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Abstract

Diabetes is a group of metabolic diseases characterized by the inabil-
ity of the organism to autonomously regulate the blood glucose levels. It
requires continuing medical care to prevent acute complications and to
reduce the risk of long-term complications. Inadequate glucose control is
associated with damage, dysfunction and failure of various organs.
The management of the disease is non trivial and demanding. With

today’s standards of current diabetes care, good glucose regulation needs
constant attention and decision-making by the individuals with diabetes.
Empowering the patients with a decision support system would, therefore,
improve their quality of life without additional burdens nor replacing hu-
man expertise.
This thesis investigates the use of data-driven techniques to the pur-

pose of glucose metabolism modeling and short-term blood-glucose pre-
dictions in Type I Diabetes Mellitus (T1DM). The goal was to use models
and predictors in an advisory tool able to produce personalized short-term
blood glucose predictions and on-the-spot decision making concerning the
most adequate choice of insulin delivery, meal intake and exercise, to help
diabetic subjects maintaining glycemia as close to normal as possible.
The approaches taken to describe the glucose metabolism were

discrete-time and continuous-time models on input-output form and state-
space form, while the blood glucose short-term predictors, i.e., up to 120
minutes ahead, used ARX-, ARMAX- and subspace-based prediction.
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1

Introduction

1.1 Context and motivation

Diabetes Mellitus is a chronic disease of disordered glucose metabolism
due to defects in either insulin secretion by the pancreatic β -cells or in-
sulin action [Williams and Pickup, 1992]. Type I diabetes (T1DM), also
called insulin-dependent diabetes mellitus (IDDM) is characterized by
failing production of insulin, whereas type II diabetes is caused by de-
creased sensitivity of the tissues to the metabolic effect of insulin. The
basic effect of insulin lack or insulin resistance is to prevent the efficient
uptake and utilization of glucose by most cells of the body, mainly the
skeletal muscles, resulting in abnormally high blood sugar levels (hyper-
glycemia). Sustained hyperglycemia is associated with acute ketoacidosis,
nephropaty, rethinopaty, neuropathy and damages to the cardio-vascular
system which are irreversibile once they develop and can mean serious
disability for the person who experiences them [Williams and Pickup,
1992].
With an estimated 371 million affected adult people worldwide in 2012

[The International Diabetes Federation, 2013], diabetes mellitus is one of
the most widespread diseases and caused 4.8 million deaths in 2012, rank-
ing fifth by cause-specific mortality in most high-income countries, after
communicable diseases, cardiovascular diseases, cancer and injury, be-
ing undoubtedly one of the most challenging health problems in the 21st
century [The International Diabetes Federation, 2013]. As for healthcare
expenditures, North America and the Caribbean spent an estimated USD
223 billion or 48% of the global healthcare expenditures for diabetes in
2011, while Europe spent about half that amount at USD 130 billion.
These two regions combined had the highest expenditures due to dia-
betes in 2011 [The International Diabetes Federation, 2013]. Beside direct
costs, indirect costs associated with lost workdays, restricted activity days,
lower productivity at work, premature mortality and permanent disabil-
ity reached 50% of the direct costs. The diabetes epidemic is expected to
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Chapter 1. Introduction

increase at an alarming rate unless effective prevention and treatment
measures are put in place.

1.2 Statement of the problem

The development of means intended to improve diabetes care and man-
agement results decisive in order to curb the diabetes epidemic, both from
patients quality of life and economic perspectives. In particular, sustained
minimization of the time spent in hyperglycemia while avoiding hypo-
glycemia can be attained developing an integrated approach which sets
no additional burden on the patients and works proactively, considering
not only the instantaneous effects of the control actions but also their
consequences in the near future. Reaching this goal requires in the first
place patient metabolism models tailored to the individual and the actual
conditions capable to merge the information already available from the
patients and reproduce their dynamics as faithfully as possible.

To this end, the work presented in this thesis investigate patient-specific
mathematical models of diabetes glucose dynamics with the purpose of
describing the relationships between meal carbohydrate, exogenously in-
jected insulin and possibly energy expenditure due to physical activity
[Spurr et al., 1988] and blood glucose evolution in T1DM. Models and
algorithms presented herein have been developed and used within the
European FP7 IP research project DIAdvisor [DIAdvisor, 2012], aiming
for use in a decision support system, namely, the DIAdvisorTM tool [DI-
Advisor, 2012].

1.3 Outline of the thesis and contributions

This section serves as an outline of the thesis and a summary of the
contributions.

Chapter 2: Background

Chapter 2 provides background material on blood glucose regulation, the
physiology of diabetes and diabetes care, including an overview of the
DIAdvisorTM project. Further, in the second part of the chapter, the vast
literature on diabetes modeling is summarized.

Chapter 3: Experimental Conditions and Clinical Data

Acquisition

The experimental conditions and clinical data acquisition within
DIAdvisorTM are dealt with in Chapter 3. The equipment adopted by
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1.3 Outline of the thesis and contributions

the study participants is described, the study related procedure are illus-
trated and the criteria for the selection of the patients are given. Finally,
an analysis of the reliability of glucose sensor measurements concludes
the chapter.

The core contributions of the thesis are described in Chapters 4 to 8 and
can be divided into two main topics: glucose metabolism modeling and
short-term blood glucose prediction.

Chapter 4: Modeling of the Gluco-regulatory System

Chapter 4 considers discrete-time data-based system identification of
the glucose-regulatory system. Individual-specific models were identified
from a selected patients population data. Objective of the study was to
provide the DIAdvisor Consortium with a set of personalized model to be
implemented in the first prototype of the DIAdvisorTM tool.

Related publications

Cescon, M. (2011). Linear Modeling and Prediction in Diabetes Physiology.
Licentiate Thesis TFRT--3250--SE. Department of Automatic Control,
Lund University, Sweden.

Cescon, M. and R. Johansson (2009). “Glycemic trend prediction using
empirical model identification”. In: Proc. 48th IEEE Conference on De-
cision and Control (CDC2009). Shanghai, P.R.China, pp. 3501–3506.

Cescon, M. and R. Johansson (2013). “Linear modeling and prediction
in diabetes physiology.” In: Marmarelis, V. et al. (Eds.). Data-driven
Modeling for Diagnosis and Treatment of Diabetes. Springer. In press.

Cescon, M., F. Ståhl, R. Johansson, and M. Landin-Olsson (2009a). “Short-
term diabetes blood glucose prediction based on blood glucose measure-
ments”. In: Proc. 2nd International Conference on Advanced Technolo-
gies and Treatments for Diabetes (ATTD2009). Athens, Greece.

Cescon, M., F. Ståhl, M. Landin-Olsson, and R. Johansson (2009b).
“Subspace-based model identification of diabetic blood glucose dy-
namics”. In: Proc. 15th IFAC Symposium on System Identification
(SYSID2009). Saint-Malo, France, pp. 233–238.

Chapter 5: Subspace-based Linear Multi-step Predictors for

Predictive Control

In the framework of the subspace-based identification of linear systems,
the first step for the construction of a state-space model from observed
input-output data involves the estimation of the output predictor. This
algorithmic step was elaborated in Chapter 5 to introduce short-term
multi-step predictors.

11



Chapter 1. Introduction

Related publications

Cescon, M. and R. Johansson (2010). “Multi-step-ahead multivariate pre-
dictors: a comparative analysis”. In: Proc. 49th IEEE Conference on
Decision and Control (CDC2010). Atlanta, USA, pp. 2837–2842.

Cescon, M. and R. Johansson (2011). “On data-driven multistep
subspace-based linear predictors”. In: Proc. 18th IFAC World Congress
(IFAC2011). Milano, Italy, pp. 11447–11452.

Chapter 6: Subspace-based Linear Multi-step Predictors in

Diabetes

Chapter 6 presents the application of subspace-based multi-step short-
term predictors introduced in Chapter 5 to the problem of T1DM blood
glucose time-series forecasting.

Related publications

Cescon, M. and R. Johansson (2013). “Subspace-based multi-step predic-
tors for predictive control.” In: Lovera, M. (Ed.). Control-oriented mod-
elling and identification: theory and applications. The institution of
engineering and technology (IET). Submitted.

Chapter 7: Continuous-time State-Space Identification

Chapter 7 reviews theory and algorithms for system identification of
continuous-time state-space models from finite discrete-time possibly non-
uniformly sampled input-output data. Two approaches are presented,
based on previous contributions: one subspace-based and one realization-
based.

Related publications

Cescon, M., R. Johansson, E. Renard, and A. Maran (2013). “Identification
of individualized empirical models of carbohydrate and insulin effects
on T1DM blood glucose dynamics”. International Journal of Control.
Special Issue on Applications of Continuous-Time Model Identification

and Estimation. In press.
Johansson, R., M. Cescon, and F. Ståhl (2013). “Continuous-time model
identification using non-uniformly sampled data”. In: 11th IEEE
AFRICON 2013. Mauritius. September 2013.

Chapter 8: Modeling the Impact of Meal and Insulin Intakes on

Glycemia

In Chapter 8 the impact of carbohydrate intakes and insulin injec-
tions on diabetes glycemia is modeled with second order plus time de-
lay continuous-time transfer functions. The models were identified from

12



1.3 Outline of the thesis and contributions

a novel meal test data collected within DIAdvisorTM by means of the
continuous-time algorithm PBSIDcont given in Chapter 7.

Related publications

Cescon, M. and R. Johansson (2012). “Patient-specific glucose metabolism
models for model predictive control of T1DM glycemia”. In: Proc. 5th
International Conference on Advanced Technologies and Treatments

for Diabetes (ATTD2012). Barcelona, Spain.

Cescon, M. and R. Johansson (2013). “Meal and insulin effects on blood
glucose dynamic modeling”. In: 13th Diabetes Technology Meeting
(DTM2013). San Francisco, CA, USA.

Cescon, M., R. Johansson, E. Renard, and J. Place (2012a). “Modeling the
impact of a standardized breakfast on T1DM fasting blood glucose”. In:
12th Diabetes Technology Meeting (DTM2012). Bethesda, MD, USA.

Cescon, M., R. Johansson, and E. Renard (2012b). “Personalized short-
term blood glucose prediction in T1DM”. In: Proc. 5th International
Conference on Advanced Technologies and Treatments for Diabetes

(ATTD2012). Barcelona, Spain.

Cescon, M., R. Johansson, E. Renard, and A. Maran (2013a). “Identifi-
cation of individualized empirical models of carbohydrate and insulin
effects on T1DM blood glucose dynamics”. International Journal of
Control. Special Issue on Applications of Continuous-Time Model Iden-

tification and Estimation.

Cescon, M., R. Johansson, and E. Renard (2013b). “Individualized em-
pirical models of carbohydrate and insulin effects on T1DM blood glu-
cose dynamics”. In: 7th IEEE Multi-Conference on Systems and Control
(MSC2013). Hyderabad, India, pp. 258–263.

Cescon, M., R. Johansson, and E. Renard (2013c). “Low-complexity MISO
models of T1DM glucose metabolism”. In: 9th Asian Control Conference
(ASCC2013). Istanbul, Turkey.

Johansson, R., M. Cescon, and F. Ståhl (2013). “Continuous-time model
identification using non-uniformly sampled data”. In: 11th IEEE
AFRICON 2013. Mauritius.

Chapter 9: Conclusions

Finally, Chapter 9 concludes the thesis with some closing remarks and
the outline of possible further research directions.
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Other relevant publications by the author on the topic:

Cescon, M. and E. Renard (2011). “Adaptive subspace-based prediction
of T1DM glycemia”. In: Proc. 50th IEEE Conference on Decision and
Control and European Control Conference (CDC-ECC2012). Orlando,
FL, pp. 5164–5169.

Cescon, M., M. Stemmann, and R. Johansson (2012a). “Impulsive predic-
tive control of T1DM glycemia: an in-silico study”. In: Reglermöte 2012.
Uppsala, Sweden.

Cescon, M., M. Stemmann, and R. Johansson (2012b). “Impulsive predic-
tive control of T1DM glycemia: an in-silico study”. In: 2012 ASME 5th
Annual Dynamic Systems and Control Conference (DSCC2012). Fort
Lauderdale, FL, USA, p. 8550.

Ståhl, F., M. Cescon, R. Johansson, and E. Renard (2009). “Infinite hori-
zon prediction of postprandial breakfast plasma glucose excursion”. In:
Proc. 9th Diabetes Technology Meeting (DTM2009). San Francisco, CA,
A163.
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2

Background

2.1 Introduction

Glucose is the primary substrate for energy in the insulin-independent
tissues (IIT), i.e., central nervous system and red blood cells. It is, there-
fore, vital that an adequate amount of glucose is always present in the
bloodstream to continuously supply the nutritional requirements of the
IIT [Nussey and Whitehead, 2001]. This is achieved by homoeostatic reg-
ulation of the concentration of extracellular fluid glucose. Glucose con-
centration is increased by intestinal absorption following meals and by
glucose production in the liver and decreased by glucose uptake from the
peripheral tissues. In a healthy subject, the balance between glucose en-
tering and leaving the bloodstream is guaranteed by the actions of a highly
complex neuro-hormonal control system, i.e., the glucoregulatory system
[Williams and Pickup, 1992], which maintains blood glucose concentration
within relatively narrow limits at around 90 [mg/dL].

2.2 Blood glucose regulation

After a food intake, during the so-called absorptive state, some glucose
absorbed from the gut is immediately used by cells as a source of energy.
That fraction not directly utilized is either stored in the liver or muscles
in the form of glycogen or converted to triglyceride in adipocytes. Glu-
cose storage is promoted by the hormone insulin. Then, between meals,
i.e., in the post-absorptive state, glucose is first obtained from glycogen
stores and subsequently by hepatic production from amino acids, these
actions being governed by the hormone glucagon. These processes main-
tain plasma glucose within tight limits, assuring a constant supply of
fuel to the IIT. Figure 2.1 shows the glucose-insulin control system for
the non-diabetic subject.
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Chapter 2. Background

Insulin and glucagon actions

The two main drivers of the glucoregulatory system are the pancreas-
secreted hormones insulin and glucagon.
Insulin is secreted by the β -cells when the glucose in blood rises to a

high concentration. Triglycerides and fatty acids have only a small stim-
ulatory effect on insulin release. In response to a glucose load, insulin
secretion occurs in two phases: the first phase represents the release of
insulin stored in secretory granules, while the second, approximately 10
minutes later, shows a more gradual and sustained increase in insulin
release that can last for several hours [Nussey and Whitehead, 2001]. In-
sulin promotes glycogen synthesis in the liver and induces a rapid uptake
of glucose in muscles and fat tissue. In the muscles glucose is converted
to glycogen, while in the adipose tissue it is converted to fatty acids for
storage as triglyceride. Meanwhile, mobilization of fuels is suppressed by
insulin, by inhibiting the breakdown of glycogen in the liver, the release of
amino acids from muscle and the release of free fatty acids from adipose
tissue.
Glucagon, on the other hand, is released by the α -cells of the pan-

creas, in response to a decreased insulin secretion. It has opposing actions
(counter-regulatory) to those of insulin, promoting, instead of suppress-
ing, mobilization of fuels. Glucagon ultimately stimulates the breakdown
of glycogen to glucose (glycogenolysis) and the production of glucose from
amino acids (gluconeogenesis). In addition, it promotes the release of free
fatty acids from adipose tissue.
The glucose and insulin systems interact by feedback control: if a glu-

cose rise occurs after a meal, the β -cells secrete more insulin in response
to increased plasma glucose concentration and in turn insulin signaling
promotes glucose uptake by the liver, muscles and adipose tissue, inhibit-
ing glucose production thereby bringing the plasma glucose level back
toward a steady-state value. These control interactions are usually re-
ferred to as insulin sensitivity and β -cell responsiveness. When the blood
glucose concentration begins to fall, the consequent rapid decrease in in-
sulin secretion triggers in turn glucagon release by the α -cells of the
pancreas. Glucagon promotes the breakdown of the liver glycogen back to
glucose, which is then released into the bloodstream preventing glucose
concentration from falling too low [Williams and Pickup, 1992].
The secretion of both insulin and glucagon is potentiated by the gas-

trointestinal hormones incretins, released in response to orally ingested
nutrients. Other hormones that also play major roles in the regulation
of blood glucose concentrations include cortisol, adrenaline and growth
hormone, all of which act to raise blood glucose concentrations and are,
thus, considered to be counter-regulatory [Nussey and Whitehead, 2001].
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Figure 2.1 Glucose-insulin control system in the non-diabetic subject.
1. Increased blood glucose stimulates insulin secretion from the pancreas;
2. Insulin promotes liver uptake, storage and use of glucose; 3. Glucose is
released back from the liver during fasting conditions

Overall, the mechanisms controlling the glucose-insulin systems stems
from metabolic stimuli, gut hormones and neural reactions.

2.3 Diabetes mellitus

When the insulin feedback fails to function normally by either lack of
insulin secretion or decreased sensitivity of the tissues to insulin, the
metabolisms of carbohydrate, fat, and protein result impaired, leading to
a group of metabolic diseases under the name of Diabetes Mellitus. In
type I diabetes, also called insulin-dependent diabetes mellitus (IDDM),
there is an absolute deficiency of insulin secretion, which is due to β -cell
destruction. Insufficient insulin or insulin action for the body’s need re-
sult in a chronically raised blood glucose concentration (hyperglycemia).
Moreover, cell utilization of glucose falls and consequently utilization of
fat and proteins for energy increases causing release of free fatty acids,
cholesterol and phospholipids in the plasma. This produces long-term con-
sequences for the body associated with damage, dysfunction and failure of
various organs. Sustained hyperglycemia is associated with acute ketoaci-
dosis, nephropaty, rethinopaty, neuropathy and damages to the cardio-
vascular system [Williams and Pickup, 1992]. The criteria for the diagno-
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Chapter 2. Background

sis of T1DM are summarized as follows:

• American Diabetes Association [The American Diabetes Association,
2010]
1. A1C 1 ≥ 6.5 % or
2. FPG 2 ≥ 126 [mg/dL] or
3. 2-h plasma glucose ≥ 200 [mg/dL] during an OGTT 3 or
4. random plasma glucose ≥ 200 [mg/dL] in patient with symp-
toms of hyperglycemia

• World Health Organization [World Health Organization-International
Diabetes Federation, 2006]
1. FPG ≥ 126 [mg/dL] or
2. 2-h plasma glucose ≥ 200 [mg/dL] during an OGTT

Diabetes care

Because insulin deficiency defines T1DM, insulin replacement is the hall-
mark of the therapy. Focusing on tight blood glucose targets, i.e., 70-140
[mg/dL] [The American Diabetes Association, 2013], the philosophy of
insulin replacement is to mimic the physiological endogenous insulin se-
cretion pattern of the non-diabetic person. In the non-diabetic subjects,
insulin is secreted into the portal circulation at two rates: a slow basal
secretion throughout the 24 hours and an augmented rate at meal times.
This pattern can be achieved to some extent with the so-called basal-
bolus regime: a basal dose of long-acting insulin (e.g., detemir [Levemir RF
2013], glargine [Lantus RF 2013]) is sufficient to keep a constant glucose
concentration during fasting conditions and a prandial bolus of rapid-
acting insulin (e.g., lispro [Humalog RF 2013], aspart [NovoLog RF 2013],
glulisine [Apidra RF 2013]) enhances an increased glucose uptake during
and after meals. Actually, such a regime is the most common therapy for
IDDM subjects. Patients on multiple-dose insulin (MDI) therapy use in-
sulin pens (e.g., NovoPen RF 4 [Novo Nordisk, 2013b], FlexTouch RF [Novo
Nordisk, 2013a], ClikSTAR RF [Sanofi-Aventis, 2013], Daily Dose [Insulu-
tion, 2013]) to administer both long-acting insulin analogue for the basal
dose once or twice a day and rapid-acting insulin for boluses and cor-
rections. Alternatively, patients on continuous subcutaneous insulin in-
fusion (CSII) therapy use an insulin pump (e.g., Spirit Combo RF [Accu-
Check, 2013], One Touch RF Ping RF [Animas Corporation, 2013], MiniMed
1A1C glycated hemoglobin
2FPG fasting plasma glucose defined as no caloric intake for at least 8 h
3OGTT oral glucose tolerance test, with a glucose load containing the equivalent of 75 g
anhydrous glucose dissolved in water
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Pradigm RF RevelTM [Medtronic, 2013b]) loaded with rapid-acting insulin,
which provides a continuous infusion corresponding to the basal and can
be programmed to deliver boluses as needed. The basal-bolus strategy
comprises also testing of blood glucose levels at least prior to meals and
snacks, occasionally postprandially, at bedtime, prior to exercise, when
low blood glucose is suspected and after treating low blood glucose un-
til normoglycemia is achieved [The American Diabetes Association, 2013].
Glucose monitoring is fundamental in that it allows patients to evalu-
ate their individual response to therapy, adjust medications and assess
whether glycemic targets are being attained. To this purpose, two pri-
mary techniques are available: self-monitoring of blood glucose (SMBG)
and continuous glucose monitoring (CGM). In the first case, a small drop
of blood is drawn from the fingertip and is analyzed in a test strip by
the meter using enzymatically catalyzed-based electro-chemical or pho-
tometric methods with marketed device such as HemoCue RF Glucose An-
alyzer [Hemocue, 2013]. In the second case, interstitial fluid measure-
ments are taken by means of a subcutaneously inserted needle, and are
converted to interstitial glucose assays. Examples of such devices include
Abbott FreeStyle NavigatorTM [Abbott, 2013], Dexcom Seven RFPlus [Dex-
com, 2013], Guardian RF [Medtronic, 2013a].
Intensive insulin therapy has been strongly promoted during the last

decade, following the results of the major Diabetes Control and Com-
plications Trial (DCCT) [The Diabetes Control and Complications Trial
Research Group, 1993] and follow-up Epidemiology of Diabetes Interven-
tions and Complications (EDIC) [The Diabetes Control and Complications
Trial/Epidemiology of Diabetes Interventions and Complications Study
Research Group, 2005] studies, in order to keep blood glucose levels as
close to normal as possible. However, insulin therapy may induce poten-
tially severe hypoglycemia, resulting from too high levels of insulin, lead-
ing to loss of consciousness, coma and, in rare severe cases, death. In
current medical practice, the rough calculation of insulin doses and even-
tually extra carbohydrate intakes is based on empirical rules-of-thumbs.
Many factors have to be considered in this decision process: health sta-
tus, current blood glucose level, blood glucose target, foreseen activities,
insulin sensitivity, expected future glycemia evolution and approximation
of the estimated meal carbohydrate content effects as well as insulin im-
pact on the subject own blood glucose, taking into account medical advice
and patients previous experience of his/her own metabolism (Fig. 2.2).
One common measure used in this regard is the carbohydrate-to-insulin
ratio, which is an estimate of how many insulin units to administer to
match the amount of digested carbohydrates. Actually, most patients are
rather conservative in order to prevent insulin-induced hypoglycemia, re-
maining far from the optimal treatment.
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Figure 2.2 Schematic representation of diabetes management. Knowing
the history of insulin doses, meals, activity, health status the patient as-
sess current blood glucose measured via either a SMBG meter or a CGM
device (bottom). Keeping therapy goals in mind in order to achieve normo-
glycemia, the patient calculate future control actions, either in the form of
an insulin dose, a meal intake or some physical activity. The controller is
the subject himself and the control algorithm is the set of rules-of-thumbs
and estimation that are used to optimize therapy.

The task is non-trivial and demanding, although the standard tools in
diabetes care improved significantly during the last decades. For this rea-
son, the development of control tools aiming at assisting the patients in
the management of their disease has been the focus of extensive research
for almost 40 years [Cobelli et al., 2009] and is slowly progressing towards
a fully automated closed-loop control artificial pancreas [AP, 2013; Cobelli
et al., 2011; De Nicolao et al., 2011]. However, while such a system is ex-
pected to improve the quality of life reducing the time plasma glucose is
outside the target range, it will be suitable only for pump and CGM users.
In addition, closed-loop control introduces certain risks, the most danger-
ous being potentially severe and unavoidable hypoglycemia induced by
overdelivery of insulin compensating for hyperglycemia following a meal
[Cobelli et al., 2009].
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Figure 2.3 The DIAdvisorTM tool: a mobile short-term predictor and
tretment advisor [DIAdvisor, 2012]

The DIAdvisorTM project

Against this background, the European FP7-IST research project
DIAdvisorTM [DIAdvisor, 2012] during the quadrennium 2008-2012 pur-
sued the development of a personalized blood glucose predicting system
and an advisory control system, the DIAdvisorTM tool, to be used on
the spot by the users in different daily situations, predicting glycemic
excursions following meals, insulin intakes and exercise and giving them
advices about how to adjust their treatments. Within this scenario the
controller is expected to determine impulse-formed control inputs, namely
insulin bolus doses and amount of carbohydrate of a meal, which are not
automatically applied but rather recommended to the patient, thereby
assuring safety. When a therapeutic action is suggested by the algorithm,
the patient can accept or reject it, remaining firmly in the loop. The
underlying concept of the system is illustrated in Fig. 2.3. The predictor
system needs user inputs concerning patient condition (e.g., fasting, meal
time, rest or physical activity), therapeutic mode (type of insulin delivery
route, type of insulin preparations), time and size of meals, minimally
invasive glucose sensors and wearable vital signs sensors measurements,
and produces short-term, i.e., up to 120 minutes, blood glucose predic-
tions to be graphically shown to the patients as well as suggestions to
the user from a decision support module. The tool was realized as a joint
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effort by a consortium of 14 partners, both academic institutions and
commercial companies and can be defined as the first prototype of a mo-
bile short-term blood glucose predictor and treatment advisor. The core of
the system was represented by the patient’s pocket computer which was
able to collect sensor measurements, display predictions and actions to
the user and send wirelessly all these information to a central database.
Detailed information regarding the system components are to be found
in Sec. 3.3. In-vivo tests on a population of 43 subjects following at least
70% of the DIAdvisorTM recommendations showed an increase by 7.6%
in the time spent in normo-glycemia and a reduction by 42% in the time
spent in hypoglycemia [The DIAdvisor Consortium, 2012].

2.4 Models in diabetes

In diabetes research and therapy, modeling of the glucose-insulin control
system has received significant attention for more than 50 years [Cobelli
et al., 2009], [Cobelli et al., 2011]. Driving forces behind this endeavor
have been the possibility for external blood glucose regulation and the
consequent quest for an automated control of diabetic glycemia. Several
types of models serving different purposes were proposed, most of these
efforts being first-principles based descriptions of the physiological rela-
tionships associated with T1DM, and only to a lesser extent mathematical
modeling by means of system identification.

Physiological models

The first pioneering work describing the relationships between insulin
and glucose utilization was that of Bolie [1961], later modified by Ack-
erman and McGucking [1964] in order to provide a model of the glucose
metabolism during an oral glucose tolerance test (OGTT). Greater atten-
tion was received by the so-called minimal model [Bergman et al., 1979],
[Bergman et al., 1981], developed for the specific purpose of quantifying
pancreatic responsiveness and insulin sensitivity during an intravenous
glucose-tolerance test (IVGTT) in non-diabetic individuals. The model con-
sists of three differential equations describing plasma glucose and plasma
insulin in a remote compartment, accounting for neither the dynamics of
subcutaneous insulin infusion nor the dynamics of gut glucose absorption
from a carbohydrates meal. In [Lehmann and Deutch, 1992], a simula-
tion model was presented, and later validated on a set of 24 subjects
[Lehmann et al., 1994]. Glucose-insulin pharmacokinetics/pharmacody-
namics in non-diabetic subjects was described by a 19-state model de-
veloped by Sorensen [1985], the major shortcoming of this model being
the failure in capturing the hyperglycemic events characteristic of type 1
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diabetes [Lynch and Bequette, 2002]. The nonlinear model proposed by
Hovorka et al. [2004] describes glucose-insulin dynamics with several dif-
ferential equations in three subsystems: a glucose subsystem, an insulin
subsystem and an insulin action subsystem. Model inputs are the rate of
subcutaneously infused fast acting insulin, meal carbohydrates amount
and time of ingestion and its outputs are plasma glucose and insulin con-
centrations. The absorption kinetics associated with subcutaneous insulin
delivery of the above mentioned model was later modified [Wilinska et al.,
2005], the model replacing the original subcutaneous insulin subsystem
consisting in two parallel fast and slow channels for insulin absorption
as well as a degree of insulin degradation at the injection site, and inte-
grated in a simulation environment dedicated to closed-loop evaluation of
insulin delivery systems [Wilinska et al., 2010]. The efforts by Dalla Man
and co-workers presented in [Dalla Man et al., 2002; Dalla Man et al.,
2004; Dalla Man et al., 2005; Dalla Man et al., 2006] lead to the meal
simulation model of the glucose-insulin system [Dalla Man et al., 2007]
which has been accepted by the Food and Drug Administration (FDA) to
be used as a substitute for animal trials in preclinical tests of closed-loop
development [Kovatchev et al., 2008a], [Kovatchev et al., 2008b]. Dalla
Man and co-workers [2007] used a sophisticated triple tracer method to
estimate important meal-related quantities such as the rates of appear-
ance of glucose in the blood from the meal, endogenous glucose production,
utilization of glucose, and insulin secretion. Reviews of physiological di-
abetes models include that of Nucci and Cobelli [2000], who specifically
examined several models of subcutaneous-to-intravenous insulin kinet-
ics, Makroglou and co-workers [2006] presenting an overview of existing
software packages specific to diabetes modeling and finally Cobelli and
co-workers [2009], discussing the main contribution to both modeling and
control in diabetes from the early 1960s.

