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Abstract

This thesis presents an improved version of the classic relay autotuner. The pro-
posed autotuner uses an asymmetric relay function to better excite the process in
the experiment phase. The improved excitation provides the possibility to obtain
better models and hence better tuning, without making the autotuner more compli-
cated or time consuming.

Some processes demand more accurate modeling and tuning to obtain con-
trollers of sufficient performance. The proposed autotuner can classify these pro-
cesses from the experiment. In an advanced version of the autotuner an additional
experiment could be designed for these processes, in order to further increase the
possibilities in modeling and tuning. The experiment design would then rely on
information from the relay experiment. A simple version of the autotuner could in-
stead make a somewhat better model estimation immediately, or suggest that some
extra effort may be put in modeling if the control performance of the loop is crucial.
The main focus in this thesis is on the simple version of the autotuner.

The proposed autotuner uses the process classification for model and controller
selection also in the simple version. The processes are classified according to their
normalized time delays. In this thesis a simple method of finding the normalized
time delay from the asymmetric relay experiment is presented and evaluated.

Research presented on different versions of the relay autotuner is often based
solely on simulations. In large simulation environments, the ability to automatically
tune the large amount of PID controllers is practical and time-saving. However, the
ability to use the autotuner in an industrial setting, requires considerations not al-
ways present in a simulation environment. This thesis investigates many of these
issues, regarding parameter settings and possible error sources. The proposed au-
totuner is implemented, tested and evaluated both in a simulation environment and
by industrial experiments. The simple version of the autotuner gives satisfactory re-
sults, both in simulations and on the industrial processes. Still, there is a possibility
to further increase the performance by an advanced version of the autotuner.
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Nomenclature

Here some notations and abbreviations used in the thesis are given.

Notation Description
γ Asymmetry level of the relay
d1 Positive relay amplitude
d2 Negative relay amplitude
ε Convergence limit for relay experiment
h Hysteresis of the relay
Iu Integral of the relay output over one oscillation period
Iy Integral of the process output over one oscillation period
K Proportional gain of PID controller
Kp Static gain of process
kv Gain of integrating process
L Time delay of process
MS Maximum of the sensitivity function
MT Maximum of the complementary sensitivity function
n0 Noise level
ρ Half-period ratio
T Time constant of process
τ Normalized time delay
τs Normalized time delay obtained from step response
ton Time period where the relay output is uon
toff Time period where the relay output is uoff
u Output signal from relay, control signal
uon Relay output when y is below the hysteresis band
uoff Relay output when y is above the hysteresis band
y Process output

Abbreviation Description
FOTD First Order Time Delayed
IAE Integrated Absolute Error
IFOTD Integrating plus First Order Time Delayed
ITD Integrating Time Delayed
PID Proportional Integral Derivative
SOTD Second Order Time Delayed
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1
Introduction

This thesis presents, investigates, and evaluates an automatic tuner for PID con-
trollers based on an asymmetric relay feedback experiment. The aim is to find low-
order models from the relay experiment and then use simple rules to tune controllers
from the obtained models. The main objectives are that the autotuner should be fast
and simple, yet give satisfactory results. The thesis also aims to give an opening for
a more advanced version of the autotuner, that could provide more accurate model-
ing and controller tuning for processes with higher performance requirements.

1.1 Motivation

An industrial process facility may contain hundreds or thousands of control loops.
The majority of these are using PID controllers. Even though the PID controller is
simple, many of the controllers operating in industry today are performing unsat-
isfactory due to poor tuning of the controller parameters. This can be due to either
lack of time, or lack of knowledge in control theory, among the staff. To have an
automatic method of finding satisfactory controller parameters is therefore highly
desirable. The method should ideally be fast and reliable, and should not require an
extensive control education for the users. One method that has been successful in
industry is the relay autotuner. The main advantage of the relay autotuner is that it is
simple, fast, and does not require any (or little) prior process knowledge, since the
relay feedback automatically excites the process in the frequency range interesting
for PID control. A short experiment time is essential, not only to reduce the over-
all time-consumption, but also to minimize the risk of disturbances entering during
the experiment. Since the original relay autotuner was presented in the mid-eighties
[Åström and Hägglund, 1984], the increase in computational power as well as new
insights in PID control, has provided the possibility to improve the relay autotuner.

Depending on the desired use of the autotuner, some different use cases can be
established. One is to provide a simple, yet satisfactory, autotuner that should be
able to run in stand-alone industrial systems with limited computational facilities.
Another use case is to find an autotuner aimed for use in large simulation environ-
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Chapter 1. Introduction

ments, where there are less restrictions on parameters, and no unforeseen distur-
bances. A third use case is to provide the best possible autotuner, with the assump-
tion that computational power and time consumption are not restricted. This auto-
tuner could use extensive system identification, add more experiments if needed,
and also use optimization programs to find controller parameters.

The relay autotuner proposed in this thesis is mainly focused on the first use
case. An improvement from the classic relay autotuner, is that the proposed one
uses an asymmetric relay function to increase the excitation in the experiment. This
gives better models without increasing the complexity or time consumption of the
tuning process. A low-order transfer function model is obtained from the proposed
autotuner, while the original autotuner only gave one frequency point. Another im-
provement is that the proposed autotuner uses a classification measure of the pro-
cess to make automatic choices on model and controller selection. For many in-
dustrial processes the low-order model is sufficient. To put more time and effort to
the modeling of all processes is therefore unnecessary. The process classification
provides information on which processes may benefit significantly from more ad-
vanced modeling. The extra effort could then be restricted to these processes if the
control performance of that loop is crucial.

1.2 Contributions

The main contributions of this thesis are:

• An automated procedure, including parameter choices, for an asymmetric re-
lay feedback experiment.

• A simple method of classifying the process during the experiment.

• Automatic model and controller selection from process classification.

• Implementation and evaluation of the autotuner, both in simulations and on
an industrial process.

1.3 Publications

Parts of this thesis are based on the following publications:

Berner, J., K. J. Åström, and T. Hägglund (2014). “Towards a New Generation of
Relay Autotuners”. In: 19th IFAC World Congr.

Theorin, A. and J. Berner (2015). “Implementation of an Asymmetric Relay Auto-
tuner in a Sequential Control Language”. In: IEEE Int. Conf. Autom. Sci. Eng.
Submitted.
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1.4 Thesis outline

1.4 Thesis outline

In this thesis an asymmetric relay autotuner is proposed for the tuning of PID con-
trollers. In Chapter 2 the PID controller, and ways of tuning it, are described. The
chapter also includes the model types that will be used in the thesis, and definitions
of some important concepts. A description of the relay autotuner and its develop-
ment is given. The next three chapters explain the proposed autotuner in detail.
Chapter 3 contains definitions and equations for the asymmetric relay feedback
experiment. It also explains how to get models from the experiment. The overall
picture of the automatic tuning procedure is given in Chapter 4, and some practi-
cal issues are listed and discussed in Chapter 5. Subsequently come two chapters
evaluating the performance of the autotuner. In Chapter 6 the evaluation is done in
a simulation environment, while Chapter 7 explains and evaluates experiments per-
formed on an air handling unit with an industrial control system. Conclusions from
the thesis are summarized in Chapter 8, this chapter also contains some suggestions
for future research.
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2
Background

In this chapter some of the concepts used later in the thesis are described. The
chapter starts with an explanation of the PID controller, followed by the model types
that will be used in the thesis and that are commonly used for tuning PID controllers.
The normalized time delay is defined and its use in an autotuner is explained in
Section 2.3. In Section 2.4 some robustness and performance measures are defined
and the used controller tuning methods are explained briefly. Subsequently a short
explanation and history of the concept of relay autotuning is given. In the last section
some concepts from system identification are listed, and the relay experiment is
compared to some other common system identification methods.

2.1 PID Control

The PID controller is by far the most used controller type in industry [Desborough
and Miller, 2002]. A typical control system is shown in Figure 2.1, along with some
signal definitions. The PID controller calculates the control signal at time t, based
on the actual control error, the integral of the error and the derivative of the error. A

Σ PID Process

−1

yref e u y

Figure 2.1 A feedback system where a PID controller controls the process output
y to be close to the setpoint. The control signal is denoted u, the reference signal yref,
and the control error e = yref− y.
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2.2 Models

basic version of the PID controller is described by

u(t) = K
(

e(t)+
1
Ti

∫ t

0
e(θ)dθ +Td

de(t)
dt

)
, (2.1)

where the proportional gain K, the integral time Ti, and the derivative time Td are
controller parameters. The corresponding transfer function for the PID controller is

C(s) = K
(

1+
1

sTi
+ sTd

)
. (2.2)

In practice the PID controller contains more parameters, since the derivative part
needs to be filtered, the integral part needs to have some anti-windup implementa-
tion, and the proportional part usually have some setpoint weighting. These param-
eters will, however, not be considered in this thesis, for further information about
them read for example [Åström and Hägglund, 2006].

Even if the PID controller is simple, especially in the basic version, the tuning
of the three controller parameters K, Ti and Td can be a tedious task. An automatic
procedure to find the controller parameters is therefore very useful.

2.2 Models

Many existing tuning rules for PID controllers rely on a model of the process. Even
though processes can be of high complexity, many of them can be controlled suffi-
ciently well by a PID controller based on a low-order model of the process. One of
the most common low-order model approximations is a first order system with time
delay, henceforth called the FOTD model. The FOTD model can be defined with
two different parametrizations

P(s) =
Kp

1+ sT
e−sL, (2.3)

P(s) =
b

s+a
e−sL. (2.4)

Notice that the definition (2.3) can not be used to describe a process with integral
action, while a pure time delay can not be represented by (2.4). Throughout this
thesis the definition (2.3) will be used whenever an FOTD model is referred to.

Another common, slightly more advanced, low-order model approximation is
the second order time delayed model, or SOTD model. This model is defined as

P(s) =
Kp

(1+ sT1)(1+ sT2)
e−sL. (2.5)

Since (2.3) can not be used to describe integrating processes, an integrating time
delayed model, henceforth called the ITD model, will be used. It is defined as

P(s) =
kv

s
e−sL. (2.6)
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Chapter 2. Background

The same goes for the SOTD model in (2.5), and therefore the integrating plus first
order time delayed model, IFOTD model, will also be used. It is defined as

P(s) =
kv

s(1+ sT )
e−sL. (2.7)

2.3 Normalized Time Delay

The normalized time delay, τ , for an FOTD process is defined as

τ =
L

L+T
, 0≤ τ ≤ 1. (2.8)

The normalized time delay is used to characterize whether the behavior of the pro-
cess is most influenced by its time delay L, or the dynamics described by its time
constant T . If τ is close to 1, the time delay is much larger than the time constant,
and the system is said to be delay dominated. If the time constant is much larger
than the time delay, τ will be small and the process is said to be lag dominated.
For intermediate values of τ , the system is said to be balanced. For processes that
are not of the FOTD structure, the “true” normalized time delay will be denoted
τs, and is calculated from the apparent time constant and the apparent time delay.
These are achieved from the FOTD model approximation given by a step response
analysis of the process.

Depending on the classification of the process, some tuning choices can be
made. One is that it has been shown [Åström and Hägglund, 2006] that derivative
action can be very beneficial for processes with small τ , but will only give marginal
effects for τ ≈ 1. It is also shown that while an FOTD model is sufficient for con-
troller tuning for processes with high τ , processes with low τ can gain a lot from
more accurate modeling. Knowledge of τ is therefore essential for making choices
in the autotuner procedure, something that will be discussed further in Section 4.2
and Section 4.3.

The idea of using the information from τ in a relay autotuning procedure is not
new. In [Luyben, 2001], a so called curvature factor and its relation to the ratio L/T
was calculated and used for decisions on which tuning method to use, and to find
an FOTD model from the relay test. This thesis proposes a simpler method to find
this information, which will be described in Section 3.2.

2.4 PID Tuning

Requirements
Typical requirements for PID control are related to load disturbance attenuation,
and robustness to process variations and measurement noise. One criteria for load
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2.4 PID Tuning

disturbance attenuation is the integrated absolute error, or IAE-value, defined as

IAE =
∫ ∞

0
|e(t)|dt, (2.9)

for a unit step change in the load.
Robustness to process variations can be measured by the maximum sensitivities

MS and MT , which are the largest absolute values of the sensitivity function S,

S(s) =
1

1+P(s)C(s)
, (2.10)

and the complementary sensitivity function T ,

T (s) =
P(s)C(s)

1+P(s)C(s)
, (2.11)

respectively. The notation
MST = max(MS,MT ) (2.12)

will be used as a robustness measure in this thesis.
In addition to the requirements on IAE and MST , many other constraints could be

added. For example the controlled system should be able to follow setpoint changes
in a satisfactory way. This could be measured by the rise time, settling time, over-
shoot and steady-state error. There are also alternatives to IAE, like for example
the integral error, IE, or the integral squared error, ISE. However, in this work the
performance and robustness measures will be restricted to IAE and MST .

Tuning Methods
There are many methods for tuning of PID controllers, ranging from the classic
rules proposed in [Ziegler and Nichols, 1942], to advanced optimization programs.
Examples of existing tuning rules based on an FOTD model of the process are λ -
tuning [Sell, 1995], the SIMC [Skogestad, 2003; Skogestad, 2006] and AMIGO
[Åström and Hägglund, 2006]. The different tuning rules all have their benefits and
drawbacks. In this work the AMIGO method and the optimization based tuning
described in [Garpinger and Hägglund, 2008], where IAE is minimized with con-
straints on MST , are the two methods used. Modification to another tuning method
is straight forward.

The AMIGO rules are described in [Åström and Hägglund, 2006]. The rules are
based on an approximation of the optimization method MIGO, also described in
[Åström and Hägglund, 2006], that optimizes the integral error IE with restrictions
based on MS and MT . The AMIGO rules were derived from the same test batch
that is used in this thesis, which is listed in Section B. The model approximates
were obtained from step response experiments, or from a combination of step and
frequency responses. The AMIGO method contains tuning rules for PI controllers
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Chapter 2. Background

Table 2.1 The AMIGO tuning rules for PI controllers.

