ions, by a factor of 100,
resulting in only ∼ 0.5% of the ions being shifted enough to be
useful. There are also other considerations when switching from
simply an interval on the inhomogeneous absorption line to a pre-
pared peak, namely that without any preparation, one frequency
point on the absorption line consists of contributions from all the
nine possible transitions, while a peak is only a single transition,
causing a loss of a factor of 9. However, before the ion class chosen
for the peak has gone through the preparation, it can be in any
of the three ground states. The preparation can move ions in the
other two states into the chosen state, effectively increasing the
number of ions by a factor of 3, thus mitigating the loss some-
what. In total, moving to a symmetric control situation will cause
the number of interacting ions to drop to ∼ 0.1%.

Näıvely, one might think that only the total number of ions we
are left with in the end matters, i.e. that one could compensate
a poor interaction probability by starting with more ions or using
a more sophisticated detection system. This is not true however,
as shown in Ref. [21], as the off-resonant excitations from the ions
outside the pit contribute a non-negligible amount. For typical
values of pit width and ion homogeneous width, one can expect
the off-resonant absorption also to be of the order of ∼ 0.1% of the
original absorption, thus making detection of any qubit ions below
this limit very difficult. The only reasonable way to get more in-
teracting ions is to increase the interaction probability, which can
be done either by increasing the concentration of doped ions, to
reduce the average ion-ion distance, or by moving to another ion
species that has a larger permanent dipole moment. The latter
option however, will also require the pit + peak preparation se-
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quences to be reworked, which makes it less feasible. Regarding
increased ion concentration, this is probably best combined with
working at the edge of the inhomogeneous absorption profile. The
reason for this is that the main mechanism for a Pr3+ ion to end
up at the edge of the profile is that it has a close proximity to an-
other Pr3+ ion, which thus should also increase the probability for
interaction with the selected qubit ions. A more radical approach
would be to utilize so called satellite lines. These are absorption
lines, outside the main profile, which originate from pair sites, i.e.
in situations where two Pr3+ ions have replaced two Y3+ ions in
directly connecting sites in the crystal lattice. These Pr3+ ions
will experience a strong local shift, which makes them appear as
narrow lines far away from the normal transition frequency. There
is only a small chance for any Pr3+ ion to end up in a pair site,
but this chance grows as the square of the ion concentration [35],
and, more importantly for this discussion, any ion found in such
a site has a very high probability of being involved in a potential
qubit interaction.

5.5 Scaling and outlook

5.5.1 Ensemble approach

One of the major difficulties connected with the ensemble ap-
proach to rare-earth quantum computing is the scaling towards
many qubits. As discussed in the previous section, it is not trivial
even to find sufficiently many interacting ions for two qubits. With
a constant probability p for an ion to be found near another one,
the probability for n ions to be close enough for interaction scales
as pn = pn, which decreases rapidly since p is often of the order of
0.1− 1%.

One way to improve the scaling for the ensemble approach
would be to use a bus qubit, which was analyzed in Ref. [36].
With this idea, a special qubit is used as a bus to mediate the
interaction between the other qubits, which do not have to be
close enough to each other, but only to the bus qubit. This in-
creases the allowed distance from each other and thus improves p.
It was also shown that if this method was combined with a very
highly doped material, such as stoichiometric crystals [37], the
the probability of finding a quantum computing instance of size
n would approach the linear regime, instead of the exponential as
stated above. Working with such highly doped materials however,
introduces new difficulties connected with the higher absorption,
including increased off-resonant interactions and a more strongly
propagation-direction-dependent intensity. Further, more highly
doped crystals also often have shorter coherence times.
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corresponding to multiple readout
ion frequencies are shown. A
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showing the readout ion detecting
a cluster of 7 qubits.

5.5.2 Single instance approach

The most realistic way of scaling a REQC to at least a medium
number of qubits, is to move away from the ensemble approach to
a single ion implementation. We would then only have to find a
single instance where n ions happened to be close enough, which
of course has a much higher probability. An additional advantage
is that all ions that are sufficiently close can be used, regardless of
frequency, in contrast to the ensemble approach where the qubit
frequency is chosen first, and interacting ions only determined sec-
ondly. The major challenge with the single instance approach is
the detection system. For rare-earth ions used as qubits, a com-
bination of long lifetimes and trapping in other hyperfine states,
makes single ion detection very difficult. Instead, it has been pro-
posed [36] to co-dope the qubit ion crystal with another ion type
with different characteristics in order to achieve the readout. Such
a readout ion would sit close to a cluster of qubit ions, similar to
the bus ion, but without having to be coherent. The qubits would
communicate quantum mechanically between each other through
nearest neighbor interaction, which has been shown only to add
a polynomial amount of steps, but would need to communicate
with the readout ion only classically, i.e. the readout ion only
needs to be sensitive to the state and not to the phase. This can
be accomplished by the same dipole blockade mechanism that is
used to implement the qubit gating interaction. Without the strict
coherence-time demands on the readout ion, ions with short life-
times can be used, which means fast cycling and thus that they are
much easier to detect in single instances. A readout ion controlling
a set of 7 qubits in a single instance is illustrated in Figure 5.15.

So far, the most promising candidate as a readout ion is
cerium3+, which has undergone some introductory investigations.
For the purpose of getting a strong response it is important that
the transition can occur without any phonon interaction, and such
a zero-phonon line was recently measured by us in Ce to have
a linewidth of about 3 MHz with a lifetime of about 50 ns. This
should be fast enough to enable single ion detection, provided there
are no trapping states that could stop the cycling, which must be
investigated further. It is believed that this type of implementa-
tion could yield of the order of 10 qubits. For scaling to arbitrarily
large systems, the most likely implementation is through flying
qubits. The would be accomplished, for example, by interference
between photons coming from different instances, either through
free space or inside mode-matching structures such as fibers or
cavities, as suggested in for instance in [38].
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5.6 DiVincenzo criteria

As stated in the introduction, this chapter will now be summa-
rized by discussing the current and future experimental status, by
commenting on the REQC scheme from the perspective of the Di-
Vincenzo criteria. I will try to keep the discussion to those aspects
that have in some way been investigated experimentally, since most
of the ideas still at a theoretical stage tend to have overlooked some
of the experimental difficulties.

1) A scalable physical system with well characterized
qubits

This is the most fundamental requirement for any quantum com-
puter, and it is also the most difficult one. Any quantum comput-
ing (QC) scheme must start with a definition of what the qubit for
that scheme would be, and in our case the qubits can be very well
distinguished through their optical resonance frequencies. So, the
latter part of the criteria is fulfilled well, but on the other hand
there is no QC scheme to date which has demonstrated a truly
scalable qubit implementation, and nor have we. The main com-
plication is getting all qubits to interact with each other without
losing the phase information. Since space consists of only three di-
mensions I can not think of any way to position physical qubits in
such a way that any qubit can always coherently interact directly
with all other qubits in the register. This leaves only the use of
a special bus, similar to classical computers, that can be used to
communicate between the qubits, as mentioned for our single in-
stance approach. A photon is most often considered for this type
of mediator, since it interacts only weakly with the environment
and can thus travel long distances without losing its information.
For the same reason however, it is also difficult to achieve single
photon/single qubit interfaces. Much research has been done on
these types of interfaces, including the promising method of using
cavities to boost the interaction probability of the photon. I think
at the point when these interfaces become of sufficiently high qual-
ity, the scaling of many different QC schemes would be improved
dramatically, including our own approach.
Current REQC status: Partially fulfilled, well characterized
qubits, but not yet fully scalable.

2) The ability to initialize the state of the qubits to a
simple reference state such as |000..〉
This is one of the most important differences between the REQC
scheme and that of NMR (nuclear magnetic resonance) quantum
computing, which also uses ensembles. In NMR, the initialization
becomes increasingly difficult the larger the system is. In our ap-
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proach, there is only a constant number of operations required to
prepare each qubit in the |0〉 state. This is very good, but some
considerations still remain. Quantum error correction has not been
discussed much, since it in general requires many qubits to be im-
plemented, but since we are now looking at future scaling of this
protocol, some comments are in order. It can be shown (mentioned
e.g. in [5]), that in order for error correction to successfully make
a quantum computer fault tolerant, a continuous supply of ancilla
qubits prepared in the |0〉 state is needed. If these temporary an-
cilla qubits are needed during the computation, it implies that the
initialization procedure needs to be fast compared to the coher-
ence time, i.e. it must be of the same order as the quantum gate
time. In our current implementation, emptying a pit requires op-
tical pumping procedures, which involves waiting several lifetimes
for ions to decay to certain states. Even though it can be done
with a constant number of operations, it does take longer than the
gate time. This has not been a problem so far, since we are not
in the many-qubits regime, but there is certainly motivation for
developing the initialization procedure further.
Current REQC status: Good, but room for improvement.

3) Long relevant coherence times, much longer than the
gate operation time

For REQC there are two relevant coherence times, the hyperfine
coherence time which is important for storing the qubits, and the
optical coherence time, which becomes important during opera-
tions. Currently, the operation time is of the order of 1-10 µs,
whereas a hyperfine coherence time close to a second has been
measured with magnetic fields and up to 30 seconds with dynamic
decoupling sequences, as described in Section 3.5. This gives an
impressive ratio of the number of gates per coherence time of the
order of 106. However, the optical coherence time will limit this
further, since it is of the order of 100 µs. This will decrease fur-
ther through excitation-induced broadening, once ions start get-
ting excited, and will give a gate/T2 ratio of 10-100 instead. It
should be said however, that in a future multiple qubit quantum
processor, not all qubits will be operated on at all times. This
will allow qubits to stay longer in the hyperfine states, and thus
benefit more from the longer coherence time, pushing the gate/T2

ratio beyond the limitations of the optical transition. In addition,
given the multitude of methods to improve various aspects of de-
phasing, including the dynamic decoupling sequence, the sechyp
shapes to counter inhomogeneous dephasing as well as subradiant
states/lifetime increases by using cavities to modify the radiation
properties, there are many possibilities to improve this.
Current REQC status: Good, but additional thoughts on the
optical coherence would be helpful.
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4) A universal set of quantum gates

The set of gates known as the standard set of universal gates is
the Hadamard, phase, π/8 and CNOT gates, which will allow the
implementation of any quantum algorithms. It was an important
milestone for REQC to demonstrate the arbitrary single qubit ro-
tations on the hyperfine levels in Paper II, since with this, three
out of these four gates were demonstrated. Unfortunately, the re-
maining gate, the CNOT, is the most difficult one, since it requires
more than one qubit, and the issues connected with implementing
it were already discussed in detail in Section 5.4.3.
Current REQC status: Partially fulfilled, all single qubit gates
done, but not yet a two-qubit gate.