Predictive models

Although seemingly simple in concept, the problem of glucose prediction
in an active individual has to date proved intractable. Currently, con-
tinuous glucose monitoring (CGM) devices are the available technology
able to provide high/low glucose alarms when certain user specified pre-
set threshold levels have been crossed and to deliver warnings of events
that are likely to occur if the current trend continues. However, patients
will benefit more from an early alarm that predicts the hypoglycemic
episode before it occures. A review of hypoglycemia prevention algorithms
is reported in [Bequette, 2010]. To date many studies have investigated
the possibility of predicting blood glucose concentration for the purpose of
regulating glucose intervention, in order to enable individuals to take cor-
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rective actions and avoid low or high glucose values. Bremer and Gough
[1999] originally developed the idea of T1DM CGM time-series analysis
using 10-minutes sampled data from ambulatory T1DM patients to iden-
tify autoregressive (AR) models. They explored 10, 20 and 30 minutes
prediction horizons, and report that the 10-min predictions are accurate
and the 20-min or 30-min predictions may also be acceptable for a lim-
ited set of data only. However, no quantification of the accuracy of the
model predictions was provided. In [Reifman et al., 2007] tenth-order au-
toregressive models were identified from 5-days long glucose time-series
belonging to a population of 5 in-hospital subjects. Performances of a sin-
gle, cross-subject model compared with individual models were evaluated
on 30- and 60 minutes prediction horizons. Gani et al. [2009] used a 30-th
order AR model with a data smoothing and regularization procedure to
minimize the changes in the glucose first-derivative, reducing the predic-
tion lag for 60 and 90-min-ahead prediciton compared to [Reifman et al.,
2007]. Sparacino et al. [2007] collected 48 h of continuous (3-min) glucose
data from 28 T1DM subjects in ambulatory conditions. In their retrospec-
tive analysis, they recursively identified simple polynomial and AR models
from the CGM time-series data, prefiltered to removed noise spikes. They
investigated prediction horizons of 10 and 15 steps (i.e., 30 and 45 min)
and concluded that hypoglycemia can be detected 25 minutes before the
hypoglycemic threshold is passed. In [Palerm et al., 2005] a Kalman filter
approach was proposed, which only used information on past CGM read-
ings by assuming a double integrated random walk as prior for glucose
dynamics and estimating the states corresponding to the interstitial glu-
cose level, and the first and second derivative thereof, i.e., rate of glucose
change and acceleration. The method was evaluated for 13 hypoglycemic
clamp data sets in [Palerm and Bequette, 2007]. Using a hypoglycemic
threshold of 70 [mg/dL], the sensitivity and specificity were 90 and 79%,
respectively, with unknown alarm time. A tutorial overview of algorithms
for CGM time series analysis to the purpose of alarm generation is pro-
vided in [Sparacino et al., 2008]. Eren-Oruklu et al. [2009] proposed a
recursive second-order AR and ARMA model identification strategy with
an adjustable forgetting factor for healthy and type II diabetics. Their
models utilized only recent glucose history from a CGM device, achiev-
ing 3-5% error for 30-min ahead prediction. In [Naumova et al., 2012] a
kernel-based regularization learning algortihm, in which the kernel and
the regularization parameter are adaptively chosen on the basis of previ-
ous similar learning tasks, using past glucose information, was presented.
The past few years witnessed the investigation of neural networks (NN)
models for short-term glucose prediction proving it to be a competitive
approach. Pappada et al. [2008] created NN models with variable pre-
dictive windows in the range 50-180 min, trained using 18 patients CGM
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datasets and evaluated on patient data not included in the neural network
formulation. They concluded that their models performed adequately in
the normo- and hyperglycemic ranges, whereas hypoglycemic events were
overestimated, a potential reason for that being due to the minimal oc-
curences of hypoglycemia in the training data. In [Facchinetti et al., 2010]
a feed forward NN whose inputs were CGM samples in the previous 20
min and the current time instant, and whose output was the glucose con-
centration 15, 30 and 45-minutes ahead was tested on 15 actual data
sets. Root mean square error (RMSE) was 10, 18 and 27 [mg/dL] for
the 15, 30 and 45-minute prediction, with a delay of around 4, 9, and 14
min for upward trends, and 5, 15, and 26 min for downward trends. Das-
sau and co-workers developed a real-time hypoglycemia prediction suite
combining five individual algorithms, namely, linear prediction, Kalman
filtering, hybrid impulse response (HIIR) filtering, statistical prediction
and numerical logical into a voting-based system to predict hypoglycemia
from 1-min sampled CGM data. A 35 min prediction horizon with an
alarm threshold of 80 [mg/dL] and a voting threshold of three to five al-
gorithms to predict hypoglycemia resulted in a 91% correct predictions.
A short-coming of the methods listed above is the lack of exploitation of
the dynamic interplay between previously injected insulin, meal intake
and eventually exercise to the purpose of improving glucose prediction.
Hovorka and his group [2004] performed experiments with ten T1DM pa-
tients under clinical conditions, using their physiological model to make
predictions of glucose data up to 60 minutes into the future. The glucose
was measured intravenously, but delayed by 30 min to mimic subcuta-
neous measurement. The model parameters were recursively estimated
using a Bayesian method. The predictions of the resulting models had
RMSE values of 8.6, 13.0, and 17.3 [mg/dL] for 2-step, 3-step, and 4-step
(i.e., 30-min, 45-min, and 60-min) predictions, respectively. Finan et al.
[2009a], where both batch-wise and recursively identified patient-specific
ARX-models have been analysed for 9 patients with a mean 30-minute
prediction error RMSE of 26 mg/dl. An ARX model with a nonlinear for-
getting factor scaled according to the glucose range was considered in
[Castillo-Estrada et al., 2010a], [Castillo-Estrada et al., 2010b], and a 45-
minute prediction horizon showed good results. Finally, in [Gani et al.,
2010] it was asserted that a universal data-driven modelidentified from a
CGMS time-seris of a patient applying the algorithm previously published
by the same authors in 2009 [Gani et al., 2009] could be used to make
near-future glucose concentration predictions for other patients without
any model customization procedure. They used regularization techniques
to filter data from 34 subjects, then, using the filtered data, they develop
auto-regressive models of order 30 to the purpose of making short-term,
30-min-ahead predictions. A feed-forward NN was also exploited in [Pap-
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pada et al., 2011] and tested on 10 real datasets, incorporating, in ad-
dition to CGM data, other inputs such as SMBG readings, information
on insulin, meal, hypo- and hyperglycemia symptoms, lifestyle, activity
and emotions and predict glucose values up to 75 min. In [Zecchin et al.,
2011; Zecchin et al., 2012; Zecchin et al., 2013], 30 min ahead prediction
was performed with a feed-forward NN in cascade with the first-order
polynomial model in [Sparacino et al., 2007]. The inputs to the linear pre-
dictor were the past CGM values weighted using a forgetting factor, while
the inputs to the NN were current CGM and its trend, information on
the past error committed by the polynomial model and information on
meal, supplied as plasma glucose rate of appearance obtained from the
physiological model of [Dalla Man et al., 2007]. Zhao et al. [2012] used a
latent variable-based approach to predict future CGM values from past
CGM and known carbohydrate and insulin boluses, transformed into time-
smoothed inputs using second-order transfer functions. The method was
applied to collected clinical data and simulated data generated by the
model described in [Kovatchev et al., 2008a], [Kovatchev et al., 2008b].
They concluded that their LV-based method resulted in models whose
prediction accuracy was as least as good as the accuracies of standard
AR/ARX models. In [Eren-Oruklu et al., 2012] a multi-sensor body mon-
itor providing seven signals related to activity and emotional conditions
was used in addition to a CGM monitor to improve glucose prediction.
A multivariate ARMAX model with weighted recursive least squares es-
timation of the unknown parameters using a variable forgetting factor
was proposed. Results showed that the prediction error is significantly
reduced with the addition of the vital signs measurements, as compared
to an ARMA model based only on CGM signals.

Control-oriented models

To date control algorithms have been mainly based on physiological mod-
els such as [Hovorka et al., 2004; Dalla Man et al., 2007] and their lin-
earized versions. Some studies identified models from simulated data and
used those identified simpler models to controller design. In [Finan et al.,
2006] ARX and Box-Jenkins (BJ)models of various orders have been iden-
tified from simulated patient data obtained with the Hovorka model and
evaluated for their description of both calibration and validation data. Fi-
nan and co-workers concluded that in general, the high-order BJ models
consistently explained more variability in the data than the ARX models
[Finan et al., 2008]. This type of model has been considered in, e.g., [Finan
et al., 2009a], where both batch-wise and recursively identified patient-
specific ARX models have been analysed for 9 patients with a mean 30-
minute prediction error RMSE of 26 mg/dl. In [Cescon, 2011] data-driven
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black-box identification of ARX, ARMAX and state space models from
actual T1DM data was investigated, the best performance was achieved
with the ARX and the ARMAX models. The ARX model gave a standard
deviation of the prediction error of 17, 34, 46 and 56 mg/dl on average
for the 30-, 60-, 90- and 120-minute prediction, respectively. The corre-
sponding results for the ARMAX model were 16, 30, 39 and 44 mg/dl.
However, the idea of building models specifically for control purposes has
not emerged in the field until very recently. Continuous-time first order
integrating transfer function models with time delay were proposed in
[Percival et al., 2010] to describe the magnitude and duration of effects
of a carbohydrate intake and a subcutaneously administered insulin in-
jection on blood glucose. Clinical data from 11 adult subjects with T1DM
where the inputs were separated in time to allow unique identification
of the unknown parameters were used. Heuristics and least-squares opti-
mization were employed to estimate the model parameters. Percival and
co-workers [2011] later exploited the same model structure in a control
framework, where two cohorts of virtual subjects were generated by the
Hovorka model [Hovorka et al., 2004; Wilinska et al., 2005] and University
of Virginia/Padova type 1 diabetes simulator [Kovatchev et al., 2008a],
[Kovatchev et al., 2008b]. A very similar model structure was proposed
in [Kirchsteiger et al., 2011b; Kirchsteiger et al., 2011a], the difference
being a time delay replaced by a time lag, targeting robust control de-
sign. The approach in [van Heudsen et al., 2012] consisted in identifying
third-order models of the insulin-to-blood glucose dynamics from a popu-
lation of ten virtual subjects from the UVa/Padova metabolic simulator
[Kovatchev et al., 2008a], [Kovatchev et al., 2008b] for use in a zone model
predictive controller. Such models were discrete-time third-order transfer
functions, whose gain was personalized using the patient correction factor
calculated with the 1800 rule [Walsh and Roberts, 2012] and a so-called
“safety factor” chosen by a physician. The controllers based on the person-
alized models were tested in simulation on a cohort of 100 virtual subjects,
and resulted to be robust.

2.5 Inherent challenges in T1DM modeling

Despite significant efforts devoted to the problem of blood glucose regula-
tion in type 1 diabetic patients over the last several decades (see e.g. [Co-
belli et al., 2009] for a comprehensive review), many inherent challenges
that must be overcome still remain. At the most basic level, the disease can
be viewed as a process having one output, namely, glucose concentration
in plasma, and two inputs, namely, meal carbohydrates and administered
insulin. The first and perhaps most crucial challenge to overcome in mod-
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eling is that of poor data excitation: often the inputs are simultaneous and
in the same ratio, the so-called insulin-to-carbohydrate ratio, precluding
the possibility of distinguishing their relative effects. The system identifi-
cation need for an experiment design with sufficient excitation and decor-
related input is often poorly understood. Second, the most widespread
way of treating diabetes comprises a series of impulse-like control actions,
i.e., insulin injections and food intakes, applied several times during the
day at irregular sampling instants, typically at wake up, meal and bed
times, the decisions being based on scarce assays of the controlled vari-
able, i.e., blood glucose. This gives rise to the problem of non-uniformly
sampled and infrequent data and, since the signals in play interact in the
bloodstream, introduces assumptions on the subcutaneous-to-intravenous
insulin absorption and gastro-intestinal carbohydrates absorption dynam-
ics.
In the last ten years, advances in sensor technology saw the advent of

continuous glucose monitors (CGM), systems capable of measuring glu-
cose concentration frequently (e.g., every 5 minutes) for several days,
providing the patient with well-sampled data in real time. However, it
is important to stress that together with the benefits, they introduce yet
another limitation. Indeed, those devices measure glucose concentration
in the interstitium and not in plasma. Interstitial glucose (IG) fluctu-
ations are related to BG presumably via diffusion process [Steil et al.,
2005], [Keenan et al., 2009]. This leads to a number of issues, including
distortion (which incorporates a time lag) and calibration errors, and ne-
cessitates the development of methods for their mitigation. In particular,
it is necessary to consider that, since the BG-to-IG kinetics acts as a low-
pass filter, the frequency content of interstitial glucose is different from
that of blood glucose [Breton et al., 2008], [Miller and Strange, 2007].
As for the inputs, when taking into account the appearance of insulin

in the bloodstream from subcutaneous delivery and that of glucose in
plasma after a meal, new time-lags and dynamics are introduced; fur-
ther, subcutaneous insulin infusion involves degradation at the site of de-
livery. In addition, meals must be recorded by the patients, and the actual
amount of carbohydrates must be estimated, a process that is prone to
errors. Also, in practice, the combination of simple and complex carbohy-
drates, fats and proteins can affect the glucose absorption in the digestive
system. Unrepresented inputs, such as stress and illness constitute an-
other challenge to diabetes modeling. Furthermore, it is a well known fact
that physical activity, apart from having a glycemia-lowering effect due
to utilization of glucose by the muscle cells, enhances insulin sensitivity,
playing a substantial role in the picture, but the magnitude and duration
of such effects are hard to consider. Another important aspect is the degree
of variability of the overall system dynamics over the day (the so-called
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"dawn phenomenon", for instance, is characterized by increased insulin
resistance during the morning hours [Williams and Pickup, 1992]).
A priori knowledge of the diabetes process indicates two fundamental

properties that should be satisfied by any model:

• the gain associated with the insulin input should be negative (i.e., an
increase in insulin results in a decrease in glucose concentration);

• the gain associated with the meal input should be positive (i.e., a
meal results in an increase in glucose concentration),

properties that a sound and valid model need to exhibit. However, the
values of the above mentioned gains are related to age of the subject, dis-
ease duration, BMI, insulin sensitivity, β -cell responsiveness and probably
many more unknown factors so that it is not clear how to take them into
account in the modeling process.
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3

Experimental Conditions

and Clinical Data

Acquisition

3.1 Introduction

In the framework of the DIAdvisorTM project [DIAdvisor, 2012], acqui-
sition of bioclinical data linked or potentially involved in blood glucose
control from insulin-treated diabetic subjects was accomplished in a se-
ries of experimental sessions. The investigations focused on a population
of basal-bolus regimen treated subjects, either as combination of multi-
ple daily insulin injections or as continuous insulin infusion from a pump.
The clinical protocol for data acquisition was designed by the DIAdvisorTM

Consortium and was reviewed and approved by the ethical committees
of the Clinical Investigation Centers participating in the trials, namely,
Montpellier University Hospital (CHU) in Montpellier, France, Padova
University Clinics (UNIPD) in Padova, Italy and the Clinical Institute
of Experimental Medicine (IKEM) in Prague, Czech Republic [DIAdvi-
sor, 2012]. The subjects participating in the studies signed an informed
and witnessed consent form prior to any study procedure. For the whole
duration of the experiments, the participants were equipped with state-of-
the-art devices provided by the DIAdvisorTM Consortium complying with
the study protocol. Overall, collected data included: specific patient pa-
rameters (e.g., gender = male, age = 43 years old, BMI = 23.7, weight
= 67 kg), characteristics related to diabetes (e.g., disease duration = 10
years, insulin delivery = external pump), associated health conditions
and therapies, food intakes and administered insulin doses registered in
a logbook, capillary glucose strips, interstitial glucose levels, plasma glu-
cose and plasma insulin concentration from drawn blood samples as well
as vital signs.
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Three clinical studies were conducted: the data acquisition (DAQ) trial
in 2008-2009 aiming at providing a large amount of data for algorithmic
development of the DIAdvisorTM system components; the DIAdvisor I trial
in 2010 with the purpose of testing the first prototype of the DIAdvisorTM

system with respect to data collection, blood glucose prediction, therapy
advices and the DIAdvisor II trial in 2011-2012 intended for final
performances validation of un updated version of the DIAdvisorTM system
against project endpoints. This thesis presents research undertaken
utilizing data from all the three trials. The remainder of the chapter
illustrates the study procedures in detail.

3.2 DAQ trial

Equipment

HemoCue R© Glucose Analyzer

http://www.hemocue.com

The HemoCue RF 201+ Glucose Ana-
lyzer [Hemocue, 2013] is a blood glu-
cose meter based on a glucose dehy-
drogenase method and consists of a
pocket size handheld analyzer and a
unique disposable microcuvette. The
analyzer was factory calibrated and no
calibration was needed between cuvette
batches. The device was used by each
patient as a reference glucose meter, assessing plasma glucose levels from
finger-stick samples.

Abbott FreeStyle NavigatorTM

https://www.

abbottdiabetescare.com

The Abbott FreeStyle NavigatorTM [Ab-
bott, 2013] is a Continuous Glucose
Monitoring System (CGMS) consist-
ing of an amperometric electrochemical
sensor placed under the skin, a wire-
less transmitter connected to the sen-
sor and a wireless receiver collecting
the sensor signals. The subcutaneous sensor was inserted about 5 mm
into the subcutaneous tissues and could be worn for up to five days be-
fore replacement. Calibration relative to capillary glucose was required
at specific times, namely, 10, 12, 24 and 72 hours after insertion. Using
the WIRED ENZYMETM technology, the sensor converted glucose con-
centration to electrical current. Once every minute the transmitter sent
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the estimate of the intersitial glucose concentration to the receiver, which
displayed the final values once every 10 minutes.

VivoMetrics Clinical LifeShirt R©

Clinical LifeShirt RF

The VivoMetrics Clinical LifeShirt RF
[Grossman, 2004] is a non-invasive
and fully-integrated physiological data
monitoring system consisting of a light-
weight shirt with embedded vital signs
sensors and a receiver/ transmitter. In
this trial heart rate, respiration rate,
skin temperature and body movements
were recorded. To measure pulmonary
function, sensors were worn around
the chest and the abdomen. A three-
lead single-channel ECG measured the
heart rate and a three-axis accelerom-
eter recorded the patient posture and
activity level.

Biological sample collection

Blood samples were collected by medical personnel during the in-hospital
visit to allow determination of blood glucose and blood insulin concentra-
tions. An intra-venous (IV) catheter was placed in the patient’s forearm
on the antecubital vein and kept patent with a 0.9% saline infusion. The
drawn samples were centrifuged for 10 minutes at 3500 [round/min] at
4 [○C]. Plasma was transferred in a secondary tube stored in a freezer at
−20 [○C] until its analysis. Blood glucose was measured on plasma sam-
ples using the Yellow Spring Instrument YSI 2300 STAT PlusTM Glucose
Analyzer [Yellow Spring Instruments, 2013] in the biochemical laboratory
of the CHU in Montpellier. Insulin was dosed on serum samples using
a radio-immunologic method. Analyses were carried out at the Nuclear
Medicine laboratory of the CHU in Montpellier for lispro [Humalog RF
2013] and glulisine [Apidra RF 2013] and at Novo Nordisk central labora-
tory in Denmark, for aspart [NovoLog RF 2013], detemir [Levemir RF 2013]
and glargine [Lantus RF 2013] analogues.
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Study protocol and experiments

The clinical study consisted of four visits: visit 0 for patients screening,
visit 1 for sensors initialization, visit 2 for 75-hours in-hospital tests, visit
3 for 7-days ambulatory conditions. Figure A.1 in Appendix A gives the
flow chart of the trial.

Visit 0

Prior to any study-related procedure, the subjects were scheduled for
an outpatient screening visit, in order to evaluate his/her eligibility
to the study participation. The investigator reviewed the subject’s past
medical files, performed a physical examination obtaining routine vital
signs including height, weight, temperature, orthostatic blood pressure
and pulse and analyzed biological analysis (blood cell-count, HbA1c, anti-
insulin antibodies, creatinine, ASAT/ALAT, β -HCG for women of child-
bearing age), the outcome of it being recorded in the clinician’s sheet.

Visit 1

Within 4 weeks of visit 0 the patient was admitted at the clinic to initialize
the Abbott FreeStyle NavigatorTM device [Abbott, 2013]. The sensor was
inserted subcutaneously and calibrated against capillary glucose from
HemoCue RF 201+ Glucose Analyzer [Hemocue, 2013] by a nurse. Although
glucose sensing is available after a 10-hours initialization period following
sensor calibration, optimal sensor signal stability and accuracy is obtained
after 24 hours. For this reason, the subject was hospitalized 48 hours after
sensor insertion, so to begin the tests with a well-calibrated device.

Visit 2

Visit 2 took place at the hospitals CHU, UNIPD and IKEM, respectively,
for a duration of 75 hours. After patient admission at 7.00 am, a
calibration of the Abbott Freestyle NavigatorTM [Abbott, 2013] against
capillary glucose was performed. In case the CGM was not operating
properly, it was replaced and the study investigations were postponed by
10 hours. Standard meals for breakfast (8.00 am), lunch (1.00 pm) and
dinner (7.00 pm) were served, the amount of administered carbohydrates
being 42, 70 and 70 grams, respectively. Blood samples were collected
by nurses to measure plasma glucose and plasma insulin concentrations:
every hour during day, every 2 hours during night, every 15 minutes
after meals for 2 hours. A specific sampling scheduled was adopted
after breakfasts: 30 min before, mealtime, 10, 20, 30, 60, 90, 120,
150, 180, 240, 300 min after, for a total of 37 blood samples per day.
During the whole 3-days-long visit, the participant was permanently
equipped with the Abbott Freestyle NavigatorTM [Abbott, 2013] and the
VivoMetrics Clinical LifeShirt RF [Grossman, 2004] devices. No specific
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intervention on usual diabetes treatment was scheduled during the
period. The patients decided their insulin needs according to the glucose
measurements from the HemoCue RF 201+ Glucose Analyzer [Hemocue,
2013] as usually in activities of daily life. As needed, particularly when
hypo- or hyperglycemia occurred, support was provided by nurses and
physicians. Table B.1 in Appendix B gives a summary of the data gathered
during this phase.

Visit 3

At 10.00 am on the third day, the in-hospital phase ended, patients
left the clinic and started a 7 days ambulatory period, continuing the
study in normal-life conditions. The subjects kept the Abbott Freestyle
NavigatorTM [Abbott, 2013] and the VivoMetrics Clinical LifeShirt RF
[Grossman, 2004] devices, using the HemoCue RF 201+ Glucose Analyzer
[Hemocue, 2013] to perform blood glucose control tests and recording
details about their diabetes management in their logbook. At the end of
the ambulatory period, all the sensors were removed from the participants
and returned back to the investigators together with the filled-in logbook,
in order to close the study. At the end of the ambulatory period, all the
sensors were removed from the partecipants and returned back to the
investigators together with the filled-in logbook, in order to close the
study.

Patients selection criteria

A total of 90 diabetic subjects, male and female adults, were included
in the DAQ trial to allow availability of data from a wide spectrum of
patients under basal-bolus regimen. Among these, a population of 14
patients was chosen (9 males and 5 females, age 45.8±12.7 [yr], disease
duration 18±11.6 [yr], BMI 23.4±2.7 [kg/m2], 10 MDI and 4 CSII, HbA1c
7.6±1 [%], total daily insulin 41.9±18.9 [IU]). The selection criteria were
the quantity of data collected (> 80% of the expected), no sensor failures,
laboratory results all available and logbook correctly filled in. Table 3.1
reports the characteristics of the selected patients. Figures 3.1 and 3.2
display the data recorded during Visit 2 for a representative MDI patient.
Data belonging to a representative CSII patient may be found, instead,
in Appendix D.

Modeling results obtained from DAQ trial Visit 2 data will be dealt with
throughout Chapters 4 and 6.
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Table 3.1 DAQ Trial. Patient characteristics

Patient ID Gender Age [yr] Duration of

disease [yr]
BMI

[kg/m2]
HbA1c[%] Therapy Total Daily

Insulin [IU]
CHU102 M 41 19 26.5 6.5 MDI 43
CHU103 M 43 43 23.7 9.1 CSII 45.6
CHU104 M 44 12 20 7.6 MDI 42
CHU105 F 49 32 24.1 7.8 CSII 53.5
CHU106 F 58 9 21.2 7.8 CSII 18.4
CHU107 M 59 16 25.3 8.9 CSII 28.9
CHU108 M 37 2 23.7 5.7 MDI 23
CHU115 F 27 10 19.7 8.5 MDI 65
CHU118 M 32 7 24.1 7.4 MDI 54
CHU119 F 50 15 19.5 7.3 MDI 10
CHU120 F 31 22 22.4 9 MDI 51
CHU121 M 39 33 23.4 6.4 MDI 38
CHU128 M 64 24 24.3 6.7 MDI 42
CHU130 M 68 9 29.4 8.8 MDI 82

MEAN±SD 45.8±12.7 18±11.6 23.4±2.7 7.6±1 41.9±18.9
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Figure 3.1 Patient CHU102. DAQ trial, Visit 2. Top Glucose concen-
tration [mg/dL]: interstitial (blue), plasma (red), finger stick (cyan and
black); Upper Center Meal intake [g]: carbohydrates (blue), lipids (red),
proteins (yellow); Lower Center Insulin doses [IU]: basal (blue), bolus
(red), correction (green); Bottom Blood insulin concentration [µU/mL]:
basal (blue), bolus (red), total (cyan) vs. time [min]
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3.3 DIAdvisor I trial

Equipment

DIAdvisorTM platform

The DIAdvisorTMplatform comprised a viliv S5 ultra-mobile pocket com-
puter (UMPC) [viliv, 2013] connected to a laptop through a wifi network,
a CGM device, namely the Dexcom RF SEVEN RF PLUS Continuous Glu-
cose Monitor [Dexcom, 2013] connected to the UMPC via USB and a vital
signs monitor, the SensiumTM Life Pebble which streamed the collected
data wirelessly to a dedicated USB network adapter plugged in to the viliv
S5. Figure 3.5 reproduced the platform available to the patients. Meal and
insulin informations were entered by the subject to the UMPC, thanks to
the Man-Machine Interface (MMI) developed by the Consortium. Blood
glucose predictions and therapy advices calculated by the system were
shown to the patients only during dedicated experiments. Furthermore,
all the stored data were sent to a laptop used by a clinician for supervi-
sion. Figures 3.3, 3.4 give examples of the user interface of the patient
application.

Dexcom R©SEVEN R©PLUS [Dexcom, 2013]

http://www.dexcom.com

The Dexcom RF SEVEN RF PLUS is a
CGM system consisting of a subcuta-
neous sensor, a transmitter fixed on
the sensor and monitor which receives
transmitter signal and provides real-
time glucose values [Dexcom, 2013].
The sensor probe is 13 mm long and
is positioned under the skin. It is placed with the help of an inserter
and can be use for up to seven days. Using current measurements, the
sensor utilizes a working electrode coated with a sensing element, the
WIRED ENZYMETM, that converts glucose concentration to electrical cur-
rent. The transmitter snaps into the sensor and sends every 5 minutes
glucose information to the receiver, using a secured wireless connection.
The receiver has a large screen which displays glucose values and glu-
cose trends. It has customizable alarms that can inform patient about
potential hypo/hyperglycemia. The receiver stores up to 30 days of data.
Once installed, the Seven RFPlus system needs a 2-hour period of initial-
ization before providing any continuous glucose data. The sensor has to
be calibrated 2 hours after the insertion, and at least every 12 hours (2
calibrations per day). Calibration values are entered manually by the pa-
tient when performing a capillary glucose control. During this trial the
receiver was connected to the UMPC to allow communication with the
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3.3 DIAdvisor I trial

DIAdvisorTM platform for data storage and displaying of glucose trends
to the patient.

Figure 3.3 The DIAdvisorTM tool patient application user interface. The
display shows past glucose trends, the current glucose measurement and
a projected future trajectory within specified uncertainty limits. On the
upper left corner vital signs may be followed. The buttons on the bottom
of the screen are used to operate the system.

Figure 3.4 The DIAdvisorTM tool patient application user interface. A
bolus advice.
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SensiumTM Life Pebble [SensiumTM Life Pebble]

http://www.toumaz.com/

The SensiumTM Life Pebble [SensiumTM
Life Pebble] is an ultra small, ultra-low
power device able to monitor continuously
heart rate and physical activity thanks to
a 3-axis accelerometer. In the trial it was
attached to the body around the torso. It
is mentioned here for completeness, even
though data were not used for the thesis
scope.

Biological sample collection

During this clinical study, blood sample collection was performed during
Visit 2 and Visit 3. Blood glucose reference value was measured on
plasma samples using a YSI 2300 STAT PlusTM Glucose Analyzer [Yellow
Spring Instruments, 2013]. Analysis were carried out in the biochemical
laboratory of the CHU in Montpellier.

Study protocol and experiments

The clinical study consisted of four visits: visit 0 for patients screening
whereas visit 1, visit 2 and visit 3 for 52-hours and 76-hours, respectively,
in-hospital visit. Figure A.2 in Appendix A gives the flow chart of the
trial, while Table B.2, Appendix B summarizes the data collected.

Visit 0

Screening visit. The same procedure actuated in the DAQ trial was
followed.

Visit 1 (data collection)

Visit 1 took place within 4 weeks of visit 0 at the CHU in Montpellier
where subjects were admitted for 52 hours, from 10.00 am on day 1 to
2.00 pm on day 3. Primary objective of this visit was to test data collection
by the DIAdvisor UMPC. Upon arrival, at 10.00 am (±15 min) the
SensiumTM Life Pebble electrodes were placed on the chest and connected
to the wireless transmitter, the CGM device was inserted into the patient’s
skin and calibrated against fingerstick blood glucose assessed by the
HemoCueTM meter. Thereafter, at 12.00 am (±15 min) data collection
started for a 48 hour-period. Patients were served standardized meals
for breakfast at 8.00 am, lunch at 1.00 pm and dinner at 7.00 pm, the
amount of carbohydrate being 40, 70 and 70 [g], respectively. During the
admission the subjects were asked to perform at least 6 blood glucose
measurements per day using the HemoCueTM analyzer and to base their
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decision on how to modulate insulin therapy on the results given by the
fingerstick measure. At the end of the visit all the sensors were removed
from the patients.

Visit 2 (testing of blood glucose prediction)

Patients were admitted at the CHU in Montpellier for a 76 hour-period
starting from 10.00 am on day 1 to 2.00 pm on day 4. The same schedule
followed for visit 1 was applied, the only difference being blood sample
collection in view of YSI measurements from 12.00 am on day 2 every hour
all day and every 10 minutes during the 2 hours following meal intake.
Objective of the visit was testing blood glucose prediction performed by
the DIAdvisorTM first prototype.

Visit 3 (testing of therapy advices)

Patients were admitted for a 76 hour-period starting from 10.00 am on
day 1 to 2.00 pm on day 4. All the Consortium clinics participated in
this phase, whose protocol is the same as the one for visit 2. However,
objective of this trial was the testing of therapy advices suggested by the
DIAdvisorTM first prototype. On the last day at 2.00 pm (± 15 min), all
the sensors were removed from the patient for closure of the study.

3.4 Patient selection criteria

A population of 8 patients was chosen (6 males and 2 females, age
33.7±15.2 [yr], BMI 24.3±3.7 [kg/m2], all CSII). Table 3.2 reports their
characteristic. The selection criterium was collection by the DIAdvisor
platform of at least 85% of the expected Dexcom RF samples. Results
obtained from DIAdvisor 1 trial data will be shown in Chapter 4.

Table 3.2 DIAdvisor 1 Trial. Patient characteristics

Patient ID Gender Age [yr] BMI [kg/m2] Therapy Visit

CHU108 M 28 24.8 CSII 3
CHU112 M 24 28.3 CSII 2
CHU121 M 38 24.1 CSII 1
CHU130 M 69 31.2 CSII 2
IKEM305 F 34 20.2 CSII 3
IKEM308 M 31 24 CSII 3
IKEM320 M 22 21.8 CSII 3
IKEM327 F 24 20.7 CSII 3

MEAN±SD 33.7±15.2 24.3±3.7

41



Chapter 3. Experimental Conditions and Clinical Data Acquisition

3.5 DIAdvisor II trial

Equipment

To the purpose of data collection during DIAdvisor II trial, the same
devices used in DIAdvisor I trial were adopted.

Biological sample collection

Blood samples were collected by medical personnel during the in-hospital
visits in view to YSI 2300 STAT PlusTM Glucose Analyzer [Yellow Spring
Instruments, 2013] blood glucose assays. Analysis were carried out in the
biochemical laboratory of the CHU in Montpellier.

Study protocol and experiments

The trial comprised a series of experimental sessions for a duration of
up to 9 weeks per patient, involving CHU, UNIPD and IKEM clinics.
In particular, to the purpose of separately estimating meal and insulin
impact on blood glucose dynamics, overcoming therefore the lack of input
excitation observed in almost all the data sets treated in the literature
[Finan et al., 2009] a novel meal test was carried out as outlined in the
following subsections. Figure A.3 in Appendix A gives the flow chart of
the trial.

Visit 0

Screening visit. The same procedure actuated in the previous trials was
followed.

Visit 1

Within 7 days of Visit 0 an outpatient visit was scheduled for insertion
of the Dexcom RF SEVEN RFPLUS [Dexcom, 2013] sensor, starting a
14 ± 3 days ambulatory period. Training on how to use the device,
interpret its values to take appropriate decisions as well as assistance
in performing the first calibration with the HemoCue RFGlucose 201+
Analyzer [Hemocue, 2013] was provided by the study personnel during
the visit. Patients were instructed to calibrate the sensor at least twice
a day or when required by the system and in case of sensor failure or
at the end of sensor life (around 7 days) they were asked to remove the
sensor and to insert a new one in order to continue glucose monitoring.
In addition, patients were requested to record on their logbook all self-
measured glucose values, insulin doses, carbohydrate contents of meals,
hypoglycemia treatments, sensor replacements, calibrations and any other
event related to diabetes until the next visit.
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3.5 DIAdvisor II trial

Visit 2 (meal test)

Visit 2 took place at the clinical investigation center. Patients were
admitted to the hospital for a 6.5 hours observation period, from 6.30
am to 1.00 pm, fasting from the midnight, equipped with a Dexcom RF
SEVEN RF PLUS [Dexcom, 2013] continuous glucose monitoring sensor
(CGMS) for interstitial glucose samples and a HemoCue RFGlucose 201+
Analyzer [Hemocue, 2013] for capillary blood glucose measurements. After
arrival, a recalibration of the CGM system was performed by the subjects
using the HemoCue RFmeter, in order to be able to start data collection
at 7.00 with a well calibrated glucose monitoring device. A standardized
breakfast, the amount of carbohydrate being 40 [g], was served at 8.00 am
and fully ingested within 20 minutes. The patients calculated and noted
on their personal logbook the amount of insulin needed to cover this meal,
based on the outcome of the HemoCue RFglucose meter at the start of
the meal. However, contrary to standard practice, the insulin bolus was
administered 2 hours later. No other meals nor snacks were consumed
until 1.00 pm. Blood samples were drawn every 10 minutes for the 3
hours following the meal intake and every 20 minutes otherwise from
7.00 am (±15 min) to 1.00 pm (± 15 min) to assess glucose concentration.
Representative patients data are shown in Chapter 6, Figs. 8.4-8.6 and in
Appendix D Figs. D.22, D.24, D.26. At the end of the meal test, patients
kept the CGM device in place for continuous glucose monitoring.