Model PI parameters

K =
0.15
Kp

+

(
0.35− LT

(L+T )2

)
T

KpL
FOTD

Ti = 0.35L+
13LT 2

T 2 +12LT +7L2

K =
0.35
kvL

ITD
Ti = 13.4L

based on FOTD and ITD models, as well as PID controllers based on FOTD, ITD,
SOTD and IFOTD models. The PI tuning rules are listed in Table 2.1 and the PID
tuning rules are listed in Table 2.2. Note that for the SOTD model and the IFOTD
model, the listed controller parameters ki and kd , are from a different parametriza-
tion of the PID controller. This is done for practical reasons, and the conversion
back to Ti and Td is easily made by using that Ti = K/ki and Td = kd/K.

2.5 Relay Autotuning

The relay autotuner was first described in [Åström and Hägglund, 1984]. The idea
is to find the critical gain and critical period used by [Ziegler and Nichols, 1942] in
an automized way. By introducing a relay function in the control loop, as shown in
Figure 2.2, most processes will start to oscillate. From these oscillations the critical
frequency ωc and the critical gain kc can be retrieved and used for controller tuning.
The main advantage with this method is that it is easy to use, and that no a priori
information about the process is needed. The relay feedback finds the interesting
frequency area automatically. In the experiment in [Åström and Hägglund, 1984]
the zero-crossings and the peak amplitudes of the process output was measured.
The describing function approximation (DFA) was then used to find kc and ωc.
For an explanation of describing functions, see e.g. [Khalil, 2000]. The proposed
controller tuning was based on either a specified amplitude or phase margin. A relay
with hysteresis was introduced to deal with measurement noise. With hysteresis the
achieved point is no longer the critical point, but instead the point where the Nyquist
curve intersects the negative inverse of the describing function for the relay with
hysteresis. However, for a small hysteresis this point is close to the critical point.

18



2.5 Relay Autotuning

Table 2.2 The AMIGO tuning rules for PID controllers.

Model PID parameters

K =
0.2L+0.45T

KpL

FOTD Ti =
0.4L+0.8T

L+0.1T
L

Td =
0.5LT

0.3L+T

K =
0.45
kvL

ITD Ti = 8L

Td = 0.5L

K =
0.19
Kp

+
0.37T1 +0.18T2

KpL
+

0.02T1T2

KpL2

SOTD ki =
0.48
KpL

+
0.03T1−0.0007T2

KpL2 +
0.0012T1T2

KpL3

kd =
T1 +T2

Kp(T1 +T2 +L)

(
0.29L+0.16T1 +0.2T2 +

0.28T1T2

L

)

K =
0.37
kvL

+
0.02T
kvL2

IFOTD ki =
0.03
kvL2 +

0.0012T
kvL3

kd =
0.16
kv

+
0.28T

kvL
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Chapter 2. Background

Σ

Relay

PID

Process

−1

yref u y

Figure 2.2 The setup for the relay feedback experiment. When the experiment
starts, the PID controller is disconnected, and instead the process output y is con-
trolled by a relay function. When the experiment is done and the PID controller
parameters are tuned, the system switches back to PID control.

The relay autotuner has since its introduction been widely used in industry.
Apart from that no prior information about the process is needed, some additional
benefits of the relay autotuner has ensured its successful use in process industry.
One advantage is the rather short experiment time. The fact that the relay experi-
ment is performed in closed loop and does not make the process drift away from its
setpoint is another advantage. This makes it a good identification method for non-
linear processes, since it stays in the linear region for which the transfer function
is wanted, something emphasized in [Luyben, 1987] where the relay experiment
was used as a part in finding low-order transfer functions for nonlinear distillation
columns.

During the years since the original relay autotuner was proposed, many modifi-
cations and improvements of it have been suggested in literature. The most common
modification is to find one of the low-order models described in Section 2.2 from
the experiment. This is not done in the original autotuner since the single frequency
point, given by ωc and kc, only allows estimation of two parameters. A thorough re-
view of the advances in model estimation from relay feedback experiments has been
presented in [Liu et al., 2013]. In the review they separate the relay experiments ac-
cording to two different aspects. The first is whether a symmetric or asymmetric
relay function is used. The other aspect is whether the modeling is based on the de-
scribing function approximation (DFA), a curve-fitting approach, or some frequency
response estimation. The original autotuner in [Åström and Hägglund, 1984] falls
into the category of a symmetric relay autotuner that uses DFA. The autotuner pre-
sented in this thesis would instead fall into the category of curve-fitting based on an
asymmetric relay feedback experiment.

The use of an asymmetric relay function has the benefit of better excitation of
the process, which allows estimation of the static gain from the relay experiment.
The use of an asymmetric relay was first presented in [Shen et al., 1996b], where
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2.5 Relay Autotuning

the asymmetry was introduced in the switching conditions of the relay. In this and
most later versions, the asymmetry is instead introduced in the relay amplitudes.
The possibility to estimate the static gain from the relay experiment provides a
way to get an FOTD model from the experiment, instead of the single point on the
Nyquist curve, which was obtained in the classic version. Some attempts of finding
an FOTD model from the symmetric relay experiment was done in [Luyben, 1987]
where it was assumed that the static gain was either known or estimated through a
separate experiment, and in [Li et al., 1991] where an extra relay experiment, with
different parameters, was made to remove the need of knowing the static gain a
priori. However, the extra relay experiment doubles the experiment time which is
an obvious drawback. Since the asymmetric relay gives the static gain and the two
other FOTD parameters from a single relay experiment, that is preferred.

The asymmetric relay autotuner in [Shen et al., 1996b] used DFA, which is not
recommendable when the relay is asymmetric. This since the asymmetry deterio-
rates the accuracy of the obtained critical point, since the oscillation is no longer
close to a sine wave. The choice of asymmetry level is therefore a trade-off between
getting a good value of the critical point and getting a good estimate of the static
gain. To avoid this trade-off, either the curve-fitting approach, or some improved
frequency response estimation, could be used instead of the DFA. Two examples of
improved frequency response estimation are presented in [Friman and Waller, 1997]
and [Wang et al., 1997a]. In [Friman and Waller, 1997] multiple relays in parallel
was used to find more than one frequency point on the Nyquist curve, and then fit a
model to the obtained points. In [Wang et al., 1997a] the approach is instead to use
a single relay, and then multiply the input and output with a decay exponential and
Fourier transform it to get G(iωi) for some different frequencies ωi.

The approach in this thesis is to use curve-fitting to find the model parameters
from the experiment. The main reason is that it permits modeling based on clearly
visible characteristic features of the oscillation. Some of them are the time period
of the oscillation, the amplitudes of the oscillation, the times of the maximum am-
plitudes, maximum slope of the output data, and the time from the relay switch to
the turning of the output signal. If noise-free simulations are performed, all of these
measures are easy to obtain. Measures that are easily and robustly determined even
in the presence of noise, are preferred when the autotuner is used in an industrial
setting. The only data used from the relay experiment in this thesis, are the inte-
gral of the output signal during one period of oscillation, and the half-periods of
the oscillation given by the relay switching times. Some alternative ways of finding
low-order models from curve-fitting of asymmetric relay data are given in [Wang
et al., 1997b], [Kaya and Atherton, 2001b], [Lin et al., 2004] and [Liu and Gao,
2008]. All of these methods use the half-periods and the integrated output signal
as well. In addition to these measures [Wang et al., 1997b] and [Lin et al., 2004]
has expressions for the output amplitudes for an FOTD model under asymmetric
relay feedback. In [Liu and Gao, 2008] they also measure the time delay as the time
between the relay switch and the amplitude peak. This measure is, however, quite
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Chapter 2. Background

sensitive to noise and in the results they used an average of 10 stable cycles to obtain
their values when noise was added. This gives a rather long experiment time, which
is not useful in practice.

2.6 Process Identification Methods

The relay feedback experiment is not the only way to find a low-order model from
experiment data. This section presents some other common strategies. All system
identification methods start with the design of the input signal to the process that
should be identified. Experiments could be done either in open loop or in closed
loop. The relay feedback is an example of closed-loop identification. Some exam-
ples of common input signals for open-loop identification are Filtered Gaussian
White Noise, Pseudo-Random Binary Signals (PRBS), or Chirp Signals. Details
about these signal types can be found in e.g., [Ljung, 1999]. The input signal should
excite the process in the frequency range where good model accuracy is required.
The frequency range will depend on the use of the model. For PID control the fre-
quencies where the process has a phase lag of 90◦−180◦ are of particular interest.

All the mentioned signal types for open-loop identification has the drawback
that process information is needed, in order to design the input signals to give the
desired excitation. This is, however, not a problem for the relay feedback since it
will provide excitation in the interesting frequency range for PID control automat-
ically. Another common and simple open-loop identification method is to look at
a step response. Some difficulties with step-response identification are to decide
the amplitude of the input step, and to determine when the process has reached its
steady state. It can also be difficult to determine the wanted points and slopes from
the experiment data accurately.

When the experimental data is obtained, it needs to be analyzed to find the de-
sired model. A common way to do this is to use some parameter estimation method
to obtain process models, and then apply various testing methods like estimation
error, Akaike’s Information Criteria, parameter variances etc, to determine a proper
model structure.

The analysis of the experiment in this thesis follows the lines of traditional sys-
tem identification, but is guided by the fact that we want models suitable for design
of PID controllers. We therefore restrict ourselves to the model types described
in Section 2.2. Two important aspects of the system identification process are dis-
cussed in further detail in the remaining parts of this section. The first is whether
the excitation of the data is good enough to estimate the desired model. The other is
how to decide if the obtained model is sufficiently good.

Excitation of input data
The excitation of the input data is important. The excitation needs to be in the right
frequency range, and it also needs to be exciting enough to permit estimation of
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Figure 2.3 Frequency spectra for two relay experiments, performed by the pro-

posed autotuner, on P(s) =
1

s+1
e−sL. The notation U is used for the Fourier trans-

form of u. The blue line shows the spectrum for a symmetric relay experiment. The
red line shows the spectrum for an asymmetric relay experiment, where one of the
relay amplitudes were five times the size of the other.

the desired number of model parameters. The signal is persistently exciting of order
n if a model with n parameters can be reliably determined from the data. To find
out how many parameters that can be estimated, the singular values of the input
covariance matrix are considered. The number of singular values above a certain
threshold gives the number of parameters that can be estimated. For more details,
see [Ljung, 1999]. Some examples are that white noise is persistently exciting of any
order, a step input is persistently exciting of order 1, a sinusoid input is persistently
exciting of order 2, and a PRBS input is persistently exciting of order M, where M
is the period of the PRBS.

For a symmetric relay experiment the excitation is considered close to a sinu-
soidal, which gives that approximately two parameters can be estimated. For the
asymmetric relay the excitation can be interpreted as two different sinusoids plus a
step which would give that approximately five parameters could be estimated from
the experiment data. An example of the frequency content for the symmetric and an
asymmetric relay, where one of the relay amplitudes are five times higher than the
other amplitude, is shown in Figure 2.3. The process simulated in this figure is

P(s) =
1

s+1
e−s (2.13)

which has the critical frequency ωc ≈ 2 rad/s. The figure shows that both the relays
have most of their frequency content around ωc. However, the asymmetric relay has
a more spread-out frequency content.
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Chapter 2. Background

Model evaluation
To evaluate whether the obtained model is close to the real process or not is a diffi-
cult issue. A number of different measurements can be used to compare the models.
One common way is to compare the step response for the model with the one for
the real process. This is simple, but can also be misleading since there are pro-
cesses with very similar open-loop step responses that differ significantly when the
loop is closed and vice versa, see e.g., [Åström and Murray, 2008]. In Section 3.4
a parameter estimation method used in this thesis is described. For that method,
the cost function is obtained by comparing the measured process output with the
model output fed with the same input signal. This comparison is, as well as the step
response, made in open-loop. So are comparisons between the Bode diagrams and
Nyquist diagrams for the model and true process. All these comparison methods can
be interesting, but since the aim of the autotuner is to get a good controller for the
process, the performance in closed loop is more interesting than similarity in open
loop. One way to compare two models P1 and P2 in closed loop, is given by the
Vinnicombe metric or ν-gap metric [Vinnicombe, 2001], which for scalar systems
is defined as

δν(P1,P2) =

∣∣∣∣
∣∣∣∣

P1−P2

(1+P1)(1+P2)

∣∣∣∣
∣∣∣∣
∞
. (2.14)

This measure can be interpreted as the largest difference between the closed loop
systems obtained by unit feedback for the two processes. It is, however, not re-
stricted to unit feedback, but ensures that any controller that is good for P1 is also
good for P2 if the metric δν is small [Vinnicombe, 2001].

To be more specific, consider the stability margin 0≤ bP,C ≤ 1, defined by Vin-
nicombe as

bP,C =

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

PC
1+PC

P
1+PC

C
1+PC

1
1+PC

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

−1

∞

. (2.15)

A controller designed for P1 will decrease this stability margin with at most δν , as
described by

bP2,C ≥ bP1,C−δν(P1,P2), (2.16)

when applied to the process P2. This property makes the Vinnicombe metric a good
measure for the autotuner, since what is interesting is not the estimated model itself,
but rather that the controller obtained from the model gives satisfactorily results
when controlling the true process.
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3
Asymmetric Relay Feedback

In this chapter the asymmetric relay function is described. It is also explained how
the normalized time delay, as well as low-order models, can be found from the
asymmetric relay feedback experiment.