5) A qubit specific measurement capability

So far while discussing the criteria, no distinction between the
ensemble approach and the single instance one has been made,
because the qubit selection or the way operations are performed
are identical for the two approaches. But the major change for
single instances is the detection of single ions, which is much more
difficult than detecting an ensemble of 109 ions. In the ensemble
approach each qubit can be detected in exactly the same way as
it is controlled, through frequency-resolved techniques, implying
that this criterium is well fulfilled. However, in the single instance
approach, the long-lived qubits cannot be individually detected,
but a single readout ion is meant to supply the readout capabil-
ity for a cluster of qubit ions. This clearly increases the level of
difficulty when it comes to qubit-specific detection, and while the
theoretical suggestions are feasible, no experimental verification
has as yet been presented.
Current REQC status: Fulfilled for ensembles, but not yet for
single instances.
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Chapter 6

Quantum memories

The need for long distance quantum communication networks is
growing rapidly, as demonstrated in particular by quantum cryp-
tography which has already made its way into commercial prod-
ucts. The ability to reliably transfer single quantum states is one of
the major bottlenecks for these system at the moment, and there-
fore the improvement of long distance quantum communication is
a high priority in order to advance the field. At the heart of the
problem are the natural losses in the fiber, which, even though
they are small, together with the need to send single photons,
eventually lead to the loss of the signal.

Transmission of photons through fibers is accompanied by some
attenuation, which typically may be in the order of a = 0.2 dB/km
at telecommunication wavelengths. This means that the probabil-
ity of successfully sending a single photon through a fiber of length
L is given by P (L) = 10−aL/10. Even though the loss is initially
very small, the signal strength decreases exponentially with dis-
tance and, while it is 63% at a distance of 10 km, it has dropped
to only 1% at 100 km and 10−10 at 500 km.

In the theory of quantum error correction (see e.g. [5]), it
can be shown that there are fault-tolerant quantum computing
schemes that can be used to reduce the error of any operation, by
encoding single qubits of information onto larger sets of physical
qubits. This can also be directly applied to communication, since
transmission is a special case of an operation and the state of a sin-
gle photon can be encoded onto several parallel channels. Without
adapting the protocol further however, the same error tolerances as
for quantum error correction also apply here, i.e. less than ∼ 10−5

for local operations and 10−2 for transmission [39]. In 1998 how-
ever, Briegel et al. [40] introduced another scheme which utilizes
the fact that in communication one has access also to two-way
classical communication. This scheme allows for greatly reduced
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error tolerances, down to the level where they might be experi-
mentally achievable with near-future technology. Their idea was
called quantum repeater, and after modifications to the scheme by
Duan et al. [41], it appears today to be the most promising way
of realizing long distance quantum communication.

An important component in the quantum repeater schemes
suggested so far is a quantum memory, capable of storing and
retrieving single qubits with both high efficiency and high fidelity.
Several schemes using rare-earth-ion-doped crystals for implemen-
tation have been put forward and in this chapter I will introduce
these schemes and present the work done by us so far. I will
also briefly explain how quantum repeaters work and discuss why
quantum memories are important.

6.1 Photon sources

Another important component in quantum communication is the
photon source. As we will see, quantum memories are useful not
only to the communication procedure as a whole, but are also
useful for improving the sources. A brief description of the most
common sources will follow.

6.1.1 Single photon senders/attentuated pulses

The most simple ’single’ photon source to be implemented is prob-
ably strongly attenuated light from, for example, a pulsed laser.
With a stable enough laser one can control the photon distribution
such that on average, there is less than one photon for each wave
packet, and that the chance of having two photons in any single
wave packet is very small. However, the attenuated pulse imple-
mentation has several drawbacks. Firstly, given that the average
photon number should be less than one and that the distribution
is Poissonian, it can be seen that most of the wave packets will
actually contain zero photons, which makes the source very in-
efficient. Secondly, even if the average photon number is small,
there is still a non-zero chance to get two photons in a packet. It
has been shown that in the presence of noise or fiber losses, this
causes a potential security hole for quantum cryptography imple-
mentations based on these sources [42]. Nevertheless, because of
its simplicity, this technique has been used extensively, primarily
in the early experiments (e.g. [43]).

6.1.2 Spontaneous parametric down-conversion

Theory

Spontaneous parametric down-conversion (SPDC) is a second or-
der, non-linear, dielectric process and was first observed in 1970
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Figure 6.1. Schematic description
of spontaneous parametric
down-conversion, where an
incoming pump photon is
converted into two photons of
lower frequency components, with
energy conservation as illustrated
by the (virtual) level diagram in
b).

[44]. Any incoming electromagnetic field will interact with a di-
electric medium. For low intensities, it is normally adequate to
consider only the first order interaction, which was done in Sec-
tion 2.1. However, there may be higher order interactions as well,
and a general expression of the induced polarization in an atom,
by field of amplitude E, is given by

P = ε0χ
(1)E + ε0χ

(2)E2 + ε0χ
(3)E3 + . . . , (6.1)

where χ(n) is the susceptibility of order n. In this process, it is
possible for an incoming photon of frequency ωp to spontaneously
convert into two new photons which must satisfy energy conserva-
tion

ωp = ω1 + ω2, (6.2)

as well as momentum conservation

kp = k1 + k2 ⇒ npωp = n1ω1 + n2ω2, (6.3)

where ni is the refractive index along the respective light polariza-
tion direction. This process is illustrated in Figure 6.1.

The two frequency components ω1 and ω2 may, but do not have
to be, equal to each other. In general, the two resulting frequen-
cies are determined by the respective refractive indices according
to Equation (6.3). There are two common ways of achieving a
phase matching that complies with this requirement. The first is
using particular beam angles in birefringent crystals, such that the
ordinary refractive index matches one of the frequencies and the
extraordinary index matches the other frequency (when ω1 ≈ ω2).
If all three components are different, more advanced rotational
matchings have to be used. The second way is through what is
known as periodically poled crystals, where the phases are allowed
to drift apart for some small distance, at which point the sign of
the χ(2) component is switched in some way, causing the frequency
components to rephase. This procedure is then repeated periodi-
cally to ensure that a quasi-phase matching is kept throughout the
crystal.

Applications

There are two main ways of using the parametric down-conversion
process as a single photon source for quantum communication. The
first is what is called a heralded single photon source. The creation
of the photon pair is triggered by vacuum fluctuations, which are
inherently random, and thus the two photons are created at ran-
dom times. However, if one is interested only in using SPDC as a
single photon source, then one can exploit the fact the two photons
are created simultaneously and always in pairs. One can, for ex-
ample, put a detector at the outgoing angle of the ω1 photon and
use a click in this detector as a herald that announces the coming
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Figure 6.2. Schematic illustration
of communication by generating
entangled pairs between point A
and point B, using parallel
channels for each desired final
entangled pair, and enhancing the
fidelity at several nodes (squares)
along the way, in the form of
quantum repeaters. The pairwise
atomic entanglement within a
node is generated independently
for each node, which are then
subsequently connected via
distant photon entangling
mechanisms.

of the second photon, which can then be used in experiments. In
essence, using heralded single photons is an improvement on the
photon number statistics compared to using weak coherent pulses,
although losses and dark counts still create some deviation from an
ideal photon distribution. This is the point where quantum mem-
ories come in, since a reliable quantum memory could turn the
probabilistic SPDC source into a triggered single photon source,
and such a triggered source would eliminate the security hole for
weak coherent pulses that was mentioned above and discussed in
detail in [42].

A second way of using parametric down-conversion is generat-
ing entanglement, e.g. by putting two crystals immediately after
each other, but with the second one tilted by 90◦ relative to the
first one. Care should be taken to ensure that the two crystals both
fulfill any phase matching conditions, as well as being in the same
both spatial and temporal mode, i.e. they are indistinguishable. It
is then not possible to determine in which of the two crystals the
event actually happened, when something is detected. If they are
perpendicular, then the polarization would be different depending
on in which crystal the process happened, and one could then get a
situation where the resulting photon pair would be in an entangled
state of the form

|ψ〉 =
1√
2

(|H1〉 |H2〉+ |V1〉 |V2〉), (6.4)

where H and V represent horizontal and vertical polarization re-
spectively. Quantum cryptography can also be implemented by
sharing such an entangled pair [45] and is also safe against eaves-
droppers.

6.2 Quantum repeaters

The main idea behind quantum repeaters is to increase the total
success rate and fidelity of quantum information that is sent along
a noisy communication channel. This would be done by using par-
allel physical channels for each unit of information, and storing the
information in quantum memory nodes along the channel, where
entanglement purification can be performed. The first full scheme
of a scalable repeater was described, as mentioned, by Briegel et
al. [40], and it in turn relies on quantum privacy amplification or
purification schemes described by others (e.g. [46, 47]).

The essential parts and the use of a quantum repeater is de-
scribed in Figure 6.2. To establish reliable quantum communica-
tion between two distant points, A and B, for each desired en-
tangled pair, N parallel channels will be used. Along each final
line, repeater nodes are then placed to continuously remove er-
rors in the entanglement. Each repeater node consists of quantum
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memories that can be pairwise entangled in advance. These nodes
can then be connected using photonic entangling procedures, such
as entanglement swapping via Bell state measurements. An im-
portant aspect of increasing the error tolerance, below which the
scheme works, is that the quantum memory entanglements are
each prepared independently of each other, and that the result of
the connection entanglement can be communicated using 2-way
classical communication.