Visit 3

Patients were admitted at the investigation center for a 76 hours period
starting from 10.00 am on day 1 to 2.00 pm on day 4. At 10.00 am (± 15
min), the CGM device was connected to the UMPC platform, thereafter
the SensiumTM Life Pebble was placed on the patient’s chest. Capillary
blood glucose values, insulin delivery, meal contents and exercise details
were entered in the UMPC application by the subjects throughout the
whole admission period. Blood samples were drawn from 12.00 am (±
15 min) on day 1 to 12.00 (± 15 min) on day 4 at the rate of every
hour during the day and every 15 minutes during the 2 hours following
the start of a meal. During the 3 days of admission, patients were served
standardized meals for breakfast at 8.00 am (± 15 min), lunch at 1:00 pm
(± 15 min) and diner at 7.00 pm (± 15 min), the amount of carbohydrates
administered being 40, 70 and 70 grams, respectively. During the visit,
three situations were scheduled:

• On day 1 at 4:00 pm (± 15 min) patients performed a 30-minute
exercise on a cyclo-ergometer followed by a one-hour rest period.
Blood samples were collected every 5 minutes during the duration
of the exercise and every 10 minutes during the hour rest.
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• On day 2 at 1:00 pm (± 15 min), a 100 [g] carbohydrates content
lunch was served.

• On day 3 a meal test as in Visit 2 was performed. Blood samples
were collected every 15 minutes during the 4 hours following the
start of the meal to allow tight follow-up of blood glucose during
this period.

In case of admission with disabled DIAdvisor algorithms, glucose pre-
dictions and therapy advices were not displayed. Patients decided their
need of insulin according to the results given by the HemoCue RFGlucose
Analyzer [Hemocue, 2013] and the Dexcom RF SEVEN RF PLUS [Dex-
com, 2013] CGM trends. In case of admission with activated DIAdvi-
sor algorithms, glucose predictions and therapy advices were displayed
to the patient. Hence, they were asked to follow the advices suggested
by DIAdvisorTMsystem according to their own judgement. In case of any
doubt with the predictions displayed or the advices suggested, the patients
were invited to ask study personal and/or the study physician for help.
During the admission, CGM calibrations were performed in the morn-
ing before and 2 hours after the breakfast and in the evening around
2 hours after dinner. On the last day at 12.00 am, all the devices were
disconnected.

Figure 3.5 DIAdvisor I and II trials equipment. The ultra mobile PC
(center) is connected via USB to the Seven RFPlus receiver (left) and the
SensiumTM Life Pebble (bottom) through its dedicated adapter.
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Table 3.3 DIAdvisor II trial. Patient characteristics

Patient ID Gender Age [yr] Duration of

disease [yr]
BMI

[kg/m2]
HbA1c[%] Therapy Total Daily

Insulin [IU]
CHU101 M 25 15 23.7 9 MDI 50
CHU107 M 62 19 24.3 8.9 CSII 30.7
CHU117 M 61 42 31.1 8 CSII 53
CHU118 M 35 10 24.6 7.2 MDI 46
CHU125 F 69 25 28.7 7.6 MDI 25
CHU136 M 40 9 26.8 9.6 MDI 29
CHU138 M 46 33 22 7.5 CSII 28
CHU143 M 36 26 23.4 7.5 CSII 36.4
CHU144 F 38 31 22.6 7.2 CSII 30
CHU145 M 34 9 23 7.1 CSII 37
UNIPD201 M 28 7 21.7 7.1 MDI 55
UNIPD217 M 46 14 28.4 9.3 MDI 60
UNIPD219 M 48 36 21.1 7.6 MDI 40
UNIPD233 M 36 33 26.5 7.3 MDI 57
UNIPD234 M 24 11 21.7 7.1 MDI 55
IKEM302 M 29 10 23.5 5.7 CSII 60
IKEM306 M 35 7 21.8 5.9 CSII 31
IKEM309 F 51 11 23.5 7.4 MDI 31
IKEM311 M 44 38 24.5 6.8 MDI 48
IKEM324 F 28 16 21.5 6.4 CSII 36
IKEM326 F 50 12 23.9 8.2 CSII 29
IKEM330 M 64 18 25 5.4 MDI 48

MEAN±SD 42.2±13.1 18.36±11.5 24.2±2.6 7.4±1.12 41.5±11.7
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3.6 Patients selection criteria

60 diabetic subjects, male and female adults, were recruited at this stage.
A portion of them failed to comply with the protocol and were therefore
disregarded for our purposes. Among those following the protocol, a total
of 22 patients was selected on the basis of the Dexcom RFSEVEN RFPLUS
correctness (17 males and 5 females, age 42.2±13.1 [yr], disease duration
18.4±11.5 [yr], BMI 24.2±2.6 [kg/m2], 12 MDI and 10 CSII, HbA1c7.4±1.1
[%], total daily insulin 41.5±11.7 [IU]). Patient informations are shown in
Table 3.3. In this thesis the meal test data from Visit 2 and from day 3
of Visit 3 will be used in Chapter 8.

3.7 Blood glucose vs. interstitial glucose

Continuous glucose monitors assist the patients in the treatment of
diabetes by providing frequently sampled blood glucose data. Studies have
documented the benefits of CGM [Deiss et al., 2006], [Garg et al., 2006]
and shown the potential to dramatically transform the control of the
disease. However, it is important to remember that CGM devices measure
glucose concentration in a different compartment–the interstitium, i.e., in
between the body cells. A current, proportional to the interstitial glucose
(IG) concentration is converted into a glucose level by a calibration step
which exploits some blood glucose (BG) reference typically from self-
monitored capillary glucose samples. Movements of nutrients, oxygen
and glucose from the blood into the cells happen across the interstitium;
therefore, during times of rapid change in blood glucose, e.g. after eating,
dosing insulin, or exercising, differences in glucose measurement between
interstitial fluid and blood measurements are expected to be observed.
These deviations are physiological and reflect the time it takes for glucose
to move between different compartments [Garg et al., 2010]. The BG-
to-IG kinetics acts as a low-pass filter [Breton and Kovatchev, 2008],
[Keenan et al., 2009] and introduces an attenuation in amplitude and
a distortion in phase, which is usually well observable during dynamic
phases. At other times, however, sensor measurements deviate form
reference glucose because of inaccurate calibration, sensor misplacement
and other artifacts. While the accuracy of CGM is increasing, it is still
below the accuracy of direct BG readings [Clarke and Kovatchev, 2007],
[Barry Keenan et al., 2009], [Garg et al., 2009], [Facchinetti et al., 2010],
[Leelarathna et al., 2013].
Within the DIAdvisorTM project interstitial measurements with the

FreeStyle NavigatorTM and the DexCom RFSEVEN RFPLUS devices as well
as capillary glucose samples with the HemoCueTM and blood glucose
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Figure 3.6 Patient CHU128. DAQ trial, Visit 2. Glucose concentration
[mg/dL] vs. time [min]: interstitial CGM measurements (blue) vs. plasma
YSI measurements (red). Top day 1; Center day 2; Bottom day 3

measurements assessed by a YSI [Yellow Spring Instruments, 2013] were
collected. The availability of such records allowed comparison between the
IG data and the corresponding BG. It was noted that in 40-50% of the
FreeStyle NavigatorTM traces gathered during the DAQ trial, the sensor
was accurate at low glucose levels but inaccurate at high levels, a fact
that cannot be explained by the plasma-to-interstitium dynamics only
and may be explained by poor/difficult device calibration. An example of
such situation is shown in Figure 3.6. Overall, the Dexcom RFdata seemed
not to be affected by such an issue. The calibration problem with CGM
devices is well known in the literature and some techniques have been
proposed to correct the sensor signal provided by the device by exploiting
information contained in the SMBG references which the patient collects
during the day in parallel to CGM [King et al., 2007], [Facchinetti et
al., 2007], [Bequette, 2010], [Perez-Gandia et al., 2010], [Facchinetti et
al., 2013]. In this thesis we do not explicitly address the sensor model
issue. Instead, we rely upon the Yellow Spring Instrument [Yellow Spring
Instruments, 2013] assays when available and only in Chapter 6 we apply
the offline recalibration method in [King et al., 2007] to the FreeStyle
NavigatorTM time series.
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Accuracy of continuous glucose monitors

As already mentioned, continuous subcutaneous glucose monitors are
less accurate than capillary glucose measurements. In this subsection
we evaluate the mismatch between IG and BG for the data used in the
thesis. Numerical accuracy was assessed pointwise by:

• absolute difference (AD) [mg/dL]: AD(k) =p yBG(k) − yIG(k) p

• relative difference (RD): RD(k) =
(yBG(k) − yIG(k))

yBG(k)

• International Organization for Standardization (ISO) [International
Organization for Standardization (ISO), Publication 15197, 2003]
criteria.

where yBG(⋅) denote the YSI [Yellow Spring Instruments, 2013] blood
glucose measurement and yIG(⋅) stands for the interstitial glucose sensor
measurement. Clinical accuracy was evaluated with Clarke error grid
analysis [Kovatchev et al., 2004]. Numerical and clinical accuracy of the
CGM devices with respect to the glucose time-series used in this thesis
are given in Table 3.4, 3.5, 3.6 and 3.7.
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Table 3.4 Numerical and Clinical Accuracy of CGMS measurements.
DAQ trial, Visit 2.

Patient ID AD [mg/dL] RD ISO [%] CG-pEGA [%] CG-rEGA [%]
Mean Median Mean Median ∗ A B A B

CHU102 19.81 15 0.07 0.07 82.07 81.65 16.51 83.33 9.25
CHU103 13.50 12.50 -0.07 -0.05 89.47 84.25 10.18 84.11 15.88
CHU104 18.96 17 -0.06 -0.06 80.76 77.98 19.26 79.62 14.81
CHU105 15.98 13 -0.05 -0.05 87.50 81.73 12.50 77.66 17.47
CHU106 32.79 33 -0.20 -0.20 46.93 44.95 47.70 75.92 12.96
CHU107 31.09 26.50 -0.03 -0.03 62.96 61.81 36.36 66.05 21.10
CHU108 13.25 9.50 -0.03 -0.03 83.83 81.48 14.81 81.30 14.01
CHU115 19.65 16.5 0.05 0.07 84.76 84.90 15.09 84.76 5.71
CHU118 21.98 17 0.01 0.04 74.22 69.09 22.72 81.65 12.84
CHU119 26.56 20 0.08 0.08 68.80 68.80 30.27 74.07 18.51
CHU120 26.72 25 -0.07 -0.01 73.26 69.15 26.16 76.41 18.86
CHU121 25.08 19 -0.05 0.05 72.72 68.18 24.54 77.98 14.67
CHU128 39.37 34 0.20 0.20 47.43 47.43 48.71 79.22 18.18
CHU130 25.39 19.50 -0.04 -0.05 81.69 78.20 14.10 77.92 16.88

∗ CGM readings within [20%] from reference yBG when yBG ≥ 75[mg/dL]
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Table 3.5 Numerical and Clinical Accuracy of CGMS measurements.
DIAdvisor I trial

Patient ID AD [mg/dL] RD ISO [%] CG-pEGA [%] CG-rEGA [%]
Mean Median Mean Median ∗ A B A B

CHU108 14.50 10.46 0.13 0.09 76.19 82.35 17.64 96.96 3.03
CHU112 12.53 7.45 0.05 0.02 83.33 85.71 14.28 90 10
CHU121 26.23 19.93 0.15 0.13 58.62 66.66 33.33 100 0
CHU130 17.05 8.97 -0.05 -0.01 70.58 66.66 22.22 96.15 0
IKEM305 13.82 8.68 0.02 0.009 87.50 90.32 9.67 93.33 6.67
IKEM308 17.91 16.31 0.11 0.08 80 79.16 20.83 91.30 0
IKEM320 33.74 15.09 0.15 0.08 68.96 69.44 22.22 74.28 11.42
IKEM327 10.20 10.08 0.03 0.02 100 95.83 0 95.65 4.34

∗ CGM readings within [20%] from reference yBG when yBG ≥ 75[mg/dL]
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Table 3.6 Numerical and Clinical Accuracy of CGMS measurements.
DIAdvisor II trial, Visit 2, meal test.

Patient ID AD [mg/dL] RD ISO [%] CG-pEGA [%] CG-rEGA [%]
Mean Median Mean Median ∗ A B A B

CHU101 18.59 18 0.06 0.07 100 100 0 96.15 3.84
CHU107 39.5 45.5 -0.20 -0.24 28.57 37.5 62.5 86.95 13.04
CHU117 20.48 21 0.10 0.09 100 96.29 3.70 96.15 3.84
CHU118 12.07 10.50 0.05 0.04 100 100 0 88 4
CHU125 8.29 7 -0.08 -0.08 100 95.83 4.16 60.86 39.13
CHU136 22.12 21 0.15 0.15 86.95 88 12 83.33 12.5
CHU138 12.32 13 -0.06 -0.06 96 96 4 100 0
CHU143 14.61 13 -0.05 -0.05 100 100 0 88 12
CHU144 17.20 17 0.10 0.08 96 96 4 91.66 4.16
CHU145 22.59 21 0.08 0.09 100 100 0 100 0
UNIPD201 26.44 33 -0.14 -0.16 84 85.18 14.81 88.46 11.53
UNIPD217 36.74 47 -0.16 -0.19 55.55 55.55 44.44 88.46 11.53
UNIPD219 50.25 44 -0.18 -0.17 48 51.85 48.14 57.69 26.92
UNIPD233 19.75 21.5 0.07 0.08 100 100 0 73.91 13.04
UNIPD234 18.12 14.5 0.04 0.03 100 100 0 73.91 13.04
IKEM302 21.29 21.89 -0.23 -0.18 72 53.84 30.76 100 0
IKEM306 9.25 7.5 -0.07 -0.08 100 100 0 100 0
IKEM309 11.06 10.55 0.01 -0.01 100 100 0 75 12.50
IKEM311 17.86 19.15 -0.08 -0.10 100 100 0 79.41 14.70
IKEM324 31.52 30 0.18 0.15 73.91 73.91 26.08 81.81 18.18
IKEM326 14.47 14 0.05 0.05 95.65 86.36 13.63 72.72 18.18
IKEM330 8.43 6.15 -0.03 0 100 100 0 86.36 13.63

∗ CGM readings within [20%] from reference yBG when yBG ≥ 75[mg/dL]51
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Table 3.7 Numerical and Clinical Accuracy of CGMS measurements.
DIAdvisor II trial, Visit 3, meal test.

Patient ID AD [mg/dL] RD ISO [%] CG-pEGA [%] CG-rEGA [%]
Mean Median Mean Median ∗ A B A B

CHU101 n/a n/a n/a n/a n/a n/a n/a n/a n/a
CHU107 n/a n/a n/a n/a n/a n/a n/a n/a n/a
CHU117 34.46 40 0.01 0.03 93.33 86.50 13.5 84 6
CHU118 43.31 42 0.01 0.07 56.25 85.18 14.81 65.38 26.92
CHU125 n/a n/a n/a n/a n/a n/a n/a n/a n/a
CHU136 n/a n/a n/a n/a n/a n/a n/a n/a n/a
CHU138 47.17 49 -0.19 -0.17 87.29 12.71 67.5 20.5
CHU143 36.17 33.91 -0.03 -0.06 78.12 82.75 17.24 32.14 35.71
CHU144 n/a n/a n/a n/a n/a n/a n/a n/a n/a
CHU145 n/a n/a n/a n/a n/a n/a n/a n/a n/a
UNIPD201 49.38 55.06 -0.15 -0.17 64.28 64.28 35.71 53.84 30.76
UNIPD217 26.19 18.49 -0.01 -0.1 92.85 92.85 7.14 74.07 18.51
UNIPD219 36.62 34.78 -0.06 -0.01 83.33 67.74 29.03 46.66 23.33
UNIPD233 25.14 26.5 -0.01 -0.01 92.85 75.24 24.76 92.3 0
UNIPD234 34.23 30 -0.06 -0.02 82.35 71.34 28.66 66.5 24.5
IKEM302 18.99 11.24 0.03 0.05 84.61 88.09 11.90 60.97 26.82
IKEM306 42.54 43.29 0.05 0.06 76.66 45.86 30.01 68.23 31.77
IKEM309 n/a n/a n/a n/a n/a n/a n/a n/a n/a
IKEM311 n/a n/a n/a n/a n/a n/a n/a n/a n/a
IKEM324 10.64 11 -0.08 -0.11 97.95 96.66 3.33 89.65 10.34
IKEM326 16.27 14.44 0.02 0.02 90.14 100 0 84.78 10.86
IKEM330 n/a n/a n/a n/a n/a n/a n/a n/a n/a

∗ CGM readings within [20%] from reference yBG when yBG ≥ 75[mg/dL]
n/a: not available data set
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3.8 Discussion and conclusions

3.8 Discussion and conclusions

A wide range and large amount of bio-clinical information linked or
potentially involved in blood glucose control were collected within the
project DIAdvisorTM [DIAdvisor, 2012]. Data acquisition served different
purposes suited to the project needs and were exploited accordingly. In
particular, DAQ trial Visit 2 data were used to build models and predictors
for future integration in the first prototype of the tool (see Chapters 4
and 6 for results). Albeit being in a controlled environment, the subjects
participating in the study experienced both hypo- and hyperglycemic
events. However, data were not sufficiently excited. Indeed, as it is
common practice, the majority of the subjects bolused just before being
served the meal. Since meal intake and the insulin injections have
opposite effects on the blood glucose level, each inputs contribution is
difficult to distinguish when they are applied simultaneously. In order to
overcome this limitation, data from the meal test in DIAdvisor II trial,
Visit 2 and Visit 3 were chosen to improve the models (see Chapter 8).
Unfortunately, most of the collected data could not be represented, due
to malfunctioning or failure of devices, patients not complying with the
protocol (e.g., patient not wearing the vitals sign sensors as expected,
patient taking insulin at the same time of breakfast in the meal test) too
many missing meals and insulin injections in the subject diary.
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4

Modeling of the

Gluco-regulatory System

4.1 Introduction

The physiology of glucose metabolism in diabetes can be thought of as
having one output, i.e., glucose level in the bloodstream yBG , and two
main inputs, i.e., carbohydrate intake ucarb and administered insulin
Iir. Further, given that physical activity has been proven to decrease
plasma glucose levels due to increased glucose uptake by the exercising
muscles [Williams and Pickup, 1992], the effect of exercise, i.e., increased
heart rate, respiration rate and body movements, is therefore to be
regarded as an additional input or load disturbance. Hence, for modeling
purposes, based on current knowledge of the overall physiological model,
four subsystems have to be considered (Fig. 4.1):

• the glucose subsystem (GS), describing glucose intestinal absorption
following a food intake;

• the insulin subsystem (IS), accounting for the pharmacokinetics of
the exogenously administered insulin;

• the physical activity and energy expenditure subsystem (EES),
measuring the rate of physical activity intensity;

• the glucose-insulin interaction subsystem (GIIS).

In this chapter, compartment models from the literature are exploited to
describe the GS and IS, while vital signs are used to account for the EES.
Data-based system identification is used, instead, to model the GIIS.
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4.2 Glucose subsystem

Carbohydrates Insulin Activity

GS IS EES

yBG

GIIS

û� ûi ûe

Figure 4.1 Physiological model describing diabetic blood glucose dynam-
ics. Notation: GS glucose subsystem, IS insulin subsystem, EES energy
expenditure subsystem, GIIS glucose insulin interaction subsystem; û�
glucose rate of appearance following a meal, ûi insulin in plasma after
subcutaneous injection, ûe energy expenditure, yBG blood glucose

4.2 Glucose subsystem

Glucose transit through the stomach and upper small intestine was
described by a nonlinear chain of three compartments, where the first
two compartments represent the stomach (solid and liquid phases) and
the third one depicts the intestine. The left plot in Fig. 4.2 illustrates the
model. Equations are [Dalla Man et al., 2006] :

qsto(t) =qsto1(t) + qsto2(t)
q̇sto1(t) = − k�ri ⋅ qsto1(t) + ucarb ⋅ δ (t), qsto1(0) = 0
q̇sto2(t) = − kempt ⋅ qsto2(t) + k�ri ⋅ qsto1(t), qsto2(0) = 0
q̇�ut(t) = − kabs ⋅ q�ut(t) + kempt ⋅ qsto2(t), q�ut(0) = 0

û�(t) =
f ⋅ kabs ⋅ q�ut(t)

mb
, u�(0) = 0

(4.1)

where û� [mg/kg/min] denotes the rate of appearance of glucose in
plasma, qsto1 [mg] and qsto2 [mg] are the amounts of carbohydrates in the
stomach (solid and liquid phase, respectively), ucarb [mg] is the amount
of ingested carbohydrates, q�ut [mg] is the carbohydrate mass in the
intestine, k�ri is the rate of grinding, kempt the rate of gastric emptying, mb
[kg] the subject’s body weight, kabs the rate of absorption and f the fraction
of intestinal absorption that actually appears in plasma. The rate of
gastric emptying was a non-linear function of the amount of carbohydrates
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Chapter 4. Modeling of the Gluco-regulatory System

in the stomach qsto according to the following relationship:

kempt(qsto) = kmin +
kmax − kmin

2
⋅

⋅ {tanh[α (qsto − b ⋅ D)] − tanh[β ((qsto − c ⋅ D)] + 2}
(4.2)

α = 5
2 ⋅ D ⋅ (1− b) , β = 5

2 ⋅ D ⋅ c
(4.3)

Dalla Man and co-workers provided us with the mean population values
for the parameters appearing in Eqs. 4.1, 4.2, 4.3 used thoughout the
thesis. Table 4.1 reports such values.

qsto1 qsto2

q�ut

ucarb

kempt(qsto)

plasma

k�ri

0 100 200 300
0

2

4

6

8

10

Time [min]

û
�
[m
g/
kg
/m
in
]

Glucose rate of appearance

Figure 4.2 Left Glucose intestinal absorption model [Dalla Man et
al., 2006]. Right Glucose rate of appearance û� after ingestion of 40 [g]
carbohydrate by a patient with mb=65 [kg] at time t = 0, simulated with
the model in Eq. (4.1) and parameters in Table 4.1

Table 4.1 Parameter values in the glucose intestinal absorption model

Parameter Value Measurement Unit

k�ri 0.0558 [min−1]
kmax 0.0558 [min−1]
kmin 0.0080 [min−1]
kabs 0.0568 [min−1]
b 0.82 dimensionless
c 0.01 dimensionless
f 0.9 dimensionless
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4.3 Insulin subsystem

4.3 Insulin subsystem

The insulin flow s(t) entering the bloodstream from the subcutaneous
depots in the diabetic subject is described by a subcutaneous insulin
infusion model, whose model equations are:

İsc1(t) = − (kd + ka1)Isc1(t) + Iir(t), Isc1(0) = Isc1b
İsc2(t) =kd Isc1(t) − ka2 Isc2(t), Isc2(0) = Isc2b
s(t) =ka1 Isc1(t) + ka2 Isc2(t)

(4.4)

with Isc1, Isc2 [pmol/kg] the amount of nonmonomeric and monomeric in-
sulin in the subcutaneous space, respectively, kd [min−1] the rate constant
of insulin dissociation, ka1 [min−1] and ka2 [min−1] the rate constants of
nonmonomeric and monomeric insulin absorption, respectively, and Iir
[pmol/kg/min] the exogenous insulin infusion rate. The insulin flow s(t)
which entered the bloodstream is degraded in liver and periphery accord-
ing to the model equations [Ferrannini and Cobelli, 1987]:

İp(t) = − (m2 +m4)Ip(t) +m1 Il(t) + s(t), Ip(0) = Ipb
İl(t) = − (m1 +m3)Il(t) +m2 Ip(t), Il(0) = Ilb

ûi(t) =
Ip(t)
Vi

(4.5)

where Ip [pmol/kg] and Il [pmol/kg] are insulin masses in plasma and
liver, respectively, Vi [L/kg] is the distribution volume of insulin, while
ûi [pmol/L] accounts for the total plasma insulin concentration. m1 is the
rate of hepatic clearance,m2,m3,m4 [min−1], instead, are rate parameters
as follows:

m2 =
3
5

ICL

HEb(Vimb)

m3 =m1
HEb

1− HEb
m4 =

2
5
ICL

Vimb

(4.6)

where HEb [dimensionless] is the basal hepatic insulin extraction, while
ICL [L/min] is the insulin clearance. At steady-state

0 =− (kd + ka1)Isc1b + Iirb
0 =kd Isc1b − ka2 Isc2b
sb =ka1 Isc1b + ka2 Isc2b

(4.7)
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so that the basal value of insulin in the subcutaneous compartments, i.e.,
Isc1b and Isc2b is:

Isc1b =
Iirb

kd + ka1
Isc2b =

kd

ka2
⋅ Isc1b

(4.8)

and sb = Iirb. Further,

0 =− (m2 +m4)Ipb +m1 Ilb + sb
0 =− (m1 +m3)Ilb +m2 Ipb

(4.9)

leading to the expressions for the amount of insulin in the liver compart-
ment at basal state:

Ilb = Ipb
m2

m1 +m3
(4.10)

and the amount of insulin in plasma at basal steady state:

Ipb =
Iirb

m2 +m4 −
m1m2

m1 +m3
(4.11)

Model parameters used in the thesis were provided by Dalla Man and
co-workers and are given in Table 4.2.
Figure 4.4 shows the filtered inputs for the representative patients.
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Figure 4.3 Left Insulin pharmacokinetics model [Kovatchev et al.,
2008b]. It accounts for both slow- and fast-acting insulin. Compartments
sc1 and sc2 represents the subcutaneous insulin infusion module. Plasma
insulin concentration: total ûi [µU/mL] (red), slow-acting (blue) and fast-
acting (green) resulting from a basal dose of 20 [IU] at t=0 and a bolus
of 5 [IU] at t = 240 [min], taken by a patient with mb= 65 [kg], simulated
with the model in Eqs. (4.4)-(4.5) and parameters in Table 4.2
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4.4 Energy expenditure subsystem

Table 4.2 Parameter values for the subcutaneous insulin infusion model

Parameter Fast insulin Slow insulin Unit

ka1 0.004 0.0002 [min−1]
ka2 0.0182 0.00091 [min−1]
kd 0.0164 0.00164 [min−1]
m1 0.1766 0.1766 [min−1]
Vi 0.05 0.05 [L/kg]
ICL 1.1069 1.1069 [L/min]
HEb 0.6 0.6 dimensionless

4.4 Energy expenditure subsystem

Physical activity causes changes in the body, including altered blood
tissue volumes, increased tissue blood flow [Chapman and Mitchell, 1965],
increased heart rate and oxygen consumption [Robergs and Roberts,
2000], increased glucose uptake by the exercising muscles [Ahlborg et
al., 1974], and increased glucose production by the liver [Wahren et al.,
1971]. Incorporating such effects into a glucose metabolism model would
therefore provide improvements in the description of glucose dynamics
in patients during exercise. However, during daily life activities physical
exercise is light or absent and the above mentioned effects may not be
observed. A relevant question is, then, whether heart rate and respiration
rate contribute in some way to the description of blood glucose dynamics
during daily life. In order to address this question in the thesis, the heart
rate and respiration rate data collected with the VivoMetrics Clinical
LifeShirt RF worn by the patients were used as additional input:

ûe = [Hr Rr]

where Hr denotes the heart rate and Rr the respiration rate.

4.5 Notation

In the following, let us denote with ui plasma insulin concentration and
with u� plasma glucose rate of appearance following a carbohydrate
intake, while with ûi and û� the predicted plasma insulin and the
predicted rate of appearance, respectively, obtained with models in Eqs.
4.1, 4.5.
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û
�
[m
g/
kg
/m
in
]

Glucose rate of appearance

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

Time [min]

[IU
]

Insulin doses

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

20

40

60

Time [min]

u
i,
û
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Figure 4.4 Patient CHU0102 data vs. time [min]. Top Meal intake:
carbohydrates (blue), lipids (red), proteins (yellow); Upper Center Glucose
Rate of appearance in plasma after a meal û�; Lower Center Insulin doses:
basal (blue), bolus (red), correction (green); Bottom Total blood insulin
concentration: interpolated ui (solid black), blood samples (cyan), from
physiological model ûi (dashed black)
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4.6 Glucose-insulin interaction subsystem

Consider first modeling the dynamics of blood glucose concentration, yBG ,
in response to plasma insulin concentration, ui, and meal glucose rate of
appearance in plasma, u�.

Linear dynamic model structures for the GIIS were:

• autoregressive moving average with exogenous inputs (ARMAX)
model on the form:

A(z−1)yBG(k) = z−d1B1(z−1)ui(k)+ z−d2B2(z−1)u�(k)+C(z−1)w(k) (4.12)
where z−1 is the backward shift operator, d1 and d2 are time delays
associated with the inputs, A, B1, B2, C are polynomials of order na,
nb1, nb2, nc, respectively

A(z−1) = 1+ a1z−1 + ⋅ ⋅ ⋅+ ana z−na (4.13)
B1(z−1) = b0,1 + b1,1z−1 + ⋅ ⋅ ⋅+ bnb,1 z−nb,1 (4.14)
B2(z−1) = b0,2 + b1,2z−1 + ⋅ ⋅ ⋅+ bnb,2 z−nb,2 (4.15)
C(z−1) = 1+ c1z−1 + ⋅ ⋅ ⋅+ cnc z−nc (4.16)

and w(k) is a white noise.

• autoregressive with exogenous inputs (ARX) model, which is a
special case of the ARMAX model

A(z−1)yBG(k) = z−d1B1(z−1)ui(k) + z−d2B2(z−1)u�(k) +w(k) (4.17)

• state-space model in innovation form
{
x(k+ 1) =A x(k) +Bu(k) +K e(k)
yBG(k) = C x(k) + e(k)

(4.18)

with u(k) = [ui(k) u�(k)]⊺, x(k) ∈ R
n the state vector, A ∈ R

n$n,
B ∈ Rn$2, C ∈ R1$n, K ∈ Rn$1 and {e(k)} the innovation process.
Deciding upon the model structure involves not only choosing which type
of model to use in the identification, but also determining the model order
and time delays. The following choices were made:

• 3≤na≤6 for simplicity and low complexity

• nb,nc≤na in order to have proper transfer functions

• d1= d2=1 because it is assumed that the signals in blood interact
with no delay
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4.7 Data

Data collected during the DAQ trial Visit 2, described in Section 3.2
were considered to the purposes of model identification. The carbohydrate
content ucarb of the meals reported in the patient diary was used as input
to the model in Eq. (4.1). Given the frequently drawn blood samples,
it was decided to use the actual (interpolated and uniformly resampled)
insulin assays for identification and validation purposes. The physiological
insulin kinetics model in Eq. (4.4) was used at a later stage, to test the
blood glucose response to 1 [IU] of fast acting insulin. It was decided to
use blood glucose measurements from YSI [Yellow Spring Instruments,
2013] measurements instead of the CGM time-series because of the
poor quality of the FreeStyle NavigatorTM (see Table 3.4 for accuracy
evaluation and Section 3.8 for comments). Last, Montpellier patients were
selected for bigger quantity of data collected with respect to the other sites
participating.