3.1 Definitions

It is assumed that the system is at equilibrium at the working point (u0,y0) before
the relay experiment is started. The asymmetric relay function used in this thesis is

u(t) =





uon, y(t)< y0−h,
uon, y(t)< y0 +h, u(t−) = uon,
uoff, y(t)> y0−h, u(t−) = uoff,
uoff, y(t)> y0 +h,

(3.1)

where h is the hysteresis of the relay and u(t−) is the value u had the moment before
time t. The output signals of the relay, uon and uoff, are defined as

uon = u0 + sign(Kp)d1, (3.2)

uoff = u0− sign(Kp)d2. (3.3)

The sign of the process gain Kp (or kv if the process is integrating) may be deter-
mined during the startup of the experiment, as will be described in Section 5.2.

The name asymmetric relay reflects that the amplitudes d1 and d2 are not equal.
This creates the asymmetric oscillations. Whether d1 is larger than d2 or vice versa
depends on if it is desired to have the large step down or up, and if it is the deviation
of the control output or the process output that is most restricted.

The asymmetry level of the relay is denoted γ and defined as

γ =
max(d1,d2)

min(d1,d2)
> 1. (3.4)
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Figure 3.1 An example of the signals from the asymmetric relay feedback experi-
ment. The relay output u is shown in blue, the process output y is shown in red. The
black dashed lines show the hysteresis levels, ±h. The experiment is started when
the system is in equilibrium at the point (u0,y0), which in the figure is only denoted
with a zero. The asymmetric oscillations is due to the different relay amplitudes d1
and d2. The time intervals ton and toff illustrate when the relay output has been uon
and uoff respectively. The relay output switches between uon and uoff every time the
process output leaves the hysteresis band.

An illustrative example of the inputs and outputs of the asymmetric relay feed-
back, when the static gain of the process is positive, is shown in Figure 3.1. The half-
periods ton and toff are defined as the time intervals where u(t) = uon and u(t) = uoff
respectively.

3.2 Estimating the Normalized Time Delay

The normalized time delay, τ ∈ [0,1], is an important parameter when tuning PID
controllers, as discussed in Section 2.3. A method to rapidly determine the normal-
ized time delay is therefore of significant value, since it provides information on
how to continue the autotuning procedure.

It turns out that asymmetric relay feedback offers an effective way of estimating
τ . This is due to the fact that the half-period ratio ρ , defined as

ρ =
max(ton, toff)

min(ton, toff)
, (3.5)

is related to the normalized time delay of the process. If the system is lag dominated,
i.e., if τ is small, the time intervals will be more or less symmetrical even though
the amplitudes are asymmetric. When the process is delay dominated, τ close to 1,
the half-period ratio instead reflects the asymmetry of the amplitudes.

26



3.2 Estimating the Normalized Time Delay
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Figure 3.2 Validation results of the equation for τ , stated in (3.6). The figure shows
the results for γ = [1.2, 1.5, 2, 3, 5, 7, 8, 10] in different colors. The solid lines show
the τ-values calculated from (3.6), while the dots show the relation between ρ and
τs for the processes in the test batch (Section B).

For FOTD processes under asymmetric relay feedback with no hysteresis, this
follows from (A.21) and (A.27), where the half-periods and their ratio have been
derived in the limits τ = 0 and τ = 1 respectively. Results that are only valid for
FOTD processes with a relay without hysteresis are of limited practical use. How-
ever, the observation above is valid for a wide range of process types. Figure 3.2
shows the simulation results for a test batch consisting of 134 different processes
typical for the process industry. The test batch is taken from [Åström and Hägglund,
2006] and is listed in Section B. From the simulation data, an expression for τ , as
a function of the asymmetry level γ and the ratio ρ , was fitted under the constraints
that the endpoints should be τ(ρ = 1,γ) = 1 and τ(ρ = γ,γ) = 0, according to the
derived limits. The result is the following equation for the normalized time delay

τ(ρ,γ) =
γ−ρ

(γ−1)(0.35ρ +0.65)
. (3.6)

The equation was validated against the test batch, for some different asymmetry
levels γ , and the results are shown in Figure 3.2.

The errors in determining τ using (3.6) are shown in Figure 3.3 for γ = 2. The
errors for some other values of γ are shown and discussed in Section 5.1. For all
processes in the batch, the estimate stays within 0.08 of the correct value, and the
median error is about 0.02. The obtained results are accurate enough to use the
estimated τ for classifying the process and decide on what, if any, additional steps
are required by the autotuner algorithm.
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Figure 3.3 Results of the τ-estimation for the processes in the test batch. The left
plot shows the estimated τ in red, and the true values τs in black. The right plot
shows a boxplot of the absolute errors between τ and τs. Here, the central mark
is the median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points the algorithm does not consider to be outliers,
and the outliers are plotted individually.

3.3 Modeling

Different methods can be used to find model parameters from the experiment data,
some examples were given in Section 2.5. We have focused on finding simple, intu-
itive equations that use measurements that are robust to noisy data. We have found
equations where the only measurements needed are the time intervals ton and toff
and the integral of the process output Iy defined as

Iy =
∫

tp

(
y(t)− y0

)
dt (3.7)

where tp = ton + toff is the period time of the oscillation and y0 is the stationary
operation point we started the experiment from. All these parameters are easy to
measure from the experiment data, and they show small sensitivity to noise. In ad-
dition to these values, the equations also contain the relay amplitudes d1 and d2, the
hysteresis h, the normalized time delay τ which is derived in Section 3.2, and the
integral of the relay output Iu, which analogously to Iy is defined as

Iu =
∫

tp

(
u(t)−u0

)
dt. (3.8)

This integral, however, does not need to be measured from the experiment since it
is given by

Iu = uonton +uofftoff. (3.9)
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FOTD Models
The FOTD model defined in (2.3) has three parameters: Kp, T and L. One benefit of
using the asymmetric relay, is the possibility to calculate the static gain, Kp, from

Kp =
Iy

Iu
. (3.10)

Note that this does not apply to the symmetric relay, where Iu would always be zero.
It follows from (3.9) that Iu can become zero with the asymmetric relay as well, but
only if toff/ton =−uon/uoff. As is shown in Section A.2, this implies that the process
is integrating, and for those processes we will instead use the ITD model.

To find T and L we use the equations for ton and toff

ton = T ln

(
h/|Kp|−d2 + eL/T (d1 +d2)

d1−h/|Kp|

)
(3.11)

toff = T ln

(
h/|Kp|−d1 + eL/T (d1 +d2)

d2−h/|Kp|

)
(3.12)

that are derived in Section A.1. Since Kp can be found from (3.10), the results in
(3.11) and (3.12) give two equations for the two unknown process parameters T and
L. However, these equations can not be solved analytically for T and L. They can be
solved numerically, but that requires proper initial guesses. Our approach is instead
to find the normalized time delay τ as in Section 3.2, and use its definition (2.8)
to solve the equations. Rewriting (2.8) gives the following expression for the ratio
between L and T

L/T =
τ

1− τ
. (3.13)

Knowing this ratio, T can be found from either of the two equations (3.11) or (3.12),
or from an average of both. If (3.11) is used, T is given by

T =
ton

ln

(
h/|Kp|−d2 + eL/T (d1 +d2)

d1−h/|Kp|

) . (3.14)

With T known from (3.14) it is straightforward to obtain L from (3.13)

L = T
τ

1− τ
. (3.15)

In conclusion, by measuring ton, toff and Iy from the relay experiment and then
use (3.6) to find τ , the parameters of the FOTD model (Kp, T , L) can be found from
(3.10), (3.14) and (3.15).
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Figure 3.4 An example of the signals from a relay experiment with an ITD process.
The blue line shows the relay output u, the red line shows the process output y. The
dashed black lines show the hysteresis. The time intervals ton and toff are denoted
in the figure and correspond to the times that the relay output has been uon and uoff
respectively. The relay amplitudes d1 and d2 are also shown in the figure. Note the
triangular shape of the process output y that is characteristic for an ITD process.

ITD Models
An integrating process on the form

P(s) =
kv

s
e−sL (3.16)

can be written as the differential equation

ẏ(t) = kvu(t−L). (3.17)

Since u(t) is piecewise constant, so is ẏ(t), and hence the shape of y will be trian-
gular, see Figure 3.4. By considering the output curves, equations for kv and L can
be obtained, see Section A.2 for full derivation. The equations are

kv =
2Iy

tontoff(uon +uoff)
+

2h
uonton

, (3.18)

L =
uonton−2h/kv

uon−uoff
. (3.19)

The only measurements needed from the experiment are ton, toff and the integral of
the process output y.
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3.4 Improved Modeling by System Identification

3.4 Improved Modeling by System Identification

If the FOTD and ITD models are not considered sufficient to describe the process,
the parameters of a higher order model can be estimated from the experiment data.
Let (um,ym) be the input output data obtained from a relay experiment of length tm,
and let P(s) be the transfer function of the process model with parameters p. The
output generated by P(s) with the input um is denoted ŷ. Denote the error between
the generated output and the experiment output e(t) = ŷ(t)−ym(t). The parameters
p can then be obtained by minimizing the quadratic loss function

J(p) =
1
2

∫ tm

0
e(t)2dt. (3.20)

The optimization can be performed by computing the gradient Jp and the Hessian
Jpp given by

Jp =
∫ tm

0
ŷp(t)e(t)dt, (3.21)

Jpp =
∫ tm

0
ŷp(t)ŷT

p (t)dt +
∫ tm

0
ŷpp(t)e(t)dt. (3.22)

A good approximation of the Hessian is obtained by dropping the second term in
(3.22). Newton’s method can then be used to obtain the parameters that minimize
the cost function J(p).

Using this method, the SOTD model from (2.5) and the IFOTD model in (2.7)
can be estimated. The initial parameters required by Newton’s method can for these
models be obtained from the relay experiment. For the SOTD models, the initial
parameters used are

K∗p = Kp,

T ∗1 = T/1.86,
T ∗2 = T/1.86,
L∗ = max(0,L−0.28T ),

(3.23)

where Kp, T and L are the FOTD parameters obtained in the relay experiment. These
initial values are based on the comparison between systems with poles of different
multiplicity on pages 29–31 in [Åström and Hägglund, 2006]. For the IFOTD model
the initial parameters used are

k∗v = kv,

T ∗ = 2L,

L∗ = 0,
(3.24)

where kv and L are the parameters of the ITD model found in the relay experiment.
These initial parameters were found experimentally.

In this work, only SOTD and IFOTD models are estimated, but the same pa-
rameter estimation method could naturally be used for other model types as well.
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Figure 3.5 Boxplots of the degree of persistent excitation of the relay experiment
data, for two different threshold values of the smallest singular value σmin. The ex-
periment data for each of the processes in the test batch is tested. All data sets with
a degree of persistent excitation larger than 10 were set to have the degree 10.5 to
keep focus on the interesting areas in the plots.

Looking at the excitation of the input data shown in Figure 3.5, it is clear that at
least four parameters can be reliably estimated from almost all processes. There
are a few data sets that are not exciting enough to do this reliably, but for most of
the processes, more parameters could be estimated. Further investigation has shown
that if the threshold value of σmin was decreased to 0.01, all the data sets were con-
sidered persistently exciting of at least order 9. It is, however, doubtful if that many
parameters could reliably be estimated in practice. Note that having data that is ex-
citing enough for the number of parameters in the desired model is not all that is
needed to find higher order models. It is also necessary to find the initial parameters
for Newton’s method, which is usually not straightforward.
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4
Autotuner Procedure

The purpose of the autotuner is to give satisfactory controller parameters for a com-
pletely unknown process. To do this, the autotuner has to go through the different
steps shown in Figure 4.1, where each step contains actions and decisions to be
performed.

The first step is the Experiment, where it has to be decided what type of experi-
ment should be done, and how it should be designed. It also has to be decided what
experiment parameters should be used, and what data should be extracted from the
experiment. In this work the experiment is the asymmetric relay feedback experi-
ment, with steps described further in Section 4.1.

The Model step includes decisions on what model structure to use. It should
also contain a method to obtain the desired model parameters. In this work, the
estimated model structure depends on the value of the normalized time delay τ and
is discussed further in Section 4.2.

Next, a Controller should be designed. This step contains decisions about what
controller type should be used and how to find its parameters. These choices are
described and discussed in Section 4.3.

The final step is the Evaluation of the results. Here it is decided if the perfor-
mance of the obtained controller is satisfactory, or if something should be changed
or remade in the previous steps. This is mainly a task for the operator. Some discus-
sion about the evaluation step is made in Section 4.4.

This chapter shows that the autotuner procedure contains a number of differ-
ent sequences and decisions. It is therefore suitable to implement the autotuner in a
sequential control language. An implementation in the sequential control language
Grafchart was presented in [Theorin and Berner, 2015]. The implementation clearly
illustrates the different sequences by connected steps and transitions, and the ob-
tained controller results were satisfactory.
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Experiment Model Controller Evaluation

Figure 4.1 Steps to be designed and performed in an automatic tuning procedure.
The dashed lines show the steps that involves the operator.

4.1 Relay Feedback Experiment

The relay feedback experiment uses the asymmetric relay function described in Sec-
tion 3.1. The experiment starts when the system is at steady-state. This has to be en-
sured by the operator before pressing the start button on the autotuner. The different
sequences of the relay experiment are described in Figure 4.2. In the initialization
step most parameters are set. The default values used for the parameters are listed in
Section C. The initialization step also sets up buffers to store the experiment data.

Next, the noise is measured for a specified amount of time. This step is described
further in Section 5.1. When the noise level is known, an appropriate hysteresis level
is set. If the noise level is high, either some parameters or deviation limits may need
to be changed, and the operator will be warned about this. If the signal is too noisy,
the operator is advised to filter the noise before performing the experiment.

When the noise level is measured, the relay feedback phase starts by ramping
up the relay amplitudes. From the ramp-up, starting values of the amplitudes are
obtained, as is the sign of the process gain. The ramp-up procedure is described
further in Section 5.2.