The number of channels, N , needed in the purification proto-
cols depends on the error rates, and further, the protocols only
work above a certain minimum fidelity. This restriction would
have put a maximum limit on the total possible entangling dis-
tance, but, as was shown already by Briegel [40], nested levels
of parallel channels can be used to overcome this issue. The total
number of channels needed would be Nn, where n is the number of
levels needed to obtain the minimum fidelity. However, it was then
also shown that n scales only logarithmically with distance, which
means that the total overhead resource cost would effectively scale
only at most polynomially with distance.

For quantum memories to work well in repeaters there are a
few different variables that should be maximized. These include
storage time, efficiency and fidelity, and a few words about them
can be said. As mentioned above in Section 6.1, the storage time in
quantum memories will allow otherwise probabilistic processes to
become synchronized, and, in addition, a longer storage time will
also increase the maximum transmission distance. The efficiency
is the repeatability of the scheme, i.e. how often it succeeds, and
this will directly effect the maximum rates of transmission. The fi-
delity is a measure of how well the quantum state, including phase,
is being maintained, and has been defined more carefully in Chap-
ter 5. The fidelity is naturally an essential parameter for creating
highly entangled communication pairs, but can be improved at a
cost of additional resources, such as parallel channels.

6.3 Rare-earth implementation

Several suggestions for implementing quantum memories has been
suggested, including stopped light using EIT/Dark state polari-
tons [48], off-resonant Raman interactions [41], Controlled Re-
versible Inhomogeneous Broadening (CRIB) [49–51] and, very re-
cently, Atomic Frequency Combs (AFC) [52, 53]. Of these, both
CRIB and AFC were suggested with rare-earth-ion-doped crystals
directly in mind. The idea behind both of these schemes is to uti-
lize the natural inhomogeneous absorption profiles and to store the
photons in collective atomic ensemble states. These two schemes
will be the focus in the following. First however, the more basic
principle of photon echoes will be explained, as both CRIB and
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AFC are based on similar mechanics.
All of the methods explained here are based on letting photons

interact directly with the optical transition. The lifetime and co-
herence time of the optical transition is however somewhat limited,
which of course would also limit the memory storage time. But in
all methods described here, it is also possible to extend this time
by adding an extra procedure, using two π-pulses, that transfer the
optical excitation to a hyperfine level excitation, and back again to
the optical levels for recall. This effectively extends the memory
time to be limited by the coherence time of the hyperfine levels
instead, which is much greater, as was discussed in Chapter 3. As
an extra feature of this procedure, the propagation direction of
the transfer pulses can also determine the propagation direction of
the recalled state. This is discussed more in connection with the
CRIB protocol, where it is seen that storage efficiency depends on
the direction of the recalled pulse.

6.3.1 Photon echo data storage

In inhomogeneously broadened materials one can, as the name
suggests, obtain an echo of previously sent in pulses by correctly
matching the sizes of the pulses. Only a brief description of photon
echoes is given here, but for a more mathematical treatment, see
e.g. books such as that by Mandel and Wolf [54]. An illustration
of a 2-pulse photon echo can be found in Figure 6.3. For a maxi-
mized echo signal, first a π/2-pulse is sent in, putting the atoms in
to a 50/50 superposition. Because of the inhomogeneous broaden-
ing, all atoms have different resonance frequencies, and they will
start to dephase as the Bloch sphere in the figure shows. Then,
after a certain time, τ , a π-pulse is sent in, which flips all phase
vectors by 180◦. The direction of rotation however, depends only
on the resonance frequency, and is thus not effected by the flip.
This means that the atoms will start moving back towards being
in the same phase, and a time τ after the π-pulse they will have
rephased again. The rephasing effect will, as is explained in more
detail in Section 8.2, cause the atoms in phase to radiate quadrat-
ically stronger as a function of the number of atoms, compared to
atoms with random phases. Given that a typically prepared in-
homogeneous peak in rare-earth crystals consists of approximately
109 atoms, the intensity increase due to being in phase is also
a factor of 109, which is such a strong effect that a macroscopic
emission peak is noted, which is the echo. The main limitation of
the time 2τ that one can wait before obtaining the echo is set by
the coherence time, T2 of the optical transition. When the atomic
phases have been randomized through decoherence, the quadratic
intensity increase is no longer reached, which means there is no
visible echo.

It is also possible to store and recall more advanced pulse se-
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quences using the photon echo technique. In Figure 6.4 a sequence
of 4 pulses is sent in, stored and recalled with a readout pulse that
can be applied at will. In essence, one can view this as splitting up
the π-pulse described in the 2-pulse photon echo technique, into
several smaller pieces were the final pulse, the readout pulse, has
a pulse area of π/2. The data pulses can be of varying amplitude,
width and number, within some restrictions. As mentioned above,
the echo signal will be lost if the total time it takes to store and
recall it exceeds the coherence time, but note here that this does
not include the time between the last of the data pulses and the
readout pulse. During that time it is sufficient that the lifetime
is sufficiently long, it does not have to be coherent. The reason
for this is that the temporal information in the pulses, including
phase, will, after the excitations, be stored as a population grating
between the two levels involved. The readout pulse will put them
back into the coherent superposition that is seen in the right-hand
Bloch sphere of Figure 6.3, with an ”efficiency” for each detuning
that depends only on how close it was to the excited state, i.e.
how close the data pulse was to being a π/2 pulse. In this way a
storage of 4000 classical bits was demonstrated in rare-earths in
1995 [55], where a maximum areal storage of 1.2 Gbit/cm2 was
reached.

6.3.2 CRIB protocol

Controlled reversible inhomogeneous broadening is based on the
same idea as photon echoes in the sense that it is a rephasing ef-
fect that causes the stored pulse to be emitted again. However,
as the name suggests, in CRIB the inhomogeneous character that
causes the dephasing is a process that is fully controllable via ex-
ternal means, such as applied electric or magnetic fields. The main
idea is described in Figure 6.5, which starts from an initialized sys-
tem with a pit and peak created with the hole-burning techniques
described in Chapter 3. The narrow peak is then broadened by
applying some external field. It is for example possible to cause a
detuning of the atoms through the linear Stark effect, by applying
an electric field. The field could be applied in different ways, such
as through a quadrupole configuration or in a linear fashion, either
along the direction of propagation of the photon to be stored, or
perpendicular to it. The particular choice of field configuration
will influence the maximum obtainable efficiency, as we will soon
see. Since the particular detuning for each atom depends on the
applied electric field, if the electric field is reversed in sign for all
atoms, so will the detunings away from the center frequency be.
The effect of this is the same as the second π-pulse in the 2-pulse
photon echo described above. The atoms that were dephasing be-
fore will now start to rephase, and when they all reach the same
phase, they will emit coherently and the photon emission proba-
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bility is greatly enhanced at this time, i.e. the photon is recalled.

Recall efficiency

The efficiency of the CRIB protocol will depend, among other
things, on the configuration of the electric field. For a broad-
ening across the transverse direction compared to the propagation
axis, and for a recall in the backwards direction (accomplished
through the hyperfine state transfer pulses as mentioned above),
the efficiency is given by (see [56] and references therein)

ηbackward =
(
1− e−αL

)2
, (6.5)

where αL is the optical depth, and one can see that it is possible to
achieve an efficiency close to unity for high enough values of αL .
Implementing the same transverse broadening but with recall in
the forward direction, the efficiency is different and instead given
by

ηforward = (αL)2e−αL. (6.6)

It is easily checked that this function has a maximum for αL = 2,
which gives an efficiency of ηforward = 54%. In this protocol it is
thus not possible to get 100% efficiency in the forward direction.
One could also apply the electric field longitudinally along the
propagation direction however. For such a field configuration, the
efficiency for recall in both directions can be the same and given
by [56]

ηlong =
(

1− e−2πκ/χ
)2

, (6.7)

where κ and χ consist of material parameters, but the total ex-
ponent 2πκ/χ corresponds to the effective optical depth of the
medium. We see that this expression is very similar to the back-
wards recall scheme for transverse fields, and that the efficiency
here can approach unity in both directions, although it should be
pointed out that in the forward direction there is a residual dis-
tortion in the form of a chirp for the recalled pulse.

Fidelity scaling

The efficiency of the storage decreases exponentially with the co-
herence time, T2, as is expected, but it is interesting to note that,
because of collective effects, the fidelity of the recall gains a tem-
porary ”respite” before declining. This was first seen in an exper-
iment described in Ref. [57], where the visibility of the coherent
interference fringes from two recalled pulses was measured. This
behavior is illustrated in Figure 6.6, where functions that represent
the efficiency as well as the fidelity has been plotted as a function
of time, in units of T2. The delayed decline can be explained by
noting that the coherent emission scales quadratically with the
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number of atoms that are still coherent, while all emission from
atoms that have dephased, scales only linearly (see Section 8.2).
As time progresses, the number of atoms that remain in the co-
herent state, Nc, will be fewer and fewer, while the number of
dephased atoms, Nd, will grow at the same rate. If N is the total
number of atoms in a peak, and there is a constant probability for
a coherent atom to become dephased per unit of time, then

{
N = Nc +Nd
∂Nd
∂t = Nc

1
T2

(6.8)

Solving this system for all atoms in the coherent state initially,
yields {

Nd = N
(
1− e−t/T2

)

Nc = Ne−t/T2
(6.9)

In an interference experiment, the peaks of the visibility fringes
are given by the total sum of coherent and dephased emission,
while the valleys are given by the light only from the dephased
atoms. In addition to the difference arising from the quadratic
intensity effect, the light from the dephased atoms is diminished
by an additional factor, Ωd, which is the solid angle made by the
coherent laser beam. This factor appears since all light emitted
by the coherent atoms goes into the same spatial mode, the laser
mode, but light coming from the dephased atoms can be emitted
into any direction. The visibility for the experiment can thus be
expressed as