4.8 Data analysis and pre-processing

Data analysis was performed in the following order [Johansson, 1993]:

• autospectrum of inputs

Suu(iω ) = F { lim
T→∞

1
2T

∫ T

−T
u(t)u∗(t− τ )dt}

• cross spectrum between inputs and output

Suy(iω ) = F { lim
T→∞

1
2T

∫ T

−T
u(t)y∗(t− τ )dt}

• quadratic coherence spectrum beween inputs and output

γ 2uy(ω ) =
p Suy(iω ) p2
Suu(iω )Syy(iω )

The autospectra (power spectra) of inputs and output showing the
frequency contents of the signals investigated are reported in Figure 4.6
for the representative patients CHU102. The coherence spectrum between
the inputs and the controlled variable are shown in Figure 4.5.

For purposes of model identification, removal of the mean value of the
data series ui, û�, yBG was done as part of standard data pre-processing
[Ljung, 1999]. In addition, originally non-uniformly sampled, plasma
glucose concentrations and plasma total insulin concentrations from
laboratory results were linearly interpolated and uniformly resampled,
the resampling period being 1 minute.
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Figure 4.5 Patient CHU102. Coherence spectra between blood glucose
and Top Left total plasma insulin; Top Right plasma glucose rate of
appearance; Bottom Left Heart Rate; Bottom Right Respiration Rate. All
the spectra vs. frequency [Hz]
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Figure 4.6 Patient CHU102. Top Left Magnitude of Power spectrum of
inputs: total plasma insulin [(µU/mL)2/(Hz)] (blue), plasma glucose rate
of appearance [(mg/kg/min)2/(Hz)] (red), heart rate [(beats/min)2/(Hz)]
(black), respiration rate [(breaths/min)2/(Hz)] (green); Top Right Mag-
nitude of Power spectrum of output: blood glucose [(mg/dL)2/(Hz)]; Bot-
tom Left Magnitude of cross spectrum: total plasma insulin, blood glu-
cose [(µU/mL)2(mg/dL)2/(Hz)] (blue), plasma glucose rate of appearance,
blood glucose [(mg/kg/min)2(mg/dL)2/(Hz)] (red), heart rate, blood glu-
cose [(beats/min)2(mg/dL)2/(Hz)] (black), respiration rate, blood glucose
[(breaths/min)2(mg/dL)2 (Hz)] (green); Bottom Right Phase of cross spec-
trum [rad]: total plasma insulin (blue), plasma glucose rate of appearance
(red), heart rate (black), respiration rate (green). All the spectra vs. fre-
quency [Hz]

64



4.9 Problem formulation

4.9 Problem formulation

Given the inputs:

• interpolated total plasma insulin concentration from drawn blood
samples ui [µU/mL];

• plasma glucose rate of appearance after carbohydrate intestinal
absorption û� [mg/kg/min];

and the output:

• interpolated blood glucose yBG [mg/dL] from drawn blood samples

the objective was to find an individual-specific and physiological relevant
model of the glucose-insulin interaction for each of the subjects in the
selected population.
Minimum requirements on the model were:

• stability;

• white residuals;

• qualitative correct blood glucose responses to

– 1 [IU] fast-acting insulin;
– 10 [g] carbohydrates;

Additional requirement on the model were:

• FIT ≥ 50% on 60-minutes-ahead model-based prediction on valida-
tion data;

• VAF ≥ 50% on 60-minutes-ahead model-based prediction on valida-
tion data.

4.10 Model estimation

The approach considered for modeling was system identification of the
discrete-time, linear time-invariant models introduced in Sec 4.6 [Ljung,
1999]. The data belonging to each of the selected patients records was
equally divided into two parts: the first one for the calibration procedure
of obtaining the optimal model structure and model parameters, and the
second one for validation of the chosen configuration.

For each of the calibration dataset different methods were used for the
estimation of the model parameters:
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• prediction-error identification methods (PEM) [Ljung, 1999] for
identification of the ARX/ARMAX structures

• subspace-based methods, namely:

– N4SID [Van Overschee and De Moor, 1994];
– PO-MOESP [Verhaegen, 1994];
– PBSID [Chiuso, 2007a], [Chiuso, 2007b];

for the identification of the state-space model.

The identification procedure is outlined in Algorithm 4.1.

ALGORITHM 4.1—SYSTEM IDENTIFICATION PROCEDURE

1. ARX/ARMAX

• for 3≤na≤6
– estimate model
– compute Akaike Final Prediction Error

2. N4SID

• choose the method for the estimation of the state-space

– CVA [Larimore, 1990]
– MOESP [Verhaegen, 1994]

• set the past horizon p = 120 and the future horizon f = 60
• set the model order 1 ≤ n ≤ 10
• select the model order n̄ according to the singular values

• estimate models with order n̄− 1, n̄, n̄+ 1
• compute Akaike Final Prediction Error

3. MOESP

• set the past and future horizons p = f = 30
• select the model order n̄ according to the singular values

• estimate models with order n̄− 1, n̄, n̄+ 1
• compute Akaike Final Prediction Error

4. PBSID

• set the past horizon p = 60, and the future horizon f = 20
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• select the model order n̄ according to the singular values

• estimate models with order n̄− 1, n̄, n̄+ 1
• compute Akaike Final Prediction Error 2

Throughout the work Matlab RFSystem Identification Toolbox [Math-
Works, 2013] and the SMI Toolbox [Haverkamp and Verhaegen, 1997]
were used.

4.11 Model Evaluation and Selection Criteria

The system identification procedure provided a plethora of models for
each of the subjects in the population. However, to the purpose of model-
based controller design, it suffices to select one model per patient only.
Necessary requirements on a model suitable for inclusion and exploitation
in the DIAdvisorTM tool were:

• stability;

• white residuals;

• physiologically sensible responses to insulin and food intake, i.e.,
blood glucose concentration should decrease in response to insulin
and increase in response to food intake.

In particular, in order to assess whether the model showed correct
responses to inputs, the simulated blood glucose reactions to a

• 10 [g] carbohydrates intake

• 1 [IU] fast insulin injection

were compared. Glucose appearance in plasma resulting from 10 [g]
carbohydrate ingestion was obtained with the model described in Sec.
4.2 and parameters in Table 4.1, while insulin appearing in plasma after
subcutaneous injection of 1 [IU] was determined with the model in Sec.
4.3 and the parameters listed in Table 4.2.
Each of the estimated models was evaluated according to the diagram

in Fig. 4.7. When a requirement was not fulfilled, the model was
discarded. The models passing all the tests were ranked in increasing
model order. Then, based on a tradeoff between accuracy as measured
by the FPE and simplicity, one model per patient only was selected.
Performances on short-term prediction, i.e., 30, 60, 90, 120 minutes ahead
obtained with the Matlab RF System Identification Toolbox [MathWorks,
2013] command predict.m were compared to those of the zero-order hold
(ZOH) ŷBG(k+ τ pk) = yBG(k), with τ = 30, 60, 90, 120 with respect to:
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• Percentage FIT [%]

FIT =
(
1− pp yBG − ŷBG pp2pp yBG − ȳBG pp2

)
$ 100%

• prediction error variance [(mg/dL)2]

E[(yBG − ŷBG)(yBG − ŷBG)⊺]

• Percentage Variance Accounted For (VAF) [%]

VAF = 1− E[(yBG − ŷBG)(yBG − ŷBG)
⊺]

E[yBG y⊺BG ]
$ 100%

with yBG denoting actual blood glucose measurements, ŷBG predicted
blood glucose concentration, ȳBG mean value of blood glucose concentra-
tion, pp ⋅ pp2 the 2-norm of a vector and E[⋅] mathematical expectation. If
ŷBG = yBG , FIT and VAF are 100%, while the variance is zero. The more
the prediction differ from the true value, the lower the FIT and VAF and
the larger the variance. Notice that a negative FIT value is possible if ŷBG
differs from yBG more than the mean value of yBG , while a negative VAF
value occurs if the variance of the prediction error ŷBG − yBG is larger
than the variance of yBG .

pass

pass

pass

pass
fail

fail

fail

fail

START

END

choose the model

stability test

residual test

physiology test

Figure 4.7 Diagram for model evaluation.
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Figure 4.8 Patient CHU102. DAQ trial, Visit 2. Top Heart rate
[beats/min]: actual (blue) vs. low-pass filtered (red); Bottom Respiration
rate [breaths/min]: actual (blue) vs. low-pass filtered (red)

4.12 Incorporating Energy Expenditure

The model of each individual glucose metabolism passing all the require-
ments was expanded taking into account energy expenditure. The input
ûe was added to the structure and a new model was identified.

Zero-phase distortion filtering was applied to the heart rate Hr and
respiration rate Rr data in order to reduce the noise component from
the signals. The filter used was a low-pass Butterworth filter of order
12 and 0.1 [π rad/sample] cutoff frequency for the point 3 dB below the
passband value. The Bode diagram of the filter magnitude is shown in
Fig. 4.9. Filtered data are depicted in Fig. 4.8.
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Figure 4.9 Low-pass Butterworth filter
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4.13 Results

Models

Detailed results of the procedure outlined in Fig. 4.7 are given in Tables
4.3, 4.4 and 4.5. The methods failing to provide a model complying with
the criteria in Sec. 4.11 are listed in the above mentioned tables along
with the tests that were not met. The model for the representative patient
CHU102 without the vital signs is the following:

y(k) − 2.782y(k− 1) + 2.579y(k− 2) − 0.797y(k− 3) =
− 0.0004923ui(k− 1) + 2.397û�(k− 1)+
+w(k) + 1.027w(k− 1) + 0.1552w(k− 2) + 0.06466w(k− 3)

(4.19)

scoring FPE = 0.000692238.
Figure 4.13 reports impulse responses of the model in Eq. (4.19). The

output to 1 [IU] of insulin filtered with the insulin kinetics model in
Eqs. (4.4)-(4.5) and to 10 [g] carbohydrates filtered with the carbohydrate
intestinal absorption model in Eq. (4.1) are reported in the bottom
diagram of Fig. 4.13.
Performances on short-term predictions, i.e., up to 120 minutes are

displayed in Figure 4.11, while comparisons of the model-based predictors
with the projection of the current glucose value in the future, i.e., the ZOH,
are reported in Figure 4.12 and quantitatively in Tables 4.6, 4.7, 4.8. The
boxplots in Figs. 4.14 show mean population performances.

Table 4.3 Model evaluation: fulfilled/ not fulfilled requirements for the
discarded models. Patient 102

Patient ID method n stability residuals physiological

102 N4SID 3
√

x -
4

√
x -

5
√

x -
PBSID 3 x - -

4 x - -
5 x - -

MOESP 3
√

x -
4

√
x -

5
√

x -
√ = pass; x= fail; - = not checked
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Table 4.4 Model evaluation: fulfilled/ not fulfilled requirements for the
discarded models. Patient 103, 104, 105, 106

Patient ID method n stability residuals physiological

103 N4SID 2
√

x -
3

√
x -

4
√ √

x
PBSID 4 x - -

5 x - -
6 x - -

MOESP 3
√

x -
4

√
x -

5
√

x -

104 N4SID 3
√

x -
4

√ √
x

5
√ √

x
PBSID 3 x - -

4
√

x -
5 x - -

MOESP 5
√

x -
6 x - -
7

√ √
x

105 N4SID 2
√ √

x
3

√ √
x

4
√ √

x
PBSID 2 x - -

3
√ √

x
4

√ √
x

MOESP 3
√

x -
4

√
x -

5
√

x -

106 N4SID 2
√

x -
3

√
x -

4
√

x -
PBSID 3

√
x -

4 x - -
5

√
x -

MOESP 5
√

x -
6

√
x -

7
√

x -
√ = pass; x= fail; - = not checked
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Table 4.5 Model evaluation: fulfilled/ not fulfilled requirements for the
discarded models. Patient 107, 115, 120, 130

Patient ID method n stability residuals physiological

107 N4SID 2
√

x -
3

√
x -

4
√ √

x
PBSID 2

√
x -

3
√

x -
4 x - -

MOESP 4
√

x -
5

√
x -

6
√

x -

115 N4SID 3
√

x -
4

√
x -

5
√ √

x
PBSID 3 x - -

4 x - -
5 x - -

MOESP 5
√

x -
6

√
x -

7
√

x -

120 N4SID 2
√ √

x
3

√ √
x

4
√ √

x
PBSID 2

√
x -

3
√

x -
4

√
x -

MOESP 5
√

x -
6

√
x -

7
√

x -

130 N4SID 2
√ √

x
3

√ √
x

4
√ √

x
PBSID 2 x - -

3 x - -
4

√
x -

MOESP 3 x - -
4

√ √
x

5 x - -
√ = pass; x= fail; - = not checked
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Figure 4.10 Patient 102. Residual analysis on validation data.
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Figure 4.11 Patient CHU0102. Evaluation on validation data: 3rd-
order ARMAX-based predictor (thin) and measured plasma glucose (thick)
[mg/dL] vs. time [min].. Top 30-minutes ahead; Top Center 60-minutes
ahead; Bottom Center 90-minutes ahead; Bottom 120-minutes-ahead pre-
diction. DAQ Trial. Inputs: ui, û�
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Figure 4.12 Patient CHU102. 3rd-order ARMAX-based predictor (star),
ZOH (diamond). Top Percentage FIT [%]; Center Prediction Error Variance
[(mg/dL)2]; Bottom Percentage VAF [%]. All the metrics on validation data
vs. Prediction Horizon [min]
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û
i
[µ
U
/m
L
]

û
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Figure 4.13 Patient CHU102. Top Left Insulin in plasma after injection
of 1 [IU] at t = 50 [min] ; Top Right Glucose rate of appearance in plasma
resulting from ingestion of 10 [g] carbohydrate at t = 50 [min]; Bottom Left
Blood glucose response to 1 [IU] of fast-acting insulin; Bottom Right Blood
glucose response to 10 [g] of carbohydrate
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Table 4.6 Model-based predictor performance evaluation. Percentage
FIT [%] vs. Prediction Horizon [min] on validation data. The best per-
forming model is highlighted.

Patient ID model 30[min] 60[min] 90[min] 120[min]
102 ARMAX 73.53 49.47 32.80 20.79

ARMAX† 72.11 44.60 25.05 11.56
ARX 72.07 45.25 23.01 1.36
ZOH 60.64 32.57 9.01 -10.14

103 ARMAX 65.07 33.72 19.71 10.30
ARMAX† 64.21 29.92 13.99 2.08
ARX 62.80 26.17 3.95 -11.73
ZOH 50.62 20.81 -1.37 -21.32

104 ARMAX 76.01 54.13 42.03 34.46
ARMAX† 69.56 38.26 20.43 9.75
ARX 76.52 45.54 21.27 4.21
ZOH 52.14 19.16 -4.93 -22.71

105 ARMAX 57.16 27.79 13.45 7.26
ARMAX† 57.35 25.49 7.52 -0.61
ARX 52.32 10.31 -0.54 -19.01
ZOH 47.21 14.58 -6.14 -18.

106 ARMAX 54.72 8.30 -25.15 -48.62
ARMAX† 57.47 14.69 -10.23 -22.14
ARX 58.95 14.46 -20.46 -40.14
ZOH 44.06 9.70 -8.29 -15.45

107 ARMAX 68.29 48.32 34.00 26.57
ARMAX† 63.86 30.80 5.19 -9.19
ARX 63.51 31.36 3.42 -18.40
ZOH 52.28 16.14 -10.62 -29.79

115 ARMAX 79.76 59.31 42.18 32.44
ARMAX† 69.22 35.32 6.51 -15.97
ARX 75.50 46.50 15.33 -9.32
ZOH 63.65 34.72 12.38 -3.43

120 ARMAX 76.05 49.32 30.81 21.53
ARMAX† 74.81 45.10 23.60 11.00
ARX 73.92 42.33 17.77 2.53
ZOH 58.48 27.03 4.31 -12.57

130 ARMAX 63.11 39.93 20.94 9.31
ARMAX† 64.06 40.89 25.17 16.66
ARX 64.76 34.36 8.68 -7.55
ZOH 58.80 29.07 6.34 -9.56

† model with vital signs
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Table 4.7 Model-based predictor performance evaluation. Prediction
Error Variance [(mg/dL)2] vs. Prediction Horizon [min] on validation data.
The best performing model is highlighted.

Patient ID model 30[min] 60[min] 90[min] 120[min]
102 ARMAX 178.8 646.2 1134.4 1564.1

ARMAX† 199.7 786.0 1437.5 2000.5
ARX 203.9 787.9 1572 2587.5
ZOH 398.1 1167.6 2125.3 3113.9

103 ARMAX 165.4 589.6 847.4 1029.2
ARMAX† 173.0 653.1 953.7 1189.4
ARX 180.4 703.7 1195.3 1597.6
ZOH 332.3 854.5 1398.8 2000.7

104 ARMAX 263.5 959.3 1529 1952.5
ARMAX† 425.1 1748.2 2902.1 3732.7
ARX 253.5 1356.5 2831.3 4175.4
ZOH 1051.3 2997.6 5047 6894.9

105 ARMAX 284.2 802.8 1144.5 1299.5
ARMAX† 280.0 849.9 1302.7 1532.2
ARX 349.2 1241.8 1612.2 2287.8
ZOH 430.6 1123.3 1724.5 2146.1

106 ARMAX 517.2 2110.3 3909.8 5479.1
ARMAX† 461.1 1855.8 3098.7 3804.3
ARX 415.5 1888.1 3820.3 5227
ZOH 797.3 2076.3 2983.4 3386.2

107 ARMAX 243.3 639.1 1034.3 1271.5
ARMAX† 315.2 1143 2131.2 2809
ARX 323.8 1137.7 2236.9 3342.9
ZOH 553.5 1708.8 2971.8 4088.5

115 ARMAX 73.13 283.4 555.9 729.4
ARMAX† 175.8 775.3 1616.8 2482.1
ARX 98.4 411.8 922.6 1415.3
ZOH 242.3 778.6 1395.1 1932.1

120 ARMAX 202 895.2 1653.3 2106.9
ARMAX† 225.8 1073.8 2079.3 2821.9
ARX 245.8 1212.4 2479.7 3518.4
ZOH 614.1 1896.8 3260.5 4509.9

130 ARMAX 710.8 1884.7 3264.8 4296.7
ARMAX† 674.3 1822.2 2918.2 3616.6
ARX 643.6 2152.9 4006.1 5410.5
ZOH 886.8 2627.9 4582.5 6270.8

† model with vital signs
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Table 4.8 Model-based predictor performance evaluation. Percentage
VAF [%] vs. Prediction Horizon [min] on validation data. The best
performing model is highlighted.

Patient ID model 30[min] 60[min] 90[min] 120[min]
102 ARMAX 93.06 74.91 55.97 39.29

ARMAX† 92.24 69.49 44.20 22.35
ARX 92.20 70.26 40.95 2.74
ZOH 84.54 54.68 17.51 -20.85

103 ARMAX 87.86 56.75 37.83 24.49
ARMAX† 87.30 52.08 30.03 12.74
ARX 86.86 49.48 14.88 -16.03
ZOH 75.62 37.31 -2.61 -46.76

104 ARMAX 94.26 79.11 66.70 57.48
ARMAX† 90.74 61.93 36.80 18.72
ARX 94.53 70.89 39.93 11.74
ZOH 77.10 34.72 -9.89 -50.13

105 ARMAX 81.69 48.30 26.29 16.31
ARMAX† 81.96 45.26 16.10 1.32
ARX 77.59 21.25 -0.75 -40.99
ZOH 72.26 27.66 -11.05 -38.20

106 ARMAX 79.71 17.24 -53.31 -114.85
ARMAX† 81.91 27.22 -21.51 -49.17
ARX 83.94 27.72 -45.05 -95.55
ZOH 68.73 18.58 -16.98 -32.78

107 ARMAX 90.00 73.74 57.51 47.76
ARMAX† 87.05 53.04 12.45 -15.38
ARX 86.70 53.44 8.95 -36.39
ZOH 77.26 29.80 -22.08 -67.94

115 ARMAX 96.08 84.83 70.25 60.97
ARMAX† 90.59 58.51 13.49 -32.80
ARX 94.13 73.18 35.43 -2.43
ZOH 87.03 58.33 25.36 -3.37

120 ARMAX 94.33 74.87 53.59 40.86
ARMAX† 93.66 69.86 41.64 20.79
ARX 93.20 66.75 32.42 5.25
ZOH 82.76 46.76 8.49 -26.57

130 ARMAX 86.39 63.92 37.51 17.76
ARMAX† 87.09 65.12 44.15 30.78
ARX 87.71 58.28 21.83 -4.50
ZOH 83.02 49.70 12.29 -20.01

† model with vital signs
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Figure 4.14 Model-based predictor performance evaluation. Population
results on validation data. Top Percentage FIT vs. Prediction Horizon
[min]; Center Prediction Error Variance [(mg/dL)2] vs. Prediction Horizon
[min]; Bottom Percentage VAF vs. Prediction Horizon [min]. Each box
presents results over the population considered. The central mark is the
median, the edges of the box are the 25th and the 75th percentiles.
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Table 4.9 Numerical and clinical accuracy of predictions. 30 [min]
prediction

Patient AD [mg/dL] RD ISO [%] CG-pEGA [%] CG-rEGA [%]
Mean Median Mean Median ∗ A B A B

CHU102 13.03 9.64 0.01 0.01 85.10 85.71 12.24 79.16 10.41
CHU103 15.04 12.45 -0.02 -0.02 78.04 79.16 18.75 72.34 14.89
CHU104 15.93 13.37 0 0 86.95 84 14 79.59 6.12
CHU105 18.49 13.73 0 -0.04 85.36 82.22 13.33 72.72 11.36
CHU106 44.61 32.09 -0.09 0.06 53.65 48.88 44.44 65.90 20.45
CHU107 15.79 11.53 -0.03 -0.04 83.33 81.63 18.36 77.08 8.33
CHU115 15.09 11.06 -0.04 -0.04 85.10 85.41 14.58 76.59 10.63
CHU120 21.64 17.50 0.05 0.07 89.58 89.58 8.33 61.70 27.65
CHU130 96.08 104.37 -0.01 0.25 14.58 14.58 56.25 59.57 12.76

∗ prediction within [20%] from reference yBG when yBG ≥ 75[mg/dL]
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Table 4.10 Numerical and clinical accuracy of predictions. 60 [min]
prediction

Patient AD [mg/dL] RD ISO [%] CG-pEGA [%] CG-rEGA [%]
Mean Median Mean Median ∗ A B A B

CHU102 20.36 13.88 -0.01 0.02 74.46 71.42 20.40 77.08 10.41
CHU103 23.57 20.11 -0.10 -0.06 58.53 56.25 37.50 63.82 23.40
CHU104 27.11 21.67 -0.08 -0.04 69.56 64 28 65.30 24.48
CHU105 28.90 25.20 -0.03 -0.08 60.97 55.55 35.55 65.90 18.18
CHU106 53.94 46.82 -0.13 0 39.02 35.55 48.88 61.36 18.18
CHU107 22.30 18.94 -0.08 -0.06 66.67 65.30 34.69 79.16 8.33
CHU115 26.41 21.21 -0.07 -0.08 61.70 60.41 37.50 70.21 23.40
CHU120 35.69 21.71 0.09 0.08 64.58 64.58 31.25 70.21 10.63
CHU130 105.18 98.69 0.03 0.24 16.67 16.67 47.91 36.17 40.42

∗ prediction within [20%] from reference yBG when yBG ≥ 75[mg/dL]
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Table 4.11 Numerical and clinical accuracy of predictions. 90 [min]
prediction

Patient AD [mg/dL] RD ISO [%] CG-pEGA [%] CG-rEGA [%]
Mean Median Mean Median ∗ A B A B

CHU102 26.75 21.17 -0.03 0.01 68.08 65.30 24.48 77.08 14.58
CHU103 27.85 24.55 -0.17 -0.16 53.65 45.83 43.75 74.46 14.89
CHU104 33.85 27.76 -0.10 -0.06 54.34 52 42 79.59 16.32
CHU105 33.43 30.21 -0.07 -0.11 51.21 46.66 42.22 68.18 22.72
CHU106 59.65 40.41 -0.16 -0.01 43.90 40 44.44 54.54 18.18
CHU107 27.98 23.43 -0.12 -0.05 56.25 55.10 42.85 68.75 16.66
CHU115 33.12 29.24 -0.09 -0.09 48.93 47.91 50 70.21 21.27
CHU120 41.74 27.32 0.09 0.13 54.16 54.16 37.50 65.95 19.14
CHU130 115.73 100.04 0.03 0.24 16.67 16.67 39.58 36.17 36.17

∗ prediction within [20%] from reference yBG when yBG ≥ 75[mg/dL]
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Table 4.12 Numerical and clinical accuracy of predictions. 120 [min]
prediction

Patient AD [mg/dL] RD ISO [%] CG-pEGA [%] CG-rEGA [%]
Mean Median Mean Median ∗ A B A B

CHU102 31.54 26.12 -0.03 0.01 59.57 57.14 32.65 77.08 16.66
CHU103 30.53 26.03 -0.23 -0.11 56.09 47.91 41.66 70.21 21.27
CHU104 38.37 30.78 -0.13 -0.09 50 46 48 73.46 22.44
CHU105 33.96 33.93 -0.11 -0.09 53.65 48.88 40 70.45 18.18
CHU106 59.90 39.79 -0.22 -0.07 48.78 44.44 37.77 59.09 22.72
CHU107 31.61 28.25 -0.14 -0.09 52.08 51.02 44.89 70.83 16.67
CHU115 36.66 38.22 -0.10 -0.10 36.17 35.41 62.50 72.34 19.14
CHU120 44.71 33.94 0.10 0.16 43.75 43.75 43.75 63.82 63.82
CHU130 122.03 91.84 0.01 0.19 16.67 16.67 39.58 36.17 38.29

∗ prediction within [20%] from reference yBG when yBG ≥ 75[mg/dL]
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4.14 Discussion

Data

The autospectra (power spectra) showing the frequency contents of the
signals investigated and the coherence spectra between the inputs and
the controlled variable were calculated to perform spectral analysis
[Johansson,1993]. Recall that a coherence spectrum can be interpreted
as a correlation analysis (or signal-to-noise analysis) made for each
frequency. A large absolute value close to 1 indicates that the input and
output are correlated. A coherence value of 0.5 denotes that half of the
output variation may be explained by variations in the stimulus input. As
predictable, the data collected offered poor model input excitation despite
the careful selection of the subjects, because of the correlation between
food intake and consequent insulin injection.

Modeling

Throughout the work, estimation of the glucose flux in the blood stream
after intestinal absorption and the total insulin flux in the blood stream
from subcutaneous injection of slow-acting and fast-acting analogues
were considered as input variables. A limitation arose from the required
physiological models as input generating components. Such physiological
models, indeed, were not tailored to the study participants. Population
mean values were used for the parameters, thus disregarding the inter-
personal variability. Tuning such models to the individual would need
specific tracer-to-tracee data (see e.g., [Dalla Man et al., 2004]), which
are difficult to obtain and require costly experiments. It is important to
underline, moreover, that the model parameters were time-invariant and
did not account for circadian variation of patient metabolism. As far as
the glucose absorption modeling is concerned, it is a well known fact that
not only the size of the meal but also the composition of the meal affects
the digestion dynamics (see e.g. [Brouns et al., 2005]). Unfortunately,
detailed quantitative information on meal composition was not available
in the data set considered for this thesis. In absence of such information,
all sources of carbohydrates were assumed to be equal.
The transport of insulin from the subcutaneous injection site to the

blood stream has been described by several insulin pharmacokinetics
model (see, e.g., [Nucci and Cobelli, 2000] and [Wilinska et al., 2005]
for reviews). Among these, the compartment model in [Kovatchev et al.,
2008b] was adopted. Actually, insulin absorption is a complex process
influenced by many factors, including type of insulin, injected volume,
concentration, site of injection and blood flow in the tissues [Galloway
et al., 1981], [Binder et al., 1984]. Furthermore, a model describing in
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detail the processes of subcutaneous absorption for the commercially
available insulin used in the DIAdvisorTMtrials was not available. These
reasons may explain the mismatch between the actual plasma insulin
concentration profile and that obtained with the simulation model (Eqs.
4.4, 4.5, 4.8).
Individual-specific models of low-complexity were identified from

the collected data. Estimated model structures included ARX/ARMAX
models and state-space models. As far as the ARX/ARMAX structure
is concerned, identification of the model parameters was accomplished
by minimization of a quadratic prediction error criterion using the
Matlab RFSystem Identification Toolbox routines arx.m and armax.m,
respectively. The range of the orders na, nb, nc was empirically set to
3≤na≤6, nb≤na , nc≤na while the inputs-output delays were chosen
as d1= d2= 1. The Akaike Information Criterion (AIC) was calculated
for each of the configurations and used subsequently to rank the models
according to their increasing AIC [Ljung, 1999]. Regarding the subspace-
based techniques, the Matlab RF function n4sid.m and the SMI Toolbox
[Haverkamp and Verhaegen, 1997] were used. Two parameters having
substantial influence on the quality of the resulting model needed to be
chosen, namely the lengths of past and future horizons, representing
the dimension of certain Hankel matrices constructed with the data.
There are no simple rules for choosing them [Ljung, 2003], [Chiuso, 2008],
[Chiuso, 2007a]. However, the knowledge of the application, that is blood
glucose prediction up to 120-minutes ahead, provided an initial guess.
The parameters were then tuned empirically: p= f =120 in the N4SID
algorithm [Van Overschee and De Moor, 1994], s=30 in the PO-MOESP
algorithm [Verhaegen, 1994] and p=60, f=20 in PBSID [Chiuso, 2007b].
The estimated models were tested according to various criteria.

Stability was the first requirement that a model needed to fulfill. Residual
tests with the purpose of finding remaining correlations which indicate
whether the model order is adequate were carried out. With adequate
model order, the residual process is white only and of sufficiently small
magnitude. The residual autocorrelation and cross correlation between
the prediction errors and the input tests needed to give significant (99%
confidence) validation with respect to changes of sign, independence of
residuals, normality, and independence between residuals and input in
order for the test to be passed. Finally, qualitatively correct responses to
inputs were attained by the selected models. From a quantitative point
of view, according to clinicians and their experience gained from clinical
trials, the average lowering effect of 1IU of fast insulin falls within 25-60
[mg/dL], with peak time 60 − −240 [min], depending upon the subject’s
resistance or sensitivity to insulin, whereas an ingestion of 10 [g] pure
dextrose makes the blood glucose rising 15 [mg/dL], in 20 minutes at
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best. However, these requirements seemed hard to achieve and were not
fulfilled by all models.
Another problem was that impulse responses from a carbohydrate

or insulin input to a blood glucose output were not compatible with
physiology and clinical practice in all the cases, either in the magnitude
or in the time scale.
Tables 4.3, 4.4 and 4.5 report for each of the patients the identification

methods leading to models not meeting one or more of the requirements in
Sec. 4.11. When a criterion was not satisfied, the corresponding model was
disregarded. Overall, from the tables it emerges that the main difficulties
encountered while carrying out the modeling task were assuring white
residuals and estimating physiologically correct inputs to output transfer
functions.
Last, as far as physical activity is concerned, given the results shown

in this work and summarized in Tables 4.6–4.8, it may be concluded that
it does not improve the predictions obtained without using vital signs.
One explanation could be that during the in-hospital tests, the intensity
of such exercise was very low, so that heart rate and respiration rate
didn’t contribute to blood glucose dynamics. Further, the data were very
noisy and the low-pass filtering carried out prior to modeling might not
have been appropriate, removing together with the noise also some of the
information content of the signals.

Prediction

The quality of the predictors developed was assessed by mathematical
metrics in order to quantify the error between the predicted blood glucose
profile vs. the actual ones. Specifically, predictions were evaluated with
respect to

• FIT [%]

• prediction error variance [(mg/dL)2]

• VAF [%]

and qualitative assessments by eye inspection concerning glucose trends
detection. Indeed, in diabetes management, the perhaps most important
feature for a predictor is the ability of capturing hypoglycemias and
hyperglycemias, rather than being correct in the normo-glycemic range.
The performances of the third-order ARX/ARMAX based predictors
were compared to those achieved with the zero-order-hold. Results on
this comparison are presented in Tables 4.6–4.8. The highlighted rows
correspond to the model achieving the best performances. In all the cases
the ARMAX structure outperformed the other.
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4.15 Conclusions

This chapter dealt with linear modeling and short-term prediction in
diabetes physiology. Specifically, data-driven techniques were investigated
to the purpose of the DIAdvisorTM tool application [DIAdvisor, 2012] and
evaluated for type 1 diabetes mellitus records belonging to a population
of 9 subjects in hospital conditions.