Subsequently comes the actual experiment. Here the oscillations from the relay
feedback are created. In each sample, the control signal is set according to (3.1). If
the relay switches, logic for checking and updating the amplitudes are performed,
see Section 5.2, and it is also checked whether the oscillations have converged to
its limit cycle or not (Section 5.1). These actions are repeated in each sample until
the experiment satisfies the convergence limit ε , described in Section 5.1. Then, the
data needed from the experiment are retrieved and the autotuner moves on to the
next step, to estimate a model of the process.

4.2 Model Design

As stated previously, the aim with this autotuner is to get a low-order model de-
scribing the process. Different model types of interest were listed in Section 2.2.
The choice of model structure is in this autotuner based on the normalized time
delay, τ . If τ is small, the process can be considered to be an integrating process,
which implies that an ITD or IFOTD model should be estimated. In Figure 4.3 the
performance and robustness for controllers based on an FOTD model of the process
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4.2 Model Design

Initialization
• (Re)setting variables

Measure noise
• Described in Section 5.1

Ramp up relay amplitudes
• Described in Section 5.2

Relay feedback
• Set control signal
• If switching

– Check amplitudes (Section 5.2)

– Update relay amplitudes

– Check if converged (Section 5.1)

• Repeat until convergence

Converged

Experiment done
• Retrieve experiment data

• Noise level
• Hysteresis
• Warnings if noise is too large

or parameters need to change

• Sign of process gain
• Starting amplitudes for relay

• ton, toff, Iy, u, y

Figure 4.2 The different sequences of the relay feedback experiment. Also shown
are the variables and parameters obtained in that sequence.

35



Chapter 4. Autotuner Procedure

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4
IA

E
op

t/
IA

E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

τ

M
ST

Figure 4.3 Comparison of performance and robustness of PI controllers obtained
from the autotuner, and optimal PI controllers, for all processes in the test batch
(Section B). The controllers from the autotuner used the AMIGO rule on the ITD
or FOTD models obtained in the relay experiment. The optimal controllers were ob-
tained by minimizing IAE with the constraint that MST ≤ 1.4. The upper plot shows
the ratio between the IAE values for the two different controllers. Equal performance
is shown by a black line at the ratio 1. The lower plot shows the obtained robustness
for the estimated controller, with the level MST = 1.4 shown as a black line.

are shown. The figure shows that for high values of τ , the results from the con-
trollers based on an FOTD model, are close to the optimal ones. This implies that
for processes with large τ , FOTD models are adequate, and hence that is what is
estimated. If τ is smaller, higher-order models can give significantly better results,
therefore we may consider estimating an SOTD model for these processes. It should
be noted that the AMIGO rules used in this figure are not derived to minimize IAE,
thus another tuning rule could improve the results. The trends for high and low val-
ues of τ would, however, be the same. The decision path of the model design is
shown in Figure 4.4. The limits α and β can be varied a little, but in this thesis the
values used have been α = 0.1 and β = 0.6.

The FOTD model and ITD model can be obtained from the equations in Sec-
tion 3.3. If an IFOTD model or SOTD model is wanted, the parameter estimation
method described in Section 3.4 is used. Either the ITD or the FOTD model are then
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Figure 4.4 The proposed autotuner procedure.

used to get initial parameters for the algorithm. If it is crucial that we get a really
good model we might consider estimating even higher order models. However, that
implies that we may need better excitation and also another way to get good enough
initial parameters. This is illustrated in the advanced branch in Figure 4.4. Some
possible choices of additional experiments are the ones listed in Section 2.6. Note
that the information from the relay experiment already performed, can be used to
design the additional experiment.

4.3 Controller Design

The aim of the proposed autotuner is to find good controller parameters for the PID
controller described in Section 2.1. Other controller structures are outside the scope
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Figure 4.5 A comparison of the performance of PID and PI controllers, plotted
versus the estimated normalized time delay τ . The controllers are obtained by using
the AMIGO rules for the process models obtained from relay experiments on the
processes in the test batch in Section B.

of this thesis. The low-order models in Section 2.2 were chosen since they all have
simple existing tuning rules as the ones listed in Section 2.4. In the simple version
of the autotuner we will therefore use one of them, namely the AMIGO tuning
rule. This is not an obvious choice and one of the other methods could just as well
have been used. In fact, what really should be done is to find a new set of simple
tuning rules adjusted for the models obtained from this specific relay experiment.
This is important since all tuning rules are connected to a modeling procedure, and
models obtained differently may not give as good controllers as the models for
which the tuning rule was derived. Since this is not done yet, this version of the
autotuner will stick to the AMIGO rules. If the advanced branch is used to find
higher-order models, AMIGO rules are no longer available, and instead some kind
of optimization tool would be needed to find the controller parameters.

In [Åström and Hägglund, 2006], it was shown that the derivative part of the
controller was beneficial for small values of τ , but not so much if τ is large. Fig-
ure 4.5 compares the performance of PI and PID controllers. The comparison is
done for the test batch in Section B and shows the expected results. For large values
of τ almost nothing is gained by introducing the derivative part, while for smaller τ
the performance is 2-3 times higher. Notable is that the AMIGO rules, by its design,
give the same benefit of the derivative part for all ITD models. Other tuning rules
would give a different appearance of the curve in the low τ region. In Figure 4.4,
the limit for when the derivative part of the PID controller should be used is set to
τ < β . The choice of β ≈ 0.6 seems reasonable, this is the same value of β as in the
model design.
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4.4 Evaluation

When the autotuner has finished its experiment and obtained its final controller
parameters, an evaluation of whether or not the result is satisfactory has to be per-
formed. In this thesis the results from the autotuner are evaluated in a number of
different ways. The accuracy of the model parameters obtained for the test batch, is
checked for different choices of the experiment parameters in Section 5.1. The ac-
curacy of the obtained models, as well as the robustness and performance of the ob-
tained controllers, are shown and discussed for three chosen processes in Chapter 6.
The effects of measurement noise, load disturbances, low resolution in converters
and starting of experiment before steady-state is reached, are all discussed in Sec-
tion 5.3-5.6. However, these results and discussions only cover a limited number of
processes and situations, and no matter how much tests we would do, the evaluation
will still mainly be a task for the operator. Some questions, like

• Is the resulting controller performance good enough?

• Did something go wrong during the experiment that affected the results?

• Is a more advanced model needed?

• Is another controller structure needed?

are not answered by the autotuner. These questions, the operator will need to answer
him- or herself.
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5
Practical Considerations

When the autotuner is used in an industrial setting, the conditions may vary a lot
from the ideal simulation environment where the development has been done. In
this chapter some of the practical issues for the autotuner will be presented and
discussed. The first section goes through the relay parameters. How to choose the
parameters may differ depending on prior knowledge about the process and possible
disturbances. The parameter choices may also depend on whether the autotuner is
to be used in a practical industry application, or in a large simulation environment
where the autotuning facility can also be useful. The proceeding sections in the
chapter discuss how the results from the autotuner are affected by practical issues
like noise, load disturbances and low resolution in converters.

5.1 Parameter Choices

The relay experiment contains a lot of parameters that has to be chosen. Default
values for all parameters are listed in Section C, and some of the parameter choices
are explained and discussed in further detail in this section.

Noise level and hysteresis
As a first step of the autotuning procedure we measure the noise level of the signal.
This is done during a specified time interval when the maximum and minimum
values of the process output, ymax and ymin, are stored. The noise level, n0, is then
calculated as n0 = (ymax− ymin)/2. The hysteresis is then chosen to be about 2-3
times the noise level. The reference value y0 is set during the noise measurements
by taking the average of the measured y-values. If the noise level is too large the
signals need to be filtered before starting the relay experiment, otherwise the output
amplitudes required for the experiment will be too large. In the noise-free simulation
environment the hysteresis could be chosen arbitrarily. In this thesis the hysteresis
h = 0.1 has been used as a default value.
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Figure 5.1 Boxplots of the absolute errors in the estimation of τ , for the three
different convergence limits ε = [0.05,0.01,0.005]. On each box, the central mark
is the median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points the algorithm does not consider to be outliers,
and the outliers are plotted individually.

Convergence of limit cycles
If an FOTD system under asymmetric relay feedback has a limit cycle, it will con-
verge to it after the first switch of the relay, see [Lin et al., 2004]. However, for other
processes or if noise is added, it is not certain that the limit cycle will be reached
that fast. One issue to consider in the relay experiment is therefore to decide when
convergence to the limit cycle has been achieved. One method is to compare the
time one period take, tp, with the time the previous period took, t∗p. If the difference
between the period times is smaller than a certain threshold ε , i.e.,

∣∣∣∣∣
tp− t∗p

t∗p

∣∣∣∣∣≤ ε (5.1)

the system is considered to have reached the limit cycle. Another method would be
to look at the oscillation amplitudes instead of the period times, but that approach
was not chosen in this thesis.

To investigate the effect of ε , the processes in the test batch (Section B) was
simulated with the different values ε = [0.005,0.01,0.05]. To make the situation a
little more realistic, band-limited white noise with a measured noise level of n0 =
0.12 was added to the process output. The resulting accuracy of τ and Kp, for the
different choices of ε , are shown in Figure 5.1 and Figure 5.2. The figures show
that the accuracy of τ is more or less identical for all three values, but that the
estimation of Kp is improved for smaller convergence limits. Since the experiment
should ideally be short, a comparison of the convergence times was performed for
the entire batch. It turned out that the mean convergence time for ε = 0.05 was 0.31
periods shorter than for ε = 0.1, while the convergence time for ε = 0.005 was in
mean 0.52 periods longer than for ε = 0.01. At most, ε = 0.05 gave a 2.5 periods
shorter convergence time, while ε = 0.005 made one process take 9 periods more to
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Figure 5.2 Boxplots of the absolute errors in the estimation of Kp, shown for the
three different convergence limits ε = [0.05,0.01,0.005]. All processes, classified as
non-integrating, from the test batch are included.

converge than it did with ε = 0.01. Since the accuracy was more or less the same for
ε = 0.01 and ε = 0.005 there is no need to use the lower value, since that increases
the experiment time. Increasing the limit to ε = 0.05 make the experiment a little
shorter, but the obtained values of Kp are also somewhat worse. Considering the
results, the default value chosen for this thesis is ε = 0.01.

Relay amplitudes
The question of how to choose the relay amplitudes is subject to some different
aspects. It is necessary that |Kp min(d1,d2)| > h for the output to reach outside the
hysteresis band and create oscillations. Some margin to this limit, which could be
stated as

min(d1,d2)≥
µh
|Kp|

(5.2)

where µ > 1 is a constant, is required to get good results. In Figure 5.3 the accuracy
of the estimated τ is shown for some different values of µ . The plot shows that the
results improve a lot up to µ = 3, are slightly better for µ = 5 and after that stay
more or less the same.

Since Kp is not known beforehand, the relay amplitudes can not be set according
to the constraint (5.2) directly. Instead we consider the smallest peak deviation of
the process output, yspd , which is constrained to yspd ≤ Kp min(d1,d2). By putting
a lower limit ymindev = µh on the peak deviation we can guarantee that (5.2) is
satisfied since

|Kp|min(d1,d2)≥ yspd ≥ ymindev = µh. (5.3)

How the lower limit is accomplished in practice is described by the amplitude ad-
justment in Section 5.2. Note that since there are multiple inequalities in (5.3) you
may not need to put as high value of µ as in (5.2) to get good results. With the
default parameters listed in Section C, the maximum error of τ is 0.08 for the test
batch, and there such a small value as ymindev = 2h was used.
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Figure 5.3 Mean and maximum errors of the τ-estimations, shown for some dif-
ferent values of µ . During these simulations, the relay amplitudes were fix, with the
small amplitude min(d1,d2) = µh/|Kp| and the large amplitude a factor γ = 2 larger.

γ = 1.5 γ = 2 γ = 3 γ = 5
0.00

0.02

0.04

0.06

0.08

E
rr

or
in

τ

Figure 5.4 Boxplots of the absolute errors of τ , shown for different values of the
asymmetry level γ .

The asymmetry level γ , i.e., the ratio between d1 and d2 is also something to
consider. Figure 5.4 and Figure 5.5 show the results of the estimates of τ and Kp
for different values of γ . For the estimates of τ the results from the entire test batch
is plotted. For the estimates of Kp only the processes that were estimated as FOTD
processes, and hence have a value of Kp, are shown. The results indicate that as high
asymmetry as possible should be chosen to get good estimates of Kp, but that the
estimates of τ does not depend that much on γ .

By forcing yspd to be large, and using a high γ , the results shown are more accu-
rate. If the autotuner is to be used in simulation environments you could therefore
use high values. However, if you are to use the autotuner on real processes in an
industrial setup you will have upper constraints as well. You will have limitations
on the deviations of both the process output, ymaxdev, and the control signal, umaxdev.
These constraints may force you to use lower values of γ and/or ymindev than you
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Figure 5.5 Boxplots of the absolute errors of Kp, shown for different values of the
asymmetry level γ . All processes, classified as non-integrating, from the test batch
are included.

would prefer to. How the upper limits enter into the process of choosing the relay
amplitudes is explained in Section 5.2.

Sampling times
The question of how to choose the sampling time for the relay experiment is not
easily answered, since you have no information about the process when designing
the experiment. In the simulations in this thesis a fixed sample time of ts = 0.01 s
has been used as default value. The test batch in Section B consists of processes
with very different time constants, so for some processes that sampling time is un-
necessarily small, while for others it is too large. An indication of this can be seen
by looking at the results of Kp and τ for the two different sampling times, ts = 0.01 s
and ts = 0.001 s, shown in Figure 5.6 and Figure 5.7.

