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Summary

Comparing the usage of DES, CAD and RS in the industry shows that, although
DES has been available for mainstream use for a long time, the usage differs
significantly. Possible reasons for this situation are:

• lack of simulation knowledge,

• misuse of simulation,

• cost versus conceived benefits of using DES, and

• using DES is considered complex.

Lack of knowledge is an issue for educational institutions and can not be
addressed within a thesis. Instead the focus has been on the other issues.

DES is seldom used in the manufacturing system development process,
instead it is usually used to cure problems in existent systems, fire fighting.
This has the effect that the simulation study alone is considered being the
cost driver for the analysis of the manufacturing system. It is argued that this
is not a entirely correct view since the analysis has to be performed anyway,
and the cost directly related to the simulation study is mainly in the model
realization. The fire fighting approach also has the effect that the simulation
model is seldom reused, which in turn reduce efficiency.

There is a large base in the DES literature concerning technical issues. How-
ever, little is found concerning the management of the DES process and the
infrastructure required to provide repeatable high quality simulation studies.
A model, well established in the software domain, is therefore supplied to
be used for management and engineering process improvements and for im-
provements of the organizational issues to support simulation activities. By
institutionalizing the process via polices, standards, and organizational struc-
tures, an organization gains in process maturity. Institutionalization entails
building an infrastructure and a culture that supports the methods, practices,
and procedures so that the organization can continue to generate high quality
simulation studies. By institutionalizing and utilizing well defined processes
the conceived complexity related to DES is considered to be reduced over time.

It is concluded that it is preferred if the simulation study life cycle coin-
cides with the corresponding manufacturing system’s life cycle to increase the
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usability of the simulation model and to increase efficiency in the simulation
study process.

Cost is highly correlated to time. The presented methodology tries to re-
duce time consumption and lead-time in the simulation study by:

• reducing redundant work,

• reducing rework, and

• moving labor intensive activities forward in time.

A framework is provided to reduce the time to collect and analyze input
data. The framework aims at delivering high granularity input data without
dependencies. The input data collection framework is designed to provide
data for operation and analysis of a manufacturing.

To reduce the model realization time two approaches are presented. The
first approach supplies a set of modules that enables parameterized models
of automated subassembly systems. The second approach builds and runs
the simulation model based on a copy of an MRP database, i.e. there is no
manual intervention required to build the simulation model. The approach is
designed to forecast the performance of an entire enterprise. Since the model
is generated from a database, the approach is highly scalable. Furthermore,
the maintenance of the simulation model is reduced considerably.



Preface

The thesis is organized in parts with the contents described below.

Prologue

Chapter 1 presents the context in which this research has been performed.
The research problem and objectives that constitutes the main threads for the
thesis is presented. In Chapter 2 the chosen research method is discussed.

Frame of Reference

Chapter 3 briefly presents discrete-event simulation. Different facets of in-
tegration is presented in Chapter 4. The software configuration management
methodology have been a major part of the research and is discussed and
briefly compared to product data management in Chapter 5.

Case Studies

Four of the case studies performed are presented in Chapters 6-9.

Contributions

The presentations of the case studies are somewhat scattered and are tied
together in Part IV. The base methodology is first presented and then a set
of methods and tools that can be added in different contexts are presented in
the following chapters.

Epilogue

Finally the thesis is discussed and concluded in Chapters 15 and 16. Chapter 17
presents possible future research.
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Appendix

A few appendixes are supplied to supplement some of the chapters. Ap-
pendix A presents the proposed discrete-event simulation process with IDEFØ
notation. Appendix B presents definitions of availability measures related to
Chapter 12. Finally, Appendix C gives an example of the incremental gener-
ation of documents in the simulation study as presented in Chapters 10 and
11.

Lists and Indexes

In the end of the thesis there are lists of figures, tables, acronyms and a gloss-
ary.
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Chapter 1

Context

Dynamics and flexibility are of increasing importance. One of the most cru-
cial factors in achieving dynamics and flexibility is time management. A rapid
response to market demands is the key to high competitiveness. The primary
driving force has been an increasing globalization of markets. Speed in product
development and development of the corresponding manufacturing system
are key factors to adopt to the new dynamic market requirements (Järneteg
1995, Stalk & Hout 1990).

The lead-time for the integrated development of products and manufac-
turing systems is a vital issue. The life cycle of a product has become shorter
and so has the life cycle of the corresponding manufacturing systems which
makes short development time and commissioning important.

1.1 Computer-Aided Manufacturing System Engineering

In the past, manufacturing companies have used many types of unrelated
simulation systems. Mechanical engineers use mechanical models such as
FEM (Finite Element Analysis) while industrial engineers use DES (Discrete-
Event Simulation) to e.g. simulate throughput and detect bottlenecks or RS
(Robot Simulation) to verify robot cells. Furthermore, the software tools used
for manufacturing system development has not been far as developed as their
counterparts in the production operations and product design areas, shown
in Figure 1.1 (Andersson 1997, Bolmsjö, Lorentzon & Randell 1999, Freedman
1999, Klingstam & Gullander 1997, McLean 1993).

The simulation industry has now matured to the point that almost all
manufacturing processes and flow of materials through the enterprise can
be modeled and simulated. The difficulty is now collecting and managing the
product, process and resource knowledge base across the enterprise and to
maintain configuration management of this common, shared data repository
(Freedman 1999).
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Figure 1.1: Reformation of the product realization process. Adopted from An-
dersson (1997).

McLean (1993) states that the process used to engineer, or re-engineer,
manufacturing systems is often ad hoc. Computerized tools especially are
used on a limited basis. McLean defines CAMSE (Computer-Aided Manufac-
turing System Engineering) as:

the use of computerized tools in the application of scientific and
engineering methods to the problem of the design and implement-
ation of manufacturing systems.

The tools needed for CAMSE are complex since they should make available
information used in a number of domains.

1.2 Integrated Concurrent Engineering

Time requirements for the manufacturing system development process can
basically be reduced in three ways:

Integration of tools Using new and more efficient tools can reduce time and
lead-time requirements. However, to gain significant time reductions
the tools have to be integrated. Currently most computer systems and
tools live lives on their own. The same information or logic is placed in
different systems, often in different formats or with different interfaces
(McLean 1993, Parks, Koonce, Rabelo, Judd & Sauter 1994).

