
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Power Efficiency for Software Algorithms running on Graphics Processors

Johnsson, Björn M; Ganestam, Per; Doggett, Michael; Akenine-Möller, Tomas

Published in:
EGGH-HPG'12 Proceedings of the Fourth ACM SIGGRAPH / Eurographics conference on High-Performance
Graphics

DOI:
10.2312/EGGH/HPG12/067-075

2012

Link to publication

Citation for published version (APA):
Johnsson, B. M., Ganestam, P., Doggett, M., & Akenine-Möller, T. (2012). Power Efficiency for Software
Algorithms running on Graphics Processors. In EGGH-HPG'12 Proceedings of the Fourth ACM SIGGRAPH /
Eurographics conference on High-Performance Graphics (pp. 67-75). Eurographics - European Association for
Computer Graphics. https://doi.org/10.2312/EGGH/HPG12/067-075

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 07. Oct. 2022

https://doi.org/10.2312/EGGH/HPG12/067-075
https://portal.research.lu.se/en/publications/c7e5bb73-2160-47a9-8c7b-2f61f5ed5a60
https://doi.org/10.2312/EGGH/HPG12/067-075


Power Efficiency for Software Algorithms running on
Graphics Processors

Björn Johnsson, Per Ganestam, Michael Doggett and Tomas Akenine-Möller

Lund University

Abstract
Power efficiency has become the most important consideration for many modern computing devices. In this paper,
we examine power efficiency of a range of graphics algorithms on different GPUs. To measure power consumption,
we have built a power measuring device that samples currents at a high frequency. Comparing power efficiency of
different graphics algorithms is done by measuring power and performance of three different primary rendering
algorithms and three different shadow algorithms. We measure these algorithms’ power signatures on a mobile
phone, on an integrated CPU and graphics processor, and on high-end discrete GPUs, and then compare power
efficiency across both algorithms and GPUs. Our results show that power efficiency is not always proportional to
rendering performance and that, for some algorithms, power efficiency varies across different platforms. We also
show that for some algorithms, energy efficiency is similar on all platforms.

1. Introduction

All kinds of computing devices, be it CPUs, GPUs, or inte-
grated CPUs with graphics processors, face great challenges
in terms of power efficiency. Transistor technology scaling
will no longer provide the performance improvements that
we are used to [KDK∗11]. One of the reasons for this is
that when the supply voltage, and consequently the threshold
voltage, of the transistor is reduced, the current leakage of
the transistor increases exponentially [BC11]. This, in turn,
means that the supply voltage cannot be reduced, and that
future architectures will be limited by power instead of area.

It is well known that the power consumption of an exter-
nal memory access, e.g., to DRAM, is substantially higher
than both floating-point (more than an order of magnitude)
and integer (more than three orders of magnitude) opera-
tions [Dal09], and for CPUs, logic tends to use more power
than caches [BC11]. In addition, moving data inside a chip
is also becoming increasingly expensive, and starts to be a
major part of power dissipation. Historically, we are used to
the growth of memory bandwidth being slower than com-
pute growth, but lately, the memory bandwidth growth has
slowed down more [KDK∗11]. Recently, Esmaeilzadeh et
al. [EBA∗11] have modeled multi-core speedup as a combi-
nation of single-core scaling, multi-core scaling, and device
scaling, and predict that with a 22 nm technology process,
21% of the chip has to be powered off. When the technol-

←− graphics card←− graphics card

←− PCIe extender card←− PCIe extender card

←−our custom card←−our custom card

Figure 1: We have built a power measurement station, which
measures power on the PCI express bus (which can deliver
up to 75 W) and on the graphics card’s two power connec-
tors, which in this case can deliver up to 75+150 W. This
sums to a max of 300 W.

ogy scales down to 8 nm, more than half the chip has to be
powered off. This under-utilization is called dark silicon. On
top of this, current leakage also increases exponentially with
the temperature of the chip [ZPS∗03]. All this indicates that
the main optimization axis for the foreseeable future for any
computing architecture is power.