The results for τ in Figure 5.6 are more or less the same, so estimation of τ
seems to be quite insensitive to the choice of sampling time. Looking at the results
for Kp in Figure 5.7 two things can be noticed. The first observation is that the
estimation of Kp deteriorates with lower values of τ . This could be explained by
the fact that the integral of the control signal given in (3.9) goes towards zero as τ
decreases, and a small difference in its measurement gives a greater impact on the
result. The other observation is that the worst estimates are much improved when
the sampling time is decreased. The processes that get a bad value of Kp with the
default parameters are all very fast processes, with time periods in the order of 1s,
that behaves much better when the sampling time is reduced to 0.001 s. For most
of the processes, however, the result is more or less the same, since the default
sampling time was sufficient. For those processes the main difference is that the
time it takes to simulate is much longer and the amount of data storage needed is
increased a factor 10. One of the very slow processes (number 42 in the test batch)
could not be simulated with ts = 0.001 s since it would not have time to converge
before the data storage ran out of space. That process is therefore not included in
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Figure 5.6 Estimates of τ for two different sampling times. The upper plot shows
the absolute error between the estimated τ , and the true value τs, as a function of the
estimated τ . The red circles show the results for ts = 0.01 s, and the blue stars show
the results for ts = 0.001 s. The lower plot shows the corresponding boxplots of the
absolute errors.

the figure for ts = 0.001 s. For this reason a shorter sampling time is not always
preferred.

One way to solve the problem of a way too large or too small sampling time is to
adjust the sampling time after the first half-period when it is known approximately
the speed of the process.

5.2 Startup and Amplitude Adjustments

Since the process gain may not be known in advance, a strategy to find adequate
relay amplitudes has to be implemented in the autotuner. The startup procedure
in this thesis is inspired by earlier versions of industrial autotuners. The control
signal is increased exponentially during a couple of seconds until one of two things
happen. Either the control signal reaches its maximum allowed value, umaxdev, or the
process output reaches the hysteresis limit. When the hysteresis limit is reached, the
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Figure 5.7 Estimates of the process gain Kp for two different sampling times. The
upper plot shows the estimates as a function of the estimated τ . The red circles show
the results for ts = 0.01 s and the blue stars show the results for ts = 0.001 s. The
lower plot shows boxplots of the absolute error of Kp. In both the upper and lower
plot the only processes shown are the ones with an estimated τ > 0.05.

sign of the process gain is determined based on which limit that is broken, and the
initial relay amplitudes are set according to the current level of the control signal.
In the case where the control signal reaches its maximum value it stays at that level
until the process output reaches the hysteresis limit. Then the sign of the process
gain and the relay amplitudes are set as in the first case. If either the sign of the
process gain, or its approximate amplitude, is known in advance this information
can be used to set the initial relay amplitudes.

During the experiment the relay amplitudes are adjusted to get the oscil-
lation in the desired amplitude interval. The lower limit on the small peak
deviation, yspd , was explained and motivated in Section 5.1. The upper limit
ymaxdev on the large peak deviation, yl pd , can either be a default value or
specified by the user. The desired amplitude interval is shown in Figure 5.8.
The amplitude adjustment is described in Algorithm 1, but has some addi-
tional logic to make sure that the relay amplitudes never reach above umaxdev.
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Figure 5.8 Oscillation restrictions for the process output y. The peak values yl pd
and yspd should both stay within the gray-marked areas. To get good results it is
necessary that ymindev is a bit larger than the hysteresis level h. The limit ymaxdev is
due to the fact that the process should not be disturbed too much, this limit may be
set by the operator.

if Switching AND not changed in last switch then
if max(ydev)> ymaxdev then

y∗l pd = (ymaxdev + ymindevγ)/2
ratio = y∗l pd/max(ydev)

else if max(ydev)< ymindev then
y∗spd = (ymindev + ymaxdev/γ)/2
ratio = y∗spd/max(ydev)

else
ratio = 1

end
d1 = d1 · ratio
d2 = d2 · ratio

end
Algorithm 1: Amplitude adjustments. Here ydev stands for the process value’s deviation
from the setpoint, y∗spd and y∗l pd stands for the wanted small peak deviation and large peak
deviation respectively.

To exemplify, consider a situation when the lower limit is set to ymindev = 2h, the
upper limit is set to ymaxdev = 6h and γ = 2. If the relay would have been symmetric
we would aim for the peak values, y∗spd and y∗l pd to reach 4h, but in an asymmetric
relay the asymmetry level γ needs to be taken into consideration as in Algorithm 1.
The desired amplitudes in this case are

y∗spd = (ymindev + ymaxdev/γ)/2 = (2h+6h/γ)/2 = 2.5h,

y∗l pd = (ymaxdev + ymindevγ)/2 = (6h+2hγ)/2 = 5h.
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Figure 5.9 An example of the startup and amplitude adjustments. Here umaxdev =
10, γ = 2, ymindev = 2h, ymaxdev = 6h. The gray area shows the allowed areas for the
peak values yspd and yl pd .

The obtained ratio adjusts the measured amplitudes towards the desired values. An
example of the startup and amplitude adjustments is illustrated in Figure 5.9.

It follows from the equations in Algorithm 1 that the value of γ is restricted to

γ ≤ ymaxdev

ymindev
, (5.4)

otherwise both limits can not be satisfied at the same time. Either the experiment
will then not converge at all, or the converged limit cycles will not satisfy the limita-
tions. An example of when γ is too large in comparison to the upper limit ymaxdev is
shown in Figure 5.10. As can be seen the experiment will never converge with these
parameter settings and program logic warning for this situation has to be a part of
the autotuner implementation.

5.3 Measurement Noise

To check the experiment’s robustness to measurement noise, the test batch was
simulated for some different noise levels. To introduce noise to the simulations,
band-limited white noise was connected to the process output. As was mentioned in
Section 5.1 the relay experiment starts by measuring the noise level, and a suitable
hysteresis level for the experiment is then chosen. The noise level for the differ-
ent simulations in the batch was the same since the same seed was used by the
noise block in all simulations. The accuracy of Kp and τ for different noise levels is
shown in Figure 5.11, and the corresponding boxplots are shown in Figure 5.12 and
Figure 5.13 respectively.

Figure 5.11 shows that the processes with low τ give the worst estimates. This
emphasizes that it could be worthwhile to put some extra effort in modeling these
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Figure 5.10 An example of the problems obtained if γ is larger than
ymaxdev/ymindev. The gray areas shows the allowed areas for the peak values yspd
and yl pd . The algorithm will never find relay amplitudes that satisfies both limits and
will keep changing the amplitude.

processes. The figures for Kp only contain the processes with an estimated τ > 0.1,
but Figure 5.11 shows that some of the processes get such a large error in τ that
they are wrongly classified to have τ > 0.1 in the most noisy simulation. These are
the same processes that deviates a lot in their estimates of Kp. The results for the
different noise levels do, however, not differ that much if the few miss-classified
outliers are disregarded.

To further illustrate the effect of a noisy experiment, we take a closer look at
Figure 5.14 where one of the processes from the test batch, namely

P(s) =
1

(s+1)5 , (5.5)

has been simulated with and without noise. The noise level in the upper plot was
measured to n0 = 0.38 and the estimates were Kp = 0.95 and τ = 0.45, which can
be compared to the noise-free estimates Kp = 1.01 and τ = 0.44. Hence, the intro-
duction of noise did not deteriorate the accuracy of the estimates in this example.
Worth noting is that in the upper plot the hysteresis level is h = 2n0 = 0.76 instead
of the default value h = 0.1 used in the noise-free case. Since the default values of
both the upper and lower limit on the deviations of the process signal are set propor-
tional to the hysteresis level, the amplitude is both forced and allowed to be much
larger when noise is added. In reality the upper limit on the deviation may not be
allowed to be so large. This gives that it may be necessary to filter the signal before
performing the relay experiment if the noise level is too large.
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Figure 5.11 Results from relay experiment for the different noise levels n0 = 0 in
green plus signs, n0 = 0.12 in red circles, and n0 = 0.38 in blue stars. The upper
plot shows the estimated values of Kp as a function of τs. The lower plot shows the
absolute error between the estimates of τ and the true values τs, as a function of τs.
In the plot for Kp, only the processes classified as non-integrating are included.
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Figure 5.12 Boxplots of the absolute errors of Kp, shown for different noise levels.
All processes, classified as non-integrating, from the test batch are included.
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Figure 5.13 Boxplots of the absolute errors of τ , shown for different noise levels.
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Figure 5.14 Relay experiment for the process P(s) = 1/(s+ 1)5. The upper plot
shows the signals when noise is added to the process output, while the lower plot
shows the corresponding noise-free simulation. The blue line shows the relay output,
the red line shows the process output.
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Figure 5.15 Boxplots of the absolute errors of τ , shown for two different resolu-
tions of the D/A converter.

5.4 Effects of Quantization

The resolution of A/D and D/A converters may affect the autotuner performance.
The largest issue is the resolution in the D/A converter, since it will change the
asymmetry level of the relay. A small change in relay asymmetry can give large
deviations in the calculations of τ and Kp. To see the effect of quantization the test
batch was simulated with a D/A converter that had a resolution of 10 bits on the
control interval [0,100]. The errors in τ are shown in Figure 5.15, where the results
are compared to the default setup that tries to mimic infinite resolution by using a
50 bit D/A converter.

The results are worse for the less resolved D/A converter. The reason to the
difference can be understood by looking at the example shown in Figure 5.16. This
example shows the worst case achieved in the test batch simulation. The process is

P(s) =
e−0.7s

s(0.3s+1)
, (5.6)

so it is an integrating process that should have τ = 0, but due to the quantization
the estimated value is τ = 0.16. The oscillations in the figure looks fine, but still the
resulting model is bad. The relay amplitude before the D/A converter is shown in
blue while the actual control signal that enters the system is the turquoise line. The
levels in this example are d1 = 0.88, dq

1 = 0.88, d2 = 0.44, dq
2 = 0.49, where the q

denotes that it is the quantized level. This gives that γ = 2 while γ q = 1.8. So we
think that we have an asymmetry level of 2 but in reality it is 1.8. In Figure 5.17 we
see the implications of this on the estimated τ . Since the actual asymmetry level is
γ q = 1.8, the integrating system gets the half period ratio ρ = γ q = 1.8. Assuming
the curve where γ = 2 gives τ = 0.16 when the true τ-value is 0.

The problem with quantization can be resolved by having a higher resolution of
the converters, or by knowing the control signal levels that are actually sent to the
process. If we had known, in the example above, that the true value was γ = 1.8 and
used that in the calculations there would have been no problem.
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Figure 5.16 The effect of quantization in the D/A converter. The calculated control
signal u is shown in blue, while the output from the 10 bit D/A converter, uq, is
shown in turqoise. The process output y is shown in red. The final relay amplitudes
are d1 = 0.88, dq

1 = 0.88, d2 = 0.44, dq
2 = 0.49.
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Figure 5.17 The τ curves corresponding to (3.6), plotted for different values of the
asymmetry level γ .
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Chapter 5. Practical Considerations

5.5 Load Disturbances

Static load disturbances that enter the system during the relay experiment can create
problems. If the load disturbance is large, it may stop the process from oscillating
and no result is achieved. This will be obvious to the operator and the experiment
can be restarted, hopefully without any disturbances. If the load disturbance is small,
we get a problem similiar to the quantized D/A converter described in Section 5.4.
Bad parameter estimates are obtained, since the desired relay signal is not what ac-
tually enters the process. If this is not noticed in the validation phase, bad controller
parameters may be used on the process. It is therefore desirable to be able to de-
tect if a load disturbance is present. With a symmetric relay, load disturbances are
easily detected since the oscillations will become asymmetric. The magnitude of
the disturbance could be determined and the relay experiment could then either be
restarted with a bias to compensate for the load, or calculations could be modified
to take account of the disturbance. Some different approaches to handle load dis-
turbances for symmetric relay feedback are described in [Hang et al., 1993], [Shen
et al., 1996a], [Park et al., 1997] and [Sung and Lee, 2006].

When an asymmetric relay is used, the detection of static load disturbances is
more difficult, since there is no way to determine whether the asymmetry in the
oscillations comes from the relay or from a disturbance. In [Kaya and Atherton,
2001a] a method to find the parameters of a stable or unstable FOTD or SOTD
model with an asymmetric relay and a static load disturbance is presented. The
method requires knowledge of the static gain of the process in order to calculate the
magnitude of the load. The same methodology is used to estimate the parameters
of an IFOTD model in [Kaya, 2006]. Hence, a small static load disturbance is not a
big problem, if either the magnitude of the load disturbance or the process gain is
known. Usually that is not the case though, which makes a short experiment time of
the relay experiment even more important, since that decreases the risk of having a
load disturbance entering during the experiment.

5.6 Start in Non-Steady State

As stated earlier, it is assumed that the process is at the steady-state level (u0,y0)
when the experiment is started. In this section it is investigated how the results are
affected if this assumption is violated. To make the investigations a step change in
the reference signal was conducted, with a reasonably well-tuned controller. The
relay experiment was started when the process output y had almost reached its ref-
erence value. The error between the reference value and y at the starting point of the
experiment is denoted ye. After the relay experiment was done a load disturbance
was added to see the achieved controller performance. The controller in this case
was a PI controller tuned with the AMIGO rules for the obtained FOTD model. The
results of the experiments are shown in two different figures. In Figure 5.18 the relay
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5.6 Start in Non-Steady State

experiment starts immediately when the error is small enough. In Figure 5.19 the
experiment starts with measurement of the noise level, as described in Section 5.1.

As can be seen from Figure 5.18 the resulting controller parameters are good for
the first two cases where the starting error was ye = 0.001 and ye = 0.01 respectively,
slightly worse for ye = 0.1 and really bad for ye = 0.5. In Figure 5.19 the results for
ye = 0.5 is much better. In this case the process reaches a steady-state during the
noise measurement phase. The reason why the result is still slightly worse than
for the upper plots is that the reference value used in the relay experiment is an
average of the y-values measured during the entire noise measurement phase and
hence slightly different from the steady-state level obtained.