Integration of processes Integration of the product development and the man-
ufacturing system development processes reduce time spent on rework
and quality issues, i.e. reducing the amount of redundant work (Starbek,
Kušar & Jenko 1999).
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Parallel development To shorten time to market it is necessary to cut sequen-
tial activities to a minimum and introduce methods, models and tools
which supports concurrent engineering. Allowing more people work in
parallel will reduce the lead-time but not necessarily the total time con-
sumption. Parallel work can be performed at the document level, i.e. the
same document can be edited by several persons at the same time, or at
the activity level, i.e. concurrent engineering.

In the work presented, the focus has been on the two latter strategies.
Evaluation of a manufacturing system at an early stage in the product real-

ization process is important for three reasons. Firstly, the planned manufac-
turing system can be quantitatively evaluated in terms of throughput, cost
etc. Secondly, different manufacturing system designs can be evaluated and
compared. Thirdly, different product design solutions can be evaluated with
regard to the manufacturing system and the possible production processes.

In a survey performed by Institute for Defense Analyses, CE (Concurrent
Engineering) was found to have tangible benefits. Where applied properly, CE
resulted in higher utility to the user, higher quality and lower product cost
with less development time. For example (Winner et al. 1988):

• Development and production lead-times:

– Product development time shortened as much as 60%

– Production time shortened 10%

– Total process time shortened as much as 46%

• Measurable quality improvements:

– Manufacturing defects reduced as much as 87%

– Yield improvements as much as 400%

– Field failure rates lowered as much as 85%

• Engineering process improvements:

– Engineering changes/drawings reduces as much as 93%

– Early production engineering changes reduced 50%

– Inventory items stocked reduced as much as 60%

– Engineering prototype builds reduced as much as 66%

– Scrap and rework reduced as much as 87%

CE focuses on three major concepts (Hoffman 1998):

1. The integrated product-development process must be both understood
and modeled well enough to be repeatable, ensuring systematic success;

2. All relevant perspectives, from customer requirements through internal
constraints, must be considered in defining and designing the product;
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Figure 1.2: Implementation of concurrent engineering with 3-T loops (Prasad
1996).

3. All perspectives must be integrated to yield a global optimum, i.e., a
cost-effective, robust design that is tolerant of manufacturing and use
variations.

Integration of the business processes by using advanced simulation soft-
ware tools is expected to speed up the total development process and at the
same time produce information of higher quality due to the fact that it enables
more people to take part earlier in the development work. As much as 60–80
percent of the total manufacturing cost might be affected by the decisions
made in the early phases of product design (Kusiak & Lee 1996).

Prasad (1996) views the product realization process as seven groups of
activities, shown in Figure 1.2. Starbek et al. (1999) defines the level of con-
currency in a product realization process and it is suggested that the so called
3-T loop be selected which means that there are interactions among three
activities as seen in Figure 1.2. Bolmsjö & Gustafsson (1998) and Gustafsson
(1998) have presented a similar view, shown in Figure 1.3.

The integration presented so far is with the information sources needed
to design the product and the corresponding processes and manufacturing
system. A DES model also requires system logic and how the system inter-
acts with surrounding systems as well. System logic and interactions with
surrounding systems includes planning and scheduling systems, SFCS (Shop
Floor Control System)s, human interactions with the system etc., creating an
even more complex picture of the information required. In Chapter 4 the
concept of integration will be presented in more detail.
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1.3 Research Problem

It is believed that if the lead-time of the simulation study can be reduced it
will facilitate the integration of the DES process in the product realization
process. Reducing the lead-time makes it possible to actively use DES as a
design tool. The reduction of lead-time also moves the detailed manufacturing
system analysis forward in time, thus gives more time for pre-analyzes and
reduces the amount of rework otherwise needed.

Research problem 1 Time consumption and lead-time reduction
How can the time consumption and lead-time of a DES study be reduced in

the context of the manufacturing system (re)design process and what would
such a DES study process look like?

1.4 Research Objective

The presented objectives below have the overall objective to reduce the total
development lead-time with a DES study life cycle view. Another overall ob-
jective with the presented research objectives is to facilitate the integration
of simulation activities in the product realization process. However, I do not
intend to make that a research objective of it’s own since that is quite another
issue.

In Chapters 10 and 11 a methodology is presented that has the following
objectives.

Research objective 1 Discrete-event simulation process
Develop a DES process that reduces the time consumption and lead-time

of the simulation study.

In Chapter 12 a framework for collecting input data for several usages is
presented.

Research objective 2 Input data quality
Develop a framework for collecting, analyzing, and using input data with

a life cycle approach. Input data should be usable for DES, online monitoring
of manufacturing system performance, retrospective manufacturing system
performance analysis, and continuous improvements of the manufacturing
system.

During the case studies performed at VCBC (Volvo Car Body Components) it
became apparent that the development time of the simulation models needed
to be very short. Therefore an added effort was made to decrease the devel-
opment time even more for the type of manufacturing systems used at VCBC.
The method is presented in Chapter 13.
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Research objective 3 Decreased simulation model development time for sub-
assembly lines

Develop a method for fast DES model development without sacrificing sim-
ulation model accuracy. The scope is subassembly lines where synchroniza-
tion of manufacturing cell activities is performed.

Randell, Holst & Bolmsjö (1999) presents an approach for building large
simulation models. The approach has limits and in Chapter 14 a method for
integrated factory simulations is presented.

Research objective 4 Integrated factory simulation
Develop a method based on the usage of existing databases to build and

execute DES models.
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Chapter 2

Materials and Methods

This chapter is devoted to the scientific method chosen and the tools used.
It was decided early that the research would involve case studies to be able

to observe the inner details of the methods used when performing DES studies.
How is then research performed when performing case studies? The classical
scientific methods for natural sciences do not seem to apply with their focus
on theory and experiments. To what extent can a case study be considered
an experiment? Not at all I would say, since in an experiment the parameters
known to affect the outcome of the experiment is kept under control. This
is not possible when performing case studies. The researcher is very much
dependent of the environment, and thus the parameters, in which the case
study is performed. That is, only to a very limited extent can the variables
that might affect the outcome be kept under control.