V =
(N2

c + ΩdNd)− ΩdNd
(N2

c + ΩdNd) + ΩdNd
=

N2
c

N2
c + 2ΩdNd

. (6.10)

Inserting the expressions given in Equation (6.9), we get

V =
1

1 + 2Ωd
N

(
e2t/T2 − et/T2

) ≈ 1
1 + 2Ωd

N e2t/T2
. (6.11)

We can then identify the point at which the visibility drops (as
seen in Figure 6.6 this happens very fast, so we can take V ∼ 0.5),
and we find that the time of the decline is given by

td =
1
2

(lnN + ln
1

Ωd
− ln 2)T2

∣∣∣∣
N=109,

Ωd=10−6

≈ 17T2. (6.12)

This respite in the decline of the visibility is an advantage of the
ensemble approaches to quantum memory. For typical values of
the number of atoms in a peak used for photon storage, 109, and
a laser solid angle of ∼ 10−6, we get a prolonged visibility, and
thus fidelity, of about a factor of 17, compared to what would
be expected from the coherence time. As both factors come in
only logarithmically however, it is difficult to increase this gain
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any further. One can also note that if the effective coherence time,
perhaps due to inhomogeneous broadening, is very short compared
to the lifetime, by using time gating, one can gain an additional
discrimination effect that gives the same type of contribution as
the other two effects. This was not included here, since optimally,
the coherence time should be kept as long as possible.

6.3.3 AFC protocol

When considering the role of quantum memories in repeaters one
sees that there is a need for multimode capacity in the memory,
in the sense that it is a clear advantage if several qubits can be
stored in the same memory. Both the CRIB protocol and EIT-
based memory schemes can in principle handle this, but only for
high values of αL . For example, the number of modes, n, that
can be stored in EIT- and Raman-based memories scale as

√
αL,

which puts an effective limit on the number of modes that can
be stored in experimentally achievable conditions. The CRIB pro-
tocol scales better, n ∼ αL, but will eventually also be limited
by the optical depth. Very recently, a new protocol, based on an
atomic frequency comb structure, was proposed [52], where the
multimode capacity is independent of the optical depth. This pro-
tocol has also been experimentally demonstrated in the case of
storing pulses attenuated down to the single photon level [53].

The main points of this scheme is illustrated in Figure 6.7,
where a spectral grating in the form of atom population peaks is
created inside a pit. An incoming pulse has a certain frequency
content, determined by its fourier transform, which is also explic-
itly drawn in the figure. Even though some parts of the fourier
transform appear to exists between the atomic peaks, it has been
shown in [52] that with sufficiently high αL , all of the incoming
pulses can be absorbed by the comb structure. For storage of many
temporal modes, the information is maintained in the atomic peaks
in the form of phase shifts. The first pulse that comes in will cre-
ate a certain excitation which depends on its fourier transform, as
shown in Figure 6.7. Because all peaks have different frequencies,
the stored frequency components will acquire different, but peri-
odic phase shifts. Depending on the value of each phase at the
time the second pulse is absorbed, there is either a constructive or
a destructive interference effect between the excitations caused by
the different pulses, which effectively creates a grating that con-
tains all the temporal information. This grating structure can be
characterized by the width of each peak, γ, and the separation be-
tween the peaks, ∆. The finesse of the grating can then be defined
as F ≡ ∆/γ. It was then shown that, if each peak has a certain
αL , then the effective optical depth of the whole comb structure
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can be written
(αL)eff ≈

αL

F
, (6.13)

and it can be seen that a smaller finesse would increase the ab-
sorption probability. However, a higher finesse is required to obtain
smaller dephasings during the storage time, so there is a conflict
concerning the way to tune the finesse. For a given experimental
situation, with a certain value of the peak αL , an optimum finesse
can therefore be obtained. The efficiency of storage recall in the
AFC protocol can be written [52]

ηAFC =
(
a− e−(αL)eff

)
e−

1
F2

π2
4 ln 2 , (6.14)

and we can see that the efficiency depends only on the optical
depth and the finesse. For a reasonable value of the finesse of
about F = 10, it can be seen that an αL of about 40 is required
to obtain an efficiency of over 90%. This is a situation that is
not unrealistic with today’s experimental technology, although it
should be noted that working in a high αL regime does introduce
some additional considerations, such as off-resonant excitations,
superradiance emission and slow light, as discussed in Paper VI
and in the following chapters.
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Chapter 7

Dispersion related phenomena

There are several coherent phenomena that are related specifically
to the manipulation of the absorption profile, and thereby also to
the dispersion profile. These phenomena include slow light, fast
light and electromagnetically induced transparency (EIT), which
will all be covered in this chapter. There is also a connection to
other topics in this thesis. As mentioned in the previous chapter,
EIT is one of the schemes that has been suggested for the imple-
mentation of quantum memories [48]. In addition, as is demon-
strated in Paper VI, slow light will be an unavoidable factor in
all quantum memory protocols, since the high optical density re-
quired for efficient memories also implies sharp dispersion profiles,
which is exactly what gives rise to the slow light, as we will see.

The group velocity of a light pulse through a material is given
by

Vg =
c

ng
, (7.1)

where ng is the group refractive index, given by

ng = nR + ω
∂nR
∂ω

, (7.2)

where nR is the real part of the normal refractive index. From
these two equations it is clear that by tailoring the derivative,
∂nR
∂ω , one can make the the light pulse travel at an arbitrary speed,

including higher than c or even negative. A negative speed would
mean that the pulse exits the material before it has entered, which
at first sight may look preposterous. In Section 7.2 however, we will
go through the phenomenon in detail and the apparent causality
breach will be explained, and it will be discussed how this can be
implemented in rare-earth crystals. But let us first go through how
one can obtain media with suitable refractive indices.
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Figure 7.1. A typical
Lorentz-shaped absorption profile
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corresponding real part of the
refractive index. Both have been
normalized to have a max value of
one.

7.1 Absorption curves

7.1.1 Single resonances

From Equation (7.2) it is clear that for phase and group velocity to
differ strongly we need a situation where the refractive index varies
greatly with frequency. A very good candidate for this is an atomic
resonance line, where the strong absorption exactly on resonance
has major effects on the light. A typical absorption curve from
a lifetime-limited resonance line follows the Lorentz shape and is
shown in Figure 7.1. The absorption coefficient is given by the
imaginary part of the refractive index, which, close to a resonance
line, can be approximated by [58] (the Lorentz shape)

nI(ω) = K
Γ

(ω − ω0)2 + Γ2
, (7.3)

where K = Ne2f/4mω0ε0 is a constant. N is the difference in
population (per volume) between the upper and lower state of a
transition with center frequency ω0 and width Γ. The charge and
mass refer to the electron, f is the oscillator strength, and ε0 is
the dielectric constant.

Quite generally, one can assume that the frequency is of com-
plex nature, i.e. ω = ωR + iωI , where the real part is the normal
frequency and the complex part describes a dampening, which is
easily seen from the typical expression of a wave eiωt = eiωRte−ωIt.
For the refractive index, n(ω), the bottom half of the complex fre-
quency plane does not represent a real physical situation, since
the ’dampening’ turns into an exponentially escalating term. In
order to keep the upper half of the complex plane physical, we
require that the refractive index in this half plane is analytical, i.e.
it is single-valued and possesses continuous derivatives. Interest-
ingly, it turns out that the requirement of analyticity is exactly
equivalent to demanding that the system obeys causality [59]. A
direct consequence of this, are the Kramers-Krönig relations (see
e.g. [60]), which uniquely correlate the real and imaginary parts
of the refractive index to each other. Given our expression for nI
above, nR will then be given by [58]

nR(ω)− 1 = −K ω − ω0

(ω − ω0)2 + Γ2
, (7.4)

which is also plotted in Figure 7.1. From Equation (7.2), we deduce
that the group velocity is to a large extent determined by the
dispersion of the real part of n, i.e. ∂nR

∂ω . This derivative is given
by

∂nR
∂ω

= K
(ω − ω0)2 − Γ2

((ω − ω0)2 + Γ2)2 , (7.5)

and is plotted in Figure 7.2. Slow light is obtained when this
function is positive and fast light is obtained when it is negative.
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represents the (negative)
absorption profile of a doublet
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is the real part of the refractive
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largest dispersion effects are at
the center of the figure, but here,
the absorption effects are at a
minimum.

In particular, when the expression nR+ω ∂nR∂ω is negative, the group
velocity is also negative. The meaning of this is discussed further
Section 7.2.

7.1.2 Gain doublets

One drawback of using single resonance lines, as discussed above
for fast and slow light experiments, is pulse distortion. Since the
largest velocity change occurs in the middle of the resonance line,
as seen in Figure 7.2, there is also a strong absorption or gain
effect, depending on inversion level. These effects can strongly
alter the shape of the pulse that is sent through the material,
and it can thus become difficult to analyze the resulting pulses,
and separate absorption effects from the pulse propagation effects.
Imagine for example an experiment on a strong absorption line,
where the first 90% of the pulse is absorbed, and only the last 10%
gets through. Regardless of pulse propagation effects, it would
here look as though the exiting pulse was retarded by ∼ 40% of
its duration.

Another setup, which has been used in later experiments to
greatly reduce the effects of this problem (e.g. [61]), utilizes a gain
doublet line. The negative absorption that corresponds to a gain
medium is shown in Figure 7.3, with the associated real part of
the refractive index, whose derivative determines the propagation
velocity. In the figure, we see that the greatest pulse propagation
effect is obtained at the center of the figure, where the derivative
is large, just as for the single resonance case. The advantage in the
gain doublet case however, is that the absorption (gain) here is at
a minimum, which means that we can avoid as much of the pulse
distortion effects as possible. Normally a medium with a natural
doublet line is chosen for such experiments, but for implementation
in rare-earth crystals, it is a simple matter of preparing two peaks
inside a spectral pit, using the hole-burning techniques discussed
in Section 3.7.