It should be clear that predicting power consumption of a
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particular architecture is not an easy undertaking, and in fact,
it may not always be meaningful, since power consumption
also is a function of the program that runs on the archi-
tecture. However, optimizing for lower power consumption
is very important, and there are opportunities for improv-
ing the power efficiency of future architectures by develop-
ing new hardware mechanisms to reduce power. This has
been the focus of mobile graphics, which often has trans-
lated to algorithms for bandwidth savings [AMS03]. For
GPUs, simulators can be used to model power and leak-
age [SLS04], and different low-level hardware optimization
techniques can be developed and studied [SSL05]. Power
gating techniques can also be used [WYCC11]. It is also
possible to save energy by reducing the precision in the com-
putations in the vertex shader unit [PLS08, PLS11a] and in
the pixel shader cores [PLS11b]. If you are not in a posi-
tion to make power-efficient hardware changes, another ap-
proach to reduce power consumption remains, namely, to
develop power-efficient software. Koduri [Kod11] suggests
that software developers should optimize for power as well,
and in particular so for mobile devices. Some of the advice
includes minimizing the frame rate and continuing to opti-
mize the code of an application even if the frame rate goal
has been reached.

In this paper, we take a different approach to study power
efficiency of software running on graphics processors. We
have built a power measurement station, as shown in Fig-
ure 1, which measures power consumption directly on the
PCIe bus and on the power connectors of discrete graphics
cards. For integrated CPU and graphics processors, we mea-
sure directly at the battery connection (for mobile phones) or
directly on the power connectors of the motherboard. Using
our power measurement station, we have studied the power
efficiency of algorithms that generate exactly or approxi-
mately the same result, and we compare the power consump-
tion per frame with the time needed to render the frame. For
example, one of our case studies uses different shadow al-
gorithms. In our study, power consumption is measured on
two different discrete graphics cards, on a CPU with inte-
grated graphics processor, and on a mobile phone, and these
have widely different power efficiency characteristics. We
hope that our research will spark an increased interest in the
power efficiency of graphics software, and as such, that it
opens a new research area for the graphics community.

2. Methodology

Our goal in this research is to measure power consump-
tion on a number of different rendering algorithms running
on several different types of graphics architectures. This in-
cludes discrete graphics cards from different vendors, inte-
grated graphics on the CPU die, and inside a mobile phone.
Some graphics architectures have built-in counters to esti-
mate some kind of power draw, but not all architectures ex-

Figure 2: Our power measurement station, also seen in Fig-
ure 1, connected directly on the battery power connects on
an iPhone 4S.

pose those, and they tend to estimate different things any-
way.

Instead, we take another approach, which allows for a fairer
comparison (at least between different discrete graphics
cards, or between different mobile phones, etc). The gen-
eral idea is to measure power draw on all incoming power
sources. It suffices to measure the current of the power
sources, since the voltages are constant, and due to the fol-
lowing relationship between power, P, voltage, U , and cur-
rent, I:

P =UI. (1)

The units are watts (W or joules/second) for power, volts (V)
for voltage, and ampere (A) for current. Note that energy is
the integral of P over time. In addition, the dissipation power
due to switching in CMOS is P =CU2 f , where C is the ca-
pacitance, and f is the clock frequency. For discrete graphics
cards, there are several sources of power, namely, the PCI ex-
press bus, which can deliver up to 75 W, and between 0 and 2
power connectors, where connectors with 6 pins can deliver
up to 75 W, and 8-pin connectors can deliver up to 150 W.