To conclude the results for start in non-steady state, it is clear that you want the
system to have reached its equilibrium before starting the experiment. However, if
the system is almost at steady-state the results are still reasonable. From the lower
plots in Figure 5.18 and Figure 5.19 where ye = 0.5 it is obvious that the process is
not in steady-state and that the experiment should not yet be started, still we may
get reasonable results if the process is fast enough to reach steady-state during the
noise measurement phase.
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Figure 5.18 Results when the relay experiment is started at a non-steady state. The
error at the experiment start is ye = [0.001,0.01,0.1,0.5], listed from the top figure to
the bottom one. The resulting PI controller parameters achieved from the experiment
are K = [0.26,0.26,0.24,0.75] and Ti = [3.38,3.38,4.05,171.15], listed from top to
bottom. At time 175 s a step load disturbance is added and the control performance
can be seen.
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Figure 5.19 Results when the relay experiment is started at a non-steady state. In
this figure the experiment starts with measuring the noise level for 10 s before the
relay starts. The error at the experiment start is ye = [0.001,0.01,0.1,0.5], listed from
the top figure to the bottom one. The resulting PI controller parameters achieved from
the experiment are K = [0.26,0.26,0.27,0.24] and Ti = [3.38,3.38,4.03,4.40], listed
from top to bottom. At time 175 s a step load disturbance is added and the control
performance can be seen.
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6
Examples

In this chapter, three processes are investigated more in detail, to evaluate the accu-
racy of the described autotuner procedure. The three processes are

P1(s) =
1

(s+1)(0.1s+1)(0.01s+1)(0.001s+1)
,

P2(s) =
1

(s+1)4 ,

P3(s) =
1

(0.05s+1)2 e−s,

(6.1)

where P1 is lag dominated, P2 balanced, and P3 delay dominated. All simulations in
this chapter have been performed in Matlab/Simulink with the default parameters
listed in Section C, and using the startup and adaptive relay amplitudes described in
Section 5.2. The simulation model contains one block with the PID controller, and
another block containing all the code for the relay experiment. The PID controller
is active until the experiment is started, and is reconnected as soon as the new con-
troller parameters are calculated. The simulations have been performed in discrete
time with a fix sampling time, and the models and the PID controller described in
Section 2.1 are therefore discretized as well. However, all parameters are derived
for the continuous case.

For each of the processes one model is obtained from the relay experiment, and
the system identification method described in Section 3.4 has been used to get an
additional model. The models are compared with each other and with the true pro-
cess by the Vinnicombe norm. They are also compared by a modified version of the
Vinnicombe norm, where only the frequency range of interest for PID controllers
are considered. Controllers based on the AMIGO rule are tuned for all approximate
models. The obtained controllers are compared to optimal controllers for the true
process with respect to performance and robustness.
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6.1 The Lag Dominant Process P1
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Figure 6.1 Signals from the relay experiment for P1. The blue line shows the relay
output u, and the red line shows the process output y. Note the different scales on the
y axes.

6.1 The Lag Dominant Process P1

The relay experiment for process P1 is shown in Figure 6.1. The first 10 seconds of
the experiment the noise level is measured, this is omitted in the figure. When the
noise level is established, the relay amplitude is ramped up until the process output
leaves the hysteresis band. Since this is a fast process this happens quite rapidly,
when the relay amplitude is still small. In the first half-periods, the oscillation am-
plitude is lower than desired, and the relay amplitudes adapt to a larger value during
the experiment. Once the appropriate amplitudes are achieved, the experiment con-
tinues for four half-periods until the convergence limit is satisfied at time 13.75 s.
Subsequently the calculations to get the model and controller parameters are per-
formed. A PI controller is connected as soon as its new parameters are calculated,
and immediately starts to bring the process output back to the reference value.

The normalized time delay for this process is estimated to τ = 0.044 which
could be compared to the τ obtained from a step response that is τs = 0.067. Since
τ is small an ITD process is estimated in the autotuner. The system identification
method is then used to find an IFOTD model with start values from the ITD model.
The model parameters as well as their Vinnicombe norms are listed in Table 6.1.
The resulting models are also shown in Figure 6.2 where they have been simulated
with the experiment data as input. The figure shows that the IFOTD model gives a
somewhat better fit than the ITD model, but none of them fits perfectly.

Table 6.1 Resulting model parameters and Vinnicombe norms for P1.

Model kv T L δν δ ∗ν
ITD relay 0.727 0.088 0.707 0.087
IFOTD est 0.681 0.038 0.038 0.707 0.090
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Figure 6.2 Simulated model output when the experiment data is used as input. The
true experiment output is shown in red, the output from the ITD model is shown in
green, and the output from the IFOTD model is shown in blue.

Table 6.1 shows that the Vinnicombe norms are bad for both models, δν = 0.707,
which is due to the fact that the models both have an integrator, while the real
process does not. This make the models differ significantly at low frequencies. If
the modified Vinnicombe norm is considered instead, the results are much better
with δ ∗ν ≈ 0.09 for both models.

PI and PID controllers for the ITD model as well as a PID controller for the
IFOTD model, are tuned using the AMIGO rules. The resulting controller parame-
ters, and robustness and performance measures MST and IAE, are listed in Table 6.2.
The table also contains the same values for optimal PI and PID controllers for com-
parison. The optimal controllers are obtained by minimization of IAE with the con-
straint that MST ≤ 1.4. Step responses to a load disturbance are shown in Figure 6.3
for all the controllers. The results verify the statements made for low values of τ .
The derivative part is beneficial, the PID controllers perform much better than the
PI controllers, and better modeling can increase the performance significantly. The
PID controller tuned for the ITD model is a factor 100 worse in performance than
the optimal PID controller. However, even the simple models obtained from this ex-
periment give low values of IAE, and both the PID controllers for the simple models
are performing better than the optimal PI controller. So the results are not bad, they

Table 6.2 Controller parameters for P1.

Controller K Ti Td MST IAE
ITD PI 5.478 1.178 1.34 0.215
ITD PID 7.043 0.703 0.044 1.15 0.100
IFOTD PID 15.28 0.469 0.043 1.23 0.031
Optimal PI 4.200 0.494 1.40 0.118
Optimal PID 89.50 0.086 0.051 1.40 0.001
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Figure 6.3 Responses from a step load disturbance, for the closed loop systems
containing the true process P1 and the different controllers listed in Table 6.2. The
upper plot shows the process output, the lower plot shows the control signal. The
dashed lines correspond to PI controllers, while the solid lines show PID controllers.
The green lines show the controllers based on the ITD model, the blue lines show
the controller based on the IFOTD model, the red lines show the optimal controllers.

could just be made even better by more advanced modeling and tuning. Notable are
also the gains of the PID controllers, especially the optimal one, that may prove to
be too high for noisy applications.

6.2 The Balanced Process P2

The signals from the relay experiment for P2 are shown in Figure 6.4. The plot
is similar to the one for P1, but this process is a bit slower which gives a longer
total experiment time. Notice that the amplitude was considered too high during the
third half-period, so the relay amplitude was lowered to get the desired oscillation
amplitudes.

The estimated τ for this process is τ = 0.37 which can be compared to its true
value τs = 0.33. The obtained value of τ implies that an FOTD model is estimated
from the experiment, but that an SOTD model estimated with the system identifica-
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Figure 6.4 Signals from the relay experiment for P2. The blue line shows the relay
output u, and the red line shows the process output y. Note the different scales on the
y axes.
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Figure 6.5 Simulated model output when the experiment data is used as input. The
true experiment output is shown in red, the output from the FOTD model is shown
in green, and the output from the estimated SOTD model is shown in blue.

tion method might give better results. The obtained models are shown in Table 6.3
along with their Vinnicombe norms. The models are also simulated against the ex-
periment data in Figure 6.5. As can be seen from both the table and the figure, the
SOTD model is a much better approximation than the FOTD model. This is due to
the fact that an FOTD model can not represent the multiple identical poles in P2 in
a satisfactory way.

A PI controller and a PID controller are tuned for the FOTD model, and a PID
controller is tuned for the SOTD model, using the AMIGO rules. The controller
parameters and the obtained values of IAE and MST are listed in Table 6.4. Optimal
controllers are listed as well for comparison. In Figure 6.6 the performance of the
obtained controllers are shown for a step change in load disturbance. As can be seen
the benefit of the derivative part is obvious for this process as well.
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Figure 6.6 Step responses from a load disturbance, shown for the closed loop sys-
tems containing the true process P2 and the different controllers listed in Table 6.4.
The upper plot shows the process output, and the lower plot shows the control sig-
nal. The dashed lines correspond to the PI controllers, while the solid lines show the
PID controllers. The green lines show the controllers based on the FOTD model, the
blue lines show the controller based on the SOTD model, and the red lines show the
optimal controllers.

Table 6.3 Resulting model parameters and Vinnicombe norms for P2.

Model Kp T1 T2 L δν δ ∗ν
FOTD relay 0.987 3.225 1.889 0.124 0.124
SOTD est 1.054 1.762 1.762 1.004 0.057 0.057

Table 6.4 Controller parameters for P2.

Controller K Ti Td MST IAE
FOTD PI 0.355 3.015 1.24 8.487
FOTD PID 0.981 2.849 0.803 1.35 2.906
SOTD PID 1.191 2.354 1.111 1.37 2.348
Optimal PI 0.432 2.250 1.39 5.208
Optimal PID 1.331 2.110 1.340 1.40 2.134
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Figure 6.7 Signals from the relay experiment for P3. The blue line shows the relay
output u, and the red line shows the process output y. Note the different scales on the
y axes.

6.3 The Delay Dominant Process P3

The relay experiment for the delay dominant process P3 is shown in Figure 6.7.
The figure shows that the process is fast, the total experiment time, including 10 s
of noise measurements before the relay oscillations are started, is 16 s. The time
delay of 1 s is apparent from the oscillations, and since the dynamics are very fast
the process reaches its steady state fast after each relay switch. Notice also that the
half-periods ton and toff are almost the same, which matches the limit equations for
τ ≈ 1 in (A.27). The normalized time delay for the process is estimated to τ =
0.93, indicating that an FOTD model probably describes the process sufficiently.
However, an SOTD model is estimated by the parameter estimation method as well
as a comparison. The resulting models are shown in Table 6.5 and in Figure 6.8.
The table shows that the estimated SOTD model is in fact the true process. The

FOTD model, obtained directly from the simple equations on the relay data, is not
far from the true process in either a fit aspect or when the Vinnicombe norm for the
interesting controller region is considered.

Controllers are, just like before, tuned by the AMIGO rules for the obtained
FOTD and SOTD models, and compared with optimal controllers in Table 6.6 and
Figure 6.9. All the controllers show similar performance and robustness. This im-
plies that there is no need for either the derivative part, or more accurate modeling
than the FOTD model.

Table 6.5 Resulting model parameters and Vinnicombe norms for P3.

Model Kp T1 T2 L δν δ ∗ν
FOTD relay 1.000 0.082 1.036 0.168 0.036
SOTD est 1.000 0.050 0.050 1.000 0 0
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Figure 6.8 Simulated model output when the experiment data is used as input. The
true experiment output is shown in red, the output from the FOTD model is shown
in green, and the output from the estimated SOTD model is shown in blue.

Table 6.6 Controller parameters for P3.

Controller K Ti Td MST IAE
FOTD PI 0.172 0.373 1.44 2.158
FOTD PID 0.236 0.477 0.108 1.41 2.014
SOTD PID 0.218 0.452 0.129 1.40 2.069
Optimal PI 0.164 0.371 1.40 2.313
Optimal PID 0.201 0.400 0.140 1.40 1.988

6.4 Discussion

The more detailed study of the three processes performed in this chapter strengthens
the proposition that the normalized time delay is useful in the tuning procedure. It
is clear that the derivative part is most useful for processes with low values of τ .
Even though the obtained controllers from the simple version of the autotuner show
satisfactory results, it is clear from the examples that better modeling, and also better
tuning could be very useful for processes with a small normalized time delay.

The Vinnicombe norm gives a good measure of how close the estimated model
is to the true process. However, a modified version of the measure gave a more
appropriate comparison for our purposes. In Figure 6.10 the distances between the
estimated and the true models are shown as a function of ω for each of the exam-
ple processes. Looking at the upper plot, where the models of P1 are shown, it is
obvious that the Vinnicombe norm will be decided by the low frequencies. This
since the estimated model has an integrator while the true process does not. The
thicker lines show the frequencies where the true process phase is between −90◦

and −270◦. This covers the interesting frequency region for PID control. It is from
this frequency interval that the modified Vinnicombe norm δ ∗ν is calculated. For P1
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Figure 6.9 Step responses from a load disturbance, shown for the closed loop sys-
tems containing the true process P3 and the five different controllers listed in Ta-
ble 6.6. The upper plot shows the process output, and the lower plot shows the con-
trol signal. The dashed lines correspond to the PI controllers, while the solid lines
show the PID controllers. The green lines show the controllers based on the FOTD
model, the blue lines show the controller based on the SOTD model, and the red lines
show the optimal controllers.

and P3 the modification gives smaller values of the norm, while for P2 the greatest
distance between the models are actually in the interesting region and hence stays
the same. Since the estimated SOTD model for P3 coincides with the true process,
its Vinnicombe norm is zero and does not show in the figure.