7.2 Fast and slow light

The speed of light in vacuum is (exactly) 299 792 458 m/s and is,
according to the assumptions made by Einstein in the formula-
tion of special relativity, constant and independent of the viewer’s
reference frame, in contrast to everything else in the universe. A
necessary consequence of special relativity (but not yet of the gen-
eral one) and of the preservation of causality, is that no signal can
travel faster than the speed of light. Yet, according to the dis-
cussion above, it appears possible to find dispersion curves, such
that the group velocity is higher than the speed of light, or even
negative. To understand what this really means, it is important
to clearly define what is meant by a ’signal’. Most attention in
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this section will be focused on fast light, since this is much more
conceptually controversial, but most of the discussion is just as
applicable to slow light effects.

7.2.1 Pulse peak advancement

Consider an example of sending a pulse, say a Gaussian pulse,
through a medium. It would then be tempting to associate the
’information’ that is being sent, with for example the peak of the
pulse. This is not a good definition however, as has also been
demonstrated experimentally. Even though other experiments on
fast light had been done before, it is interesting to use the re-
sults of Wang et al. [61] published in 2000, since here, the pulse
was transmitted almost without absorption or distortion. In these
experiments a Gaussian pulse was sent through a medium of pre-
pared caesium atoms, and it was reported that the peak of the
transmitted pulse exited the medium 62 ns before the peak of the
incident pulse entered it! In other words, the peak of the outgoing
pulse travels about 19 m away from the medium before the peak
of the incident pulse even arrives, though it is worth pointing out
that the pulse advancement time is still much smaller than the
total duration of the pulse.

To explain how these results can be interpreted, let us consider
the Gaussian pulse in terms of its frequency components. Accord-
ing to Fourier theory, any pulse be can written as a sum of plain
sine waves of different amplitudes, following a certain frequency
distribution. A Gaussian pulse for example, also has a Gaussian
distribution in frequency. The pulse, as a sum of sines, when it
propagates through vacuum, is illustrated by solid lines in Fig-
ure 7.4. The dashed lines in the same figure show the pulse if it
had instead propagated through a fast light medium, such as the
gain doublet system. Due to the fact that the refractive index
is different for all individual frequency components of the pulse,
they all travel through the medium at different velocities. After
the medium, the point where they are in phase, i.e. the point
where the peak occurs, has been changed.

7.2.2 Signal definition

From the discussion in the previous section it is clear that the pulse
peak (or the slopes of the pulse for that matter) can indeed travel
faster than the speed of light. Therefore, if we believe in causality
and Einstein’s requirement that no information can travel faster
than the speed of light in vacuum, we need to define ’information’
as something else than the peak or the slopes of the pulses. Im-
portant work in this area was done by Brillouin and Sommerfeld
[62], who offered a definition that is consistent with causality and
relativity theory. What they focused on was the fact that any sig-
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nal must be started as a sharp ’step’. In Figure 7.5 a Gaussian
pulse is shown with these sharp cutoff’s exaggerated to illustrate
the effect. On the condition that

n(ω)→ 1 when ω →∞ (7.6)

(which is physically perfectly reasonable), it can be shown that
any information defined as the sharp switch-on, starting from zero,
never propagates faster than c. In fact, the switch-on point prop-
agates exactly at c in any medium. This can be understood in-
tuitively because a sharp cutoff or switch-on implicates high or-
der frequency components, which, according to the requirement of
Equation (7.6), must travel at a refractive index of one.

The definition of ’information’ as the start of the pulse only,
seems to imply that the rest of the pulse contains no information,
and this is also true to some extent. A function is said to be ana-
lytic if it is infinitely differentiable, i.e. if the function and all of its
derivatives are continuous. Furthermore, if two analytic functions
are identical in some small domain, then they must also be iden-
tical outside this domain (if the domain is simple enough). For
this discussion, the important implication is that if we know an
analytic function for a small amount of time, then we know it for
all later times as well. This extension is known as analytic con-
tinuation [63], and shows that there is no information in the later
parts of a pulse that cannot be obtained already from the first part
of it. Of course, this is only true for pulses which have continuous
derivatives. Any point in a pulse in which the pulse itself or one
of its derivatives are discontinuous, is not a part of the analytic
behavior. In fact, any such point acts just like the sharp switch-
on, which travels at a velocity of c, regardless of medium. This
effect is illustrated in Figure 7.6, which has been reproduced from
Ref. [64]. This figure shows what happens to an abrupt change
in an otherwise analytic function, when it passes through a fast
light medium. The solid line represents the pulse sent in to the
medium, and the dashed line what the pulse would have looked
like, had it continued. The Gaussian pulse is cut off before the
peak occurs, but after passing through the fast light medium, the
pulse appears with a peak. This is because the information about
the discontinuity travels at c, which in this case is slower than the
peak, which travels at vg > c. When the information about the
cutoff reaches the other side of the medium, a distortion occurs,
but for sufficiently large group velocities, almost the whole Gaus-
sian pulse can be recreated by the medium, given only the small
input part.

The first part of a pulse, immediately following the switch-on,
effectively ignores some of the effects of the medium. As already
mentioned, it travels exactly at c, and it will also pass unattenuated
through the medium, even if the medium has a high absorption
otherwise. This first part of the pulse is sometimes referred to
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as an optical precursor, and has been experimentally investigated
e.g. in Ref. [65]. The duration of the optical precursor varies with
the spectral width of the feature, getting shorter the broader the
feature is.

7.2.3 Slow light

Slow light has many conceivable applications, especially in the
quantum communication area. Photons interact very weakly with
for example other photons, and schemes based on photon-photon
interactions can benefit greatly from slow light effects, since it sim-
ply gives the light more time to interact [66]. Further, it has been
suggested that some optical technologies, like parametric down
conversion, can be much better characterized using slow light, as it
can be used to bring the events down to time scales at which detec-
tors can temporally resolve them. The creation of slow light effects
however, is very similar to what has been discussed for fast light
above, since just as fast light can be created through a medium
with a negative dispersion, a large positive dispersion would give a
velocity slower than normal light. In our crystals, slow light effects
can be observed from an empty pit, simply from the fact that the
absorption outside the pit can be as high as αL = 80, while it is
close to zero inside the pit, and this creates a strong dispersion
profile. In the experiments connected to Paper VI, we measured a
group velocity of the order of ∼ 40000 m/s, but velocities down to
only a few meters per second have been measured by others [67].

7.2.4 Rare-earth implementation

Rare-earth-ion-doped crystals are good solid state materials to be
used also for more advanced fast and slow light implementations,
and the system in Lund is good in particular because it has a very
high degree of controllability of the atomic spectral features. A
concrete example of an experiment for producing fast light with
sechyp pulses of 2π pulse area, was recently suggested by Clader
and Eberly [68]. The main idea in this article is to produce fast
light in a simple, two-level, atomic system which has been prepared
with a perfectly inverted population, a situation that can easily
be obtained in our experimental setup. Using sechyp pulses with
FWHM τ on such an inverted resonance line, gives, under the
restriction that T ∗2 >> τ , a group velocity of [68]

vg =
c

1− gτ2

2

, (7.7)

where, according to the article, g = Nµ2ω/ε0~, with µ being the
transition dipole moment and N the atom concentration. For such
a group velocity the advancement time, τadv of the fast light pulse,
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would be given by

τadv ≡
L

c
− L

vg
=
Lg

2c
τ2, (7.8)

for a certain medium length, L.
In order to see whether this is observable in our material, we

can consider a necessary absorption coefficient α =
√
π/2gT ∗2 /c.

Expressing g above in terms of α, changes Equation (7.8) into

τadv =
αLτ√
2πT ∗2

τ. (7.9)

Given the restriction that T ∗2 >> τ , and a desire to get as large a
pulse advancement time as possible, the ratio τ/T ∗2 is pretty much
fixed at ∼ 1/10. This leaves only the total effective absorption,
αL, as a tweaking parameter, but we see that, in order to get a
pulse advancement time of the order of 10% of the duration, which
is easily detectable, we only need an αL of about

√
2π ≈ 2.5, which

has been demonstrated for a well controlled peak in our lab, e.g.
in Paper VI.

As will be explained in more detail in Chapter 8, a fully excited
peak will not remain very long in the excited state, due to collective
radiation effects, such as superradiance. Because of this, it will be
desirable to use as short a sechyp width as possible, in order to
get the fast light effects to happen before the collective decay.
Lower limits to the pulse width, τ , will come from pulse creation
parameters, such as AOM rise times, but also from the fact that
the cleanest fast light effects are obtained from pulses with a pulse
area of 2π, and given a limited maximum Rabi frequency from the
available laser source, a minimum pulse width is also given. For
our particular situation, pulse widths of about 200 ns will work
within the restrictions, and this choice also fixes the peak width
at about Γinh ∼ 1/(π · 10τ) = 150kHz.

7.3 Electromagnetically Induced Transparency

7.3.1 Basic theory

Electromagnetically induced transparency (EIT), is not caused by
anomalous dispersion, but it does give rise to very steep dispersion
curves, that can in turn be used for slow light. At first sight at
least the explanation behind EIT is fairly simple. Consider a Λ-
system, where the three levels could be one excited state |e〉, and
two of the hyperfine ground states, |g1〉 and |g2〉, in the Pr3+-
ion. The transition dipole moments, µi, of the two transitions
for this system are different, but let us assume that this can be
compensated for by correspondingly different light amplitudes Ei,
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Figure 7.7. The three relevant
levels in a rare-earth EIT scheme.
Coupling and probe pulses target
the respective levels, and the
created bright and dark states are
illustrated through the inscribed
ground state Bloch sphere.

such that the product p = µi · Ei, can be kept constant. The
interaction Hamiltonian can then be written

Hint = −p (|e〉 〈g1|+ |e〉 〈g2|) + h.c. (7.10)

We can now define two different superposition states, |B〉 = |g1〉+
|g2〉 and |D〉 = |g1〉 − |g2〉. Letting the Hamiltonian couple these
two ground state superpositions to the excited state, we see that
〈e|Hint |B〉 = −2p and 〈e|Hint |D〉 = 0. The state |B〉 has a
strong coupling to the excited state and is called the bright state,
while the state |D〉 does not couple at all to the excited state, and
so it is called the dark state. These two states are illustrated in
a Bloch sphere in Figure 7.7. For a more detailed review of EIT
theory, see e.g. Ref. [69].