To measure all currents on these power sources, we have
built a custom power measurement station, as shown in Fig-
ure 1. The currents from the PCI express bus is measured
using an Ultraview PCIeEXT-16HOT expander card, which
has test points for measuring the currents. On our custom
card, we have four ACS710 Hall effect current sensors,
which can measure currents up to 12 A. There are also two
shunt current sensors that can accurately measure smaller
currents of up to 1 A, which are useful for mobile phone
measurements. In Figure 2, we show the setup when mea-
suring power on a mobile phone.
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All these currents are going to an A/D converter, and these
are fed to an ARM Cortex-M3 processor that samples the
currents at 40 kHz. The resulting sampled signals are sent
via ethernet to a PC, which can show the currents in real
time directly in a window, or save them to a file for later
analysis (e.g., conversion to power and filtering).

The power measurement station as described above can be
used directly to measure the power consumption of discrete
graphics cards. For mobile phones and for CPUs with an in-
tegrated graphics processor, this approach cannot be used di-
rectly since the graphics processor is not an isolated unit.
For mobile phones, we decided to measure all (including,
for example, the display) power consumption by measur-
ing power draw at the battery connector inside the phone.
This is not perfect, but it is hard to measure more accurately
than that, and at least, no power consumption is missed with
this methodology. Similary for CPUs with integrated graph-
ics processors, we measure the power consumption on the
4-pin power connector, which supplies +12 V to the mother
board. For both these architectures, we subtract the power
consumption in some form of “idle” state in order to isolate
the power consumption of the graphics processor. We define
the idle power as measured power draw of our application
without submitting any OpenGL API calls at all†. These dif-
ferences in measuring methodology affects the comparabil-
ity of the results across platforms. On the integrated platform
and mobile phone, the idle memory power usage is removed,
but the power for graphics usage of memory is included. For
this reason, we compare the relative consumption of differ-
ent algorithms on different platforms, but in general, we at-
tempt to not draw too detailed conclusions from comparing
power consumption of discrete graphics cards and mobile
phones or CPUs with integrated graphics.

The questions that we were interested in answering when
starting this project include:

1. What are the power characteristics of different graphics
algorithms solving the same problem on different graph-
ics architectures?

2. Is energy directly proportional to frame time?

3. What does the power consumption look like during an
animation?

4. What does the power consumption look like inside a
frame (for different algorithms)?

5. Can power optimization of software algorithms become
a new subtopic in graphics?

In the following, we will attempt to answer these questions.

† The CPU power cost of the OpenGL calls is included in the CPU
with integrated graphics and mobile phone measurements.

3. Case Studies

We have chosen two case studies to measure power con-
sumption on. Both of these are commonly used in real-time
rendering today. The first is simply rendering the scene from
the eye, and the second is shadow rendering. Those are de-
scribed in the subsequent subsections. All our algorithms
have been written in OpenGL and some have been ported to
OpenGL ES, since we want to test them on mobile phones
as well.

3.1. Case 1: Primary Rendering

It is likely that graphics hardware’s most common use case
is to render a scene from the eye, i.e., to evaluate both pri-
mary visibility and shading. We have three different flavors
of this case study, where lighting with 32 spotlights (without
shadows) is included. The first is basic forward rendering
(FR), where the triangles simply are submitted as vertex ar-
rays, and lighting computed for non-culled fragments. Our
second technique starts with rendering the scene only to the
depth buffer, which is followed by a pass with the depth test
set to GL_LEQUAL and lighting computed for each fragment
with a loop over the light sources. This way of priming the
depth buffer avoids expensive pixel shading for fragments
that will not be visible in the final image. We call this method
Z-prepass rendering (ZR). Finally, we use deferred render-
ing (DR), which starts by creating various G-buffers [ST90],
e.g., one buffer for depth, one for the normal in world space,
one for specular exponent, and one for the diffuse texture.
Then, for each light source, we render a volume covering
the region of influence of the spotlight, and accumulate the
lighting to each affected pixel.

For all primary rendering algorithms, we use the same
camera path through the Sponza atrium with five Stanford
dragons added. The Sponza atrium contains 224,337 trian-
gles and the dragons contain 100,000 triangles each. Some
frames from this animation can be seen in the middle left
part of Figure 4.