In the examples the tuning method used for the simple models is the AMIGO
method, the obtained controllers are then compared to controllers that optimizes
IAE. This is not a completely fair comparison since AMIGO is designed for an-
other performance measure, namely the integral error (IE). Neither are the AMIGO
rules designed for the models obtained from the relay experiment, but instead from
models obtained by step response experiments. With a tuning rule designed from
the obtained models, and with the same performance measure in mind, the results
would probably be better.
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Figure 6.10 The distance measure of the Vinnicombe norm, as a function of the
frequency ω . The red lines show the models estimated from the relay experiment,
the blue lines show the models from the parameter estimation. The thick lines corre-
spond to the frequency region used for the modified Vinnicombe norm.
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7
Experimental Results

The autotuner was implemented and tested on an air handling unit provided by
Schneider Electric Buildings AB in Malmö. The autotuner experiments were per-
formed on two subsystems of the air handling unit. One subsystem that controls the
pressure in the supply air duct, and another subsystem that controls the air temper-
ature in the same duct. The implementation is described in Section 7.1. The system
and subsystems are described in more detail in Section 7.2. The results from the
experiments on the two subsystems are given in Section 7.3 and Section 7.4 respec-
tively. Some remarks and discussion are presented in Section 7.5

7.1 Integration of the Autotuner in an Industrial System

To be able to test the autotuner on the air handling unit, it first had to be implemented
in Schneider Electric’s software StruxureWare Building Operation. The implemen-
tation of the autotuner procedure was made as a script program in the Building
Operation server. During the implementation phase, the inputs and outputs from the
script program were connected to a test system implemented as a function block
program in the same server. This provided the possibility of code development and
testing by simulations. The autotuner implementation includes all the sequences of
the relay feedback experiment that were described in Section 4.1. The implementa-
tion uses the simple version of the autotuner, where the experiment data is used to
find an FOTD model or an ITD model, and parameters for a PI/PID controller are
tuned by the AMIGO rules.

An implementation of the PID controller already existed, so no work was put
on that part. The obtained controller parameters were manually entered into the PID
controller during operation. To use the implemented autotuner on the air handling
unit, the inputs and outputs from the script program, as well as the controller, were
connected to the physical inputs and outputs instead of the simulation model.
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7.2 System Description

Figure 7.1 Schematics of the air handling unit.

7.2 System Description

The schematics of the air handling unit is shown in Figure 7.1, and pictures of
the system are shown in Figure 7.2 and Figure 7.3. Outside air enters the system
through the duct with a blue arrow sign, to the left in Figure 7.2. This corresponds
to the lower left duct in the schematics. The air temperature in that duct is measured
by sensor T43. The air then enters a box consisting of filters, the rotational heat
exchanger and the fans shown in Figure 7.3. The heated air is then led on through
the duct with the red arrow sign to the right in Figure 7.2, and enters the room from
the white outlet vents in the roof. The air temperature and pressure in that duct are
measured by sensors T11 and P11. If the temperature T11 is not sufficiently high
when the heat exchanger runs at full speed, there is an additional pumping system
circulating hot water to heat up the air. This system contains the pump P1 and valve
V21, but was not used during the experiments.

The exhaust air follows a similar path, but in the opposite direction. The air
is taken from the room through an intake in the roof. It then flows through the
upper duct that enters the box in Figure 7.2 from the right. The temperature and the
pressure of the exhaust air are measured by the sensors T41 and P12. The exhaust air
flows through the heat exchanger where its temperature is used to heat up the inlet
air, and the exhaust air then leaves the building through the duct with the brown
arrow sign in Figure 7.2.
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Chapter 7. Experimental Results

Figure 7.2 The air handling unit.

Figure 7.3 The heat exchanger, filters and fans. The supply air passes in the lower
part, while the exhaust air passes in the upper part. The rotational heat exchanger in
the middle transfers heat from the exhaust air to the supply air.
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Figure 7.4 Experiment data from the pressure control loop. The normalized fan
speed is shown in blue, the pressure measurement in red. Note the different scales
and units on the axes.

7.3 Pressure Control

The pressure control loop consists of the supply air fan SF1, positioned inside the
box, and the pressure sensor P11, positioned in the duct a few meters away from
the box. The control signal is normalized to a percentage of the full speed of SF1,
while the pressure is measured in the physical entity Pascal. The reference value
of the pressure was set to 250 Pa. Two relay experiments were performed on the
system. The calculated model and controller parameters for the two experiments
are listed in Table 7.1. The second experiment is also shown graphically in Fig-
ure 7.4. The experiment started with 40 s measurement of the noise. The figure
shows that the signal is rather noisy, in this experiment the noise level was mea-
sured to n0 = 6.51 Pa. According to this noise level, the hysteresis value was set
to h = 2n0 = 13.02. The sample time used during the experiment was ts = 0.1 s.
The asymmetry level, convergence limit, maximum and minimum deviations and
the maximum relay deviation, were set according to the default values in Section C.

In Table 7.1 it is seen that the results are quite similar between the experiments,
with the largest difference in the estimates of Kp. Since τ was large, a PI controller
was tuned. The second experiment gave a somewhat more aggressive controller
tuning than the first one.

The controller parameters from the second experiment were used to investigate
the obtained controller performance. The controller used a sampling time of 1 s, and

Table 7.1 Parameters from the pressure control experiment.

τ Kp T L K Ti
Exp. 1 0.71 3.56 2.50 6.07 0.059 3.23
Exp. 2 0.77 2.29 1.92 6.31 0.088 2.92
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Figure 7.5 Response to setpoint changes for the system with the controller tuned
from the experiment. The upper plot shows the measured pressure in red, and the
setpoint in black. The lower plot shows the control signal.

had a dead zone of 5 Pa. Results from step changes in the reference value are shown
in Figure 7.5. The step response results are satisfactory. There is an overshoot, but
that can be reduced by filtering the setpoint. The use of the dead zone is clearly vis-
ible from the long periods of constant control signal and process output deviations
from the setpoint.

By manually adjusting a damper, step load disturbances of unknown sizes were
added, the response to these are shown in Figure 7.6. This also shows satisfactory re-
sults. The effect of the load disturbances are removed completely in approximately
20-25 s with rather small overshoots.

7.4 Temperature Control

In the temperature control experiment the supply air temperature T11 is controlled
by the rotational heat exchanger HEX. The control signal is normalized to a per-
centage of the full rotation speed of the heat exchanger, and the temperature is mea-
sured in ◦C. The temperature of the inlet air was measured by T43 and varied a lot
depending on the outdoor temperature. The temperature control experiments were
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Figure 7.6 Response to load disturbances. The upper plot shows the measured
pressure in red, and the setpoint in black. The lower plot shows the control signal.

made between 10.30 AM and 1.30 PM on a sunny spring day. During this time
period the inlet air temperature measured by T43 varied according to Figure 7.7.
This temperature deviation is treated as a load disturbance and caused some trouble
during the experiments.

One relay experiment is shown in Figure 7.8. The noise was measured for 40 s
and the measured noise level was n0 = 0.045◦C. This gave a hysteresis level of
h = 0.09. The same default values as for the pressure control experiment were used,
except for a change in the convergence limit from ε = 0.01 to ε = 0.05. The reason
for this change is that the varying load from the inlet air temperature makes it even
more crucial to keep the experiment time short. However, the higher steady state
level after the experiment shows that the drift in temperature has still influenced the
result. The measurements from the experiment gave that τ = 0.20 and the estimated
FOTD model was

P(s) =
0.035

35.8s+1
e−8.8s. (7.1)

From this model the parameters for a PI controller were calculated to K = 26.6 and
Ti = 29.2. The PI controller was then connected and some setpoint changes were
performed to check the obtained controller performance. During the step tests the
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Figure 7.8 A relay experiment performed on the temperature control loop. The
blue line shows the normalized speed of the heat exchanger, and the red line shows
the supply air temperature. Note the different scales and units on the axes.

controller had a sampling time of 1 s and the dead zone was 0.025◦C. The results
from the step tests are shown in Figure 7.9. The reason why the setpoint is not
constant during the steps is that it is continuously updated by an equation related to
the outdoor temperature. The results from the step responses show that the obtained
controller performs reasonable, even though the experiment was disturbed by the
load that may have deteriorated the accuracy of the estimated model.

As an attempt to decrease the effect of the load disturbance, another relay exper-
iment was done with higher allowance on the relay amplitudes, umaxdev = 20. The
data from this experiment is shown in Figure 7.10. This experiment showed another
problem with the process. The heat exchanger is not linear, so increasing the speed
from 60% to 80% does not double the effect compared to the previous increase from
60% to 70%. This nonlinearity is also seen in the step responses in Figure 7.9. The
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Figure 7.9 Response to setpoint changes. The upper plot shows the supply air tem-
perature in red, and the setpoint in black. The lower plot shows the control signal.
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Figure 7.10 A relay experiment that suffers from the nonlinearities in the system.
The blue line shows the normalized speed of the heat exchanger, and the red line
shows the supply air temperature.
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last step change, which is in the higher control signal range, demands much more
control signal than the previous three steps, even though the steps are of the same
size. In the relay experiment this nonlinearity changes the “true asymmetry level”.
In the experiment we used the asymmetry level γ = 2, but since the step of 20 units
up does not have the double effect of 10 units down, the true value of γ is less than
2. This decrease in true asymmetry level is reflected in the half-period ratio ρ , and
as can be seen in Figure 7.10, the half-periods ton and toff are more or less equal in
this experiment. Using this data, assuming γ = 2, would give a value of τ close to
1 as for a delay dominant process. Since our previous experiments had shown that
this wasn’t correct, the model was disregarded.

7.5 Discussion

The experiments on the air handling unit gave satisfactory results for the pressure
control loop. For the temperature control loop some problems occured due to load
disturbances and nonlinearities in the system. The obtained controller did, however,
show good results for the setpoint changes. The experiments also gave some new
insights. One such insight is that the use of default values is not possible unless all
signals are normalized. As an example consider the hysteresis value, which default
value used in the simulations chapter was h = 0.1. In these experiments the scales
of the physical entities were very different and in the pressure control the noise level
was measured to n0 = 6.51 Pa, while in the temperature control the noise level was
n0 = 0.045◦C, where parts of it probably were subject to drift in inlet air temperature
rather than noise. To use the same hysteresis level for both these experiments would
not be sensible.

Another remark is the use of dead zones, instead of low-pass filters, to handle
noise in many industrial controllers. The dead zone and controller need to be ad-
justed to each other. In the temperature control loop the initial controller had a dead
zone of 0.5◦C, this was way too high for the rather fast PI controller obtained from
the experiment and the system started to oscillate due to the dead zone. The dead
zone was then adjusted to the typical noise levels, and the same controller showed
no sign of oscillatory behavior in the experiment with the setpoint changes.

The temperature control experiments indicate that it would be valuable to add
gain scheduling to deal with the nonlinearity in the heat exchanger. The temperature
experiments also show the importance of evaluation from the operator. If the exper-
iment with the higher relay amplitudes would have been performed without any
evaluation, completely wrong model parameters would have been obtained. Now
the nonlinearity in the system was discovered by the step responses, and other relay
experiments gave very different model parameters. Of course the aim of the auto-
tuner is that the results will be good at the first attempt, but with unknown load
disturbances or nonlinearities that may not be the case, and some kind of test of the
obtained controller performance is therefore necessary.
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8
Conclusions and Future
Work

In this thesis an autotuner for PID controllers based on an asymmetric relay feed-
back experiment has been proposed. Explanation and motivation to the different
sequences in the automatic tuning procedure have been presented.

Some of the choices made by the autotuner are based on the process classifica-
tion made by the normalized time delay, these choices are presented and motivated.
A method of finding the normalized time delay from the asymmetric relay experi-
ment was presented and evaluated. The results showed that classification could be
done robustly from the obtained estimates.

How the experiment parameters should be chosen was evaluated, and the effect
of insecurities and disturbances was discussed and evaluated. It showed that load
disturbances as well as quantization in converters are problematic. So are nonlin-
earities in the actuators. These three issues have in common that they change the
true asymmetry level of the relay function. If that is not known or discovered during
the experiment, the resulting calculations will be inaccurate. This emphasizes the
importance of evaluation of the obtained controller performance.

The proposed autotuner was implemented and tested both in a simulation envi-
ronment and on an industrial process. A simple version of the autotuner was used,
where FOTD or ITD models were obtained from the relay experiment. In the sim-
ulations, the experiment data was also used to estimate SOTD or IFOTD models
from a parameter estimation method. For all the obtained models a PI or PID con-
troller was tuned from the AMIGO rules. The evaluation gave satisfactory results,
but also showed some possible improvements. One such improvement is to use a
tuning method designed for the used experiment. Another is that better modeling
and tuning for processes with small normalized time delays could increase the per-
formance significantly. An advanced version of the autotuner could be developed to
accomplish this.

How the advanced autotuner should be designed is subject to future research. A
chirp signal, designed for the wanted frequency range, is an alternative for the possi-
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ble additional experiment. Other model structures could be considered and a method
to choose among these should then be part of the autotuner procedure. How the con-
troller should be tuned in an advanced version is also subject to further research, but
it would probably be optimization based if the computational power allows it. An
advanced autotuner should ideally also design noise filtering, setpoint weighting
and other aspects of the controller design. The possibility to use the models ob-
tained from an advanced version of the autotuner in the design of model predictive
controllers could be investigated.

Future research on the simple version of the autotuner should contain deriving
its own simple tuning method. There are also process structures not present in the
test batch that could be evaluated, for example unstable systems and systems with
slow process zeros. A method to discover if the true asymmetry level differs from
the supposed one would be of great value.

Another interesting subject for future research would be to extend the autotuner
to multivariable systems.
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A
Derivation of Equations

A.1 FOTD Model

An FOTD model on the form

P(s) =
Kp

1+ sT
e−sL (A.1)

can be written on state space form as

ẋ(t) = ax(t)+bu(t−L)

y(t) = x(t)
(A.2)

with a =−1/T and b = Kp/T . The solution to this is

y(t) = ea(t−t0)y(t0)+
∫ t

t0
bea(t−θ)u(θ −L)dθ . (A.3)

In [Lin et al., 2004] an analysis of the existence and stability of limit cycles for
FOTD systems under relay feedback has been performed. Assuming that these con-
ditions are satisfied, the equations for an FOTD system can be derived in the fol-
lowing manner.