Natural sciences to a large extent try to explain phenomena with theories
and use experiments to verify those theories or discover phenomena during
experiments and tries to develop theories for those phenomena. I will not
dwell on the philosophical debate whether science is theory driven or driven
by experiments, which is much better covered by e.g. Chalmers (1999) and
Hacking (1983). Instead the focus is on the fact that experiments in the sense
physicians or chemists use can not be performed for the kind of research
presented here for the reasons presented above. Furthermore, such experi-
ments focus on what can be referred to as natural laws. I doubt that there is
such a thing as a natural law for performing DES studies. There are so many
parameters affecting a study that it is impossible to control or even identify all
of them. However, as will be presented in Chapter 10, it is possible reduce the
variance of the DES study result by defining and enforcing polices, standards,
and organizational structures.
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2.1 Scientific Method

In general the methods of scientific work will help to produce a more reliable
knowledge than the knowledge gained by just living and learning. These meth-
ods should help to access control of how experiences and values influence
the knowledge gained, correct information and enough information about the
phenomena under study, high quality information, and a structure in the in-
formation. Furthermore, the methods should help put together and express
the information in an understandable pattern (Patel & Tebelius 1987).

Research can go along two alternative roads; deduction or induction (Patel
& Tebelius 1987). Inductive arguments proceed from a finite number of spe-
cific facts to a general conclusion (Chalmers 1999). The research performed
has been explorative based on individual cases and can thus be classified as
inductive. When inductive research is performed, the method is not that much
at focus, instead the scientific quality is determined by the patterns found in
the information collected (Patel & Tebelius 1987).

According to Chalmers there is a set of conditions that has to be satisfied
if inductive inference from observable facts should be transformed into laws.
Firstly, the number of observations forming the basis of a generalization must
be large. Secondly, the observation must be repeated under a wide variety of
conditions. Thirdly, no accepted observation statement should conflict with
the derived law. According to Yin (1994) these conditions can be relaxed for
case study research.

2.2 Research Type

Patel & Tebelius defines applied research as a search for new knowledge with
a specific application in mind, which is a suitable description of the research
performed. The specific application in this case then being development of
DES models.

The way the research problem is described decides if the research should
be quantitative or qualitative. In this case qualitative research have been per-
formed in that there has been a search for knowledge that should investigate,
interpret and understand phenomena.

In qualitative research the problem should be studied historically and how
different explanations affect the way the problem is to be handled. The prob-
lem must be understood in a wider perspective since the researcher’s compre-
hension is the main tool to gather information (Patel & Tebelius 1987).

It would have been desirable to quantify some of the results from the case
studies to be able to make comparisons between different methods. However,
such comparisons are not possible to make due to the intrinsic repeatability
problem of the research performed. Comparison of the contributions with
traditional methodologies therefore had to be estimated by the researcher,
sometimes together with others, which bring us to the question of objectivity
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and subjectivity.

2.2.1 Objectivity and Subjectivity

How the objectivity and subjectivity issue is dealt with is related to the sci-
entific viewpoint as well as the research problem.

The qualitative research is based on the postulation that we can gain access
to each other’s inner worlds through the language. This means that the within
perspective is a presumption for the research process (Patel & Tebelius 1987).
This is a difficult part and great care must be taken when interpreting other
peoples’ words. The quality of the research is therefore very much the re-
sponsibility of the researcher.

2.2.2 Participant-Observation

Participant-observation is a special mode of observation where the researcher
is not merely a passive observer. Instead, the researcher may assume a variety
of roles within a case study situation and may actually participate in the events
being studied (Yin 1994).

To be able to see all the inner details of the problems this work has been
performed with participation. The main advantage with participant-observa-
tion is the possibility to study events in their context at the same time as they
happen. When participating, observations and conclusions can continuously
be fed back and minor events can be manipulated. The mere observer just
observe and conclude later (Patel & Tebelius 1987, Yin 1994).

The most distinctive opportunity is related to the ability to gain access
to events or groups that are otherwise inaccessible to scientific investigation
(Yin 1994). It would be difficult to gain access to the case studies without
participation, i.e. the input of work and knowledge by the researchers. The
tasks performed in the case studies were not common knowledge and were
therefore often partly conducted by the team of researchers in the projects.

Another distinctive opportunity of participant research is the ability to
perceive reality from the viewpoint of someone inside the case study rather
than external to it.

The major problem related to participant observation is the potential bi-
ases produced (Becker 1958). Another disadvantage is that observations, and
especially participant observation, require too much attention and is expens-
ive (Patel & Tebelius 1987, Yin 1994).

2.2.3 Interviews

Interviews are an intrinsic part of a simulation study, thus questions were
posed both for the purpose of completing the simulation study as well as for
the research.
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The interviews performed during the case studies were unstructured and
without standardization. Since different people in the projects had different
knowledge and background, it was not possible to standardize the questions.
To maximize the amount of information collected the interviews were unstruc-
tured.

2.3 Case Studies

Case studies are the preferred strategy when how or why questions are being
posed, when the investigator has little control over events, and when the fo-
cus is on a contemporary phenomenon within some real-life context (Patel &
Tebelius 1987, Yin 1994).

Case studies are generalizable to theoretical propositions and not to pop-
ulations or universes. The case study does not represent a sample and the
goal is to expand and generalize theories, i.e. analytic generalization, and not
to enumerate frequencies, i.e. statistical generalization (Yin 1994).

A strength of the case study is its ecological validity, i.e. the possibility
of generalizing from one context to another. A weakness is of course the
population validity, i.e. the possibility to generalize to a larger group (Patel &
Tebelius 1987).

Case studies have a holistic perspective and tries to cover all thinkable
aspects. That means that case studies cover more variables on a smaller pop-
ulation than survey studies do (Patel & Tebelius 1987).

Case studies can deal with a full variety of evidence: documents, arti-
facts, interviews, and observations. Moreover, in some situations, such as
participant-observation, informal manipulation can occur (Yin 1994).

2.3.1 Single or Multiple Case Study Design

Yin (1994) gives a number of reasons for using single case studies. The most
appropriate in this context is in which the case represents an extreme or
unique case. However, there were common topics in the performed cases
and the cases performed can therefore be said to be both single and multiple
depending on topic. The choice between single and multiple case designs re-
mains within the same methodological framework and no broad distinction is
made between.

2.3.2 Group to Research on

It has been natural to participate in, or observe real projects in the manu-
facturing industry and in particular in the industries working actively with
questions related to the research performed.