For other systems, where the two transitions have the same
resonance frequency, coherent population trapping can occur [70].
This happens if a laser is kept on at the two transitions. It will
keep on exciting atoms from the bright state to the excited state,
and once there they can decay to either the bright or the dark
state. If they decay to the bright state they will just get excited
again, but once they decay to the dark state they are trapped,
since the light does not interact with that state.

7.3.2 EIT for rare-earth systems

For rare-earth ions, such Pr3+, the two ground states do not have
the same transition frequency. Therefore, in order to see EIT
effects in a rare-earth system, two laser beams are needed. A
strong coupling beam is tuned to one of the transitions, while
the other transition is scanned by a weaker probe beam, at the
levels shown in Figure 7.7. The probe beam will experience a
sudden drop in absorption, within a certain width, δEIT , from the
resonance. Assuming that the dephasing between the two ground
states is very small, which it typically is for rare-earths, and that
there is no detuning on the coupling field, the imaginary part of
the susceptibility (the absorption coefficient) can be written [69]

Im(χ) =
8|µp|2ρ
ε0~

× δ2Γinh
||ΩC |2 + 2(iΓinh − 4δ2)|2

, (7.11)

where µp is the transition dipole moment for the probe transi-
tion, ΩC is the Rabi frequency of the coupling field, and Γinh is
the inhomogeneous peak width, which also gives the effective de-
phasing time for the excited state. This expression is plotted in
Figure 7.8 as a function of probe detuning, δ, for two different
values of ΩC . As can be seen from the formula as well as in the
figure, the width of the EIT shape is determined by the strength
of the coupling field. For sufficiently large coupling Rabi frequen-
cies, it looks as if the absorption peak splits into two parts, also

78



Dispersion related phenomena

α
∝

Im
(χ

) 
(a

rb
.u

.)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(ωp -ω0)/Γinh

α
∝

Im
(χ

) 
(a

rb
.u

.)

inhC Γ=Ω 3.0

inhC Γ=Ω 2

Figure 7.8. The absorption profile
of a prepared peak with the
presence of a coupling field. The
upper figure is for a weaker
coupling field, and the lower
figure is for a stronger coupling
field, in relation to the
inhomogeneous peak width.
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Figure 7.9. Experimentally
recorded EIT shape, as a part of
the investigation in Paper V.
Slightly asymmetric, but the
transmission at the center was
about 96%. Also note that it is
transmission and not absorption
as in Figure 7.8, so that it is
inverted.

known as Autler-Townes doublets [71]. Figure 7.9 then shows an
experimental version of the upper part of Figure 7.8, recorded by
us in connection with Paper V.

Single beam detection

A useful technique for creating and detecting the EIT feature, and
for looking at its temporal behavior, is as follows. First, an in-
homogeneous peak inside a spectral pit is created, as described in
Section 3.7. To create the EIT feature, two fields are required, as
mentioned above, a stronger coupling field and a weaker probe
field. Using a flexible pulse creation system however, such as
AOMs, it is possible to create both fields using only a single beam,
modulated with the two frequencies. First the AOM is modulated
only with a component of the coupling frequency, ωC , after which
a weaker modulation on the probe frequency, ωp is added to the
AOM signal. Detecting this beam with both modulations on will
yield a beating on the difference frequency, ωp − ωC , which in the
Pr3+:Y2SiO5 case is at 10.2 MHz. To see the EIT feature, the
probe field can be detected after the crystal sample, by means of
this beating, as is shown in the lower part of Figure 7.10.

The dashed line corresponds to detuning the probe field by
an amount large enough to go outside the narrow EIT window,
but small enough to still be absorbed by the inhomogeneous peak.
The solid line is in the middle of the EIT transmission window,
and the spectral width of this window can be obtained from the
time constant of the transmission increase. For times shorter than
the reciprocal EIT width, the Fourier width of the probe field is
broader than the EIT width, which means parts of the probe field
are absorbed outside the EIT window. As time goes on the Fourier
width of the probe field narrows to eventually be completely in-
side the EIT window, at which point it levels out, as is also seen
in Figure 7.10. The time constant can be determined from the
figure to be about 5 µs, yielding an EIT width of about 60 kHz.
This technique was also employed in Paper V, where a very good
EIT window transmission of 96% was reached. In this paper it is
also interesting to note that the EIT window had a width of about
60 kHz, even though the laser used to create and detect it, was
an order of magnitude broader. The width of the EIT is not de-
pendent on the laser coherence time, but rather is determined by
the coherence time of the system alone, together with the coupling
field Rabi frequency, as shown above in Figure 7.8.

Fano resonances

An interesting phenomenon which was observed in the experiments
leading to Paper V, is Fano resonances. This was first described
by Fano in 1961 [72]. He showed that auto-ionized states can inter-
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Figure 7.10. As the probe field is
switched on, a beating on the
difference frequency is detected.
The amplitude of the transmission
of this beating is plotted in the
lower part of the figure, as a
function of time, both inside
(solid line) and outside (dashed
line) the EIT feature.

fere with the continuum above the ionization limit. A similar in-
terference can be achieved in the situation of the EIT experiments,
where stimulated Raman photons on the coupling transition can
interfere with the continuum of Rayleigh scattered photons. The
effect is an asymmetrization of the EIT window, in close relation
to the typical asymmetrical Fano profile.
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Chapter 8

Collective coherent effects

The radiative decay from an ensemble of close lying atoms can,
under certain conditions, exhibit far more complicated behavior
than that of the atoms one by one. The effects to be discussed
in this chapter include free induction decay (FID), superradiance,
subradiance and superfluorescence. All of these effects are the re-
sults of the collective coherent properties of the atoms and there
are many interesting applications that arise from them. For ex-
ample, super- and subradiance can be used to speed up and slow
down respectively, the decay rate of atoms, which is an important
property in ,for instance, quantum memories. The chapter will be-
gin with a theoretical focus, which turns into an effort to explain
the superradiance effect with an intuitive interpretation, since I
feel some of the existing literature is unclear on this point.

8.1 Radiation from an atom in a superposition

First, let us assure ourselves that any atom in a superposition of
two states will radiate coherently. The quantum mechanical sys-
tem that is the atom can be described by the Schrödinger equation

i~
∂Ψn

∂t
= HΨn, (8.1)

where H is the Hamilton operator characterizing the system, and
Ψn is the wave function of state n of the atom. For unperturbed
systems the solution can be written in the form

Ψn(r, t) = un(r)e−iωnt, (8.2)

where un(r) is a function that takes care of all spatial dependence,
and where all temporal dependence is in the complex phase factor.
The wave function for an atom in a superposition of the ground and
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excited state can be written Ψtotal = (Ψg + Ψe)/
√

2. Calculating
the charge density, ρc = e|Ψ|2, for such a superposition, gives

ρc =
e

2

∣∣uge−iωgt + uee
−iωet∣∣2

=
e

2

(
|ug|2 + |ue|2 + u∗guee

−i(ωg−ωe)t + ugu
∗
ee
−i(ωe−ωg)t

)

= e (...+ ugue cos(ω∆t)) .
(8.3)

where ... are the time independent terms. We see here that the
charge density of an atom in a superposition oscillates at a fre-
quency equal to the difference between the two levels, ω∆, and
as we know, oscillating charges will create an oscillating field, i.e.
radiate.

8.2 Collective radiation

To see what happens to the total radiation when multiple atoms
are involved, we sum up the field from N atoms. The field, E, is
proportional to the oscillating part in Equation (8.3) (last line), so
it is essentially a problem of summing up cosine terms from every
atom, each with a certain phase angle φi=1...N = ω∆,it. As given
by the law of large numbers [73], the mean value of the total field
will be the expectation value of each component

E ∝ 〈cosφi〉 =
1

2π

∫ 2π

0

cosφidφi. (8.4)

If the atoms are just randomly excited, and thus completely inco-
herent, then this expectation value is zero. However, we are not
really interested in whether the field, which at a certain time has a
certain resulting phase, cancels out the field at a later time, when
the phase is different, which is what the expectation value pro-
vides. We are more interested in the expectation value of the size
of the amplitude, or the intensity even, i.e. we are interested in
the quantity 〈I〉 =

〈
|E|2

〉
. To derive this, we assume that we have

radiation from N atoms with random phases and its sum is a total
field |E|2 = |∑N

i=1 cosφi|2 at every point in time. For each time
bin, t, we look at, the size of this total field might be different, but
we can calculate the expectation value of this field after watching
it for a long time, T , as

〈
|E|2

〉
=

1
T

T∑

t=1

|Et|2 =
1
T

T∑

t=1

∣∣∣∣∣
N∑

i=1

cosφi,t

∣∣∣∣∣

2

. (8.5)
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If we square the inner sum we get

1
T

T∑

t=1

∣∣∣∣∣
N∑

i=1

cosφi,t

∣∣∣∣∣

2

=
1
T

T∑

t=1

(
N∑

i=1

cos2 φi,t +
N∑

p<q

cosφp,t cosφq,t

)
,

(8.6)
where the cross terms,

∑N
p<q cosφp,t cosφq,t, are all zero for un-

correlated angles1. What is left is thus

1
T

T∑

t=1

N∑

i=1

cos2 φi,t =
N∑

i=1

1
T

T∑

t=1

cos2 φi,t, (8.7)

where the summation order has been switched, which is valid since
they are independent variables. The inner sum can be calculated
as

T∑

t=1

cos2 φi,t =
T∑

t=1

1 + cos 2φi,t
2

=
1
2
T, (8.8)

again the terms cos 2φi,t sum up to zero, since they contain equally
many positive and negative values. Inserting the value of the inner
sum into Equation (8.7) finally yields

〈
|E|2

〉
=

N∑

i=1

1
T

(
T

2

)
=
N

2
. (8.9)

So, in words, the expectation value for the intensity of N uncor-
related radiating atoms, scales directly with N. But if the atoms
are not uncorrelated, but instead are coherent, what can we ex-
pect then? Well, for perfectly coherent atoms the absolute value
of the total field,

∣∣∣
∑N
i cosφi

∣∣∣ just corresponds to the sum of max-

imally aligned cosine terms, i.e.
∑N
i 1 = N . If we again consider

the expectation value for the intensity we get
〈
E2
coherent

〉
= N2,

which means light emitted from coherent atoms scales quadrati-
cally stronger than that from incoherent atoms.