Modeling

An individual-specific, physiologically relevant model of the glucose-
insulin interaction subsystem was identified from each of the subjects
data using prediction error methods and subspace-based methods. Inputs
to the models were:

• interpolated total plasma insulin concentration from drawn blood
samples ui [µU/mL];

• plasma glucose rate of appearance after carbohydrate intestinal
absorption u� [mg/kg/min];

and the output was:

• interpolated blood glucose yBG [mg/dL] from drawn blood samples

ARMAX models of order in the range [3:6] satisfied all the criteria
required, specifically:

• stability;

• white residuals;

• physiologically sensible responses to 1 [IU] of insulin and 10 [g] of
carbohydrates

and were therefore selected for inclusion in the advisory tool. However,
the additional requirements on model-based predictor performances were
met only partially. Indeed, whereas a value of VAF ≥ 50% on 60-minutes-
ahead model-based prediction on validation data was achieved by all the
models except the 5th-order ARMAX model for patient 105 and the 6th-
order ARMAX model for patient 106, a value of FIT ≥ 50% on 60-minutes-
ahead model-based prediction on validation data was achieved by the 3rd-
order ARMAX model identified from patient 104 data and the 6th-order
ARMAX model identified from patient 115 data, only.
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Prediction

Individual-specific short-term blood glucose predictors were identified
from Type 1 Diabetes Mellitus subject data. Predictors coefficients were
directly identified from the input-output data, without the intermediate
model identification step. Inputs to the models were:

• interpolated total plasma insulin concentration from drawn blood
samples ui [µU/mL];

• plasma glucose rate of appearance after carbohydrate intestinal
absorption u� [mg/kg/min];

and the output was:

• interpolated blood glucose yBG [mg/dL] from drawn blood samples

The structures investigated were third-order ARX-based predictors and
their regularized version, and subspace-based multivariate predictors.
Across the population, the performances of the proposed predictors were
superior to those achieved by projecting the last blood glucose value into
the future, i.e., ZOH. However, the goal of a FIT value ≥ 50% on 60-
minutes-ahead prediction on validation data was not accomplished, while
a VAF value ≥ 50% on 60-minutes-ahead prediction on validation data
was reached.
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Appendix to Chapter 4

This appendix presents a small population study using patient data from
DIAdvisor I trial described in Sec. 3.3. The characteristics of the subjects
included are reported in Table 3.2. The goal was to identify individualized
models having as inputs ûi, û� from the physiological models in Sections
4.2–4.3, respectively, and as output yIG measured by the Dexcom RFdevice
[Dexcom, 2013]. The methodology outlined in Sections 4.10–4.11 was
followed. Tables 4.13–4.15 compare the predictor performances achieved
with third-order ARMAX models to those of the ZOH.

Table 4.13 Model-based predictor performance evaluation. Percentage
FIT [%] vs. Prediction Horizon [min] on validation data.

Patient ID model 30[min] 60[min] 90[min] 120[min]
108 ARMAX 61.95 41.20 32.65 29.72

ZOH 41.11 0.95 -22.63 -33.76
112 ARMAX 64.45 37.80 21.42 11.37

ZOH 61.77 37.56 17.54 -1.59
121 ARMAX 57.61 33.33 19.07 10.28

ZOH 50.09 21.09 0.43 -12.88
130 ARMAX 46.25 11.12 -12.47 -29.09

ZOH 44.54 8.97 -15.17 -32.01
305 ARMAX 68.00 40.00 21.46 11.71

ZOH 51.86 9.91 -23.74 -48.26
308 ARMAX 52.64 30.87 15.31 7.75

ZOH 41.58 7.05 -19.28 -36.95
320 ARMAX 47.20 25.37 11.50 3.46

ZOH 41.47 11.15 -11.50 -26.48
327 ARMAX 55.88 27.34 8.11 -2.53

ZOH 49.27 14.91 -12.21 -32.72
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Table 4.14 Model-based predictor performance evaluation. Prediction
Error Variance [(mg/dL)2] vs. Prediction Horizon [min] on validation data.

Patient ID model 30[min] 60[min] 90[min] 120[min]
108 ARMAX 387.15 923.38 1209.3 1315.4

ZOH 929.28 2628.2 4025.0 4777.6
112 ARMAX 270.09 822.34 1306.5 1657.5

ZOH 312.35 833.95 1456.3 2210.5
121 ARMAX 1148.3 2839.0 4178.0 5127.3

ZOH 1590.5 3976.6 6335.5 8147.1
130 ARMAX 291.97 794.68 1267.1 1662.9

ZOH 314.07 845.52 1352.1 1774.2
305 ARMAX 427.29 1495.8 2547.8 3199.3

ZOH 980.96 3435.0 6479.3 9296.3
308 ARMAX 862.32 1837.4 2758.0 3271.4

ZOH 1311.4 3319.2 5466.4 7207.0
320 ARMAX 1536.9 3064.9 4298.5 5103.1

ZOH 1889.5 4354.5 6860.8 8829.7
327 ARMAX 240.91 625.14 969.18 1177.1

ZOH 349.11 982.48 1709.6 2391.9

Table 4.15 Model-based predictor performance evaluation. Percentage
VAF [%] vs. Prediction Horizon [min] on validation data.

Patient ID model 30[min] 60[min] 90[min] 120[min]
108 ARMAX 85.55 65.55 54.88 50.92

ZOH 65.33 1.94 -50.16 -78.24
112 ARMAX 87.42 61.70 39.15 22.80

ZOH 85.45 61.16 32.17 -2.94
121 ARMAX 82.04 55.59 34.65 19.80

ZOH 75.12 37.80 0.91 -27.42
130 ARMAX 71.45 22.31 -23.86 -62.56

ZOH 69.29 17.34 -32.17 -73.43
305 ARMAX 89.90 64.66 39.82 24.43

ZOH 76.82 18.86 -53.03 -119.57
308 ARMAX 77.57 52.21 28.27 14.93

ZOH 65.89 13.68 -42.15 -87.41
320 ARMAX 72.17 44.51 22.18 7.61

ZOH 65.79 21.16 -24.20 -59.84
327 ARMAX 82.25 53.96 28.62 13.30

ZOH 74.28 27.64 -25.90 -76.15
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5

Linear Multi-step Predictors

for Predictive Control

5.1 Introduction

Time series filtering and prediction theory based on linear systems has a
long history dating back to the 1940s and the works of Kolmogorov [Kol-
mogorov, 1939b], [Kolmogorov, 1939a] and Wiener [Wiener, 1949]. From
the Wiener-Kolmogorov theory of stochastic processes, the Kalman filter
[Kalman, 1960] and the ARMAX-based predictor [Åström, 1970] could be
formulated, representing solutions suitable for a digital implementation.
Thorough descriptions of a variety of predictor structures can be found in
[Anderson and Moore, 1979], [Hannan and Deistler, 1988], [Caines, 1988],
[Hamilton, 1994], [Kailath and Hassibi, 2000]. Usually, the predictors
are formulated for one-step-ahead prediction horizon and are based on
a known model. Many practical cases, however, face the problem of simul-
taneously forecasting the time-series of interest for multiple look ahead.
This prediction scheme is called a multi-step predictor [Holst, 1977], [Sto-
ica and Nehorai, 1989]. Efforts in this direction towards adaptive control
were made by Mosca et. al. [Menga and Mosca, 1980], [Mosca et al., 1989].
An alternative solution to the prediction problem for multi-input multi-
output systems is offered by the so-called subspace identification meth-
ods (SIMs) [Katayama, 2005], [Van Overschee and De Moor, 1994], [Van
Overschee and De Moor, 1996], [Verhaegen, 1994], [Ljung and McKelvey,
1996], [Jansson, 2003], [Chiuso and Picci, 2005b]. In the SIM framework,
indeed, the first step for the construction of a state-space model from ob-
served input-output data involves the estimation of the output predictor.
The algorithmic step was exploited in the past by several authors in re-
ceding horizon type of control strategies [Di Ruscio, 1997], [Favoreel et
al., 1999], [Woodley et al., 2001], [Kadali et al., 2003], [Dong et al., 2008],
[Dong and Verhaegen, 2008a], [Dong and Verhaegen, 2008b]. The N4SID
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algorithm [Van Overschee and De Moor, 1994] was applied in [Di Ruscio,
1997], [Favoreel et al., 1999], [Woodley et al., 2001], [Kadali et al., 2003],
while the VARX (vector autoregressive with exogenous inputs) developed
in [Chiuso, 2007a], [Chiuso, 2007b] was exploited in [Dong et al., 2008],
[Hallouzi, 2008].

Based on subspace-based identification methods for linear systems this
chapter formulates short-term multi-step-ahead predictors for application
in predictive control.

Model description

Consider a discrete-time linear time-invariant system Sn(A, B,C, K ) in
innovation form

xk+1 = Axk + Buk + K ek
yk = Cxk + ek (5.1)

where uk ∈ R
m is the input, yk ∈ R

l the output, xk ∈ R
n the state,

ek ∈ Rl the zero-mean white noise innovation process uncorrelated with
uk and A ∈ R

n$n, B ∈ R
n$m, C ∈ R

l$n, K ∈ R
l$n are constant

matrices. In the following, assume that (A, B) is reachable and (C, A)
is observable. The joint input-output process denoted by zk = [uTk yTk ] is
assumed purely non-deterministic. In addition, the determinant of the
spectral density matrix Szz(ejω ) should have no zero on the unit circle
[Chiuso, 2007b], [Katayama and Picci, 1999], [Hannan and Poskitt, 1988].
This last condition guarantees persistency of excitation (PE) of the data
of sufficiently high order. Further, assume that no linear feedback from
the states to the input is present, i.e., input-output data are obtained from
an open loop experiment.
Transfer function relationships using z-transform are:

Y(z) = G(z)U(z) + H(z)E(z) (5.2)
G(z) = C(zI − A)−1B (5.3)
H(z) = I + C(zI − A)−1K (5.4)
H−1(z) = I − C(zI − A+ KC)−1K (5.5)

Reconstruction of {ek} from input-output data may be accomplished by
means of the inverse transfer function relationship

E(z) = H−1(z)(Y(z) − G(z)U(z)) (5.6)
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and state-space realization of estimator

x̂k+1pk = Ax̂kpk−1 + Buk + K êk (5.7)
ŷkpk−1 = Cx̂kpk−1 (5.8)
êk = yk − ŷk = yk − Cx̂k (5.9)

Considering the innovation model (5.1) in predictor form, with Ā =
A− KC, the one-step-ahead predictor can be formulated

x̂k+1 = Āx̂k + Buk + K yk
ŷkpk−1 = Cxk + ek (5.10)

with state error dynamics

x̃k = xk − x̂k (5.11)
x̃k+1 = Ax̂kpk−1 + Buk + K ek x̂k (5.12)

= −((A− KC)x̂k + K yk + Buk) = (A− KC)x̃ = Āx̃ (5.13)

and covariance

Pk =E{x̃k x̃⊺k} (5.14)
Pk+1 =E{x̃k+1 x̃⊺k+1} =E{Āx̃k x̃

⊺

k Ā
⊺} = ĀE{x̃k x̃⊺k}Ā⊺ = ĀPk Ā⊺ (5.15)

Notation

The available data sequences {uk}, {yk}, the state {xk} and the innovation
process {ek} will be organized in Hankel matrices denoted by uppercase
letters. Subscript indices [α , β ] of a Hankel matrix will be used to indicate
the argument of the upper-left and the lower-left element, respectively,
e.g., U[t1,t2] will contain in the first column the input history between
instants t1 and t2. Accordingly, data records of finite length N will be
represented by the block rows of the Hankel data matrices and will
be denoted by uppercase letters, the subscript indicating the first time
instants of the time series:

U[t1,t2] =




Ut1
Ut1+1
...
Ut2


 =




ut1 ut1+1 ⋅ ⋅ ⋅ ut1+N−1
ut1+1 ut1+2 ⋅ ⋅ ⋅ ut1+N
...

... ⋅ ⋅ ⋅
...

ut2 ut2+1 ⋅ ⋅ ⋅ ut2+N−1




The orthogonal projection of the rows of a given matrix A onto the row
space of a given matrix B will be denoted by Ê{A p B}, whereas the
symbol ÊqC{A p B} will denote the oblique projection of the row space of A
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onto the row space of B along the row space of C, the projection operator
being Ê{⋅}. Throughout the chapter k will be the discrete-time index,
t shall denote the current time instance in the identification problem,
t0 shall be the initial time from which the data are collected, so that
t − t0 = p is the past horizon in the identification problem, T shall be
such that T − t + 1 = f represents the future horizon. The two integers
p and f are such that p ≥ max( f ,n), n model order. Last, the number of
steps in the look ahead that one wishes to investigate will be denoted by
τ , where τ ≤ f .

Statement of the Problem

Let the finite sequences {uk}t+ f−1k=t−p and {yk}
t+ f−1
k=t−p be the measured input

and the corresponding output, respectively, of the system (5.1). Our aim is
to find a multi-step estimator of the output sequence {yk}t+ f−1k=t by means
of linear combinations of the past joint input-output {zk}t−1k=t−p and future
input {uk}t+ f−1k=t .

5.2 Subspace-based linear multi-step predictors

Suppose ideally that we have observations of the processes {uk}, {yk},
{xk}, {ek}, k ∈ [t− p, t+ f − 1]. In addition, suppose the finite length N
of the interval be large. Since the finite length observed data sequences
are realization of the underlying stochastic processes in Eq. (5.1), the
following holds:

Xk+1 =AXk + BUk + KEk
Yk =CXk + Ek (5.16)

Furthermore, from the observed samples construct the following block
Hankel matrices:

U p =U[t−p,t−1] ∈ R
p⋅m$N (5.17)

U f =U[t,t+ f−1] ∈ R
f ⋅m$N (5.18)

called the past and future input data matrices, respectively, and

Yp =Y[t−p,t−1] ∈ R
p⋅l$N (5.19)

Y f =Y[t,t+ f−1] ∈ R
f ⋅l$N (5.20)

called the past and future output data matrices, respectively.
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Construction of the projection-based predictors

Define the extended observability matrix

O f =




C

CA

CA2

...
CA f−1




(5.21)

and the Toeplitz matrices containing the impulse responses of the system
due to the input uk and the innovation process ek, respectively

H f=




0 0 ⋅ ⋅ ⋅ 0
CB 0 ⋅ ⋅ ⋅ 0
...

...
. . .

...
CA f−2B CA f−3B ⋅ ⋅ ⋅ 0


,W f=




I 0 ⋅ ⋅ ⋅ 0
CK I ⋅ ⋅ ⋅ 0
...

...
. . .

...
CA f−2K CA f−3K ⋅ ⋅ ⋅ 0


 (5.22)

Then, by iteration of the system equations in Eq. (5.1), the following
matrix input-output relations may be written to express the future output
matrix:

Y f =O f X f +H fU f +W f E
f (5.23)

In the practical scenario the state sequence X f is not known, so future
outputs cannot be computed. An estimator of future output can be found,
however, from the available data as a linear combination of the joint input-
output past and the future input (see Appendix A.6 in [Van Overschee and
De Moor, 1996] for a proof), provided that uk and ek are uncorrelated:

Ŷ f = Γ̂Z p + Λ̂U f (5.24)

where we have introduced the short-hand notation

Z p =
[
U p

Yp

]
= Z[t−p,t−1] ∈ R

p⋅(m+l)$N (5.25)

to denote the past joint input-output data matrix. Now, the problem of
finding an optimal output predictor can mathematically be formulated as
a least-squares problem:

Γ̂, Λ̂ = arg min
Γ ∈ R

lp$(l+m)p

Λ ∈ R
lp$m f

∣∣∣∣
∣∣∣∣Y
f −

[
Γ Λ

] [Z p
U f

]∣∣∣∣
∣∣∣∣
2

F

(5.26)

where pp ⋅ ppF stands for the Frobenius norm of a matrix. Note that in
this way f prediction problems are solved simultaneously row-wise. Each
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problem consists in estimating Ŷt+τ , τ ∈ [0, f − 1]:

Ŷ f =




Ŷt
Ŷt+1
...

Ŷt+ f−1


 =




ŷt ŷt+1 ⋅ ⋅ ⋅ ŷt+N−1
ŷt+1 ŷt+2 ⋅ ⋅ ⋅ ŷt+N
...

...
...

...
ŷt+ f−1 ŷt+ f ⋅ ⋅ ⋅ ŷt+ f+N−2


 (5.27)

A geometric interpretation can be given to the least-squares problem as
the orthogonal projection of Y f onto

[
Z p U f

]T
, i.e.,

Ŷ f = Ê
{
Y f p

[
Z p

U f

]}
(5.28)

Actually, the orthogonal projection (5.28) corresponds to the sum of two
oblique projections ([Katayama and Picci, 1999, lemma 1]) under the
assumption span(Z p) ∩ span(U f ) = {0}, with span(⋅) standing for the
space spanned by the raw vectors of a matrix:

Ŷ f = ÊqU f {Y f p Z p} + ÊqZ p{Y f p U f } (5.29)
= Γ̂Z p + Λ̂U f (5.30)

Once the operator Γ̂ and Λ̂ have been estimated, they can be applied to
new data generated by the same underlying mechanisms, to forecast the
output τ steps ahead. In particular, note that matrix relation (5.28) can
be expressed vector-by-vector in the following way:




ŷt
ŷt+1
ŷt+2
...

ŷt+ f−1



= Γ̂




zt−p
zt−p+1
zt−p+2
...
zt−1



+ Λ̂




ut
ut+1
ut+2
...

ut+ f−1




(5.31)

Computing projections

As just pointed out in Sec. 5.2, linear regression problems have a
geometric interpretation which involves appropriate projection operations.
Recall Eq. (5.28). The orthogonal projection is:

Ŷ f =Ê
{
Y f p

[
Z p

U f

]}
(5.32)

= Y f
[
Z p

U f

]⊺ ([
Z p

U f

] [
Z p

U f

]⊺)† [
Z p

U f

]
(5.33)

= Y f
[
Z p

⊺

U f
⊺
] [Z pZ p⊺ Z pU f

⊺

U f Z p
⊺

U fU f
⊺

]† [
Z p

U f

]
(5.34)
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Under the no feedback assumption, the orthogonal projection (5.28) can
be decomposed as the sum of two oblique projections:

Ŷ f = ÊqU f {Y f p Z p} + ÊqZ p{Y f p U f }

= Y f
[
Z p

⊺

U f
⊺
] [Z pZ p⊺ Z pU f

⊺

U f Z p
⊺

U fU f
⊺

]†

p⋅(m+l) columns
Z p

+ Y f
[
Z p

⊺

U f
⊺
] [Z pZ p⊺ Z pU f

⊺

U f Z p
⊺

U fU f
⊺

]†

f ⋅m columns
U f

(5.35)

Numerically, the efficient implementation of such projection operations
relies upon LQ decompositions (i.e., transpose of the QR decomposition)
[Golub and Van Loan, 1996]. As a matter of fact, LQ decompositions have
also a system theoretic interpretation (see, e.g., [Katayama, 2006]).
Two algorithms are outlined.

ALGORITHM 5.1—[VERHAEGEN, 1994], [VAN OVERSCHEE AND DE MOOR, 1996]
1. Consider the following



U f

Z p

Y f


 =



L11 0 0
L21 L22 0
L31 L32 L33





Q1
T

Q2
T

Q3
T


 (5.36)

where L11 ∈ R
fm$ fm, L22 ∈ R

p(m+l)$p(m+l), L33 ∈ R
f l$ f l and Qi,

i = 1, ⋅ ⋅ ⋅ , 3 are orthogonal.

2. Define

Γ̂ = L32L22† (5.37)
Λ̂ = (L31 − L32L22†L21)L11−1 (5.38)

3. Use Eq. (5.24) to calculate the future outputs as Y f = Γ̂Z p + Λ̂U f

2

ALGORITHM 5.2—[FAVOREEL ET AL., 1999]
1. Set

W p =
[
Yp U p

]
⊺ (5.39)

2. Let the LQ decomposition be defined by


W p

U f

Y f


 =



L11 0 0
L21 L22 0
L31 L32 L33





Q 1

T

Q 2
T

Q 3
T


 (5.40)

where L11 ∈ R
p(m+l)$p(m+l), L22 ∈ R

fm$ fm, L33 ∈ R
f l$ f l and Q i,

i = 1, ⋅ ⋅ ⋅ , 3 are orthogonal.
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3. Define

ϒ̂ = (L31 −L32L−122L21)L†11 (5.41)
Λ̂ = L32L−122 (5.42)

4. The output predictor is finally retrieved as Y f = ϒ̂W p + Λ̂U f . 2

A proof of algorithm 5.1 is given in Appendix C.

5.3 Construction of the VARX-based predictors

Let us now consider the innovation model (5.1) in predictor form, i.e., Eq.
(5.10). Recall that by iteration of Eq. (5.10) it is possible to express the
output data sequence Yk+τ , 0 ≤ τ ≤ f − 1 according to:

Yk+τ = CĀτ Xk +
τ∑

h=1
CĀh−1(BUk+τ−h + KYk+τ−h) + Ek+τ

= CĀτ xk−p + Ξτ Z
p +

τ∑

h=1
CĀh−1(BUk+τ−h + KYk+τ−h) + Ek+τ (5.43)

From the point of view of the current time instant t:

Yt+τ = CĀτ xt−p + Ξτ Z
p +

τ∑

h=1
CĀh−1(BUt+τ−h + KYt+τ−h) + Et+τ (5.44)

where in (5.3) the first term depends on the initial conditions of the state,
the second term depends upon past input-output data and the third on
future input-output data. Stacking all the future data sequences on top
of each other and discarding the effects of the unknown initial states for
sufficiently large p (see Appendix B in [Chiuso, 2007a] for a formal proof),
we obtain the matrix relation:

Y f = ΞZ p + ΨZ f + E f (5.45)

99



Chapter 5. Linear Multi-step Predictors for Predictive Control

Matrices Ψ and Ξ are given in (5.46) and (5.47), respectively.

Ψ =




0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
CΦ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
CĀΦ CΦ 0 ⋅ ⋅ ⋅ 0
...

. . .
. . .

. . . 0
CĀ f−2Φ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ CΦ 0



, Φ = [B K ] (5.46)

Ξ =




Ξ0
Ξ1
...

Ξ f−1


=




CĀp−1Φ CĀp−2Φ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ CΦ
0 CĀp−1Φ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ CĀΦ
...

. . .
. . .

. . .
. . .

...
0 ⋅ ⋅ ⋅ 0 CĀp−1Φ ⋅ ⋅ ⋅ CĀ f−1Φ




(5.47)

Observe the Toeplitz structure of matrices Ψ and Ξ. Now, the first block-
row expressing the output sequence Yt does not depend upon future data
sequences, that is Yt can be expressed as

Yt = Ξ0Z
p + Et (5.48)

Solving the least-squares problem

Ξ̂0 = argmin
Ξ0

pp Yt − Ξ0Z
p pp2F (5.49)

corresponding, geometrically, to the projection

Ŷt = Ê{Yt p Z p} (5.50)

the Markov parameters of the system (5.1) are obtained [Chiuso, 2007b;
Dong et al., 2008]. The following algorithm is delineated:

ALGORITHM 5.3—[CHIUSO, 2007B; DONG ET AL., 2008]

1. Perform an LQ-decomposition
[
Z p

Yt

]
=

[
L11 0
L21 L22

] [
Q1
T

Q2
T

]
(5.51)

where L11 ∈ R
p(m+l)$p(m+l), L22 ∈ R

l$l to get the estimate Ξ̂0

Ξ̂0 = L21L
−1
11 (5.52)

2. Use the estimated coefficients from

Ξ̂0 =
[
Ĉ ˆ̄Ap−1Φ̂ Ĉ ˆ̄Ap−2Φ̂ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ĈΦ̂

]
(5.53)
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3. Calculate

γ ι = Ξ̂ι +
ι−1∑

j=0
Ĉ ˆ̄Aι− j−1 K̂γ j (5.54)

λι = Ĉ ˆ̄Aι−1 B̂ +
ι−1∑

j=1
Ĉ ˆ̄Aι− j−1 K̂λ j , ι ∈ [1, f − 1] (5.55)

with γ 0 = Ξ̂0, λ1 = Ĉ B̂ and Ξ̂ι shifted versions of Ξ̂0 constructed
according to Eq. (7.31)

4. The multi-step predictors are now given by

Ŷ f =




γ 0
γ 1
γ 2
...

γ f−1



Z p +




0 0 ⋅ ⋅ ⋅ 0
λ1 0 ⋅ ⋅ ⋅ 0

λ2 λ1
. . .

...
...

...
. . . 0

λ f−1 λ f−2 ⋅ ⋅ ⋅ λ1



= ˆ̄ΓZ p + ˆ̄ΛU f (5.56)

2

5.4 Examples

The behaviour of the subspace predictors was evaluated with simulation
examples. The experimental set-up is depicted in Fig. 5.1. The processes
nk and ek were uncorrelated, zero mean, white gaussian noises with
strandard deviations σ n= 1 and σ e= 104, respectively. Throughout the
experiments, the input to the algorithms was uk whereas the output
was yk. The transfer functions Φ(z), G(z), T(z) and H(z) are given in
Table 5.4 and were taken from [Chiuso and Picci, 2005a]. We tested
the predictors both in the open loop and in the closed loop scenario.
In many practical cases, indeed, feedback is present also if one cannot
directly recognize physical controllers which “close the loop”; therefore
it is of interest to test the limitations of the subspace predictors also
in the presence of feedback. Sampling period was Ts = 1 [sec]. In all
experiments the past and future horizons were chosen to be p= f =25,
while the prediction horizon τ was in the range [1, 25]. 100 Monte Carlo
runs were repeated with 1000 data points each for nk and ek. Each of the
Monte Carlo runs consisted of two steps: the first for the identification
of the predictor matrices according to Eqs. (5.37), (5.38), (5.41), (5.42),
(5.54) and (5.55), respectively, using the first half of the data records, and
the second for the calculation of the predictions exploiting the remaining
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Table 5.1 Transfer functions in the examples

# G(z) H(z) Φ(z) T(z)

1
0.3
z− 0.7 0 1 0

2
0.3
z− 0.7

z+ 0.5
z

1 0

3
0.3
z− 0.7

z+ 0.5
z

1 -1

4
2.5
z− 3

z+ 0.5
z

1 -1

5
2.5
z− 3

z+ 0.999
z

0.2(z+ 0.999)
z− 0.99 -1

6
2.5
z− 3

z+ 0.999
z

1 -1

data previously saved for validation. Prediction error properties over the
100 simulations were characterized by means of boxplots of prediction
error variance vs. prediction horizon. On each box, which refers to a
specific prediction horizon, the central mark is the median, the edges
of the box are the 25th and 75th percentiles, the whiskers extend to
the most extreme datapoints the algorithm considers to be not outliers,
and the outliers are plotted individually. Figures 5.2-5.7 show boxplots
of prediction errors on validation data. For comparison, Figs. D.6-D.11 in
Appendix D show boxplots of prediction errors on identification data.

+

+

+ +nk uk

ek

yk
Φ(z) G(z)

H(z)

T(z)

Figure 5.1 System used in the examples
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Figure 5.2 Example 1. Open loop. Multi-step predictors performances
on validation data. Prediction error variance vs. prediction horizon. Top
Algorithm 5.1, Center Algorithm 5.2, Bottom Algorithm 5.3
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Figure 5.3 Example 2. Open Loop. Multi-step predictors performances
on validation data. Prediction error variance vs. prediction horizon. Top
Algorithm 5.1, Center Algorithm 5.2, Bottom Algorithm 5.3
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Figure 5.4 Example 3. Closed-loop. Multi-step predictors performances
on validation data. Prediction error variance vs. prediction horizon. Top
Algorithm 5.1, Center Algorithm 5.2, Bottom Algorithm 5.3
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Figure 5.5 Example 4. Closed-loop. Multi-step predictors performances
on validation data. Prediction error variance vs. prediction horizon. Top
Algorithm 5.1, Center Algorithm 5.2, Bottom Algorithm 5.3
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Figure 5.6 Example 5. Closed-loop. Multi-step predictors performances
on validation data. Prediction error variance vs. prediction horizon. Top
Algorithm 5.1, Center Algorithm 5.2, Bottom Algorithm 5.3
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Figure 5.7 Example 6. Closed-loop. Multi-step predictors performances
on validation data. Prediction error variance vs. prediction horizon. Top
Algorithm 5.1, Center Algorithm 5.2, Bottom Algorithm 5.3
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5.5 Discussion and conclusions

In this chapter subspace-based data-driven linear multi-step predictors
have been presented. Resorting to geometric operations on appropriate
subspaces spanned by the measured input-output data sequences, predic-
tor coefficients were estimated directly from the collected data without
any prior knowledge of the system generating the data. No model struc-
ture selection nor model order determination were, therefore, required at
this stage. The strategy appears to be quite appealing for those real life
application in which a reliable model of the system is not available or
hard to obtain. Actually, Chapter 6 will give such an example.

Some conditions need to be fulfilled in order to have unbiased predictors.
Specifically, for the projection-based approach of Algorithms 5.1, 5.2

• input data should be "rich” enough, that is, the persistency of
excitation of the data should be of sufficiently high order

• the space spanned by the row vectors of matrix Zp and the
space spanned by the row vectors of matrix U f should have zero
intersection: span(Zp) ∩ span(U f ) = {0}. This corresponds to no
feedback interconnection

whereas for the VARX-based approach of Algorithm 5.3

• input-output data should be PE of sufficiently high order

• p should be sufficiently large

The first and the third conditions are related to the LQ-decompositions
required to solve the problems in Eq. (5.26) and (5.49), respectively.
Matrix inversion in Eqs. (5.37), (5.42) and (5.52) is possible if and only if
L11, L22, L11 are full rank matrices. This is guaranteed when the input
signal u is PE of order at least f ⋅m in for the projection-based approach,
and z is PE of order at least p(m + l) for the VARX-based approach.
The second condition is necessary for the orthogonal projection to split
uniquely into the sum of two oblique projections (Eq. (5.29)). When data
are generated in closed loop this condition is no longer satisfied.

Last, the fourth condition on the integer p permitted to disregard the
effect of the unknown initial states in Eq. (5.3). Actually, a lower bound
on p was given in [Bauer and Ljung, 2001] and was exploited in [Chiuso,
2007a], Appendix B, to prove the statement.
Throughout the chapter, pwas chosen so to satisfy the following condition:

p ≥ max{n,τ}
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in order for the system (5.1) to be observable (condition p ≥ n) and
to guarantee predictions up to the largest future horizon we wish to
investigate (condition p ≥ τ ). The parameter has strong connections with
model order, and to optimize results it should be given by the user from
knowledge or intuitions on the system dynamics. Indeed, requesting to
predict with a look-ahead τ >> n implies to choose also p >> n, which
lead to overparametrization of the model and suboptimal performances.

Examples 1 and 2 examined the open loop scenario. The system generating
the data was stable and was fed with white noise which is PE of any order.
All the algorithms performed similarly, with Alg. 5.3 having a slight edge
over the others. Predictions were more accurate in the noise-free case (Ex.
1), as predictable (Figs. 5.2-5.3). In case 3 a unit negative feedback was
added to the loop. Algorithm 5.3 outperformed the others. However, the
performances were not uniform over the prediction horizons (Figure 5.4).
The remaining 3 examples presented an unstable system in closed-

loop. The bias is no longer negligible, as expected (Figs. 5.5, 5.6, 5.7).
Based on the above mention analysis, we may expect satisfactory predic-
tion performances in those real-life application falling within the first 3
cases.
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6

Subspace-based Linear

Multi-step Predictors in

Diabetes

6.1 Introduction

As seen in Chapter 2, a major challenge for a person with diabetes
is to adapt insulin dosage regimens, food intake and exercise to keep
blood glucose within tolerable limits during daily life activities. The
diabetic subject has usually inadequate understanding and overview of
the actual physiological state at any time and would therefore benefit
from accurate predictions of blood glucose levels. The early knowledge
about the effects of inputs on glycemia would, indeed, provide the patients
with invaluable informations for appropriate on-the-spot decision making
concerning the management of the disease. Against this background,
data-driven predictors may be used to overcome the limitations arising
from the lack of the underlying physiological system model.