Close cooperation has been established with industries, which has secured
an industrial relevance throughout the research work. The case studies have
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been performed to develop and apply methods in the industry. The case stud-
ies have thus enabled dissemination of results to the industry, fed back ex-
periences of industrial relevance, and provided information that enabled re-
finements of methods for practical use.

Several case studies are presented in this thesis. Two case studies were
performed at BT Products in Mjölby. ABB Body-in-White and Volvo Car Body
Components in Olofström were the partners when performing a case studies at
Volvo Car Body Components. Another case has been performed at Profilgrup-
pen in Åseda. Bachelor thesis cases performed at Volvo Articulated Haulers
in Braås (Thuresson & Husberg 1997, Kubiak & Tsambasopoulos 1998) and
at Urshults Werkstads AB in Urshult (Abrahamsson & Törnblad 1998) have
been supervised. A case performed by Prosolvia has been observed at Volvo
Articulated Haulers and lately, yet another project has been performed at
Volvo Articulated Haulers together with Tobias Johansson and Martina Gust-
avsson at Teknikcentrum Kronoberg. Two Master’s thesis cases have been
supervised. The first performed at Enercon Windtower Production in Malmö
(Solding 2001). The second at Volvo Car Body Components in Olofström
(Pålsson & Quist 2002) was supervised together with Lars Holst at Division
of Robotics, Department of Mechanical Engineering, Lund University.

Quite a few hours on my account was spent in the above mentioned pro-
jects. The cases at BT Products consumed at least 600 hours. The Profilgrup-
pen case consumed some 600 hours. The ABB Body-in-White and Volvo Car
Body Components case consumed 700 hours in the first stage. The second
stage involved the development of new modeling methods and consumed
some 100 hours. The supervision of cases has consumed 400 hours. De-
veloping an enterprise simulator (Randell & Bolmsjö 2001) took about 200
hours. The last project at Volvo Articulated Haulers consumed another 100
hours. In total, approximately 2700 hours have been spent performing real
world simulation projects. Although not all the cases are mentioned expli-
citly, experiences from all the cases has been an important foundation for the
research.

2.4 Criteria for Judging the Quality of Research Designs

Concepts that have been offered for tests include trustworthiness, credibility,
confirmability, and data dependability (Yin 1994, Case study evaluations 1990).
The four tests are:

Construct validity , i.e. establishing correct operational measures for the con-
cepts being studied;

Internal validity , i.e. for explanatory or casual studies establishing a causal
relationship, whereby certain conditions are shown to lead to other con-
ditions, as distinguished from spurious relationships;
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External validity , i.e. establishing the domain to which a study’s findings can
be generalized

Reliability , i.e. demonstrating that the operations of a study, such as the data
collection procedures, can be repeated with the same results.

2.4.1 Construct Validity

The construct validity test is especially problematic in case study research.
Case studies are often criticized for the fact that a case study investigator
fails to develop a sufficiently operational set of measures and that subjective
judgments are used to collect the data. To meet the test of construct validity,
an investigator must be sure to select the specific types of changes that are to
be studied in relation to the original objectives of he study, and demonstrate
that the selected measures of these changes do indeed reflect the specific types
of change that have been selected.

Three tactics are available to increase construct validity. The first is the
use of multiple sources of evidence. A second tactic is to establish a chain of
evidence. The third tactic is to have the draft case study report reviewed by
key informants (Yin 1994).

2.4.2 Internal Validity

Although internal validity is a concern only for causal or explanatory case
studies, in which an investigator is trying to determine whether event x led
to event y , I would say the problem exists in this case as well. If the invest-
igator incorrectly concludes that there is a causal relationship between x and
y without knowing that some third factor, z, may actually have caused y , the
research design has failed to deal with some threat to internal validity. As
pointed out above, this is a problem in the research performed.

2.4.3 External Validity

The third test deals with the problem of knowing whether a study’s findings
are generalizable beyond the immediate case study. Critics typically state that
single cases offer a poor basis for generalizing. These critics tend to see cases
with statistics in mind, i.e. analytic generalization. However generalization is
not automatic. A theory must be tested through replications of the findings
in a second or even a third case. Once such replication has been made, the
results might be accepted for a much larger number (Yin 1994).

2.4.4 Reliability

The objective of the reliability test is to be sure that, if a later investigator fol-
lowed exactly the same procedures as described by an earlier investigator and



2.5 Discrete-Event Simulation Software 17

conducted the same case study all over again, the later investigator should
arrive at the same findings and conclusions. The goal of reliability is to min-
imize the errors and biases in a study. Note that it is the same case study
that should be performed again, not another case study replicating the first
(Yin 1994).

2.5 Discrete-Event Simulation Software

In the performed case studies QUEST (Queuing Event Simulation Tool) has
been used. QUEST is a DES system from DELMIA (Digital Enterprise Lean Man-
ufacturing Interactive Applications) with integrated 3D capabilities. Custom
logic was built using SCL (Simulation Control Language), the simulation pro-
gramming language in QUEST. The BCL (Batch Control Language) in QUEST
was used to run experiments, dynamically alter models and build models.

2.6 Configuration Management Software

CVS (Concurrent Versions System) has been used for CM (Configuration Man-
agement) and then not only for the simulation studies, but for almost all doc-
uments generated to perform the presented research. CVS is a SCM (Software
Configuration Management) system allowing concurrent development on the
document level in heterogeneous and distributed environments. To utilize re-
pository access via Internet a server was setup on an IRIX workstation at Lund
University. SCM and PDM (Product Data Management) are described in more
detail in Chapter 5.
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Chapter 3

Discrete-Event Simulation

In this chapter simulation, and especially DES, will be presented. The present-
ation has been kept as short as possible, since the domain is well covered in
the literature.

3.1 Simulation and Models

The Oxford English Dictionary describes simulation as:

The technique of imitating the behavior of some situation or sys-
tem (economic, mechanical, etc.) by means of an analogous model,
situation, or apparatus, either to gain information more conveni-
ently or to train personnel.

Or put in another way, simulation is the technique of building a model of a
real or proposed system so that the behavior of the system under specific
conditions may be studied (Ball 1996).

Simulation is a quite general term and there is plenty of room for mis-
conceptions. Spreadsheet packages of today gives the possibility to generate
what-if scenarios quite easily (Carrie 1988). Ordinary programming languages
and tools like Matlab also makes simulation possible for almost anyone to
perform. Then there are all the dedicated simulation tools for e.g. FEM, RS,
ergonomics, etc.