As an example, in our systems, we often look at an ensemble
of atoms in a peak, which typically consists of ∼ 1010 atoms. The
difference in radiation intensity, depending on whether the sample
is coherent or incoherent, is thus N2/N = N = 1010. So whenever
these dipoles are in phase they are radiating ten orders of magni-
tude more strongly than otherwise, which is a huge effect. This is
the basis of some phenomena which will be discussed in this chap-
ter, such as free induction decay and superradiance. It should be
noted that the total radiative energy from the atoms is of course

1Because the cross term sum can be written∑N
p<q (cos(φp,t + φq,t) + cos(φp,t − φq,t)) /2, and we see that it is a

sum of simple cosine terms, which for uncorrelated variables have just as
many positive values as negative, thus giving on average zero.
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Figure 8.1. A square-shaped
excitation pulse as it is detected
after the medium. The FID tail
comes from atoms that are
radiating coherently for a short
time.

the same for both the coherent and incoherent case. As the inten-
sity of the light becomes stronger with increasing collective effect,
the total duration before all atoms have been deexcited becomes
correspondingly shorter, thus conserving the energy.

8.3 Free induction decay (FID)

In our systems, if we send in a light pulse to put the atoms in a
peak into a superposition state, then there is a moment just after
the excitation, at which they will all be in phase, and at this point
they will for a brief time emit coherently, giving rise to a strong
emission immediately after a pulse, as depicted in Figure 8.1. This
tail of strong emission following the pulse is called free induction
decay, or FID. The total duration of the FID is given by how long
the atoms stay in phase. For a peak in our system, the typical
inhomogeneous frequency width is 170 kHz, which gives an effec-
tive ensemble dephasing time of T ∗2 ≈ 2 µs, causing the observed
intensity to decay with a time constant of 1 µs.

8.4 Superradiance

The discussion so far has illustrated very nicely how an increased
radiation can occur. The advantage of regarding this increase sim-
ply as oscillators in phase, is that it has a very clear classical
analogy. A set of purely classical antennas can be used to obtain
exactly the same equations and results as in Section 8.2. It is,
however, not the only effect in a quantum mechanical system that
can cause increased radiation. In this section two terms will be dis-
cussed, superradiance and superfluorescence. There is a difference
between the two that will be discussed later in the section, but
initially, as well as in many other places in the thesis, I will just
use the term superradiance to describe both effects. Let us start
off by introducing the second mechanism increasing the radiation
by considering a simple two-atom case.

8.4.1 Simple case

Superradiance was first predicted by R. H. Dicke in a paper in
1954 [74], in which he starts by giving a very simple argument
as to why the picture of atoms emitting radiation independently
of each other, is wrong. The argument goes something like this:
imagine that we have a single two-level atom, with states |g〉 and
|e〉, and that it is originally in the excited state. In general, the
transition rate is proportional to the overlap of the initial and the
final state, coupled by a Hamiltonian, which in the case of radiation
is the dipole operator

W ∼ |〈g|d |e〉|2 . (8.10)
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Figure 8.2. Level diagram of a
system of two two-level atoms.
the arrows indicate the relaxation
path, and the state labels are
analogous to the spin-1/2
formalism.

We now consider a system in which two such atoms exist close
to each other, for simplicity, spatially separated by less than one
wavelength. If we are watching only the emitted radiation from
the system, then the atoms are indistinguishable, and we need
to treat the two atoms as one quantum mechanical system, and
not as two separate systems. Two-level atoms such as these, are
very similar to spin 1/2-systems, so we can use the theory for
such systems, describing it by four basis states that are shown
in Figure 8.2. These states are the three symmetric triplet states,
|gg〉, |ee〉 and (|eg〉+ |ge〉)/

√
2, as well as the antisymmetric singlet

state (|eg〉−|ge〉)/
√

2. If we can state with certainty that only one
photon has been absorbed, we are limited to either (|eg〉+|ge〉)/

√
2

or (|eg〉 − |ge〉)/
√

2.
The radiation rate, due to the emission from either of these

two cases, is different from what it would be if the two atoms were
independent, in which case it would still remain W . To analyze
the two-atom system we examine the decay rate, which is given by
the two-atom dipole operator, i.e. d12 = d1I2 + I1d2. Consider-
ing first the triplet case, we calculate the decay rate according to
Equation (8.10)

Wtriplet ∼
∣∣∣∣〈gg|d

( |eg〉+ |ge〉√
2

)∣∣∣∣
2

=
1
2
|〈gg|d |eg〉+ 〈gg|d |ge〉|2

∼ 1
2

∣∣∣
√
W +

√
W
∣∣∣
2

= 2W.

(8.11)

As can be seen, the decay rate from this triplet system is twice
that of two independent atoms. Similarly, if the atoms were in the
singlet state, the transition rate would be

Wsinglet ∼
1
2
|〈gg|d |eg〉 − 〈gg|d |ge〉|2 ∼ 1

2

∣∣∣
√
W −

√
W
∣∣∣
2

= 0,

(8.12)
i.e. atoms in the singlet state do not decay. This can also be
seen using symmetry arguments, because the antisymmetric singlet
state cannot decay to the symmetric ground state, because the
dipole operator cannot change the symmetry properties. In the
triplet case we have the superradiant state, and in the singlet case
we say that the system is subradiant, i.e. the decay is completely
inhibited.

8.4.2 Superradiance vs. Superfluorescence

It is very interesting to consider the increased radiation from the
triplet state in Equation (8.11), in comparison to the radiation
that would be given by two atoms, both in the 50/50 superposition
state |+〉 = (|g〉 + |e〉)/

√
2. Two atoms in the |+〉 state would be

equivalent to the classical case of oscillators radiating completely
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in phase, as was discussed in Section 8.2. The two atoms would
then have the total state

|++〉 =
|g〉+ |e〉√

2
|g〉+ |e〉√

2
=

1
2

(|gg〉+ |eg〉+ |ge〉+ |ee〉) . (8.13)

On average, the total excitation of this state is one photon, just as
for the triplet state, but note that the photon number here is not
known exactly, and could just as well be zero as one or even two
units of excitation. Nevertheless, we can look at the decay rate for
this state, similarly to what was done above

W+,1 = |〈gg|d |++〉|2 =
1
4
|〈gg|d (|gg〉+ |eg〉+ |ge〉+ |ee〉)|2

=
1
4

∣∣∣0 +
√
W +

√
W + 0

∣∣∣
2

= W.

(8.14)

Note here especially that the term |ee〉 seems to give no contribu-
tion to the decay because

〈gg|d |ee〉 = 〈gg| d1I2 |ee〉+ 〈gg| I1d2 |ee〉 = 〈gg|ge〉+ 〈gg|eg〉 = 0,
(8.15)

due to orthogonality. This is not the whole story of course, as the
|ee〉 state can also decay to the triplet state

W+,2 =
∣∣∣∣
〈ge|+ 〈eg|√

2
d |++〉

∣∣∣∣
2

=
W

2
. (8.16)

The total decay from the |++〉 state is thus

W+ =
3W
2
. (8.17)

This is an interesting result since it is higher than for independent
atoms, but lower than for the triplet state.

In exactly the same way we can also compare the totally subra-
diant state, (|ge〉 − |eg〉)/

√
2, with the product state of two atoms

both in a 50/50 superposition but 180◦ out of phase. The lat-
ter case would again correspond to the intuitive classical model of
oscillators out of phase. The out-of-phase product state can be
written

|+−〉 =
|g〉+ |e〉√

2
|g〉 − |e〉√

2
=

1
2

(|gg〉+ |eg〉 − |ge〉 − |ee〉) . (8.18)

In the same way as for the |++〉 state, we calculate the total decay
rate to be

W− =
W

2
, (8.19)

which is lower than for independent atoms but still not completely
zero as for the singlet state. There are also some other differences
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between these product states and the triplet and singlet Dicke
states, apart from the decay rate. For example, the Dicke states
are entangled, and, as explained in Section 2.4, it is not possible to
write entangled states in the form of a product between two indi-
vidual states. As mentioned above, the decay rate of the product
states could be conveniently explained in terms of classical oscil-
lators being in or out of phase, but there is no classical analog for
entangled states, so the intuitive interpretation of the Dicke states
is actually a more difficult question.

If we increase the number of atoms that are contributing to the
collective effect (but still keep the system spatially small), the dif-
ferences in decay rate become smaller. In the treatment presented
in Ref. [54], it is found that for a system of N atoms, the decay
from the symmetric Dicke state is proportional to

WDicke ∼
N(N + 2)

4
, (8.20)

while for the symmetric product state, the decay is given by

WProduct ∼
N(N + 1)

4
. (8.21)

The formulas can be easily verified to agree with the simple cases
of N = 2 that we have discussed here, and we can indeed note that
for very large N the difference in decay rate is completely negli-
gible. In fact, for large N both decay rates become proportional
to N2, just as we would expect from the discussion in Section 8.2.
A similar treatment of the subradiant states results in the same
conclusion, that for large N , the decay rate, even for the anti-
symmetric product state, approaches zero. From an experimental
point of view this is a relief, because Dicke states of large N are
in most cases difficult to create. The reason is that the Dicke
states are based on knowing the exact number of absorbed pho-
tons, whereas for the product states only the average probability
of excitation must be known, which is easily obtained from the
light intensity and the atomic oscillator strength.