Let t1, t2 and t3 denote three consecutive time points where the relay switches.
Without any loss of generality we can assume that before time t1 the control signal
from the relay was uon and then at time t1 the relay switched to uoff. According to
the definitions in Section 3.1 this implies that

y(t1) = y0 +h

y(t2) = y0−h

y(t3) = y0 +h
(A.4)

and that
toff = t2− t1
ton = t3− t2.

(A.5)
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A.1 FOTD Model

In the interval [t1, t1 +L] the control signal is constant, u(t−L) = uon. This gives
that

y(t1 +L) = ea(t1+L−t1)y(t1)+
∫ t1+L

t1
bea(t1+L−θ)u(θ −L)dθ

= eaLy(t1)+buon

∫ t1+L

t1
ea(t1+L−θ)dθ

= eaLy(t1)+
buon

−a

(
1− eaL)

= eaL
(

y(t1)+
buon

a

)
− buon

a
.

(A.6)

In the interval [t1 +L, t2] we have u(t−L) = uoff. This gives

y(t2) = ea(t2−(t1+L))y(t1 +L)− buoff

a

(
1− ea(t2−(t1+L))

)

= ea((t2−t1)−L)
(

y(t1 +L)+
buoff

a

)
− buoff

a

= ea(t2−t1)e−aL
([

eaL
(

y(t1)+
buon

a

)
− buon

a

]
+

buoff

a

)
− buoff

a

= ea(t2−t1)
((

y(t1)+
buon

a

)
+ e−aL b

a
(uoff−uon)

)
− buoff

a
.

(A.7)

The same arguments give y(t2+L) and y(t3). By transforming from (a, b) to (Kp, L)
the equations can be summarized by

y(t1) = y0 +h (A.8)

y(t1 +L) = e−L/T (y(t1)−Kpuon)+Kpuon (A.9)

y(t2 +L) = e−L/T (y(t2)−Kpuoff)+Kpuoff (A.10)

y(t2) = e−(t2−t1)/T
(

y(t1)−Kpuon−KpeL/T (uoff−uon)
)
+Kpuoff (A.11)

y(t3) = e−(t3−t2)/T
(

y(t2)−Kpuoff−KpeL/T (uon−uoff)
)
+Kpuon (A.12)

The values of y at the switching points are given by (A.4), and the time intervals ton
and toff are given by (A.5). The equations (A.11) and (A.12) can then be reformu-
lated to give the time intervals ton and toff as a function of the process parameters
Kp, T and L.

toff = t2− t1 = T ln

(
y(t1)−Kpuon−KpeL/T (uoff−uon)

y(t2)−Kpuoff

)
(A.13)

ton = t3− t2 = T ln

(
y(t2)−Kpuoff +KpeL/T (uoff−uon)

y(t3)−Kpuon

)
(A.14)
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Appendix A. Derivation of Equations

Inserting the y-values from (A.4), the definitions for uon, uoff, and using that y0 =
Kpu0 in the stationary equilibrium point, the equations (A.13) and (A.14) can be
rewritten as

toff = T ln

(
h/|Kp|−d1 + eL/T (d1 +d2)

d2−h/|Kp|

)
(A.15)

ton = T ln

(
h/|Kp|−d2 + eL/T (d1 +d2)

d1−h/|Kp|

)
. (A.16)

Limits for the hysteresis-free equations
To get some insight we investigate the limits of ton and toff as the ratio L/T → 0 and
L/T → ∞ respectively. To simplify the calculations the hysteresis-free situation,
h = 0, is considered. The equations for ton and toff then reduces to

ton = T ln

(
−d2 + eL/T (d1 +d2

d1

)
,

toff = T ln

(
−d1 + eL/T (d1 +d2

d2

)
.

(A.17)

Let’s consider the limit as L/T → 0. If we would enter L/T = 0 directly into the
equations we would get T ln(1). Since L/T → 0 implies that T may be infinite, and
ln(1) = 0, this doesn’t tell us much. Instead we use that eL/T ≈ 1+L/T for small
L/T . The equations can then be rewritten to

ton ≈ T ln
(−d2 +(1+L/T )(d1 +d2)

d1

)
,

toff ≈ T ln
(−d1 +(1+L/T )(d1 +d2)

d2

)
.

(A.18)

Simplifying these equations gives

ton ≈ T ln
(

1+L/T
(d2

d1
+1
))

,

toff ≈ T ln
(

1+L/T
(d1

d2
+1
))

.

(A.19)

Since ln(1+ x)≈ x for small x, this gives

ton ≈ L
(d2

d1
+1
)
,

toff ≈ L
(d1

d2
+1
)
.

(A.20)
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To conclude, as L/T → 0, the time intervals ton and toff and their ratio are

ton = L
(d2

d1
+1
)
, L/T → 0

toff = L
(d1

d2
+1
)
, L/T → 0

toff

ton
=

d2

d1
, L/T → 0.

(A.21)

Now consider the other limit, when L/T → ∞. The equations for ton and toff are
still

ton = T ln

(
−d2 + eL/T (d1 +d2

d1

)
,

toff = T ln

(
−d1 + eL/T (d1 +d2

d2

)
.

(A.22)

Rewriting these equations as

ton = T ln

(
eL/T −d2e−L/T +d1 +d2

d1

)
,

toff = T ln

(
eL/T −d1e−L/T +d1 +d2

d2

)
,

(A.23)

and using that ln(xy) = ln(x)+ ln(y) we get

ton = T

(
L/T + ln

(−d2e−L/T +d1 +d2

d1

))
,

toff = T

(
L/T + ln

(−d1e−L/T +d1 +d2

d2

))
.

(A.24)

Simplifying these equations and inserting L/T → ∞ in the exponentials, we get

ton = L+T ln
(

d1 +d2

d1

)
,

toff = L+T ln
(

d1 +d2

d2

)
.

(A.25)

Since L/T → ∞ implies that L >> T , the equations simplify to

ton ≈ L,

toff ≈ L.
(A.26)

85



Appendix A. Derivation of Equations

In conclusion, in the limit L/T → ∞ we get

ton = L, L/T → ∞,

toff = L, L/T → ∞,

toff

ton
= 1, L/T → ∞.

(A.27)

A.2 ITD Model

As in the derivation of the FOTD model parameters in Section A.1 we let t1, t2 and
t3 denote three consecutive time points where the relay switches. We also assume
that before time t1 the control signal from the relay was uon and then at time t1 the
relay switched to uoff, so (A.4) and (A.5) are still valid.

An integrating process with the transfer function

P(s) =
kv

s
e−sL (A.28)

can be written as the differential equation

ẏ(t) = kvu(t−L). (A.29)

From this equation it is clear that the only way to have a stationary point (u0,y0) is if
the control signal u0 = 0. The equation also implies that the shape of y is triangular,
since u(t) is piecewise constant. This gives the following equations

y(t1) = y0 +h, (A.30)
y(t1 +L) = y(t1)+ kvLuon, (A.31)

y(t2) = y(t1 +L)+ kv(t2− t1−L)uoff = y0−h, (A.32)
y(t2 +L) = y(t2)+ kvLuoff, (A.33)

y(t3) = y(t2 +L)+ kv(t3− t2−L)uon = y0 +h. (A.34)

The equations for ton and toff are then given by

toff = t2− t1 =
kvL(uoff−uon)−2h

kvuoff
, (A.35)

ton = t3− t2 =
kvL(uon−uoff)+2h

kvuon
, (A.36)

which gives the ratio
toff

ton
=− uon

uoff
. (A.37)

The process parameters kv and L can not be determined from this equation. To get
an additional equation we investigate the integral Iy.
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t1 t1 +L t2 t2 +L t3

−d2

0

d1

x1 x2T1

T2

ton

toff

Figure A.1 Output from a relay experiment with an ITD process. The blue line
shows the relay output u while the red line shows the process output y. The time
intervals ton and toff as well as the time intervals x1 and x2 are denoted in the figure.
The dashed black lines show the hysteresis. The gray area shows the process output
integral Iy, consisting of the two triangles T1 and T2.

Denoting Au := |y(t1 + L)− y0| and Ad := |y(t2 + L)− y0|, the integral of the
process output, Iy, can be calculated as the difference of the two triangles shown in
Figure A.1. The triangles are given by

T1 =
Au(toff + x1− x2)

2
, (A.38)

T2 =
Ad(ton + x2− x1)

2
. (A.39)

The time intervals x1 and x2 are given from the similarity of the triangles. They can
be expressed either as

x1 =
Lh

Au−h
, x2 =

Lh
Ad−h

, (A.40)

or as

x1 = h
(

ton−L
Ad +h

)
, x2 = h

(
toff−L
Au +h

)
. (A.41)

From (A.40) and (A.41) expressions for the products between the top amplitudes
and x1 and x2 are given by

Aux1 = h(L+ x1) Aux2 = h(toff−L− x2)

Adx1 = h(ton−L− x1) Adx2 = h(L+ x2).
(A.42)
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Inserting these expressions in the equations for T1 and T2 gives

T1 =
1
2
(Autoff +h(L+ x1)−h(toff−L− x2))

=
1
2
(toff(Au−h)+2hL+hx1 +hx2)

(A.43)

T2 =
1
2
(Adton +h(L+ x2)−h(ton−L− x1))

=
1
2
(ton(Ad−h)+2hL+hx2 +hx1)

(A.44)

This gives the integral

Iy = T1−T2 =
1
2
(toff(Au−h)− ton(Ad−h)) . (A.45)

Since Au and Ad are given by

Au = |y(t1 +L)− y0|= h+ kvLuon, (A.46)
Ad = |y(t2 +L)− y0|= h− kvLuoff, (A.47)

equation (A.45) can be rewritten as

Iy =
1
2
(toffkvLuon− tonkvLuoff) =

kvL
2

(toffuon− tonuoff) . (A.48)

This could easily have been found if the hysteresis would have been zero, but is now
proven also when there is hysteresis.

Using (A.48) and either of (A.35) or (A.36) equations for kv and L can be found.
From (A.36) we get

L =
uonton−2h/kv

uon−uoff
, (A.49)

and from (A.48) we get

kv =
2Iy

L(toffuon− tonuoff)
. (A.50)
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A.2 ITD Model

Inserting (A.49) in (A.50) gives

kv =
2Iy(uon−uoff)

(uonton−2h/kv)(toffuon + tonuoff)
⇒

kvuonton−2h =
2Iy(uon−uoff)

toffuon + tonuoff
⇒

kv =
2Iy(uon−uoff)

(toffuon + tonuoff)uonton
+

2h
uonton

⇒

kv =
2Iy(uon−uoff)

toffu2
onton + t2

onuoffuon
+

2h
uonton

⇒
[

ton =−
uofftoff

uon
(A.37)

]
⇒

kv =
2Iy(uon−uoff)

toffu2
onton− toffu2

offton
+

2h
uonton

⇒

kv =
2Iy(uon−uoff)

toffton(u2
on−u2

off)
+

2h
uonton

⇒

kv =
2Iy

toffton(uon +uoff)
+

2h
uonton

.

(A.51)

To conclude, the parameters for the ITD model can be found by measuring the
time intervals ton and toff as well as the integral Iy. The parameters are then given by

kv =
2Iy

tontoff(uon +uoff)
+

2h
uonton

, (A.52)

L =
uonton−2h/kv

uon−uoff
. (A.53)
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B
The Test Batch

The test batch used is the one described in [Åström and Hägglund, 2006]. The
processes in the batch are representative for many of the processes encountered in
the process industry. The batch contains both integrating, lag-dominant and delay-
dominant processes. In total the batch consists of 134 processes, divided into nine
different process types. All the processes included in the batch are listed below.

P1(s) =
e−s

1+ sT
,

T = 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.3, 1.5, 2,
4, 6, 8, 10, 20, 50, 100, 200, 500, 1000

P2(s) =
e−s

(1+ sT )2 ,

T = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.3, 1.5,
2, 4, 6, 8, 10, 20, 50, 100, 200, 500

P3(s) =
1

(s+1)(1+ sT )2 ,

T = 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 2, 5, 10

P4(s) =
1

(s+1)n ,

n = 3, 4, 5, 6, 7, 8

P5(s) =
1

(1+ s)(1+αs)(1+α2s)(1+α3s)
α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
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Appendix B. The Test Batch

P6(s) =
1

s(1+ sT1)
e−sL1 , T1 +L1 = 1

L1 = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0

P7(s) =
1

(1+ sT )(1+ sT1)
e−sL1 , T1 +L1 = 1

T = 1, 2, 5, 10 L1 = 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0

P8(s) =
1−αs
(s+1)3 ,

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1

P9(s) =
1

(s+1)((sT )2 +1.4sT +1)
,

T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.
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C
Default Parameters

This section lists the parameters used for the relay experiment if nothing else is
stated. Most of the parameters are discussed and explained in Chapter 5. Some of
the parameters are also discussed in the definitions of the asymmetric relay function
in Section 3.1. Some parameters may though need some further explanation and
comments. The Large process value simply decides whether it is desired to have
a larger process deviation up or down. The Ramp up time is the time it takes for
the relay amplitude to ramp up to the maximum amplitude during the startup. The
resolution of the A/D and D/A converters are set to a very high value as default to
be able to ignore their existence, they will never be so high in reality.

Explanation Notation Value
Asymmetry level γ 2
Bits in D/A converter 50
Bits in A/D converter 50
Convergence limit ε 0.01
Hysteresis h 2n0
Hysteresis noise-free h 0.1
Large process value Up
Maximal control signal deviation umaxdev 10
Maximal process deviation ymaxdev 12h
Minimal process deviation ymindev 2h
Noise level n0 0
Noise measurement time [s] 10
Ramp up time [s] 5
Sample time [s] ts 0.01
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