The definition of a model given in The Oxford English Dictionary is:

A simplified or idealized description of a system, situation, or pro-
cess, often in mathematical terms, devised to facilitate calculations
and predictions.

Mathematical models are the vast majority of models. Mathematical mod-
els represent a system in terms of logical and quantitative relationships that
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are then manipulated and changed to see how the model reacts, and thus how
the system would react provided the model is valid (Law & Kelton 1991).

Analytical solutions are exact solutions to the mathematical model. How-
ever, the majority of real world applications prove to be too complex requir-
ing vast computing resources. In those cases, the model must be studied by
means of a simulation, i.e. numerically exercising the model for the inputs in
question to see how they affect the output measures.

Models can be classified along three dimensions as (Banks, Carson & Nelson
1996, Law & Kelton 1991):

• static or dynamic

• deterministic or stochastic

• discrete or continuous

A static simulation model is a representation of a system at a particular
point of time. A dynamic simulation model represents a system over time,
i.e. the system state, entity attributes and the number of active entities, the
contents of sets, and the activities and delays currently in progress are all
functions of time and are constantly changing over time.

If a model contain no probabilistic components it is deterministic, i.e. the
result is always the same given the same input. In a stochastic simulation
model the behavior is determined by stochastic variables. In the real world
most things are in fact stochastic. Typical stochastic variables are cycle times,
time between failure and repair times.

A discrete system is one in which the state variables change at a discrete
set of times. A continuous system is one in which the state variables change
continuously over time.

The scope of this text will be dynamic, stochastic, and discrete simula-
tion models. When not otherwise stated the term simulation will designate
discrete-event system simulation of dynamic and stochastic systems.

Banks et al. (1996) has the following definition of a system.

A system is defined as a group of objects that are joined together
in some regular interaction or interdependence toward the accom-
plishment of some purpose.

A system is often affected by the system environment. It is therefore necessary
to decide on the boundary between the system and its environment (Banks et
al. 1996). The boundary is highly dependent of the purpose of the simulation
study.

Decomposition of a system into its entities simplifies the analysis. Even
though the studied system is large and complex, the entities are seldom com-
plex. A logical model of a complex system may be built by incorporating a
number of simple relationships. With these simple relationships it is possible
to predict the behavior of the entire system. The more complex a system
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becomes the more simulation is preferred over theoretical equations (Carrie
1988).

Strictly we gain information only about certain aspects when simulating.
The aspects that has not been modeled can not be studied (Ball 1996, Carrie
1988). This is a fundamental point about simulators, each is designed to serve
some purposes. The definition, again from The Oxford English Dictionary, of
a simulator is:

An apparatus for reproducing the behavior of some situation or
system; esp. one that is fitted with the controls of an aircraft, motor
vehicle, etc., and gives the illusion to an operator of behaving like
the real thing.

3.2 Simulation Usage

Based on the number of published papers from the USA in recent years WSC
(Winter Simulation Conference)s (Benjamin, Erraguntla & Mayer 1998, Farring-
ton, Black Nembhard, Sturrock & Evans 1999, Joines & Barton 2000, Peters
& Smith 2001), one can draw the conclusion that the USA still leads the field
both in DES related research and industrial applications. Regarding the use of
simulation in Sweden and other parts of the world a few statistics have been
found (Holst, Randell & Bolmsjö 2000b, Holst & Bolmsjö 2001).

Umeda & Jones (1997) have studied DES usage in Japan over time. The
conclusion is that the use of simulation in Japanese industry is still modest
although no figures are given. The use of simulation is predicted to increase.

In a 1997 survey performed by Jackson (1998) of 64 Swedish industrial
companies of various size, 54% were using simulation and 31% were using
DES. The survey also showed that 70% of the users only used DES in isolated
projects.

In a survey performed 1999 by Eriksson (1999) on the use of continuous
simulation and DES in Swedish industry. Only 5% of the companies used sim-
ulation frequently, see Table 3.1. Furthermore, as few as 8% considered their
competence regarding simulation to be adequate, which indicate that there is
generally a low level of theoretical simulation knowledge.

An extensive survey on simulation usage in Germany is presented by Heit-
mann, Hirschberg, Rauh & Wunderlich (1997) and Hirschberg & Heitmann
(1997). Simulation users in this case were mainly those using FEM, graphic
3D simulation (kinematic) and DES. Simulation usage in Germany, shown in
Table 3.2, differs significantly from the usage in Sweden. However, the term
simulation has in this case a wider definition, shown in Table 3.3. Still the
usage of e.g. DES seems to differ significantly from the usage in Sweden.

3.3 When is Simulation Appropriate

The main motives for simulation is well put by Rooks (1997).
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Table 3.1: Results from the survey performed by Eriksson. The survey was
sent to the CEO and Production Manager of 400 companies with more than 20
employees, i.e. 800 surveys of which 155 were answered (Eriksson 1999).
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been frequently used 60% 16% 7% 1% 4%
been seriously considered 42% 16% 17% 5% 3%
a solid knowledge base 46% 21% 10% 5% 3%
given us good experiences 51% 15% 10% 5% 2%

Table 3.2: Simulation usage in Germany according to 24 interviews in 15 com-
panies and a questionnaire with 395 respondents. One third of the question-
naires were from large companies and two thirds from small to medium sized
companies (Hirschberg and Heitmann 1997, Heitmann et al. 1997).

User Percentage
Current user 65%
Plan to use simulation 11%
Previous user 3%
Not a user 21%

Table 3.3: The different simulation types used by the current users (Hirschberg
and Heitmann 1997, Heitmann et al. 1997).

Type Percentage
Other 20%
Structure dynamic simulation 16%
Graphic 3D simulation (kinematic) 48%
FEM simulation 50%
DES 58%
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Simulation is a powerful tool in optimizing the design of the man-
ufacturing system, which can be analysed, optimized and verified
before the purchase or installation of any capital equipment. It is
a means to avoiding costly errors, speeding up commissioning and
ensuring the plant operates right first time.