3.2. Case 2: Shadow Algorithms

As our second case study, we have chosen three different
shadow algorithms, namely, shadow volumes (SV) [Cro77],
shadow mapping (SM) [Wil78], and variance shadow map-
ping (VSM) [DL06]. While the algorithms for case 1 (Sec-
tion 3.1) all generate exactly the same result, our chosen
shadow algorithms only generate approximately the same
result. For example, the shadow volume algorithm generates
pixel-exact shadows without anti-aliasing, while the quality
of both shadow mapping techniques depends on the shadow
map resolution. In addition, variance shadow mapping pro-
vides filtered shadow lookups, and so has smoother edges.
We chose those three shadow algorithms because they are
rather different, and our hypothesis was that they may have
different power consumption characteristics.
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The shadow volume algorithm extracts a shadow volume
from each shadow caster by determining which of its edges
are silhouette edges as seen from the light source. These
edges are then extruded away from the light source, creat-
ing the sides of the shadow volume as quads. This shadow
volume is then capped at each end. These shadow primitives
are rasterized from the eye, and front facing quads increment
the stencil buffer, while back facing quads decrement the
stencil buffer. We have used Carmack’s reverse (also called
z-fail) [AMHH08], where the increment/decrement is done
for occluded shadow quads. Since a shadow quad often can
cover many pixels, the shadow volume algorithm is known
to burn fill rate.

The shadow map and variance shadow map algorithms need
to render a shadow map — containing depths to the clos-
est surfaces as seen from the light source — of the shadow
casting geomety in a first pass. The variance shadow map al-
gorithm then creates two mipmap hierarchies containing fil-
tered depths, and filtered squared depths. Using Chebyshev’s
inequality and those two mipmap hierarchies, the shadow
test provides a floating-point value, instead of a binary out-
come. Normal shadow maps do not use a mipmap hierar-
chy, and so gain some speed there. However, when the fil-
ter is large, variance shadow mapping will go up towards
the tip of the mipmap hierarchy. For mipmap-based algo-
rithms [Wil83], this is known to increase cache hit ratio as
compared to not using a mipmap. As a result, the mem-
ory bandwidth usage to main memory is reduced. So even
though variance shadow maps create a mipmap hierarchy, it
is not clear that it will be more expensive in terms of power
consumption.

For the shadow algorithms, we use a camera path over the
scene with tesselated geometry without textures. The scene
contains 396,344 polygons. Some frames from this anima-
tion can be seen in the middle right part of Figure 4.

3.3. OpenGL ES

For the mobile phone, we use OpenGL ES, and there we
have chosen to omit deferred rendering (DR), shadow vol-
umes (SV), and variance shadow mapping (VSM). Deferred
rendering was omitted since our target mobile platform does
not support multiple render targets. A multi-pass solution for
creating the G-buffers would be possible, but would not re-
sult in a fair comparison. Likewise, variance shadow maps
were omitted, since it was not possible to implement without
adding an extra pass. Shadow volumes were omitted because
the mobile phone could not support the amount of geometry
of our test scene without drastically splitting up geometry
into more draw calls, which would incur a significant over-
head.
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Figure 3: Power signature of eight frames of forward ren-
dering on the AMD Radeon 7970, where the fourth frame is
followed by a delay which also affects our time stamp mea-
surements.

4. Results

Using our two case studies and our power measurement sta-
tion, we have measured power on a series of GPUs. Starting
with high-end discrete GPUs, we have taken measurements
on an AMD Radeon HD7970 and on an NVIDIA GeForce
GTX 580. For integrated GPUs, we measure power on an In-
tel Sandy Bridge Core i7 2700K with Intel HD 3000 graph-
ics. The graphics processor part of Sandy Bridge is running
at between 850 MHz and 1350 MHz because we have turbo
mode enabled. In addition, we have set idle turbo mode to
“high performance.” For mobile GPUs, we measure power
on an iPhone 4S, which contains an Apple A5 chip with a
dual core PowerVR SGX543MP2 GPU running at 250 MHz.
In all main diagrams, we show the raw data, which often is a
bit noisy, in a lighter color, while we show a low-pass filtered
version with a fatter curve using a stronger color.