An overview of the existing methods for blood glucose prediction was
presented in Sec. 2.4. Results of model-based prediction achieved with
third order ARX/ARMAX models identified from actual patient data were
summarized in Chapter 4. In this chapter we show how the data-driven
predictors presented in Chapter 5 may be exploited to the purpose of
predicting blood glucose multiple steps ahead in the future.

6.2 Materials and methods

The population participating in the 3 days in-hospital DAQ trial shown in
Table 3.1 and used for modeling purposes in Chapter 4 was considered. In
accordance with Chapter 4, the glucoregulatory system was assumed to
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have two input channels, i.e., carbohydrate intake and insulin injections,
respectively, and one output, i.e., glycemia levels in blood. Two scenarios
were outlined. In the first, the physiological models described in Secs. 4.2
and 4.3 exploiting mean population values for the parameters appearing
therein were used to filter the raw informations on meals and insulin
collected by the study participants in their diaries. This allowed to retrieve
the glucose rate of appearance in plasma after a meal, û�, and the
insulin appearing in plasma after subcutaneous injection, ûi, which were
used as input signals. The Abbott FreeStyle NavigatorTM [Abbott, 2013]
CGM records were taken as assessment of glycemia, the main reason
being that in standard diabetes care, extensive analysis on blood samples
are not available. As noticed in Section 3.8, the NavigatorTM system
did not provide reliable blood glucose measurements. A retrospective
recalibration against the collected HemoCue [Hemocue, 2013] samples
was, thus, performed offline. The algorithm proposed by King et al.
(2007), later evaluated by Facchinetti et al. in [Facchinetti et al., 2007],
was used. For each patient a recalibration parameter α r was found by
least-squares estimation:

α r = argmin
α
ppyBG −α yIG pp2

with yBG and yIG denoting the HemoCue and the CGM samples, respec-
tively. The recalibrated traces yrIG = α ryIG were provided by Facchinetti
and co-workers within the DIAdvisorTM project and were used as output
signals. In Chapter 4, models were identified from the interpolated insulin
assessments from laboratory results ui, glucose rate of appearance û� and
glycemia levels from YSI assays [Yellow Spring Instruments, 2013] yBG .
In the second scenario, therefore, to allow comparison with the results
shown therein, we used the same signals for multi-step predictions.

We were interested in predictions up to 120 [min] ahead. Actually, for
each scenario, we distinguished two simulation set-ups: Case A where
we wanted to optimize predictions up to 30 [min] ahead, i.e., τmax = 30
and Case B with focus on predictions up to 120 [min], i.e., τmax = 120
where τmax [min] denotes the maximum prediction horizon we take into
consideration.

Algorithm 5.1 was adopted. Below the scheme used for calculation of
multi-step predictions is reported.

ALGORITHM 6.1—MULTI-STEP PREDICTION

1. Choose the maximum prediction horizon τmax

2. Set p= f=τmax
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3. Estimate Γ̂ and Λ̂ from Eqs. 5.37, 5.38 applying Algorithm 5.1 to
the first half of the data

4. Let t denote the current time step. Form the predictions ŷ of the
second half of the data (validation) using the relation




ŷt
ŷt+1
ŷt+2
...

ŷt+ f−1



= Γ̂




zt−p
zt−p+1
zt−p+2
...
zt−1



+ Λ̂




ût
ût+1
ût+2
...

ût+ f−1




(6.1)

where
[
zt−p zt−p+1 ⋅ ⋅ ⋅ zt−1

]
⊺ are the joint input-output data up

to time t− 1 and
[
ût ût+1 ⋅ ⋅ ⋅ ût+ f−1

]
⊺ are the future inputs. In

the first scenario û =
[
ûi û�

]
and y = yrIG while in the second

û =
[
ui û�

]
and y= yBG 2

6.3 Results

The predictors per se were evaluated with respect to prediction perfor-
mances on validation data, on the basis of the prediction error variance,
i.e., E[(y− ŷ)(y− ŷ)⊺], with y, ŷ indicating either the recalibrated inter-
stitial glucose yrIG or blood glucose yBG , depending on the scenario ex-
amined and its prediction, respectively. In addition, given the importance
of ultimately predict glucose levels in blood, the accuracy of the overall
predictions in scenario 1, i.e., ŷrIG , was evaluated according to the metrics
presented in Section 3.7.
Performances were assessed for the prediction horizons

• Case A: τ =10, 20, 30 [min]

• Case B: τ =30, 60, 90, 120 [min]

Tables 6.1 and 6.2 present assessment of prediction per se relative to sce-
nario 1, case A and B, respectively, while tables 6.3 and 6.4 summarize the
results for scenario 2, case A and B, respectively. Prediction performances
with respect to yBG starting from yIG are given in Tables 6.5–6.8. Figure
6.1 show predictions for one representative subject, relative to scenario 1,
case B, whereas Fig. 6.2 reproduces predictions for the same subject in
scenario 2, case B. For comparison, Fig. D.12 in the Appendix gives pre-
diction obtained using as output the non-recalibrated interstitial glucose
yIG . For completeness, figures dealing with other subjects than CHU102
are reported in Appendix D.
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Figure 6.1 Patient CHU102. Multi-step predictions. Scenario 1, Case B,
p= f=120. Evaluation on validation data. Predictor (thin) and recalibrated
interstitial glucose ŷIG (thick) [mg/dL] vs. time [min]. Top 30-minutes
ahead; Top Center 60-minutes ahead; Bottom Center 90-minutes ahead;
Bottom 120-minutes-ahead prediction. Meals and injections are indicated
with triangles and pluses, respectively.
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Figure 6.2 Patient CHU102. Multi-step predictions. Scenario 2, Case B,
p= f=120. Evaluation on validation data. Predictor (thin) and measured
plasma glucose yBG (thick) [mg/dL] vs. time [min]. Top 30-minutes ahead;
Top Center 60-minutes ahead; Bottom Center 90-minutes ahead; Bottom
120-minutes-ahead prediction. Meals and injections are indicated with
triangles and pluses, respectively.
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Table 6.1 Multi-step short-term predictors performance evaluation.
Scenario 1, Case A. Prediction Error Variance [(mg/dL)2] vs. Prediction
Horizon [min] on validation data.

Patient ID 10[min] 20[min] 30[min]
102 7.41 47.31 119.34
103 20.08 107.65 247.32
104 18.31 157.28 495.43
105 13.17 91.54 243.34
106 20.49 129.38 341.73
107 11.99 69.48 174.09
108 7.28 54.56 158.25
115 6.77 38.83 96.32
119 19.92 212.34 714.18
120 5.50 44.79 147.20
121 12.06 72.03 180.02
128 9.39 49.71 114.12
130 13.28 93.56 276.08

Table 6.2 Multi-step short-term predictors performance evaluation.
Scenario 1, Case B. Prediction Error Variance [(mg/dL)2] vs. Prediction
Horizon [min] on validation data.

Patient ID 30[min] 60[min] 90[min] 120[min]
102 136.79 482.88 772.60 952.69
103 530.97 1448.3 2336.1 2644.8
104 605.97 2914.4 6277.8 9574.6
105 307.96 946.07 1316.5 1488.3
106 549.67 2492.6 5032.0 7642.2
107 252.2019 964.6733 1781.7 2181.5
108 364.3953 1453.2 1772.7 1202.3
115 131.3680 467.64 966.32 1544
119 1498.1 6013.8 9100.3 10287
120 244.8146 1472.8 3364.6 5043.8
121 210.82 805.47 1500.7 2338.7
128 154.78 442.87 814.99 1383.4
130 449.51 1864.3 3548 4916.2
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Table 6.3 Multi-step short-term predictors performance evaluation.
Scenario 2, Case A. Prediction Error Variance [(mg/dL)2] vs. Prediction
Horizon [min] on validation data.

Patient ID 10[min] 20[min] 30[min]
102 13.18 84.13 223.68
103 8.66 68.81 200.44
104 13.06 134.51 420.29
105 512.16 3406.00 5726.10
106 34.36 232.19 626.34
107 24.14 190.59 422.75
108 11.45 82.47 221.16
115 5.65 44.49 110.38
119 14.98 86.20 203.27
120 16.37 102.75 273.10
121 14.13 137.81 435.29
128 6.55 62.99 213.85
130 116.29 451.48 741.11

Table 6.4 Multi-step short-term predictor performance evaluation. Sce-
nario 2, Case B. Prediction Error Variance [(mg/dL)2] vs. Prediction Hori-
zon [min] on validation data.

Patient ID 30[min] 60[min] 90[min] 120[min]
102 209.73 802.81 1417.90 1784.70
103 216.32 818.88 1202.60 1422.80
104 618.95 3247.10 5941.90 6561.00
105 2478.30 1226.40 1899.60 12325.00
106 634.08 2502.40 4818.00 7038.60
107 254.86 1186.70 2067.80 2668.40
108 342.41 1133.30 1617.70 1540.60
115 141.41 613.02 1405.30 2107.70
119 246.95 913.31 1680.90 2329.00
120 331.12 1680.20 3993.20 6807.90
121 498.07 2483.30 5256.70 7491.50
128 327.01 1789.20 3472.80 4898.60
130 1102.60 2052.40 3524.90 4785.80

117



C
h
a
p
ter
6
.
S
u
b
sp
a
ce-b
a
sed
L
in
ea
r
M
u
lti-step

P
red
icto
rs
in
D
ia
b
etes

Table 6.5 Numerical and clinical accuracy of predictions. Scenario 1,
case B, 30 [min] prediction

Patient AD [mg/dL] RD ISO [%] CG-pEGA [%] CG-rEGA [%]
Mean Median Mean Median ∗ A B A B

CHU102 18.56 13.40 .2365e-4 0.01 77.27 78.26 21.73 60.00 28.88
CHU103 27.61 23.39 -0.12 -0.16 43.58 45.65 52.17 60.00 24.44
CHU104 35.41 29.67 -0.05 -0.0071 50 48.93 42.55 52.17 26.08
CHU105 33.42 22.56 -0.04 -0.05 56.09 55.55 37.77 54.54 11.36
CHU106 29.49 24.45 -0.09 -0.12 58.13 56.52 39.13 64.44 15.55
CHU107 31.83 29.26 -0.11 -0.03 52.17 51.06 46.80 54.34 26.08
CHU108 26.27 16.86 -0.01 0.02 55.55 54.34 41.30 57.77 20.00
CHU115 20.94 14.56 -0.01 -0.01 78.26 78.26 21.73 68.88 15.55
CHU118 21.61 16.43 0.01 0.0042 65.85 63.82 31.91 58.69 19.56
CHU119 58.30 36.35 -0.02 0.05 46.80 46.80 38.29 41.30 34.78
CHU120 37.96 28.12 -0.10 -0.01 58.69 58.69 41.30 48.88 26.66
CHU121 30.30 25.27 -0.05 -0.02 52.38 55.31 42.55 58.69 17.39
CHU128 25.30 20.41 0.04 0.008 68.75 68.75 31.25 61.29 19.35
CHU130 39.61 32.76 -0.01 -0.01 60 62.50 31.25 54.83 19.35

∗ prediction within [20%] from reference yBG when yBG ≥ 75[mg/dL]
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Table 6.6 Numerical and clinical accuracy of predictions. Scenario 1,
case B, 60 [min] prediction

Patient AD [mg/dL] RD ISO [%] CG-pEGA [%] CG-rEGA [%]
Mean Median Mean Median ∗ A B A B

CHU102 28.62 24.29 -0.01 0.0079 65.11 66.66 33.33 45.45 34.09
CHU103 42.34 39.67 -0.19 -0.28 31.57 31.11 62.22 52.27 36.36
CHU104 64.03 46.76 -0.06 -0.01 66.66 43.47 28.26 46.66 24.44
CHU105 51.54 33.36 -0.06 -0.12 37.50 36.36 47.72 39.53 13.95
CHU106 50.85 45.56 -0.16 -0.12 35.71 35.55 60.00 56.81 27.27
CHU107 44.05 32.67 -0.22 -0.08 53.33 52.17 39.13 46.66 13.33
CHU108 47.62 29.48 0.01 0.04 43.18 42.22 46.66 47.72 20.45
CHU115 27.11 21.27 -0.04 -0.01 60 60 37.77 50 18.18
CHU118 49.74 44.15 0.08 0.04 37.50 36.95 54.34 55.55 24.44
CHU119 76.71 46.17 0.01 0.08 43.47 43.47 36.95 33.33 33.33
CHU120 68.03 43.18 -0.22 0.02 37.77 37.77 51.11 43.18 27.27
CHU121 44.69 35.22 -0.04 0.09 43.90 47.82 43.47 44.44 28.88
CHU128 30.44 27.46 0.08 0.08 59.37 59.37 37.50 64.51 19.35
CHU130 58.96 54.99 -0.0084 0.07 33.33 37.50 56.25 48.38 22.58

∗ prediction within [20%] from reference yBG when yBG ≥ 75[mg/dL]
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Table 6.7 Numerical and clinical accuracy of predictions. Scenario 1,
case B, 90 [min] prediction

Patient AD [mg/dL] RD ISO [%] CG-pEGA [%] CG-rEGA [%]
Mean Median Mean Median ∗ A B A B

CHU102 37.77 33.69 -0.01 -0.02 48.83 51.11 48.88 63.63 18.18
CHU103 48.87 37.49 -0.19 -0.11 40.54 36.36 52.27 55.81 25.58
CHU104 86.46 65.39 -0.09 0.03 33.33 32.60 36.95 35.55 35.55
CHU105 51.04 38.16 -0.14 -0.16 30 29.54 61.36 53.48 20.93
CHU106 69.20 51.80 -0.13 -0.14 29.26 29.54 52.27 37.20 30.23
CHU107 52.60 42.39 -0.19 -0.11 40.90 40.00 51.11 45.45 22.72
CHU108 47.19 33.75 0.01 0.09 34.09 33.33 55.55 47.72 29.54
CHU115 29.16 21.43 -0.04 -0.05 65.90 65.90 34.09 48.83 32.55
CHU118 64.22 58.67 0.19 0.22 22.50 26.08 58.69 55.55 26.66
CHU119 86.04 52.44 0.07 0.11 37.77 37.77 37.77 34.09 31.81
CHU120 88.84 62.76 -0.28 -0.03 26.66 26.66 55.55 47.72 20.45
CHU121 49.05 37.15 0.0029 0.06 37.50 40.00 51.11 54.54 15.90
CHU128 47.59 39.35 0.13 0.18 45.16 45.16 48.38 53.33 26.66
CHU130 61.08 63.03 -0.01 0.01 33.33 35.48 58.06 43.33 16.66

∗ prediction within [20%] from reference yBG when yBG ≥ 75[mg/dL]
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Table 6.8 Numerical and clinical accuracy of predictions. Scenario 1,
case B, 120 [min] prediction

Patient AD [mg/dL] RD ISO [%] CG-pEGA [%] CG-rEGA [%]
Mean Median Mean Median ∗ A B A B

CHU102 49.33 42.67 0.05 0.04 39.02 41.86 58.13 59.52 19.04
CHU103 51.09 43.87 -0.25 -0.12 32.43 27.27 61.36 53.48 20.93
CHU104 98.97 63.47 -0.14 0.09 26.82 27.27 36.36 23.25 30.23
CHU105 54.57 49.65 -0.27 -0.28 31.57 28.57 66.66 58.53 24.39
CHU106 78.62 60.58 -0.15 -0.09 36.58 34.09 36.36 37.20 27.90
CHU107 62.77 69.62 -0.17 -0.08 25 24.44 68.88 43.18 34.09
CHU108 38.05 30.37 0.01 0.07 40.47 39.53 55.81 42.80 30.95
CHU115 37.77 30.40 -0.06 -0.01 51.16 51.16 46.51 52.38 23.80
CHU118 73.38 56.88 0.23 0.25 26.31 27.27 52.27 37.20 32.55
CHU119 91.51 58.52 0.09 0.11 40 40.00 35.55 43.18 27.27
CHU120 113.98 98.49 -0.30 0.13 9.30 9.30 55.81 47.61 19.04
CHU121 60.08 35.0 -0.18 0.07 42.50 42.22 37.77 47.72 20.45
CHU128 59.04 44.16 0.18 0.16 43.33 43.33 40 31.03 41.37
CHU130 75.17 58.84 0.05 0.11 26.66 26.66 60 48.27 17.24

∗ prediction within [20%] from reference yBG when yBG ≥ 75[mg/dL]
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6.4 Discussion and conclusions

Subspace-based multi-step data-driven predictors were applied to the
problem of short-term T1DM glycemia prediction. Among the algorithms
proposed in Chapter 5, Algorithm 5.1 was used. The choice was based on
the analysis of the results reported for the open-loop cases in Chapter
5. In such examples, indeed, Alg. 5.1 performed consistently over all the
prediction horizons, in all the cases. Moreover, from an implementation
point of view, the approach was attractive, amounting only to an LQ
decomposition of appropriately organized input-output Hankel matrices.
The user was required to choose one parameter: the length of the past

horizon, p. It represents the size of the past Hankel data matrices and has
strong connections with the underlying model order. A too large prediction
horizon may lead to overparametrization and hence poor performances.
On the other hand, p is lower-bounded by the maximum prediction horizon
τmax one wishes to investigate. Actually, as noted in Section 5.5, the
parameter p should be given by the user so to optimize performances.
In other words, if the objective is to predict τ =30 [min] ahead p should
not be given >> 30. Inspection of Tables 6.1–6.4 confirmed this statement.
The highlighted columns refer to the same prediction horizon, i.e., τ =30
[min], and showed better performances in the case where p = τ (Case
A). An exception was represented by patient CHU105 and CHU107 in
Scenario 2 and might be due to some artifacts in the data caused by the
interpolation of either the YSI samples or the insulin in blood samples.
Tables 6.1–6.4 evaluated the predictors per se. The performances

varied not only among the population, as it could be expected as some
patients are easier to describe than others, but also between the scenarios.
The results appearing in Table 6.2 can be compared to those shown in
Table 4.7. From this analysis it may, then, be concluded that the strategy
presented in Chapter 4 was more successful. However, from a clinical
diabetes point of view, a different conclusion is drawn. Let us examine
Tables 6.5–6.8 and Tables 4.9–4.12. The absolute prediction error in
the multi-step predictors case was somewhat larger, nevertheless, the
percentage of points falling in the A+B regions in the CG-EGA, hence
considered safe predictions, was almost the same in both cases.
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7

Continuous-time

State-Space Identification

7.1 Introduction

Prior to the mid 1960s, early research on system identification for
automatic control and system analysis focused on continuous-time models
obtained by reference to either frequency response data or transient
response data, as most control system implementations at the time
employed analogue techniques [Truxal, 1955]. Subsequently however,
developments in digital data acquisition and computing technology led
to an emphasis on the use of discrete-time system models and discrete-
time control designs, most of the system identification research being,
thus, concerned with the estimation of parameters in discrete-time
models from sampled data [Åström and Eykhoff, 1971; Ljung, 1999;
Söderström and Stoica, 1989; Johansson, 1993]. Nevertheless, in areas
such as biology, medicine and physiology the accurate knowledge of
the natural continuous-time transfer function is still a prerequisite
to many methods in physical modelling and control system design.
Actually, glucose metabolism modeling in diabetes is no exception to this
case. Comprehensive descriptions of the glucose-insulin control system
attempting to fully implement the knowledge about metabolic regulation
into a typically nonlinear model of high order, with a large number of
parameters are available in the literature [Hovorka et al., 2004], [Dalla
Man et al., 2006], [Wilinska et al., 2010]. Generally, such models are
difficult to personalize, the identification of all the unknown parameters
appearing therein requiring costly and complicated massive experimental
investigation on a single individual [Dalla Man et al., 2002], [Dalla
Man et al., 2004], [Dalla Man et al., 2005], [Dalla Man et al., 2006],
[Cobelli et al., 2009] and may lack structural identifiability. Overall,
these aspects make them unsuitable to the purposes of prediction and
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control while their utility is in the possibility for simulation studies. An
alternative practical scenario was illustrated in Chapter 4, where simpler
discrete-time models of the signals and systems involved in diabetes were
identified from blood glucose concentration, insulin doses and quantities
of carbohydrate in a meal. Yet, there is no undisputed algorithm for
parameter translation from discrete-time parameters to a continuous-time
description. Problems in this context are associated with translation of the
system zeros from the discrete-time model to the continuous-time model
whereas the system poles are mapped by means of complex exponentials
[Åström et al., 1984]. As a result, a poor parameter translation tends
to affect both the frequency response such as the Bode diagram and
the transient response such as the impulse response. Hence, another
particularly interesting and appealing option is represented by the direct
continuous-time glucose-insulin metabolism system identification from
discrete-time collected data.

The main obstacle in handling continuous time (CT) models is associated
with the need of the normally unmeasured time-derivative terms of the
input-output signals. In early contributions, this difficulty was removed
by processing the signals with state variable filters (SVF) acting on the
inputs and outputs of the continuous-time process [Young, 1964], in order
to provide approximate derivatives which might be exploited for linear
regression and other identification methods. However, several alternatives
to the use of SVFs were proposed, each being characterized by specific
advantages such as mathematical benefit, handling the effect of initial
conditions, accuracy, computation simplicity and others [Garnier et al.,
2003; Sinha and Rao, 1991; Unbehauen and Rao, 1987a; Young, 1981b;
Young and Garnier, 2006]. Johansson [1986] interestingly suggested an
algebraic reformulation of transfer function models exploiting the operator
λ as substitute of the Laplace operator to represent differentiations. This
approach was taken later on by the same author to identify continuous-
time models from sampled data by means of subspace model identification
(SMI) algorithms [Johansson et al., 1999]. Bergamasco and Lovera [2010,
2011] building on the framework introduced in [Haverkamp, 2001] and
exploting Laguerre filtering and Laguerre projections as in [Ohta and
Kawai, 2004] derived a closed-loop predictor-based SMI scheme.
This chapter is concerned with state-space model identification algo-
rithms that fits CT models to discrete time (DT) (possibly non-uniformly)
sampled data. The underlying motivation to this work is obtaining per-
sonalized continuous-time data-driven models of T1DM glucose dynamics
from actual patients sampled input-output data. Two approaches are pre-
sented: one subspace-based as in [Bergamasco and Lovera, 2010], [Berga-
masco and Lovera, 2011] and one realization-based [Johansson et al.,
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2013].
Altogether, there are a number of advantages of such a strategy:

1. Continuous-time models provide good physical insight into the
glucose metabolism system properties

• The estimated parameters have clinically relevant meaning,
e.g., static gains and time constants for glucose and insulin.
While these parameters are directly linked to the CT model,
the parameters of DT models are a function of the sampling
interval and do not normally have any physical interpretation
[Garnier et al., 2008];

2. Ability of handling non-uniformly sampled data

• meal and insulin intakes appear at sparse discrete time in-
stants, non equidistantly spaced and not synchronized with
blood glucose self-monitoring. In addition, in the situation of
a subcutaneous glucose sensor often samples are missed every
now and then, due to loss of connection between transmitter
and receiver and sensor misplacement. Hence, the standard
DT LTI model will not be applicable because the assumption of
a uniformly sampled environment no longer holds. The coeffi-
cients of CT models, instead, are assumed to be independent
of the sampling period, the measurements are considered as
points on a continuous line which do not need to be equidis-
tantly spaced [Åström et al., 1984];

3. Transformation between CT and DT models

• when a CT model is transformed into its DT counterpart, the
DT parameters are functions of the CT parameters and the
sample time, and in general there is no unique retransforma-
tion. One source of error in many existing algorithms is that
computation of the system zeros is affected by the assumed and
actual inter-sample behavior (e.g., ZOH) of the control vari-
ables.

4. Use of linear algebra tools in the algorithms (subspace based) [Golub
and Van Loan, 1996]

• robust implementation and overcome being trapped into local
minima (subspace based)
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7.2 A model transformation

The strategies presented in this chapter introduce an algebraic reformu-
lation of transfer function models. The idea is to find a causal, stable,
realizable linear operator that may replace the differential operator while
keeping an exact transfer function. This shall be done in such a way that
a linear model for estimation of the original transfer function parameters
is obtained. Actually, there is always a linear one-to-one transformation
which relates the continuous-time parameters and the convergence points
for each choice of operator [Johansson, 1994].
Consider a linear nth order transfer operator formulated with a diffe-
rential operator σ = d/dt and unknown coefficients ai, bi.

G0(σ ) =
b1σ n−1 + ⋅ ⋅ ⋅+ bn

σ n + a1σ n−1 + ⋅ ⋅ ⋅+ an
= B(σ )
A(σ ) (7.1)

where it is assumed that A(⋅) and B(⋅) are coprime. It is supposed that
the usual isomorphism between transfer operators and transfer functions,
i.e., the corresponding functions of a complex variable s, is valid. Because
of this isomorphism, G0 will sometimes be regarded as a transfer function
and sometimes as a transfer operator. A notational difference will be made
with σ denoting the differential operator and s denoting the complex
frequency variable of the Laplace transform.

On any transfer function describing a physically realizable continuous-
time system, it is a necessary requirement that the transfer function be
proper because pure derivatives of the input cannot be implemented. This
requirement is fulfilled as lims→∞ G0(s) is finite, i.e., G0(s) has no poles
at infinity. An algebraic approach to system analysis may be suggested.
Let a be point on the positive real axis and define the mapping

f (s) = a

s+ a , s ∈ C

Let C̄ = C ∪ ∞ be the complex plane extended with the ‘infinity point’.
Then f is a bijective mapping from C̄ to C̄ and it maps the ‘infinity point’
to the origin and −a to the ‘infinity point’. The unstable region—i.e., the
right half plane (Re s > 0)—is mapped onto a region which does not
contain the ‘infinity point’. Introduction of the operator

λ = f (σ ) = a

σ + a =
1

1+στ
, τ = 1/a (7.2)

allows us to make the following transformation

G0(σ )
pσ=
1− λ

τ λ

= G∗
0(λ) =

B∗(λ)
A∗(λ)
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with

A∗(λ) = 1+α 1λ +α 2λ
2 + ⋅ ⋅ ⋅+α nλ

n (7.3)
B∗(λ) = β 1λ + β 2λ

2 + ⋅ ⋅ ⋅+ β nλ
n (7.4)

An input-output model is easily formulated as

A∗(λ)y(t) = B∗(λ)u(t) (7.5)

or on regression form

y(t) = −α 1[λ y](t) − ⋅ ⋅ ⋅−α n[λny](t) + β 1[λu](t) + ⋅ ⋅ ⋅+ β n[λnu](t) (7.6)

This is now a linear model of a dynamical system at all points of time.
Notice that [λu], [λ y] etc. denote filtered inputs and outputs. The para-
meters α i, β i may now be estimated by any suitable method for estimation
of parameters of a linear model. A reformulation of the model Eq. (7.6) to
a linear regression form is

y(t) = ϕTτ (t)θτ ,

θτ =
(
α 1 α 2 . . .α n β 1 β 2 . . . β n

)T

ϕτ (t) = (−[λ y](t), . . .− [λny](t), [λu](t), . . . [λnu](t))T
(7.7)

with parameter vector θτ and the regressor vector ϕτ .

Parameter transformations

Before proceeding, we should make clear the relationship between the
parameters α i, β i of (7.3)–(7.4) and the original parameters ai, bi of the
transfer function (7.1). Let the vector of original parameters be denoted
by

θ =
(
−a1 −a2 . . . −an b1 . . . bn

)T (7.8)

Using the definition of λ of Eq. (7.2), it is straightforward to show that
the relationship between the operator-transformed parameters of Eq. (7.7)
and the original parameters of Eq. (7.8) is

θτ = Fτθ + Gτ (7.9)

where the 2n$ 2n−matrix Fτ is

Fτ =
(
Mτ 0n$n
0n$n Mτ

)
(7.10)
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and where Mτ is the Pascal matrix

Mτ =




m11 0 ⋅ ⋅ ⋅ 0

m12 m22
. . .

...
...

. . . 0
mn1 mn2 ⋅ ⋅ ⋅ mnn



, (7.11)

mi j = (−1)i− j
(
n− j
i− j

)
τ j (7.12)

Furthermore, the 2n$ 1−vector Gτ is given by

Gτ =
(
�1 . . .�n 0 . . . 0

)T ; �i =
(
n

i

)
(−1)i (7.13)

The matrix Fτ is invertible when Mτ is invertible, i.e. for all τ > 0. The
parameter transformation is then one-to-one and

θ = F−1τ (θτ − Gτ ) (7.14)
We may then conclude that the parameters ai, bi of the continuous-time
transfer function G0 may be reconstructed from the parametersα i, β i of θτ

by means of basic matrix calculations. As an alternative we may estimate
the original parameters ai, bi of θ from the linear relation

y(t) = θTτ ϕτ (t) = (Fτθ + Gτ )Tϕτ (t) (7.15)
where Fτ and Gτ are known matrices for each τ . Moreover, orthogonal
linear combinations of the regressor vector components by means of some
transformation matrix T could be accommodated by modification of Eq.
(7.15) to

y(t) = (Tϕτ (t))TT−T Fτθ + (Tϕτ (t))TT−TGτ

Hence, the parameter vectors θτ and θ are related via known and simple
linear relationships so that translation between the two parameter vectors
can be made without any problem arising. Moreover, identification can be
made with respect to either θ or θτ .

7.3 Predictor-based state-space model identification

Consider a continuous-time time-invariant system Σn(A, B,C) described
by the differential equations:





dx(t) = Ax(t)dt+ Bu(t)dt+ dw(t)
dz(t) = Cx(t)dt+ dv(t)
y(t)dt = dz

(7.16)

128



7.3 Predictor-based state-space model identification

with input u ∈ Rm, output y ∈ Rl, state vector x ∈ Rn. The noise
w(t) ∈ R

n and v(t) ∈ R
l acting on the state dynamics and the output,

respectively, are Wiener processes with incremental covariance given by
(ignoring terms dependent on (dt)2):

E{
[
w(t)dt
v(t)dt

] [
w(t)dt
v(t)dt

]
⊺

} =
[
Q S

S⊺ R

]
dt (7.17)

The initial state, w(t), v(t) and u(t) are assumed to be mutually
independent. The system matrices A ∈ R

n$n, B ∈ R
n$m, C ∈ R

p$n are
such that (A,C) is observable, (A, [B,Q 1

2 ]) is controllable and the system
is stable. The input-output data sequences of system (7.16) are observed
at the sample times not necessarily equidistantly spaced {tk}Nk=0, tk+1 ≥ tk
for all k and are denoted as {u(tk)}Nk=0, {y(tk)}Nk=0. The continuous-time
model identification problem, thus, consists in identifying the system
parameters A, B, C up to a similarity transformation or equivalently
the (system invariant) transfer function F(s) = C(sI − A)−1B starting
from {u(tk)}Nk=0, {y(tk)}Nk=0.
Remark: As computation and statistical validation tests deal with
discrete-time data, we assume the original sampled stochastic disturbance
sequences to be uncorrelated with a uniform spectrum up to the Nyquist
frequency, thereby avoiding the mathematical problems associated with
Brownian motion [Johansson, 1994].