Modeling and simulating systems, such as manufacturing systems, can be
achieved using a number of tools and techniques one of which is DES. Simple
spreadsheets are useful for quick analyzes of e.g. capacity. However, such
assessments do not take into account time repercussions. Another modeling
approach is that of AQNM (Analytical Queuing Network Model). These mod-
els can provide quick estimates of steady state results regarding total system
output and average resource utilization and require a relatively small num-
ber of data inputs. However, unlike DES that provides transient stated res-
ults, AQNM models analyze the system under steady state conditions. AQNM
models also require limiting assumptions about the system characteristics like
rework, reentrant flow, and non-exponential random failures, i.e. dynamic and
detailed analysis of complex systems requires the use of DES (Grewal, Bruska,
Wulf & Robinson 1998).

Three typical simulation study types can be identified:

• An explorative study of an existent system to find possible improve-
ments. The simulation model is used to rapidly make a number of
changes to see if the system can be improved by, e.g. changing schedul-
ing rules, operating rules, or the system itself.

• Study an existent system with some suggested changes and compare
the results to see if the changes are profitable. This is similar to the
previous but here the model is used to validate proposed changes, not
to find them.

• Design and validate a system to be. In this case the simulation is used in
the design process to validate the performance or function of the system,
and at the same time detect possible enhancements of the proposed
system.

3.4 Problems and Opportunities

There are several advantages with DES, but the technique has also a number
of problems associated with it (Banks et al. 1996, Law & Kelton 1991).

Quantitative evaluation is fundamental to the assessment of a manufac-
turing system design. Understanding a system’s behavior and the parameters
that affect performance is vital in both design and operation. Many of the
measures used are influenced by the time dependent behavior of the man-
ufacturing system. Performance variation at any point in the manufacturing
process will inevitably influence other parts in the manufacturing system, both
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upstream and downstream. Such dynamic factors can be critical to the eval-
uation of many design or operations decisions (Ball & Love 1994, De Smet,
Gelders & Pintelon 1997).

During a DES study many of the inner mechanisms of the system are re-
vealed. In many cases the studies performed before modeling result in a de-
tailed understanding of the system. Visualization of the DES then enables
even more understanding of system behavior. Furthermore, a DES can be
shown and explained to others in the organization. Many users of DES think
of this system understanding as one of the most important results from a DES
(Savén 1995, Hirschberg & Heitmann 1997)

One of the key powers of DES is the ability to model the behavior of a
system as time progresses (Ball 1996). At the same time that is a disadvant-
age in that the results can be hard to interpret. There is no built in analysis
method to interpret the simulation. The ‘spreadsheet syndrome’ applies to
simulations as well. Simulations generate a large volume of numbers and of-
ten have a realistic animation, which tends to generate too much confidence in
the results. Simulation is not an optimizing technology since it only produces
estimates of a model’s true characteristics. With sophisticated output data
analysis, optimization can be performed (Eriksson 1997).

Simulation has flexibility in that it can handle several different types of
systems. The price paid for flexibility is that simulation results depend on
who performs the simulation and analysis. Model building is a daunting task
that requires much training and experience. The level of detail required can
be hard to define. DES has been applied to manufacturing for about 40 years
(Carrie 1988, Savén 1995). However, for most of that time is has been within
the province of a few specialists, remote from, the manufacturing engineers.
This is very much the case today as well, although the gap is getting smaller
(see e.g. Johansson, Johnsson & Eriksson 2002). The difficulty to find engineers
who can build models of complex systems easily can act as a barrier to the
use of simulation (Ulgen & Thomasma 1990).

The lack of theoretical knowledge about DES in the industry is probably
the one of the causes of the low usage. According to Hirschberg & Heitmann
(1997) the most important barriers are the high investments in software, hard-
ware and training. Another problem, according to Hirschberg & Heitmann, is
that simulation studies require more time and effort and that simulation is
considered being too complex. The complexity problem is related to the com-
petent and professional performance of the simulation study being one of the
main success factors.

Collins & Watson (1993) and Ball (1995a) state that the limited usage is
caused by the fact that DES is hard to learn and use. However, this is only one
side of the problem. Firstly, the developer must understand the system, which
for complex systems is quite a task. Secondly, the model should be designed
with a number of reasonable approximations. Finally, the DES should be veri-
fied, validated and the results should be interpreted. All these tasks require
great skill. Of course an appropriate tool would simplify the modeling task,
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but not the other tasks. Similarly, the skills required by the manufacturing
engineers are no panacea.

It should be noted that I do agree in that simulation tools should be made
easier to use. Especially, some of the GUI (Graphical User Interface)s are not
appropriate in that they only present a graphical view of the objects hiding
the system logic and the relations in between objects from the user. That is,
they are not really modeling tools, mere tools for building models, and there
is a significant difference.

According to Ball & Love (1994), splitting the roles of model builder and
model user presents a number of potential drawbacks. Firstly, incorrect as-
sumptions could be made by the builder. Secondly, the lead-time between
a change request from the user and implementation of the change might be
long. Finally, the opportunity for the user to experiment with alternatives is
limited.

There are integrated solutions of different modeling approaches and DES
packages (see e.g. Bartolotta, McLean, Lee & Jones 1998, Bernard 2000, Bo-
beanu & Filip 1995, Delen, Benjamin & Erraguntla 1998, Delen, Benjamin &
Erraguntla 1999, Gmilkowsky, Eckardt & Palleduhn 1997, Gmilkowsky, Eck-
ardt & Palleduhn 1998, Lee 1999a, Lee 1999b, Moorthy 1999, Pritsker & O’Reilly
1998, Srinivasan & Jayaraman 1997, Whitman, Huff & Presley 1997). However,
none of the presented modeling methods are general and exchangeable in
between different simulation tools although that is the intention of the work
performed by e.g. Bartolotta et al. It would be desirable with modeling lan-
guages similar to EXPRESS in the STEP (Standard for the Exchange of Product
Model Data) suite.

Simulation promise to reduce development time of a new system or the
time to study modifications of an existing system. However, a simulation
project can consume considerable amounts of resources.

There are also a number of advantages that has no disadvantages associ-
ated. Experimenting with the system itself is often too expensive, lengthy or
impossible. In a simulation it is possible to maintain better control over ex-
perimental conditions than is possible when experimenting with the system
itself. Most complex systems with stochastic elements can not be described
by mathematical models nor can they be evaluated analytically. DES is then
the only feasible way of analyzing the system at some level of detail. Further-
more, simulation allows studies of a system over a long time period since time
is compressed.