In Figure 4, we show power consumption diagrams for both
the GeForce 580 and the Radeon 7970 for our primary ren-
dering application and for our shadow algorithms. These an-
imations were rendered at 2560×1440 pixels.

It should be noted that the GeForce was manufactured in 40
nm, while the Radeon was manufacted in 28 nm, which gives
a power advantage for the Radeon.‡ This advantage is one
of the possible reasons that Radeon power varies between
170–245 W, while GeForce power varies between 240–310
W. For the shadow algorithm runs, the number of lights is
varied from 2 to 8 lights in increments of 2, and the resolu-
tion of the shadow maps was set to 25602 pixels. As can be
seen, the Radeon 7970 has spikes where the frame time in-
creases and, as a result, the average frame power decreases

‡ In all fairness, it should be noted that NVIDIA recently released
the Kepler architecture [NVI12], which also is manufacted in 28
nm, and has been optimized for power (e.g., tripling the number
of shader cores while lowering the shader core clock frequency).
However, at the time of writing no such cards were available to us.
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GeForce GTX 580
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AMD Radeon HD 7970
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Figure 4: Frame times and power consumption for primary rendering (left) and the different shadow algorithms (right) on an
NVIDIA GTX580 (top) and on an AMD Radeon HD 7970 (bottom). Abbreviations: FR (forward rendering), ZR (Z-prepass),
DR (deferred), SV (shadow volumes), SM (shadow mapping), and VSM (variance shadow mapping).

at the same time, as a longer period of idle power is taken
into account. Looking at the frames in which this occurs, we
see that the power usage does not really change compared to
neighboring frames, but the time stamps for start and end of
a frame are further apart as shown in Figure 3. At this point,
we do not know the root cause of this, but since the frame

time increases, and those measurements are independent of
our power measurement station, we are certain that it is not a
shortcoming of our custom card. For primary rendering, FR
is more expensive in terms of power on both platforms. On
the GeForce 580, DR generally uses the least power, and has
the best performance. On the Radeon 7970, ZR has higher
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frame times than FR and DR at times, while FR and DR have
about the same. For power, FR clearly uses the most power,
while ZR and DR are more similar, but ZR often uses a little
less power than DR. So even though FR and DR are gener-
ally faster, ZR uses less power. From these measurements, it
is clear that one cannot just measure frame times in order to
find the most energy-efficient algorithm (since FR and DR
have about the same frame times, but widely different power
usage, for example).

For the shadow rendering results, the order of power usage is
SV (highest), VSM, and then SM (lowest) for both discrete
GPUs. Increasing the number of lights has little impact on
power, except when going from 2 lights to 4 lights. In par-
ticular, on the Radeon 7970 when going from 2 to 4 lights,
there is a large increase in SM power, but little change in SM
frame times, and in fact, frame time goes down. The Radeon
7970 has two power states, where the first runs at 300 MHz
and the second at 925 MHz. It would appear that SM with
2 lights runs at the 300 MHz state and then switches to the
925 MHz state for 4 lights. We cannot determine this exactly
because we do not have accurate frequency measurements.
Shadow performance on the GeForce 580 is clearly sepa-
rated with SM being fastest, followed by VSM and then SV.
Power consumption is clearly lowest for SM. On the Radeon
7970, SM is again the fastest, but SV and VSM vary over
the animation with VSM varying a lot and SV staying fairly
steady.