We can also note that when the atoms are in a superposition
such as for the product states, there is an induced dipole moment,
as explained in the first section of this chapter. The Dicke states
however, do not have such a dipole moment. The distinction be-
tween the two types of states based on dipole moment was made
in 1975 by Bonifacio [75], whereby he denoted the decay from the
zero dipole moment, Dicke states as superfluorescence and the de-
cay from product states with a dipole moment as superradiance.
Many authors do not distinguish these cases however, and denote
everything with an enhanced decay rate superradiance, as Dicke
himself did. But from the viewpoint of intuitive understanding it
is still important to remember that there are two types of mecha-
nisms at work here.
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Figure 8.3. The intensity of a
superradiant system of atoms as a
function of time and number of
atoms. Note that it has been
normalized as intensity per atom
for easier comparison.

8.4.3 Extended media

For larger systems we can generalize the states described in the
simple, two-atom system above. Extending the spin analogy we
made for the Dicke states to a system of N atoms, we can call
J = N/2, the total ”momentum” and M would be the correspond-
ing projection of that momentum, which in this case signifies the
degree of excitation. M = J = N/2 means all atoms are in the
excited state and M = −J = −N/2 means all are in the ground
state. The state of a general system of M excited atoms can then
be written (see e.g. [76])

|J,M〉 = S
(∣∣g, g, . . . , g︸ ︷︷ ︸

J+M

, e, e, . . . , e︸ ︷︷ ︸
J−M

〉)
, (8.22)

where S is some ”symmetrization operator” if we are talking about
the symmetric superradiant case. A similar ”anti-symmetrization
operator” A could be used for a subradiant discussion. With this
notation the maximum transition rate occurs when half of the
atoms are excited, i.e. M = 0, and is given by Equation (8.20).
Regarding the evolution of a system with such a decay rate, the
emitted intensity as a function of time can be calculated as [76]

I(t) =
I0N

2

4
sech

(
t− τd
2τw

)2

. (8.23)

The sech shape of this function shows that the spontaneous decay
from a correlated collective system of atoms will have a distinct
peak rather than simply following a decreasing exponential as in-
dependent atoms would. In Equation (8.23), τw = T1/N is the
temporal width of this peak and τd = T1 ln(N)/N is the delay
time before the peak. This delay originates from the fact that the
coherent process is started by a normal, spontaneous decay, just
as for the inverted medium of a laser. This function is plotted for
some different N in Figure 8.3.

The key to maintaining super- and subradiance in large media,
is to make sure that the atoms are still indistinguishable. For the
simple cases we have discussed so far, when the atom separation is
much smaller than the wavelength, this is taken care of automati-
cally, since any exciting photons cannot tell the atoms apart, but
for a medium that is large compared to the wavelength there are
additional requirements. For a medium which is extended along
one dimension, e.g. Lz >> λ, superradiance can only be observed
along this exact direction up to the solid divergence angle of the
light ΩD. To account for this we add a compensation factor of
µ = ΩD/4π. For an extended system the width of the superradi-
ance pulse instead becomes [77]

τw =
T1

Nµ
, (8.24)
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Figure 8.4. Red dashed curve
shows the input pulse (on a
detector before the sample), the
blue solid line shows the same
pulse after passing though the
crystal, where the immediate
superradiant decay is clearly
visible. The green line represents
the 1/T ∗2 decay as it would have
been in the FID regime.

and the delay before the pulse becomes

τd =
T1 ln2

√
2πN

4Nµ
. (8.25)

That the delay time is affected by the divergence angle can also be
understood intuitively, based on the idea that the process is started
from a spontaneous decay. Any single atom can decay in any direc-
tion, but only when it decays into the direction of the other atoms
in the extended system, will it give rise to any correlated effects.
The probability that a decay happens in this specific direction is
ΩD/4π, and so the delay becomes correspondingly longer. Fur-
thermore, for extended systems, one often sees multiple outgoing
superradiance pulses, not just a single one. This can be explained
in most cases by pulse propagation effects [78]. Another effect ap-
pears if the ensemble of atoms is long enough, such that the length,
Lz, is longer than ∼ cτd. The atoms from different parts of the
sample can then independently decay into the superradiant direc-
tion, creating several independent superradiance peaks [79, 80].

8.5 Rare-earth crystal implementation

Spontaneous emission can occur in any direction and at any time
(given by the decay curve), which makes it very undesirable as the
recall process in quantum memories. The collective emission effect
is therefore a necessary mechanism for realizing quantum mem-
ories, as the discussion regarding the fidelity preservation in the
CRIB protocol in Section 6.3.2 is a very good example of. How-
ever, there are different regimes of the collective effects as well. A
collective enhancement can be obtained even for very few atoms,
and in an inhomogeneously broadened structure, such as the pop-
ulation peaks in our schemes, the decay immediately following an
excitation is usually close to the free induction decay (FID). The
FID occurs on a timescale inversely proportional to the spectral
width of the peak, since after this time, the ions are no longer
in phase, as mentioned in Section 8.3. As long as the number of
photons emitted during the FID is small compared to the total
number of excited ions, we are still in the FID regime. However,
once the number of emitted photons becomes comparable to the
number of excited ions, we move into what can be called the super-
radiant regime, where the duration of the decay becomes inversely
proportional to αL . This effect is illustrated in Figure 8.4.

This behavior was studied in detail in Paper VI, and it was
found that the superradiant decay time can be described by

Tdec =
T ∗2

2 + αL
2 x

, (8.26)

where x is a numerical parameter that depends on the shape of the
excitation pulse and weakly on αL . It can be shown that the most
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efficient pulse shape, when it comes to creating the excitation, is a
time-reversed replica of the exponential decay curve [81, 82]. This
fact can be understood intuitively by noting that, at the start of
the pulse, the corresponding Fourier width is very large, and when
the Fourier width is larger than the ensemble peak width, a large
part of the pulse will go through the sample without interacting
with the ions. Therefore, the pulse should start with very little
energy, and increase its energy at the same rate as it takes for
the Fourier width to approach the peak width, which is 1/T ∗2 .
For such input pulses, the parameter, x, can be approximated by
x ≈ 0.99 + 0.1αL− 0.0037(αL)2

∣∣
αL≈4

≈ 1.3.
In addition to shorter duration, the decay is also stronger for

higher αL , as would be expected. If we define the efficiency, ηSR,
as the total energy found in the superradiant decay part divided
by the total energy of the incoming pulse, then the efficiency can
be approximated as

ηSR ≈
2
T

T ∗2
2 + αL

2 x

(
1− e−

αL
2T∗2 (1/T+1/T∗2 )

)2

, (8.27)

where T is the pulse duration. The above expression is valid in the
regime of αL . 10. This effect was also verified in Paper VI, and
it was found that the superradiant decay, immediately following
the excitation, could pose problems in future implementations of
quantum memories in high αL structures. This is however, still
not fully investigated, and in similarity with many other topics
discussed in this thesis, there is certainly not a lack of interesting
work for the future.
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Comments on the Papers

I Understanding laser stabilization using spectral
hole burning
In this paper, theory for laser stabilization, when locking
to spectral holes, was derived. Optimum parameter regimes
were found, and a laser was constructed and verified to com-
ply with the theoretical results.
I contributed to investigations on the parameters and I
helped to construct the system, specifically the digital com-
ponents.

II Experimental quantum state tomography of a solid
state qubit
Arbitrary single qubit rotations, on a qubit based on the
long-lived hyperfine states, was demonstrated and verified
by performing a quantum state tomography sequence. Fi-
delities above 90% for single gate operations were achieved.
I took part in planning the experiment and wrote the pulse
sequences. I also carried out the experimental work to-
gether with Lars Rippe, I analyzed the data and finalized
the manuscript.

III Spectral hole-burning spectroscopy in Nd3+:YVO4

A neodymium doped yttrium vanadate material was charac-
terized, using hole-burning techniques. Magnetic fields were
applied to split the Zeeman levels and preliminary spectral
tailoring showed that these levels have potential in terms of
quantum memories.
I participated in some of the planning and helped during the
experiments.
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IV Hyperfine structure and hyperfine coherent
properties of Praseodymium in single-crystalline
La2(WO4)3 by hole-burning and photon-echo
techniques
This paper is a spectroscopic characterization of a crystal
using a new Pr3+ host material, La2(WO4)3. In similarity
with other Pr3+ materials it is shown to be well suitable
as a quantum information Λ-system, despite having a high
magnetic moment density. All relevant transition levels and
linewidths are mapped out.
I participated in the planning and during the experimental
work.

V Long coherence lifetime and electromagnetically
induced transparency in a highly spin concentrated
solid
Using the La2(WO4)3 host material, we demonstrated elec-
tromagnetically induced transparency. We also measured a
hyperfine coherence time of 250 µs, which is very long for a
material with such high magnetic moment density, and the
implications of this is that a wide range of materials could
be suitable for similar quantum information processes.
I took part in the preparations and during the experiments.

VI Experimental superradiance and slow light effects
for quantum memories
In this paper, superradiant effects that can occur in the high
optical depth regime of quantum memories, was investigated.
It was verified that for sufficiently high αL , the duration of
the collectively emitted light decreases as a function of αL ,
at the same time as the total energy of the emitted light is
increased. In addition, it was found that strong slow light
effects are present, simply from the dispersion created by an
empty spectral region.
I took part in preparing the experiments as well as carry
them out. I also took part in analyzing the results and I
wrote most of the manuscript.

92



Acknowledgements

I would first and foremost like to thank my supervisor, Stefan
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