3.5 The Simulation Study Realization Process

Typical phases in a simulation study are shown in Figure 3.1.
One of the most important and difficult tasks facing a model developer is

the verification and validation of the simulation model. Verification is con-
cerned with building the model right. It is utilized in the comparison of the
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Figure 3.1: Typical steps in a simulation study (Banks et al. 1996).
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Figure 3.2: Concepts of the waterfall methodology (Oura 2000).

conceptual model to the computer representation that implements that con-
ception. Validation is concerned with building the right model. It is utilized
to determine that a model is an accurate representation of the real system or
system to be (Balci 1998, Banks et al. 1996, Chew & Sullivan 2000, Conwell,
Enright & Stutzman 2000, Sargent 2000, Sargent 2001).

The steps presented above can be compared to those of the so-called water-
fall methodology that is the conventional approach when developing software
(Oura 2000), see Figure 3.2. The steps in the waterfall methodology are similar
although some steps are added for a simulation study.

The waterfall methodology works well in the case of top-down planning.
This is also one of the main disadvantages of the methodology since most
projects today are of concurrent nature requiring input from many people over
time. The continuous changes of the specifications requires a methodology
more suited for bottom-up planning (Oura 2000).

3.6 Simulation Development Time

Trybula (1994) gives a summary of the time used in the different phases of
a DES study, shown in Table 3.4. Similar results are presented by Umeda &
Jones (1997), shown in Table 3.5

Trybula (1994) states that the time to create a simulation model has re-
mained constant inspite of the improvement in tools. As the tools have im-
proved, the models have been more complex. The model development time
has remained approximately constant due to increased data collection, more
complexity and other modeling issues.
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Table 3.4: Time consumption in a simulation project (Trybula 1994).

Phase Percentage
Problem definition ≈ 10%
Problem analysis ≈ 10%
Data gathering and validation 10-40%
Model development 10-40%
Model verification and validation ≈ 10%
Model experiments 10-20%
Analysis of results ≈ 10%
Conclusions and recommendations ≈ 5%

Table 3.5: Time consumption in a simulation project (Umeda and Jones 1997).

Activity Percentage Range
Data collection 20 15-25
Model design 40 30-60
Animation 10 5-15
Model modification 10 5-15
Simulation experiments 10 5-20
Summary of results 10 5-10

3.7 Simulation Input Data

Simulation input data is a major problem which usually takes considerable
time to collect. The simulation input data problem actually consists of a set
of problems:

• availability,

• syntax and semantics,

• information model,

• dependencies, autocorrelation, and inhomogeneities,

• information content, and

• input data analysis.

Availability of input data is by several authors stated as the main problem.
Many companies seem to plan and control production with simple rules of
thumb, which makes correct data dispensable. Others have the data, but well
hidden in their information systems. The same data can also be in several
information systems, but with inconsistent values. Yet another problem is
the dependencies hidden in the data.

Two problems occur as information is transferred between applications.
The first problem is that of syntax. The second problem is that of semantics;
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for example, ‘socket’ has different meanings in mechanical, electrical, and
software engineering domain models (Parks et al. 1994).

It is not how input data is formatted in tables, numeric formats etc. that
is the major problem. Such reformatting of data is usually quite simple to
perform once the syntax problem is solved although some effort is required
in automating the conversions. Instead, the major problem in the information
content that tends to be focused on static means instead of the distributions
desired for DES. Furthermore, dynamic losses, i.e. time in the blocked, starved,
and repair states, are usually aggregated in e.g. cycle times. In conclusion, the
simulation modeler has to take great care when using available input data (for
a more detailed discussion on the topic see e.g. Banks 1998, Banks, Carson,
Nelson & Nicol 2000, Law & Kelton 1991).

Input modeling modules can be used to display, summarize and analyze
raw data and rank fitted distributions based upon the data. Not all simula-
tion tools include input data analysis modules. In those cases the simula-
tion engineer have to rely on other commercial products, such as ExpertFit
(ExpertFit www) or Stat::Fit (Benneyan 1998, Stat::Fit www). Each can be used
to fit observed data to a wide variety of distributions and export the distribu-
tions with the correct syntax to the simulation tool of choice (Swain 1999).

Trybula (1994) means, based on experience, that in reality the phases in
a simulation study are not discrete and separated in time. Instead they are
overlapping. One of the major drawbacks is the initial activities. The problem
definition, problem analysis and data gathering become mixed together. After
a short time, the pressure of delivering results or showing that something is
being done cause the modeler to start gathering data. Since the modeling and
data gathering phase overlap the scope of the effort constantly changes. This
causes the model building to change direction and extend the time to com-
plete. The result of this is that there is little time for verification, validation,
experimentation and analysis, which result in a project that is late, incomplete
and over budget.

To avoid the above mentioned problem Trybula propose a philosophy that
is based on developing reasonable estimates of the possible data values and
to continue on with the normal model development adding real data as it
becomes available. If data is not available, the analysis can aid in analyz-
ing possible output characteristics based on ranges of control variables. The
structured approach provides a basis of minimizing delays in the model build
process due to lack of data.

Simulation tools of today relies on embedded models, i.e. data and logic
are embedded in the model. Drake & Smith (1996) and Peters, Smith, Curry,
LaJimodiere & Drake (1996) concludes that simulations are in general gener-
ated off-line with limited direct connections to the actual data. Instead input
data is gathered and analyzed outside the simulation environment. This is
stated to be the primary reason for models not being reused after the initial
design usage of models.
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Liyanage & Perera (1998) presents seven factors that can lead to longer data
collection time. The presented factors are based on a literature review and a
questionnaire survey conducted at the 1997 WSC. The list below highlights
many of the problems mentioned above. The seven pitfalls were ranked in the
survey and they are listed in the order they were considered to be influential
(1 — most influential, 7 — least influential).

1. Poor data availability.

2. High level of model details. It is stated that higher level of detail does not
necessarily lead to a higher accuracy but lead to longer data collection
time.

3. Difficulty in identifying available data sources. When data is available it
is often located in different sources and in some cases the same data is
in several sources. In the case where the same data is in several sources
the data might differ due to poor integration.

4. Complexity of the system under investigation. When the system is too
complex, the simulation modeler tends to identify and collect data in
and ad hoc manner.