The power measurements for the Sandy Bridge, which is
manufactured in 32 nm, are shown in Figure 5, where the
animation was rendered at 1600× 1200 to reach real-time
frame rates. The shadow maps for the Sandy Bridge mea-
surements were scaled with a factor taking into account the
difference in screen resolution, i.e., scaled by k = 1600×
1200/(2560× 1440) compared to the discrete GPUs. This
means that we used 17922 as resolution for the shadow
maps, and this is to make the energy/pixel measurements in
Table 1 fairer. As can be seen, the power consumption for
graphics varies between 8–22 W, and it contains a regular
oscillation, which we presume is the effect of some voltage
and frequency scaling. This oscillation originates in the idle
power measurement, where the pattern is inversed. In gen-
eral, we observed an idle power draw of about 40 W. The
power results show that FR draws the most power followed
by DR and ZR. The order of DR and ZR is the opposite
compared to the GeForce 580, and yet the performance re-
sults show that DR is the fastest, then ZR and FR, which is
the same order as the GeForce 580. This shows that perfor-
mance is not always a good indicator of power and that it
varies across platforms. We also note that both ZR and DR
uses about 50% of the power of FR, and since ZR and DR
also are faster, this turns into a significant difference in en-
ergy efficiency as we will see later (Table 1). For shadows,
the power draw is highest for VSM, followed by SV. SM
uses less power for only 2 lights, but then generally matches
SV. This is quite different compared to the discrete cards in

that SV and VSM have changed places, and we note that SV
on Sandy Bridge uses consistently less power than VSM.
Shadow performance on Sandy Bridge has similar curves
for each algorithm as the GeForce 580, with SM being the
fastest, followed by VSM, and then SV.

In Figure 6, we show the power measurements for the iPhone
4S, where the animation was rendered at 960× 640. The
shadow map resolutions were scaled in a similar manner as
done for Sandy Bridge, resulting in a resolution of 10242

for this architecture. In general, the power consumption
for graphics varies between 0.7–1.1 W. The power results
show that ZR uses more power than FR to achieve lower
frame times for ZR compared to FR. Again, we observe that
frame time does not correlate to power usage, and it is only
through power measurement analysis that the lower power
algorithm can be determined. It is interesting to note that
the iPhone uses a sort-middle architecture with deferred ren-
dering [Ima11], which essentially performs a pre-Z pass in
hardware before shading, and yet our ZR, which adds an-
other pre-Z pass, still improves performance. SM runs at a
much lower frame time than primary rendering due to the
shadow scene having less geometry, but SM still uses more
power for each frame.

It is also interesting to compute how much energy is used
over an entire animation divided by the number of frames in
the animation and the screen resolution. This is computed as
shown below:

E =

∫ ttot

0
P(t)dt

F ·R , (2)

where ttot is the total time it took to render the entire ani-
mation, F is the number of frames in the animation, and R
is the screen resolution in pixels. By dividing with screen
resolution, we weigh in that different resolutions are used
for different platforms. Two advantages of this measure are
that GPUs that are faster to render the animation will inte-
grate over a shorter time domain (ttot), which should be taken
into account, and that it is a screen resolution independent
measure. We believe this makes the comparison fairer. In
Table 1, we have gathered statistics for the average energy
per pixel and its standard deviation. We note that in some
situations, performance/Watt is reported. This could be in-
terpreted as frames per second per Watt, which is frames per
joule, and due to the resolution differences, we would report
pixels/joule. While all the information is available in the ta-
ble, we have chosen joules per pixel for the same reasons that
frames per second often is avoided, and pure time per frame
is preferred. One of these reasons is that one cannot split the
running time of an algorithm into different parts and mea-
sure them using frames per second, while on the other hand,
it makes sense to measure the time of a certain part of an
algorithm. For power efficiency, we foresee a future where
it may be possible to measure the power consumption for
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Intel HD Graphics 3000 (Sandy Bridge)
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Figure 5: Frame times and power consumption for primary rendering (left) and the different shadow algorithms (right) on an
Intel Sandy Bridge integrated graphics HD3000.

a certain part of an algorithm, and therefore, joules/pixel is
chosen in our presentation.