Continuous-Time State-Space Linear System

From the set of first-order differential equations, we have in the Laplace
domain notation:

sX (s) = AX (s) + BU(s) +W(s) + sx0, x0 = x(t0)
Y(s) = CX (s) + V (s) (7.18)

Introduction of the complex variable transform

λ(s) = 1
1+ sτ (7.19)

corresponding to a stable, causal operator in order to replace the Laplace
domain differentiation as represented by s, mapping the left-half plane
into the disc Ω centered in 0.5, permits an algebraic transformation of
the model [Johansson et al., 1999]

X = (I + τ A)[λX ] + τ B[λU ] + τ [λW] + (1− λ)x0
Y = CX + V (7.20)
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Reformulation while disregarding the initial conditions to linear system
equations gives:

[
ξ
y

]
=

[
(I + τ A) τ B
C 0

] [
x

u

]
+
[
τv
e

]
, x(t) = [λξ ](t)

=
[
Aλ Bλ

C 0

] [
x

u

]
+
[
τv
e

] (7.21)

where
{
Aλ = I + τ A

Bλ = τ B
(7.22)

the mapping between (A, B) and (Aλ , Bλ) being bijective. Provided that a
standard positive semi-definiteness condition of Q is fulfilled so that the
Riccati equation has a solution

Pλ = AλPλA
⊺

λ + Qλ − (AλPλC
⊺

λ + S
⊺

λ )(CλPλC
⊺

λ + Rλ)−1(CλPλA
⊺

λ + Sλ)
Kλ = (AλPλC

⊺

λ + S
⊺

λ )(CλPλC
⊺

λ + Rλ)−1
(7.23)

E{
[
τv(t)dt
e(t)dt

] [
τv(t)dt
e(t)dt

]
⊺

} =
[
Qλ Sλ

S
⊺

λ Rλ

]
dt (7.24)

it is possible to replace the linear model of Eq. (7.21) by the innovations
model

[
ξ
y

]
=

[
Aλ Bλ

C 0

] [
x

u

]
+
[
Kλ

I

]
w (7.25)

Kλ = τ K (7.26)

Taking the innovations model inverse (predictor form), we have

[
ξ
w

]
=

[
Aλ − KλC Bλ

−C 0

] [
x

u

]
+
[
Kλ

I

]
y

=
[
Āλ Bλ

−C 0

] [
x

u

]
+
[
Kλ

I

]
y, Āλ = Aλ − KλC

y= Cx +w

(7.27)
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Further, all the eigenvalues of Āλ are assumed to be inside the disc Ω.
By recursion it is found that [Johansson et al., 1999]

[λ py](t) = CĀpλξ (t)+

+
p∑

h=1
CĀh−1λ (Bλ [λ p−hu](t) + Kλ [λ p−hy](t)) + [λ pw](t)

[λ p+1y](t) = CĀp+1λ ξ (t)+

+
p+1∑

h=1
CĀh−1λ (Bλ [λ p+1−hu](t) + Kλ [λ p+1−hy](t)) + [λ p+1w](t)

...

[λ p+ f y](t) = CĀp+ fλ ξ (t)+

+
p+ f∑

h=1
CĀh−1λ (Bλ [λ p+ f−hu](t) + Kλ [λ p+ f−hy](t)) + [λ p+ fw](t)

(7.28)
To the purpose of predictor-based subspace model identification [Chiuso,
2007a], [Chiuso, 2007b], [Bergamasco and Lovera, 2010], it is straightfor-
ward to formulate extended linear models for the original models and its
innovations form

Y [p,p+ f ](t) = Ō [p,p+ f ]ξ (t) + Ξ0Z [p−1,p+ f−1](t) +W [p,p+ f ](t) (7.29)

with

Y [p,p+ f ](t) =
[
[λ py](t) [λ p+1y](t) ⋅ ⋅ ⋅ [λ p+ f y](t)

]

U[p,p+ f ](t) =
[
[λ pu](t) [λ p+1u](t) ⋅ ⋅ ⋅ [λ p+ fu](t)

]

W [p,p+ f ](t) =
[
[λ pw](t) [λ p+1w](t) ⋅ ⋅ ⋅ [λ p+ fw](t)

]

Z [p−1,p+ f−1](t) =



[λ p−1z](t) [λ pz](t) ⋅ ⋅ ⋅ [λ p+ f−1z](t)

...
... ⋅ ⋅ ⋅

...
[λ0z](t) [λ z](t) ⋅ ⋅ ⋅ [λ f−1z](t)




(7.30)

where

z(t) =
[
u(t)
y(t)

]

and parameter matrices

Ξ0 =
[
CĀ

p−1
λ [Bλ Kλ ] CĀp−2λ [Bλ Kλ ] ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ C[B̄λ Kλ ]

]

Ō [p,p+ f ] =
[
CĀ

p

λ CĀ
p+1
λ ⋅ ⋅ ⋅ CĀ

p+ f
λ

]
⊺

(7.31)
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System identification algorithm

The framework provided permits the reformulation of the PBSID algo-
rithm which was originally developed in discrete-time [Chiuso, 2007a],
[Chiuso, 2007b], though with application to continuous-time modeling and
identification [Bergamasco and Lovera, 2010]. To this end, consider the
finite sequences of (possibly non-uniformly) sampled input-output data
{u(tk)}N0 ,{y(tk)}N0 at sample times {tk}N0 , tk+1 ≥ tk, ∀k. As the regression
model of Eq. (7.29) is valid for all times, it is also a valid regression model
at sample times {tk}N0

Y [p,p+ f ](tk) = Ō [p,p+ f ]ξ (tk) + Ξ0Z [p−1,p+ f−1](tk) +W [p,p+ f ](tk) (7.32)

The first term on the right hand-side of Eq. (7.32) contains the sequence
of the unknown initial states, which induces a bias to the identification of
Ξ0, the matrix containing the system parameters. Due to the scaling by
Ā
p

λ this bias can be made arbitrarily small by choosing p sufficiently large
as compared to the eigenvalues of Āλ . Actually, this statement holds true
because the eigenvalues of Āλ are inside the disc Ω. Then, the effect of
the unknown initial states can be neglected, i.e., Ā jλ ∈ o(1/

√
N), ∀ j ≥ p,

N number of available samples [Chiuso, 2007a], [Chiuso, 2007b], so that
finally we obtain

Y N[p,p+ f ] = Ξ0Z
N
[p−1,p+ f−1] +W N

[p,p+ f ] + o(1/
√
N) (7.33)

where

Y N[p,p+ f ] =
[
[λ py](t0) ⋅ ⋅ ⋅ [λ py](tN) ⋅ ⋅ ⋅ [λ p+ f y](t0) ⋅ ⋅ ⋅ [λ p+ f y](tN)

]

(7.34)
and similarly forUN[p,p+ f ],Z

N
[p−1,p+ f−1],W

N
[p,p+ f ]. The matrix Ξ0 is estimated

solving the least-squares problem

Ξ̂0 = argmin
Ξ0,D

pp Y N[p,p+ f ] − Ξ0Z
N
[p−1,p+ f−1] pp2F (7.35)

where pp ⋅ ppF stands for the Frobenius norm of a matrix [Golub and Van
Loan, 1996]. For finite p the solution of this linear problem will be biased
due the approximation made disregarding the initial states. In the LTI
literature a number of papers appeared that studied the effect of the
window size and although they proved the asymptotic properties of the
algorithms (if p → ∞ the bias disappears) it is hard to quantify the
effect for finite p [Knudsen, 2001; Chiuso, 2007a; Chiuso, 2007b]. Once
the Markov parameters of the system are found in Ξ0 estimated solving
Eq. (7.35), the next step consists in estimating the state sequence. To this
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end, consider the following matrix

Ξ =




Ξ0
Ξ1
...

Ξ f−1


 =, [Bλ Kλ ] = B̄λ

=




CĀ
p−1
λ B̄λ CĀ

p−2
λ B̄λ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ CB̄λ

0 CĀ
p−1
λ B̄λ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ CĀλ B̄λ

...
. . .

. . .
. . .

. . .
...

0 ⋅ ⋅ ⋅ 0 CĀ
p−1
λ B̄λ ⋅ ⋅ ⋅ CĀ

f−1
λ B̄λ




(7.36)

and

Ō [0,p−1] =




C

CĀλ

CĀ2λ
...

CĀ
p−1
λ




(7.37)

It holds
Ō [0,p−1]X

N
[p,p] = ΞZN[p−1,p−1] (7.38)

By singular value decomposition

ΞZN[p−1,p−1] =
[
U U⊥

] [Σn 0
0 Σ

] [
V

V⊥

]
(7.39)

the state can be estimated:

ˆX N[p,p] = ΣnV (7.40)

From the output equation in Eq.(7.27) an estimate of C can be obtained
by means of least-squares estimation, i.e.,

Ĉ = argmin
C
pp Y N[p,p] − CX N[p,p] pp2F (7.41)

as well as the innovation sequence

W N
[p,p] = Y N[p,p] − ĈX̂ N[p,p] (7.42)

Finally, the matrices Aλ , Bλ , Kλ are found solving the least-squares
problem

Âλ , B̂λ , K̂λ = arg min
Aλ ,Bλ ,Kλ

pp X̂ Np+1,p − Aλ X̂
N
p,p−1 − BλU

N
p,p−1 − KλW

N
p,p−1 pp2F
(7.43)

A summary of the steps carried out in the identification procedure is
reported in Algorithm 7.1.
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Chapter 7. Continuous-time State-Space Identification

ALGORITHM 7.1—PBSID [CHIUSO, 2007A], [CHIUSO, 2007B], [BERGAMASCO AND
LOVERA, 2010]

1. Construct the matricesUN[p,p+ f ],Y
N
[p,p+ f ],Z

N
[p−1,p+ f−1] according to Eq.

(7.34)

2. Solve Eq.(7.35) for Ξ̂0

3. Compute the SVD in Eq.(7.39)

4. Choose the model order by inspecting the singular values from step
(3)

5. Get the estimated state-sequence X̂ N[p,p] using Eq.(7.40)

6. With X̂ N[p,p] solve Eq.(7.41)

7. Compute the innovation sequence from Eq.(7.42)

8. Obtain Aλ , Bλ , Kλ solving the least-squares in Eq.(7.43)

9. Calculate the state-space matrices A, B, K by means of the relations
in Eq.(7.22,7.26) 2

7.4 System realization

ALGORITHM 7.2—SYSTEM REALIZATION [HO AND KALMAN, 1966; JOHANSSON ET

AL., 1999; JOHANSSON, 2010]
1. Use linear regression to find a truncated multivariable transfer
function

Gm(λ(s)) =
m∑

k=0
Gmk λ k (7.44)

where the prediction error

ε (t,θ ) = y(t) −
(
Gm1 . . .G

m
m

)
︸ ︷︷ ︸

θ



[λ1u](t)
...

[λmu](t)




be minimized at the set of sample times {tk}Nk=1 by least-squares
estimation of θ or {Gmk }mk=1.
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7.4 System realization

2. For suitable numbers q, r, s such that r+s ≤ N arrange the Markov
parameters in the Hankel matrix

G(q)r,s =




Gq+1 Gq+2 ⋅ ⋅ ⋅ Gq+s
Gq+2 Gq+3 ⋅ ⋅ ⋅ Gq+s+1
...

...
. . .

...
Gq+r Gq+r+1 ⋅ ⋅ ⋅ Gq+r+s−1


 (7.45)

3. Determine rank n and resultant system matrices

G(0)r,s = UΣVT (SVD) (7.46)
ETy = [Ip$p 0p$(r−1)p] (7.47)
ETu = [Im$m 0m$(s−1)m] (7.48)
Σn = diag {σ 1,σ 2, . . . ,σ n} (7.49)
Un = matrix of first n columns of U (7.50)
Vn = matrix of first n columns of V (7.51)

Finally, calculate the state-space matrices

An = Σ−1/2n UTn G
(1)
r,s VnΣ−1/2n , Â = 1

τ
(An − I) (7.52)

Bn = Σ1/2n V
T
n Eu, B̂ = 1

τ
Bn (7.53)

Cn = ETy UnΣ1/2n , Ĉ = Cn (7.54)
Dn = G0, D̂ = Dn (7.55)

which yields the nth-order state-space realization

ẋ(t) = Âx(t) + B̂u(t)
y(t) = Ĉx(t) + D̂u(t) (7.56)

2

Remark: A similar algorithm is obtained by replacing Steps 3-4 by
balanced model reduction of the system

τ ẋu = Aλ xu + Bλu, (7.57)
y= Ĉxu, Ĉ =

(
Gm1 . . .G

m
2 0 . . . 0

)
(7.58)

with the regressor-state vector

xu =




[λ1u]
[λ2u]
...

[λnu]


 (7.59)
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and Aλ , Bλ according to Eq. (7.22).

7.5 Discussion and conclusions

This chapter considered identification methods for continuous-time state-
space models using discrete-time data. The transformation by means
of λ allows an exact reparametrization of a continuous-time transfer
function. High-frequency dynamics and low-frequency dynamics thus
appear without distortion in the mapping from input to output. The low-
pass filters implemented for the estimation model have a filtering effect
in producing regressor variables for identification. In this context, other
filtering approaches such as the Poisson moment functional (PMF) or the
Laguerre polynomials may be used [Unbehauen and Rao, 1990; Young,
1969; Young, 1981a]. Implementation of the operator λ may be done as
continuous-time filters, discrete-time filters or by means of numerical
integration methods [Johansson, 1994].
In the PBSID approach, four parameters have to be chosen : (i) the

low-pass filter pole location 1/τ , (ii) the system order n, (iii) the length
of the past horizon p and (iv) the length of the future horizon f . The
parameter τ is related to the expected bandwidth ω b of the system to
identify, and should be chosen 1/τ ≥ ω b so that the input-output signals
are not attenuated within ω b. As far as the model order n is concerned, it
is selected by inspection of the singular values form the SVD of ΞZN[p−1,p−1].
The length of the past horizon p, p ≥ n has to be estimated from data, e.g.,
using standard criterions for VARX model order estimation [Peternell,
1995; Chiuso, 2007b]. A suitable future horizon f can be taken f ≤ p,
as suggested in [Chiuso, 2010]. Statistical consistency analysis is left to
future work. Application of the methods presented in this chapter to the
diabetes metabolism modeling will be dealt with in Chapter 8.
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8

Impact of Meal and Insulin

Intakes on Glycemia

8.1 Introduction

One of the main limiting factors in improving glucose control for T1DM
subjects is the lack of a precise description of meal and insulin intake
effects on blood glucose. The knowledge of magnitude and duration of
such effects would be useful not only for patients and physicians when
deciding upon the most suitable therapy, but also for the development
of a controller targeting glycemia regulation (Chapter 2). In current
medical practice, indeed, the calculation of insulin doses and eventually
extra carbohydrate intakes needed to maintain normoglycemia is roughly
based on empirical rules-of-thumbs taking into account patients personal
knowledge of his/her own metabolism, expected future glycemia evolution
and approximation of the estimated meal carbohydrate content effects
as well as insulin impact on the subject own blood glucose. Actually,
there is the need of a mathematical model able to describe blood
glucose evolution in response to the main driving sources, i.e., a meal
intake and an insulin dose. To date several types of glucose metabolism
models, both first principle- and data-based, have been proposed to
this purpose (see Chapter 2 for a review). However, as pointed out
in Chapter 4, less attention has been dedicated to the fundamental
aspects of estimating physiologically plausible and qualitatively correct
signs and time constants of the identified models impulse responses. In
addition, desirable features of a glucose metabolism model would include a
clinician-friendly structure and few tunable parameters with physiological
meaning.

Therefore, in this chapter we focus on estimating low-complexity yet phys-
iologically sound and individualized multi-input single-output (MISO)
models of the glucose metabolism in T1DM able to reflect the basic dy-
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namical features of the glucose-insulin metabolic system in response to
a meal intake or an insulin injection. The models are continuous-time
second-order transfer functions relating the amount of carbohydrate of
a meal and the insulin units of the accordingly administered dose (in-
puts) to plasma glucose evolution (output) and consist of few parameters
clinically relevant to be estimated.

The estimation strategy was continuous-time data-driven system identi-
fication and exploited a database in which meals and insulin boluses are
separated in time, allowing the unique identification of the model param-
eters.

8.2 Data

In order to separately estimating meal and insulin impacts on blood
glucose dynamics, the lack of input excitation observed in almost all
the data-sets treated in the literature [Finan et al., 2009] must be
overcome. Suitable data were collected in the framework of DIAdvisor
TM [DIAdvisor, 2012] during DIAdvisor II trial, Visit 2 and day 3 in
Visit 3 (see Chapter 3 for details). We recall here in passing that the
appealing feature of such data was due to the scheduled 2-hours time
split between carbohydrate and insulin intakes. The CGMS data were
used as measurements of glycemia, because the sensor measurements
were more numerous than the blood samples and compared well with the
YSI [Yellow Spring Instruments, 2013] measurements (see Table 3.7 for
accuracy analysis). Figures 8.4-8.6 show representative patients records,
the remaining patients in the population behaved similarly. Data collected
during Visit 2 were used for identification of the model parameters,
whereas cross validation was performed on those gathered in Visit 3.

8.3 Model structure

Second-order linear transfer function models with time delays were
proposed to approximate the behaviour of glucose in response to inputs,
namely meal and insulin intakes. The choice was based on the analysis
of the data collected and was motivated by physiology as follows. During
the night hours, up until breakfast, the blood glucose levels were almost
constant (see Fig. 8.1), due to the overnight fast and the sleep. The gluco-
regulatory system could be considered, therefore, at steady state. At 8.00
am a 40 [g] carbohydrate input was applied to the system, corresponding
to breakfast. As a consequence, glucose concentration raised (Fig. 8.1,
8.4, 8.6). During the next two hours following breakfast, no other actions
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Figure 8.1 Patient UNIPD219. DIAdvisor II trial, Visit 3. Top Actual
YSI (triangle) [mg/dL]; Center Carbohydrate intake [g]; Bottom Insulin
[IU]: bolus (blue), basal (red). All the measurements vs. time of the day
[h]

were taken, allowing to characterize the effects of carbohydrate on
blood glucose. For some patients plasma glucose concentration began to
fall after about 90 minutes from carbohydrate ingestion (e.g., patient
UNIPD219 in Figs. 8.4, 8.10) suggesting the presence of 2 poles in the
transfer function from carbohydrate to blood glucose, one faster than
the other. For other patients, plasma glucose didn’t fall during the
time interval 8.00 am to 10.00 am (e.g., patient IKEM326 in Figs. 8.6,
8.10) leading to the assumption of an integrator term in the transfer
function as glucose storage term. At 10.00 am, the second input, i.e.,
the insulin dose–which was previously calculated by the patient, was
administered, making glucose concentration to clearly fall for both the
previously described type of subjects with an integrator-like behaviour
(Figs. 8.4, 8.6, 8.10). Further, a time delay associated with both inputs
was observed in each of the data series and incorporated in the model
structure. It is well known from physiology, indeed, that there are time
delays accounting for glucose intestinal absorption dynamics and insulin
pharmacokinetics/pharmacodynamics. In contrast to most of the existing
models in the literature (see Section 2.4 for an overview), we did not use
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any compartment model for the description of the rate of appearance in
plasma following a food intake, nor for the subcutaneous depots-to-plasma
insulin dynamics, as we did in Chapter 4. By doing this, the limitations
introduced by the nonlinear nature of such models [Dalla Man et al., 2007]
could be overcome and most importantly the issues related to the complex
tracer experiments needed to collect the appropriate data required to fit
the unknown parameters of those models to the individuals didn’t require
attention any longer. Rather, the meal input was represented by a pulse
of the duration of 15 minutes (since the food was completely ingested by
the patients within 20 minutes at maximum to comply with the clinical
protocol), applied at the time instant tcarb = 8.00 am, while the insulin
injection was considered an impulse-formed input applied at time instant
tins = 10.00 am. All these facts, led us to the formulation of the following
model structure:

YBG(s) = Gcarb(s)ucarb(s) + Gins(s)uins(s) (8.1)

where YBG(s) is the Laplace transform of the output blood glucose
concentration, ucarb,uins ∈ Z+ are the inputs carbohydrate amount and
insulin doses, respectively, while the transfer functions from carbohydrate
to blood glucose Gcarb(s) and from insulin to blood glucose Gins(s) are
given in Eqs. 8.2 and 8.3, respectively:

Gcarb(s) = e−sτ carb
Kcarb

(1+ sTcarb,1)(1+ sTcarb,2)
(8.2)

Gins(s) = e−sτ ins
Kins

s(1+ sTins)
(8.3)

Further, Kcarb [mg/dL/g] and Kins [mg/dL/IU] are the gains and Tcarb,1,
Tcarb,2, Tins [min] the time constants governing rise and fall, respectively, of
plasma glucose, while τ carb, τ ins [min] are the time delays associated with
carbohydrate and insulin appearance in plasma, respectively. Actually, for
the type of patients depicted in Figure 8.6, Tcarb,2 = ∞ and the transfer
function becomes:

Gcarb(s) = e−sτ carb
Kcarb

s(1+ sTcarb,1)
(8.4)

The proposed model structure has some interesting properties. First
of all it is simple, containing only a few parameters to be identified
from data. Kcarb,Tcarb,1,Tcarb,2 can be related to glucose tolerance, i.e.,
how the body metabolizes glucose, Kins,Tins can be related to insulin
sensitivity or resistance, i.e., how effective is insulin in lowering blood
sugar levels. Moreover, τ carb,τ ins account for food transportation and
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absorption along the gastro-intestinal tract and insulin transit from
the subcutaneous tissues to plasma, respectively. All these factors are
of uttermost importance in diabetes treatment and failure to estimate
them correctly leads to unsuccessful glucose control. We believe this
type of model is easy to understand by practitioners, since all the
parameters can be given a clinical interpretation. In particular, it
would be straightforward for a physician to assess whether a model is
physiologically plausible or not.

Identification of the parameters

Our objective was to estimate the unknown parameter vector

θ̂ =
[
K̂carb K̂ins T̂carb,1 T̂carb,2 T̂ins τ̂ carb τ̂ ins

]
(8.5)

so that the estimation error between the actual blood glucose data yBG(t)
and the simulated model data ŷBG(t) was minimized in a least-squares
sense:

θ̂ = argmin
θ

∫ T

0
(yBG(t) − ŷBG(t,θ ))2dt (8.6)

where t is the continuous-time index and T = 5 [h], i.e., time interval
8.00 am-1.00 pm, subject to some constraints on θ , namely K̂carb > 0,
K̂ins < 0 to guarantee qualitatively correct responses to inputs (blood
glucose increases after a meal intake and decreases after an insulin
shot) and T̂carb,1, T̂carb,2, T̂ins > 0 to guarantee stability. The equilibrium
glycemia level, i.e., the value of blood glucose just before breakfast
was administered, was subtracted from the data series. Subsequently,
the meal test data sequences were splitted into 2 parts: the interval
[8.00 + τ carb, 10.00 + τ ins) for the estimation of Gcarb(s) and the interval
[10.00 + τ ins, 13.00] for that of Gins(s), the time delays being determined
empirically. The continuous-time predictor-based identification algorithm
PBSIDcont shown in Chapter 7 was applied to the first portion of the data
and the parameters Kcarb, Tcarb,1,Tcarb,2 were estimated. Next, the effect
of such carbohydrate intake predicted by the identified model if no insulin
would have been taken at 10.00 am was removed (black dotted curve in
Figs. 8.4, 8.6) and the PBSIDcont algorithm applied to the resulting data
in order to get an estimate of Kins, Tins.
Up to 6% missing CGMS data points for one single subject was

reported; however, this didn’t play a major role as the continuous-time
set-up for the identification can handle non-uniformly sampled records.
The user parameters were chosen as follows:

• τ = 10 was selected at first, then refined by trial and error

• n = 2
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• p = 3

• f = 3

8.4 Results

Figures 8.2 and 8.3 show the Bode diagrams for the estimated transfer
functions. Table 8.1 summarizes the estimated parameters for all the
patients, while the distribution of the parameters can be seen in Fig. 8.12.
Figures 8.4 and 8.6 presents simulation results on identification data for
the representative patients. In particular, the actual CGMS data used
for model parameters identification is compared with the glycemia level
predicted by the meal model when no insulin is taken and the estimated
glycemia level resulting from the application of both meal and insulin
model. Figures 8.5 and 8.7 show the response to 10 [g] of carbohydrate
and to 1 [IU] predicted by the models for the representative patients.
Notice that, without loss of generality, the equilibrium level at the start
of the simulation was chosen as the actual CGMS value at the beginning
of the breakfast as far as the carbohydrate response is concerned, and as
the highest glucose peak for insulin response.

Validation was performed on the second admission set of data. The YSI
measurements were taken as glycemia assessment, due to poorer CGM
data (see Chapter 3). We recall in passing that Visit 3 in the DIAdvisor II
trial took place 14± 3 days after Visit 2 and that in the days prior to the
test the subjects glucoregulatory system were challenged by an exercise
test and a big lunch containing 100 [g] carbohydrate. Validation results are
shown in Fig. 8.10 for the representative patients. In the above mentioned
figures, the simulated glycemia is compared to both the actual CGMS
data and YSI data. Additional figures reproducing simulation results for
patients UNIPD201 and IKEM306 are given in Appendix D.

As for performance assessment, the following metrics were considered:

• Percentage Variance Accounted For (VAF):

VAF =
(
1− E[(yBG(t) − ŷBG(t))(y(t) − ŷBG(t))

⊺]
E[yBG(t)y⊺(t)]

)
$ 100%

where E[⋅] denotes mathematical expectation.

• Root Mean Square Error (RMSE) [mg/dL]:

RMSE =
√
(yBG(t) − ŷBG(t))(yBG(t) − ŷBG(t))⊺

N

where N denotes the number of samples.
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8.4 Results

Results of performance statistics compared across the population are
presented in Tables 8.2 and 8.3 and in Figs. 8.8 and 8.9.
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Figure 8.2 Bode diagrams of the estimated transfer functions for all
the subjects participating in the trial, from meal carbohydrate [g] to blood
glucose [mg/dL]: Top Magnitude Bottom Phase
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Figure 8.3 Bode diagrams of the estimated transfer functions for all the
subjects participating in the trial, from insulin dose [IU] to blood glucose
[mg/dL]: Top Magnitude Bottom Phase
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Table 8.1 Estimated model parameters

Patient ID τ carb Kcarb Tcarb,1 Tcarb,2 τ ins Kins Tins

CHU101 30 42.78 58.85 185.85 10 -16.35 72.40
CHU107 20 6.27 34.1 ∞ 30 -85.46 380.5
CHU117 15 29.23 55.05 62.5 20 -90.09 45.65
CHU118 15 25.81 37.5 63.10 30 -17.58 85.95
CHU125 20 3.96 54.25 ∞ 20 -55.27 220.75
CHU136 25 40.94 33.10 99.40 15 -21.88 88.70
CHU138 25 2.58 92.75 ∞ 50 -4.50 500
CHU143 20 4.07 22.85 ∞ 10 -70.51 474.75
CHU144 20 8.29 111.70 ∞ 15 -85.41 294.1
CHU145 25 2.21 53.35 ∞ 40 -4.40 107.15
UNIPD201 15 75.91 60.05 132.25 40 -33.56 209.20
UNIPD217 15 3.79 16 ∞ 15 -254.38 2942
UNIPD219 30 55.20 13.7 138.1 15 -18.45 77.65
UNIPD233 25 97.83 11.90 357.1 15 -146.38 2172
UNIPD234 10 4.09 26.4 ∞ 30 -19.05 53.4
IKEM302 35 3.44 38.6 ∞ 15 -16.76 59.3
IKEM306 20 6.74 44.95 ∞ 15 -39.63 277.75
IKEM309 25 6.45 34.40 ∞ 60 -51.99 298.15
IKEM311 15 5.53 42.05 ∞ 25 -31.47 196.05
IKEM324 20 3.23 45.9 ∞ 40 -32.43 182.25
IKEM326 20 4.69 55.55 ∞ 45 -16.05 100.1
IKEM330 45 1.57 20.2 ∞ 25 -13.90 161.45
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Figure 8.4 Patient UNIPD219. DIAdvisor II trial, Visit 2, meal test. Top
Actual CGMS (star) vs. simulated breakfast impact (dot) and simulated
joint meal and insulin intakes (diamond) [mg/dL]; Center Carbohydrate
intake [g]; Bottom Insulin bolus [IU]. All the measurements vs. time of the
day [h]
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Figure 8.5 Patient UNIPD219. Response to Top 10 [g] of carbohydrate
Bottom 1 [IU] of insulin. Blood glucose excursion [mg/dL] vs. time [min]

145



Chapter 8. Impact of Meal and Insulin Intakes on Glycemia

7:00 8:00 9:00 10:00 11:00 12:00 13:00

50

100

150

200

250

300

 

 

true

simulation with meal model
simulation with full model

Representative patient

Time [h]

y
B
G
[m
g/
dL
]

7:00 8:00 9:00 10:00 11:00 12:00 13:00
0

50

7:00 8:00 9:00 10:00 11:00 12:00 13:00
0

5

10

Time [h]

[g
]

[IU
]

Figure 8.6 Patient IKEM326. DIAdvisor II trial, Visit 2, meal test. Top
Actual CGMS (star) vs. simulated breakfast impact (dot) and simulated
joint meal and insulin intakes (diamond) [mg/dL]; Center Carbohydrate
intake [g]; Bottom Insulin bolus [IU]. All the measurements vs. time of the
day [h]
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Figure 8.7 Patient IKEM326. Response to Top 10 [g] of carbohydrate
Bottom 1 [IU] of insulin. Blood glucose excursion [mg/dL] vs. time [min]
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Table 8.2 Carbohydrate impact modeling: performance evaluation. Infi-
nite horizon prediction

On estimation data On validation data

Patient ID VAF [%] RMSE [mg/dL] VAF [%] RMSE [mg/dL]
CHU101 96.05 4.99 n/a n/a
CHU107 96.30 22.81 n/a n/a
CHU117 91.35 10.81 81.84 35.90
CHU118 91.71 13.42 39.37 42.56
CHU125 97.08 11.38 n/a n/a
CHU136 92.90 16.03 n/a n/a
CHU138 96.59 6.19 79.58 24.30
CHU143 92.27 21.75 78.09 51.57
CHU144 99.81 6.60 n/a n/a
CHU145 97.83 5.62 n/a n/a
UNIPD201 98.97 6.40 94.81 16.63
UNIPD217 92.21 14.67 86.84 25.99
UNIPD219 97.62 8.61 69.11 151.33
UNIPD233 95.92 9.94 69.46 42.74
UNIPD234 93.19 22.18 73.96 36.94
IKEM302 95.48 12.64 71.39 53.50
IKEM306 99.17 11.25 67.74 21.20
IKEM309 92.38 19.98 82 79.49
IKEM311 93.98 28.16 n/a n/a
IKEM324 98.09 6.79 70.37 52.35
IKEM326 98 7.98 77.97 127.82
IKEM330 94.49 5.64 n/a n/a
MEAN 95.51 12.44 74.46 54.45

n/a: not available data set
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Table 8.3 Insulin impact modeling: performance evaluation. Infinite
horizon prediction.

On estimation data On validation data

Patient ID VAF [%] RMSE [mg/dL] VAF [%] RMSE [mg/dL]
CHU101 95.63 18.08 n/a n/a
CHU107 99.75 1.65 n/a n/a
CHU117 98.52 6.58 73.09 168.34
CHU118 98.96 3.90 53.89 176.58
CHU125 99.35 2.64 n/a n/a
CHU136 97.27 6.69 n/a n/a
CHU138 98.71 3.01 42.19 48.45
CHU143 98.88 4.36 71.87 91.22
CHU144 98.98 12.48 n/a n/a
CHU145 97.17 2.88 n/a n/a
UNIPD201 99.49 5.88 22.88 141.93
UNIPD217 99.30 7.38 64.71 116.17
UNIPD219 89.79 20.90 62.75 99.71
UNIPD233 97.70 10.47 57.61 202.78
UNIPD234 96.17 14.16 11.57 98.11
IKEM302 97.39 15.35 86.93 182.47
IKEM306 99.81 2.58 63.67 57.71
IKEM309 94.40 8.63 71.34 56.68
IKEM311 97.89 10.47 n/a n/a
IKEM324 98.16 4.44 20.58 134.16
IKEM326 98.47 2.71 74.45 46.67
IKEM330 98.44 2.96 n/a n/a
MEAN 97.73 7.64 62.67 115.78

n/a: not available data set

148



8.4 Results

60

70

80

90

100

60

70

80

90

100
Estimation Data Validation Data

[%
]

[%
]

VAFVAF

0

20

40

60

80

100

0

20

40

60

80

100
Estimation Data Validation Data

[m
g/
dL
]

[m
g/
dL
]

RMSERMSE

Figure 8.8 Population results. Carbohydrate impact modeling. Infinite
horizon prediction. Top Panels VAF [%]; Bottom Panels RMSE [mg/dL].
Left Performances evaluated on Visit 2 meal test (estimation) data; Right
Performances evaluated on Visit 3 meal test (validation) data. Each box
presents results achieved over the population. The central mark is the
median, the edges of the box are the 25th and 75th percentiles.
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Figure 8.9 Population results. Insulin impact modeling. Infinite horizon
prediction. Top Panels VAF [%]; Bottom Panels RMSE [mg/dL]. Left
Performances evaluated on Visit 2 meal test (estimation) data; Right
Performances evaluated on Visit 3 meal test (validation) data. Each box
presents results achieved over the considered population. The central mark
is the median, the edges of the box are the 25th and 75th percentiles.