Table 1 shows that energy/pixel follows similar trends across
all GPUs. For primary rendering, it is noticeable that the
differences between algorithms are much greater for the
GeForce 580 and the Sandy Bridge than the Radeon 7970.
For the shadow algorithms, we observe that SM, which uses
a lighter rendering load, has similar energy/pixel over all
four GPUs. However, it is also interesting to note that there
is about an order of magnitude in difference in frame times
(discrete GPUs are fastest), while at the same time there is
more than an order of magnitude in difference in the num-
ber of transistors used for graphics (discrete GPUs use the
most transistors). Also VSM, compared to SM, requires a
small energy/pixel increase on the GeForce 580, but requires
a more significant increase on the Radeon 7970 and on the
Sandy Bridge. While SV, compared to VSM, has a large en-
ergy/pixel increase on the GeForce 580 and on the Sandy
Bridge, but requires a small increase on the Radeon 7970.

Our power measuring station samples at a high frequency, so
we can look at the characteristics of individual frame power
usage. Figure 7 shows frames for the GeForce 580 and Fig-
ure 8 shows frames for the Radeon 7970. For the primary
rendering algorithms, FR shows full power usage through-
out the frame, while ZR has some drops in power usage. DR
shows a drop to idle power in the middle of the frame before
finishing with full power usage. The shadow rendering algo-

rithm frames have 6 lights and the processing for the 6 lights
can be clearly seen in each graph. It is interesting to note
that in SM, both discrete cards drop to idle power between
some lights, but for VSM only Radeon 7970 drops fully to
idle, and does that between each light. Also, the amount of
idle-time is larger for Radeon 7970.

5. Conclusions and Future Work

Power is a major concern for all graphics processors today,
and will be even more important in the future when technol-
ogy continues to scale down. In this work, we have built a
power measurement station, and measured power and frame
times for a set of different GPUs and graphics algorithms.
As we have shown, the fastest algorithm is not always the
least power hungry algorithm, and we have also shown that
this varies greatly between different architectures. More im-
portantly, we believe that power is so incredibly important
that it will become an integral part of most graphics research
papers in the near future. We speculate that it will become as
common to report joules per pixel as it is to report millisec-
onds per frame today.

At this point, we have not provided any new and more
energy-efficient algorithms. So, for future work, we want to
focus on studying more algorithms, and to explore optimiza-
tions for existing algorithms that reduce power consumption,
or even invent new algorithms with better power behaviour.
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Figure 6: Frame times and power consumption for primary rendering (left) and the different shadow algorithms (right) on an
iPhone 4S. Note that the frame time axis is different in the two graphs.

Average energy/pixel (nJ) [std. dev]
Primary rendering Shadow algorithms

FR ZR DR SV SM VSM
GeForce 580 1443 [180] 722.1 [62.1] 510.6 [87.1] 1325 [114] 446.6 [80.3] 532.0 [67.5]
Radeon 7970 607.4 [73.0] 512.0 [103] 489.2 [79.9] 953.9 [44.9] 469.0 [88.3] 804.0 [250]
Sandy Bridge 871.5 [134] 314.2 [46.8] 280.0 [53.4] 1317 [212] 311.3 [76.2] 511.3 [87.9]

iPhone 4S 2234 [423] 2015 [290] −−− −−− 460.5 [135] −−−

Table 1: Average energy per pixel measurements for all our architectures and algorithms. To measure standard deviation in a
meaningful way, we have kept the number of light sources constant at four for the shadow algorithms. Note that Sandy Bridge
and iPhone energy measurements have excluded idle memory power usage, but included the driver overhead.

It would also be useful to put together a graphics benchmark
for measuring power consumption and frame times. We hope
that our work has opened up a new small subfield for graph-
ics performance optimization.
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