149



Chapter 8. Impact of Meal and Insulin Intakes on Glycemia

Table 8.4 Meal model. Time required to reach 95% of maximum peak.

Patient ID τ carb + 3Tcarb [min]
CHU107 122
CHU125 183
CHU138 303
CHU143 88
CHU144 355
CHU145 185
UNIPD217 63
UNIPD234 89
IKEM302 151
IKEM306 155
IKEM309 128
IKEM311 141
IKEM324 158
IKEM326 187
IKEM330 106

MEAN±SD 160.9±78.3

Table 8.5 Meal model. Time required to reach the maximum peak.

Patient ID [min]
CHU101 110
CHU117 70
CHU118 60
CHU136 65
UNIPD201 100
UNIPD219 50
UNIPD233 55

MEAN±SD 72.85±23.06

150



8.4 Results

7:00 8:00 9:00 10:00 11:00 12:00

100

200

300

400

 

 YSI
CGM

simulation with meal model
simulation with full model

Representative patient

Time [h]

y
B
G
[m
g/
dL
]

7:00 8:00 9:00 10:00 11:00 12:00 13:00
0

50

7:00 8:00 9:00 10:00 11:00 12:00 13:00
0

5

10

Time [h]

[g
]

[IU
]

7:00 8:00 9:00 10:00 11:00 12:00 13:00

50

100

150

200

250

300

350

400

 

 

YSI
CGM
simulation with meal model
simulation with full model

Representative patient

Time[h]

y
B
G
[m
g/
dL
]

7:00 8:00 9:00 10:00 11:00 12:00 13:00
0

50

7:00 8:00 9:00 10:00 11:00 12:00 13:00
0

5

10

Time[h]

[g
]

[IU
]

Figure 8.10 Cross validation. DIAdvisor II trial, Visit 3, meal test.
Top panels Patient UNIPD219; Bottom panels Patient IKEM326. Top
Actual CGMS (cross) and actual YSI (triangle) vs. simulated breakfast
impact (dot) and simulated joint meal and insulin intakes (diamond)
[mg/dL]; Center Carbohydrate intake [g]; Bottom Insulin bolus [IU]. All
the measurements vs. time of the day [h]
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Table 8.6 Insulin model. Time required to reach 95% of maximum peak.

Patient ID τ ins + 3Tins [min]
CHU101 227
CHU107 1171
CHU117 157
CHU118 288
CHU125 682
CHU136 281
CHU138 1550
CHU143 1434
CHU144 897
CHU145 361
UNIPD201 668
UNIPD217 8843
UNIPD219 248
UNIPD233 6666
UNIPD234 190
IKEM302 193
IKEM306 848
IKEM309 954
IKEM311 613
IKEM324 588
IKEM326 345
IKEM330 510

MEAN±SD 1259.7±2165.8

152



8.5 Realization-based identification

8.5 Realization-based identification

Application of Algorithm 2 derived in Chapter 7 was successful in accurate
modeling of the blood glucose concentration response to meals and insulin.
Figure 8.11 shows an example of non-uniformly sampled diabetic blood
glucose concentration yBG(t), continuous-time model output ŷBG(t) and
model error yBG(t) − ŷBG(t), in response to food input ucarb, insulin input
uins with regressors for τ = 10 [min], n = 4 and m = 10. The error L2
norm of the open-loop model response to inputs was less than 1% of the
output L2 norm for model order n = 4. A good result is that a model
with good fit for both inputs is found with a short experiment and few
data. Whereas the inputs are separated in time and thus not correlated,
however, excitation is barely acceptable and the few input-output data
points available limit the statistical accuracy.
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Figure 8.11 Non-uniformly sampled diabetic blood glucose concentration
yBG(t) (upper, blue), continuous-time model output ŷBG(t) (upper, green),
model error yBG(t) − ŷBG(t) (upper, red), in response to food input ucarb
(middle), insulin input uins (lower) with regressors for τ = 10 [min], n = 4
and m = 10.
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Figure 8.12 Empirical distribution of the parameters. Top panel τ carb
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8.6 Discussion

Continuous-time transfer function models of second order with time de-
lays were proposed to quantify the impact of a carbohydrate intake and
an insulin injection on blood glucose dynamics. The choice of the model
structure was motivated by inspection of the data series for the available
6 hours test with a physiologically sound interpretation. The glucoregula-
tory system was considered at steady-state during the overnight fast up
until breakfast (see Fig. 8.1 for overnight data). Actually, small fluctu-
ations around the blood glucose equilibrium level were noticed but were
not considered significant nor affecting the estimation procedure. The so-
called dawn-phenomenon [Williams and Pickup, 1992] was disregarded as
well. The parameters in the models are linked to clinical variables. In par-
ticular, Kcarb, Tcarb can be related to glucose tolerance, i.e., how the body
metabolizes glucose, whereas Kins, Tins are connected to insulin sensitiv-
ity or resistance, i.e., how effective is insulin in lowering blood glucose.
Time delays accounting for food transportation along the gastro-intestinal
tract as well as insulin kinetics from the subcutaneous tissues to plasma
have been incorporated in the models as in [Percival et al., 2010]. Further,
the long delays between subcutaneous insulin administration and insulin
action in the identified transfer functions reflected what already known
from clinical practice. Model responses to 10 [g] of carbohydrate and 1 [IU]
of insulin were considered physiologically plausible, resulting compatible
with experimental evidence. Indeed, the empirical observations recently
published by Elleri and co-workers [Elleri et al., 2013a] and by Schmidt
and co-workers [Schmidt et al., 2012] strengthened the achieved results.
Specifically, Elleri and co-workers studied the effects of a low-glycemic-
load (LG) meal and a high-glycemic-load (HG) meal [Brouns et al., 2005]
matched for carbohydrates (121 [g]) on T1DM children. The outcome was
a sustained, slowly declining plasma glucose profile which continued be-
yond the 8 hours of observations with an unpronounced peak of 210.6±36
[mg/dL] within 153±104 [min] after the intake of the LG meal, and a
distinct earlier peak of 248.4±63 [mg/dL] at 98±29 [min] in the case of
the HG meal. The first is similar to the absorption profile in Figure 8.7,
while the second to that in Figure 8.5. Similar experimental evidences
were presented in [Schmidt et al., 2012], where solid meals and a liq-
uid snack were compared, the first behaving like a LG meal, while the
second like a HG meal. According to our models, the time required to
reach 95% of maximum peak for patients of the first type resulted to be
160.9±78.3 [min] (see Table 8.4). Further, by inspection of Table 8.1 it can
be noticed that their value for Kcarb is much smaller as compared to that
of patients CHU101, CHU117, CHU118, CHU136, UNIPD201, UNIPD219
and UNIPD233. Patients of the second type, i.e., those with a glycemic
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profile like that of patient UNIPD219, exhibited a blood glucose peak at
72.85±23.06 [min] (Table 8.5). As for insulin response, the experiments
in [Schmidt et al., 2012] showed a larger decrease in glycemia per insulin
unit than that predicted by the proposed models, the reason being at-
tributable to the different initial conditions of the subjects metabolism.
From the analysis of the time constant of maximum decrease in blood
glucose due to insulin (see Table 8.6) it turned out that a few patients,
i.e., CHU107, CHU138, CHU143, UNIPD217, UNIPD233 presented a very
slow action. Unfortunately we did not have any data collected after 1.00
pm, preventing us from the possibility of verifying the duration of insulin
action predicted by the identified models.

Prior information could be incorporated in the tuning procedure, taking
into account the patient personal history of the disease and the experience
gained in its regulation. It is a well known fact, indeed, that the subjects
learn by trial-and-error how their glycemia reacts to different sources of
carbohydrate and different insulin analogues. However, as yet, it is not
clear how this can be realized.

The inputs were considered impulse-formed, the only information required
by the identification method being the size of the meal and of the insulin
intake, retrieved from the patient’s logbook. The approach resembles
standard clinical practice, it is personalized and it takes into account
the high inter-subject variability. The strategy is particularly appealing
as it amounts to estimating only 7 parameters. Contrary to previous
contributions dealing with simulated data obtained with in-silico ad-hoc
experiments, e.g. [van Heudsen et al., 2012], [Boiroux et al., 2012], we
have employed actual T1DM patient data collected within DIAdvisor TM

[DIAdvisor, 2012]. Moreover, estimation and validation were performed
on separate sets of data, collected at least two weeks apart. To the best
of the author’s knowledge this is the first time that such a validation
methodology is followed in diabetic blood glucose dynamics modeling.
Intra-patient variability was observed by cross-validation, as highlighted
by the poor performances reported in Tables 8.2 and 8.3 and may suggest
the need of a model parameters updating scheme. Experiment design
turned out to be of crucial importance, not only being tightly connected
to the intended use of the model but also being constrained due to safety
issues when dealing with patients harm. Despite the simple structure
the models are able to sufficiently describe the main dynamics of the
gluco-regulatory system. The proposed models have been obtained from
breakfast data only and may, hence, turn out not to be accurate in
modeling lunch and dinner. In order to assess whether or not this is
the case, a clinical meal test similar to that used in this contribution
should be carried out, provided a 4-hours at least period of steady state
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prior to the test so to be able to apply the same method to the new
set of data. In addition to this, it would be appropriate to administer a
high-glycaemic-load and a low-glycaemic-load [Brouns et al., 2005] meals
containing the same type of food to different groups of subjects, in order
to verify whether the dynamic behaviour of blood glucose in response
to a meal intake is due to patients or food characteristics. In an ideal
protocol, insulin administration should be postponed by at least 3 hours
and patient monitoring should continue for at least 6-8 hours after insulin
intake, in order to model the effects of the inputs accurately. In the
actual setting glycemia levels were assessed by a subcutaneous continuous
glucose monitoring sensor calibrated against a self-monitoring finger-stick
glucose meter (accuracy is reported in Tables 3.6, 3.7). This introduces
issues such as sensor noise, device recalibration, sensor time delays just
to mention a few, requiring additional components to the control system,
i.e., a sensor model [Breton and Kovatchev, 2008], [Perez-Gandia et al.,
2010], which was disregarded.

In order to identify the unknown parameters in the transfer functions,
a continuous time-domain identification approach was taken, specifically,
the predictor based subspace identification method using low-pass filters
presented in Chapter 7. The algorithm requires a few user parameters
to be tuned. The pole of the low-pass filter was chosen larger than the
expected bandwidth of the system and refined by trial and error; the
length of the past and the future window size p and f , respectively, was
chosen to be 3 according to standard criteria for model-order estimations
[Ljung, 1999].

Implication for control design

Although simple second-order linear transfer function models are not a
fine representation of the glucose-insulin dynamic interactions, they are
useful tools when designing a model-based controller [Percival et al.,
2011], [Kirchsteiger et al., 2011b]. A representative scenario would be
that of basal-bolus therapy, involving impulsive control variables, namely
insulin injections and meal carbohydrates, administered several times
over the course of the day at irregularly spaced time instants. A possible
controller, then, would consider the effects of a meal or an insulin intake
on blood glucose concentration predicted by the proposed models, in
order to determine the appropriate control moves, the objective being
the maintainance of blood glucose in the normoglycemic range. Such a
strategy was proposed in [Cescon et al., 2012], [Stemmann, 2013]. In
addition to this, the second order with time delay (SOTD) structure
is especially suitable for PID control design [Åström and Hägglund,
2005]. However, in this specific application, the long time delays between
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subcutaneous insulin administration and insulin action could be a major
difficulty in the realization of the controller.
Figures 8.2 and 8.3 show the Bode diagrams of the estimated transfer

function for the population. In the frequency range of interest which is
around 6 ⋅10−3 [rad/sec] for the meal model, the amplitude curves are far
from each other. This feature reflect the variability of the parameters
across the population. However, in the case of the insulin model, in
the frequency range around 5 ⋅ 10−4 [rad/sec] the amplitude curves
are very similar to each other. The variability in the phase curves
reflects the significant dispersion of τ ins. Obviously, the benefit of an
individualized model over a nominal model for model-based prediction
would be significant in this case.

8.7 Conclusions and future work

The chapter presented a successful application of continuous-time iden-
tification methods to T1DM blood glucose dynamics modeling. Low-order
continuous-time transfer function models were identified from actual
T1DM patients data collected adhering to a unique protocol for a meal
test and validated on a separate set of data collected 14 ± 3 days apart.
The strategy is appealing as it amounts to estimating only 7 parame-
ters. The model structure is simple and the parameters have intuitive
meaning that can be linked to clinical practice. The estimated models are
straightforward and can be easily interpreted by health-care professionals
and may guide development of clinical decision support systems or auto-
mated closed-loop insulin delivery. The work considered breakfast data
only. Thus, it would be interesting to perform the same type of modeling
for other meals or snacks, possibly administering both a high-glycaemic-
load and a low-glycaemic-load meal to the same subject. Further, future
work will be carried out to extend the study on a larger population. By
doing so, it will become apparent whether or not it is possible to clas-
sify subjects based on their clinical characteristics so to build appropriate
nominal models, suitable as instruments for therapy, for each of the cate-
gory. Last, control design based on the presented model will be pursued.
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Conclusions

Without treatment, people with type 1 diabetes experience persistently
elevated blood glucose concentrations, which can lead to serious long-
term health damages. Controlling the increased prandial glycemia by
exogenous insulin replacement becomes then a key factor in order to avoid
the complications caused by the disesase.
Conventional therapy relies upon the patient decisions concerning

the appropriate treatment to be administered. Many factors must be
taken into account: current glucose levels, estimated meal composition,
personal knowledge on his/her own glucose metabolism and information
on foreseen activity. Failure in the management of the treatments can
result in postprandial hyper- or hypoglycemia. Clearly, supporting the
individual on the spot in the decision making task would relieve the
already heavy load of daily interventions in the life of a diabetic individual.
In this context, this dissertation presented modeling and prediction

techniques developed and evaluated for type 1 diabetes, investigated for
possible use in an advisory tool, i.e., the DIAdvisorTM device.
The contributions of the thesis may now be summarized.

In Chapter 4 linear dynamic models of glucose metabolism were identified
from actual patient data. Inputs to the models were the interpolated
plasma insulin assays, the glucose rate of appearance in blood obtained
from a glucose intestinal absorption model, while the output was the
interpolated blood glucose concentration from laboratory analysis. The
estimated models were thereafter used for prediction of blood glucose.
The model structure that outperformed the others with respect to
physiologically plausible responses to inputs and prediction capability
on new data was the ARMAX model structure. The model order able
to guarantee a good tradeoff between simplicity and accuracy turned out
to be n = 3. The approach was competitive with respect to previously
published results. Vital signs, i.e., heart rate and respiration rate data,
were afterward included in the model structure as additional inputs. From
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the analysis presented in Chapter 4 it was concluded that their use did not
provide any significant additional information to the purpose of glucose
prediction during activities of daily life. This negative result somewhat
limits the scope for minimally invasive sensing in blood glucose prediction
strategies.
One of the main difficulties encountered in model identification

of blood glucose dynamics in diabetes lied in the fact that the two
main inputs, i.e., meal and insulin, were applied to the system almost
simultaneously and in a proportional factor, the so-called, insulin-to
carbohydrate ratio. As a result, it became hard to estimate correctly each
input contribution to blood glucose dynamics. A remedy to this problem
was proposed in Chapter 8.

When the only goal is predicting the future evolution of time-series for
multiple look ahead, the modeling step can actually be omitted and the
predictor coefficients can be directly identified from input-output data.
Chapter 5 dealt with this problem. Linear multi-step predictors were
developed exploiting the state-space construction step in subspace-based
identification algorithms. The advantages of this type of predictors are
manifold. First, they inherit the appealing features of the subspace-
based methods, namely, the use of LQ decompositions of appropriately
organized Hankel data matrices and the possibility of a system-theoretic
interpretation of the involved procedures. Second, there is no need for
canonical parametrizations and choice of model structure. Chapter 5
showed that under open-loop operating conditions and input signals with
sufficient excitation, the strategy is successful.

Prompted by the quest for short-term diabetes blood glucose prediction,
one of the algorithms treated in Chapter 5 was applied to the actual T1DM
patients data of the population studied in Chapter 4. Predictions up to
120 minutes ahead in the future were explored and presented in Chapter
6. One practical scenario considered as input signals the appearances of
insulin in plasma from subcutaneous injection and of glucose after food
intestinal absorption predicted by physiological models and as output the
recalibrated interstitial glucose. From a clinical diabetes point of view the
glucose predictions obtained within this case compared favourably with
those attained in Chapter 4.

Models and predictors examined so far assumed a zero-order-hold inter-
sample behaviour. Moreover, the discrete-time nature of the identified
black-box models precluded the interpretation of the parameters from a
clinically relevant viewpoint. Therefore, in order to tackle this points,
in Chapter 7 the problem of continuous-time model identification from
discrete-time data was covered.
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Chapter 8 exploited a unique database collected under the aegis of
DIAdvisorTM [DIAdvisor, 2012]. The interesting feature of such data set
was the time split of two hours between the inputs which allowed to
identify the impacts of meal and insulin intakes on T1DM glycemia
separately. The model structure was a second-order transfer function with
time delay whose parameters were estimated by means of a continuous-
time system identification strategy presented in Chapter 7. Despite the
simple structure, the estimated models were able to capture the main
dynamics of the glucose-insulin system. The dominating time constants in
the transfer functions were in agreement with recently published clinical
studies [Elleri et al., 2013b].
The individualized short-term model and predictors satisfied the

accuracy requirement stated by the DIAdvisorTM project.
Whereas the requirements on prediction accuracy based on a nominal

model are not fulfilled, the prediction accuracy can be achieved using
individualized models. Not surprisingly, the robustness requirement that
prediction accuracy be maintained also for incorrectly declared inputs—
e.g., snacks, forgotten insulin injections—can not always be achieved. Note
that also a ’perfect’ model will exhibit output divergence if deprived of
input data.

Open questions

Some fundamental open research topics are recognized.

Meal model

The correct characterization of meal absorption dynamics is fundamental
in diabetes management. Actually, post-prandial blood glucose fluctua-
tions in type 1 diabetes depend on a number of factors: these include
preprandial glycemia, glucose tolerance, meal size and composition, in-
testinal absorption of nutrients and rate of gastric emptying. The relative
contribution of each of these factors remains unclear and is expected to
vary with time [Horowitz et al., 2002]. The glycemic index (GI) method-
ology [Brouns et al., 2005] is used to categorize nutrients on the basis of
their glycemia raising effect, relative to consumption of pure glucose (GI
= 100). A low GI meal is characterized by a slow absorption profile that
results in an prolongued blood glucose increase with a relatively low peak,
while for a high GI meal the peak is more pronounced and appears earlier
(see e.g., [Elleri et al., 2013a] and Sec. 8.6). Food absorption dynamics is
determined also by its fat and protein content. A higher percentage of
fat and protein tends to slow down the rate of glucose absorption, which
produces a delayed and reduced blood glucose peak compared to low-fat
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and low-protein meals containing the same amount of carbohydrates [Nor-
mand et al., 2001]. To date, there is no undisputed model able to account
for food absorption dynamics. Research in this direction is, thus, worth
pursuing.

Time-varying glucose metabolism dynamics

An important aspect of glucose metabolism is its time-variability. Circa-
dian variations are observed in hormones secretion and action, including
insulin sensitivity, which in turn impact glucose dynamics. For instance,
the dawn phenomenon is a transient increase in insulin requirements
induced by nocturnal release of growth hormone which may occur in the
early morning hours, i.e., between 4.00 and 8.00 am [Perriello et al., 1991].
In T1DM subjects if the increase in insulin requirement is not met, hyper-
glycemia develops. Still, pre-breakfast near- normoglycemia is highly de-
sirable, therefore being able to accurately capture the dawn phenomenon
would permit to schedule an adequate overnight insulin therapy.
To the best of the author’s knowledge a comprehensive description

of time-variability of the glucose metabolism is still lacking. One reason
for that may be the scarcity of long, not flawed, data sequences. Within
DIAdvisorTM acquisition of clinical data up to 7 consecutive days was
accomplished and may be exploited in the future to shed some light
on the topic. Segmentation into models whose parameters are piecewise
constant in time (e.g., [Ohlsson and Ljung, 2011], [Ohlsson and Ljung,
2013]) seems a promising technique to be exploited in diabetes modeling
as well as linear-parameter-varying (LPV) strategies [Bamieh and Giarre,
2002], [Verdult and Verhaegen, 2002].

Patients clustering

Every patient is different, as the intuition would suggest, therefore a
personalized approach to diabetes management should be preferred to
nominal strategies. However, the extent of the interpatient variability
is yet unknown and would be interesting to analyze. Clustering the
diabetic population into smaller cohorts of patients may, hence, result
to be possible. In such a case, the development of successful therapies for
the target groups would lighter the design procedure.
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Figure A.1 DAQ trial. visit 0 Screening visit (light bule box), visit 1
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visit 3 ambulatory tests (green box)
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B

List of collected data per

trial

Table B.1 DAQ trial,Visit 2. List of collected data samples and descrip-
tion

Data Description Units Device

Patient parameters - Clinician’s sheet
Insulin Therapy - Clinician’s sheet
Interstitial glucose [mg/dL] NavigatorTM

Carbohydrates [g] Patient’s logbook
Lipids [g] Patient’s logbook
Proteins [g] Patient’s logbook
Fast-acting insulin [IU] Patient’s logbook
Slow-acting insulin [IU] Patient’s logbook
Hyperglycemia-correction [IU] Patient’s logbook
Plasma glucose [mg/dL] YSI 2300 STAT PlusTM

Capillary glucose [mg/dL] HemoCueTM

Basal plasma insulin [µU/mL] Blood sample
Bolus plasma insulin [µU/mL] Blood sample
Total plasma insulin [µU/mL] Blood sample
Heart rate [beats/min] LifeShirt RF
Respiration rate [breaths/min] LifeShirt RF
Activity level [a.u.] LifeShirt RF
Skin temperature [○C] LifeShirt RF

[a.u.] arbitrary units
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Table B.2 DIAdvisor I trial. List of collected data samples and descrip-
tion

Data Description Units Device

Patient parameters - Clinician’s sheet
Insulin Therapy - Clinician’s sheet
Interstitial glucose [mg/dL] Dexcom RF Seven RFPlus
Carbohydrates [g] viliv S5

Fast-acting insulin [IU] viliv S5

Slow-acting insulin [IU] viliv S5

Hyperglycemia-correction [IU] viliv S5

Plasma glucose [mg/dL] YSI 2300 STAT PlusTM

Capillary glucose [mg/dL] HemoCueTM

Heart rate [beats/min] Pebble RF

Table B.3 DIadvisor II trial,Visit 2 & 3. List of collected data samples
and description

Data Description Units Device

Patient parameters - Clinician’s sheet
Insulin Therapy - Clinician’s sheet
Interstitial glucose [mg/dL] Dexcom RF Seven RFPlus
Carbohydrates [g] viliv S5

Fast-acting insulin [IU] viliv S5

Plasma glucose [mg/dL] YSI 2300 STAT PlusTM

Capillary glucose [mg/dL] HemoCueTM
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C

Proofs

C.1 Proof of algorithm (5.1)
For convenience set p = f . Let us rewrite Eq. (5.36) as
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(C.1)

where L
′
11, L

′
22 ∈ Rpm$pm, L

′
33, L

′
44 ∈ Rpl$pl and Q1, Q2 ∈ RN$pm, Q3,

Q4∈R
N$pl are orthogonal. Further, assume that the following conditions

are statisfied:

1. the system in Eq. (5.1) is reachable

2. there is no linear feedback from the states to the inputs

3. the input is sufficiently PE

Then, rank(L22) = rank
[
L
′
22 0
L
′
32 L

′
33

]
= pm + n ≤ p(m + l), so that L22 is

rank deficient. Now, from Eq. (5.36)row-wise we have

QT1 = L−111 U f (C.2)

QT2 = L†22(Z p − L21QT1 ) (C.3)

Y f = L31QT1 + L32QT2 (C.4)
Using (C.2) and (C.3) in (C.4) we obtain

Y f = (L31 − L32L22†L21)L11−1U f + L32L22†Z p (C.5)
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Defining

Γ̂ = L32L22† (C.6)
Λ̂ = (L31 − L32L22†L21)L11−1 (C.7)

the algorithm is proved.
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Figure D.1 Patient CHU106. DAQ trial, Visit 2. Top Glucose concen-
tration [mg/dL]: interstitial (blue), plasma (red), finger stick (cyan and
black); Upper Center Meal intake [g]: carbohydrates (blue), lipids (red),
proteins (yellow); Lower Center Insulin doses [IU]: basal (blue), bolus
(red), correction (green); Bottom Blood insulin concentration [mIU/L]:
basal (blue), bolus (red), total (cyan) vs. time [min]
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Figure D.2 Patient CHU106. DAQ trial, Visit 2. Top Heart rate
[beats/min]; Center Respiration rate [breaths/min]; Bottom Activity level
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Figure D.5 Patient CHU0106. Evaluation on validation data: 3rd-order
ARMAX-based predictor (thin) and measured plasma glucose (thick)
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Figure D.12 Patient CHU102. Multi-step predictions. Case B, p= f=120.
Evaluation on validation data. Predictor (thin) and measured interstitial
glucose yIG (thick) [mg/dL] vs. time [min]. Top 30-minutes ahead; Top
Center 60-minutes ahead; Bottom Center 90-minutes ahead; Bottom 120-
minutes-ahead prediction. CGM data case. Meals and injections are
indicated with triangles and pluses, respectively.
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Figure D.13 Patient CHU106. Multi-step predictions. Scenario 1, Case
B, p= f=120. Evaluation on validation data. Predictor (thin) and measured
plasma glucose yBG (thick) [mg/dL] vs. time [min]. Top 30-minutes ahead;
Top Center 60-minutes ahead; Bottom Center 90-minutes ahead; Bottom
120-minutes-ahead prediction. Meals and injections are indicated with
triangles and pluses, respectively.
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Figure D.14 Patient CHU106. Multi-step predictions. Scenario 2, Case
B, p= f=120. Evaluation on validation data. Predictor (thin) and measured
plasma glucose yBG (thick) [mg/dL] vs. time [min]. Top 30-minutes ahead;
Top Center 60-minutes ahead; Bottom Center 90-minutes ahead; Bottom
120-minutes-ahead prediction. Meals and injections are indicated with
triangles and pluses, respectively.
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Figure D.15 Patient CHU106. Multi-step predictions. Case B, p =
f = 120. Evaluation on validation data. Predictor (thin) and measured
plasma glucose yBG (thick) [mg/dL] vs. time [min]. Top 30-minutes ahead;
Top Center 60-minutes ahead; Bottom Center 90-minutes ahead; Bottom
120-minutes-ahead prediction. CGM data case. Meals and injections are
indicated with triangles and pluses, respectively.
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Figure D.16 Patient CHU115. Multi-step predictions. Scenario 1, Case
B, p= f=120. Evaluation on validation data. Predictor (thin) and measured
plasma glucose yBG (thick) [mg/dL] vs. time [min]. Top 30-minutes ahead;
Top Center 60-minutes ahead; Bottom Center 90-minutes ahead; Bottom
120-minutes-ahead prediction. Meals and injections are indicated with
triangles and pluses, respectively.
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Figure D.17 Patient CHU115. Multi-step predictions. Scenario 2, Case
B, p= f=120. Evaluation on validation data. Predictor (thin) and measured
plasma glucose yBG (thick) [mg/dL] vs. time [min]. Top 30-minutes ahead;
Top Center 60-minutes ahead; Bottom Center 90-minutes ahead; Bottom
120-minutes-ahead prediction. Meals and injections are indicated with
triangles and pluses, respectively.
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Figure D.18 Patient CHU115. Multi-step predictions. Case B, p =
f = 120. Evaluation on validation data. Predictor (thin) and measured
plasma glucose yBG (thick) [mg/dL] vs. time [min]. Top 30-minutes ahead;
Top Center 60-minutes ahead; Bottom Center 90-minutes ahead; Bottom
120-minutes-ahead prediction. CGM data case. Meals and injections are
indicated with triangles and pluses, respectively.
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Figure D.19 Patient CHU128. Multi-step predictions. Scenario 1, Case
B, p= f=120. Evaluation on validation data. Predictor (thin) and measured
plasma glucose yBG (thick) [mg/dL] vs. time [min]. Top 30-minutes ahead;
Top Center 60-minutes ahead; Bottom Center 90-minutes ahead; Bottom
120-minutes-ahead prediction. Meals and injections are indicated with
triangles and pluses, respectively.

190



Appendix D. Additional results

0 200 400 600 800 1000 1200 1400 1600 1800 2000

100

200

300

400

 

 
actual pred YSI carbs bolus

30-min ahead prediction

Time[min]

y B
G
[m
g/
dL
]

0 200 400 600 800 1000 1200 1400 1600 1800 2000

100

200

300

400

 

 
actual pred YSI carbs bolus

60-min ahead prediction

Time[min]

y B
G
[m
g/
dL
]

0 200 400 600 800 1000 1200 1400 1600 1800 2000

100

200

300

400

 

 
actual pred YSI carbs bolus

90-min ahead prediction

Time[min]

y B
G
[m
g/
dL
]

0 200 400 600 800 1000 1200 1400 1600 1800 2000

100

200

300

400

 

 
actual pred YSI carbs bolus

120-min ahead prediction

Time[min]

y B
G
[m
g/
dL
]

Figure D.20 Patient CHU0128. Multi-step predictions. Scenario 2, Case
B, p= f=120. Evaluation on validation data. Predictor (thin) and measured
plasma glucose yBG (thick) [mg/dL] vs. time [min]. Top 30-minutes ahead;
Top Center 60-minutes ahead; Bottom Center 90-minutes ahead; Bottom
120-minutes-ahead prediction. Meals and injections are indicated with
triangles and pluses, respectively.
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Figure D.21 Patient CHU0128. Multi-step predictions. Case B, p =
f = 120. Evaluation on validation data. Predictor (thin) and measured
plasma glucose yBG (thick) [mg/dL] vs. time [min]. Top 30-minutes ahead;
Top Center 60-minutes ahead; Bottom Center 90-minutes ahead; Bottom
120-minutes-ahead prediction. CGM data case. Meals and injections are
indicated with triangles and pluses, respectively.
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Figure D.22 Patient UNIPD201. DIAdvisor II trial, Visit 2, meal
test. Top Actual CGMS (star) vs. simulated breakfast impact (dot) and
simulated joint meal and insulin intakes (diamond) [mg/dL]; Center
Carbohydrate intake [g]; Bottom Insulin bolus [IU]. All the measurements
vs. time of the day [h]
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Figure D.23 Patient UNIPD201. Response to Top 10 [g] of carbohydrate
Bottom 1 [IU] of insulin. Blood glucose excursion [mg/dL] vs. time [min]
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Figure D.24 Patient IKEM306. DIAdvisor II trial, Visit 2, meal test. Top
Actual CGMS (star) vs. simulated breakfast impact (dot) and simulated
joint meal and insulin intakes (diamond) [mg/dL]; Center Carbohydrate
intake [g]; Bottom Insulin bolus [IU]. All the measurements vs. time of the
day [h]
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Figure D.25 Patient IKEM306. Response to Top 10 [g] of carbohydrate
Bottom 1 [IU] of insulin. Blood glucose excursion [mg/dL] vs. time [min]
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Figure D.26 Cross validation. DIAdvisor II trial, Visit 3, meal test.
Top panels Patient UNIPD201; Bottom panels Patient IKEM306. Top
Actual CGMS (cross) and actual YSI (triangle) vs. simulated breakfast
impact (dot) and simulated joint meal and insulin intakes (diamond)
[mg/dL]; Center Carbohydrate intake [g]; Bottom Insulin bolus [IU]. All
the measurements vs. time of the day [h]
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