5. Lack of clear objectives makes it impossible to decide an appropriate
level of detail of the simulation model.

6. Limited facilities in simulation software to organize and manipulate in-
put data.

7. Wrong problem definition which cause the modeler to identify, collect
and analyze invalid data.

3.8 Discrete-Event Simulation Tools

Overviews of software packages for simulation have been performed by e.g.
ARGESIM (www), Klingstam & Gullander (1997), Nwoke & Nelson (1993), Kos-
turiak & Gregor (1995), Swain (1997), Swain (1999), and Johansson et al. (2002).
There are also a few packages, mainly for research (Bolier & Eliën www, Fish-
wick & Cubert www, gpdes3d www, OMNeT++ www, ParaSol www). There is
evidently a large number of tools to chose from and an evaluation of what
tool to use is difficult. McHaney & White (1998) and Hlupic, Irani & Paul (1999)
present theoretical frameworks for tool selection.

There are a number of ways of classifying simulation tools. For a more
detailed discussion on this topic, please refer to (Ball & Love 1994, Ball 1996,
Banks, Aviles, McLaughlin & Yuan 1991, Boughton 1995, Bridge 1990, Law &
Kelton 1991, Love & Bridge 1988, Pidd 1992a, Pidd 1992b, Swain 1999).

Simulation has great power and flexibility and each year the tools become
more powerful. The improved functionality also increases the complexity of
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the tools and thus does not always make them easier to use (Ball 1995b, Shew-
chuk & Chang 1991, Swain 1999). Shewchuk & Chang therefore state that
achieving both ease of use and a wide range of applications is difficult in prac-
tice.

3.9 Discussion and Conclusions

As pointed out, input data poses one of the greatest problems when using DES
and therefore Chapters 12 and 14 are devoted to solve some of the input data
problems. There is promising research focusing on integrating simulation
with the needed information sources that will facilitate the simulation task
in general in the future (see e.g. Bernard 2000, Centeno & Standridge 1993,
Dufrene, Gharbi, Kieffer, Rebouche & Villeneuve 1994, Johansson 2001, Krause
& Jansen 1999, Moorthy 1999, Xu & AbouRizk 1999).

Poor input data is a severe threat to the reliability of simulation results.
However, it is not a reason for abandoning a simulation study and use other
methods. The benefits of simulation are still there, although the results have
to be interpreted with great care. The alternatives of simulation would still
have to rely on the same poor input data and would thus not be superior to
using simulation since they do not take into account the dynamic behavior in
a system.

Related to this is when to use simulation. A basic rule is that when simple
static calculations can not be made in a spreadsheet, simulation is probably
a better solution. In reality this then applies to most systems that have a
dynamic behavior, does not have a simple straight material flow, and produce
more than one product, i.e. most manufacturing systems.

In summary, the technique has several desirable benefits that are well es-
tablished. However, as discussed mainly in Section 3.4, there are a number
of problems associated with the technique that keeps potential users off. In
Part IV it will be shown how some of the problems can be relaxed.
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Chapter 4

Discrete-Event Simulation and
Integration

This chapter presents different definitions of integration and some of the re-
search performed related to the work presented in this thesis. The term integ-
ration has many facets and the chapter is provided to put the contributions
into a context. First the different aspects of integration are investigated and
then a few basic classes of integration are defined. Each class of integration
is then presented with a literature review.

Development of products and manufacturing systems are being done more
often by geographically and temporarily distributed teams in heterogeneous
software environments. There is a high level of outsourcing of both manu-
facturing and development. Designers are no longer merely exchanging geo-
metric data, but more general knowledge (Szykman, Bochenek, Racz, Sriram &
Senfaute 2000a, Szykman, Racz, Bochenek & Sriram 2000b, Szykman, Fenves,
Keirouz & Shooter 2001).

Time is the ultimate cost driver and a rapid response to market demands
is the key to high competitiveness (Järneteg 1995, Stalk & Hout 1990). Com-
panies’ competitiveness is today becoming more and more relying on effective
communication and coordination between organizations, processes, activities,
tools, and people. Integration promise to solve many of these issues.

Interoperability costs in the automotive supply chain alone has been es-
timated at one billion dollars. Assuming the interoperability costs are propor-
tional, the US aerospace, shipbuilding, and construction machinery industries
interoperability costs are estimated at 400 million dollars each (Brunnermeier
& Martin 1999).

A study on the impact of using computerized tools for design and simu-
lation of manufacturing systems shows savings of 50-85% in time and errors
(Johansson 2001). Another study showed that at Ford the time of development
is estimated to one third by the use of an integrated computer environment
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(Östman 1998).
Simulation has mostly been used as a stand-alone tool with little or no inter-

action with other softwares (Bolmsjö et al. 1999, Klingstam 1999, Klingstam
& Gullander 1997, McLean & Leong 1997). In recent years WSC papers with
the word integration in the title have been quite common (Andradóttir, Healy,
Withers & Nelson 1997, Benjamin et al. 1998, Farrington et al. 1999, Joines &
Barton 2000). When browsing the papers it becomes apparent that integrated
simulation has several meanings. This overview focuses on the integration of
softwares for product development and the development of the correspond-
ing manufacturing systems. Although most tools used in the development
processes are discussed the focus will be on DES.

4.1 Integration Types

Vernadat (1996) defines integration as:

Integration means putting together heterogeneous components to
form a synergistic whole.

and states that

Essential conditions for integration seem to rely on the free but
controlled flow of information and knowledge, and the coordina-
tion of actions.

Vernadat lists different views on integration. Firstly, there are two levels
of integration.

• Loose integration is when systems merely can exchange information with
one another with no guarantee that they will interpret this information
the same way.

• Full integration is if and only if (i) the specificities of any one of the
systems are known only to the system itself, (ii) the systems contribute
to a common task, and (iii) the systems share the same definition of each
concept they exchange.

Secondly, a distinction is made between horizontal and vertical integration.

• Horizontal integration concerns physical and logical integration of busi-
ness processes from product demand to product shipment.

• Vertical integration concerns integration between the various manage-
ment level of the enterprise, i.e. decision-making integration.

Thirdly a distinction is made between intra-enterprise and inter-enterprise
integration.
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• Intra-enterprise integration is the integration of business processes in-
ternal to a given enterprise.

• Inter-enterprise integration is the integration of a given enterprise with
business processes of other enterprises.

Vernadat continues and lists different complementary forms of integration
that exists within an enterprise where each one builds on the previous one.

• Physical system integration concerns interconnection and data exchange
by means of computer networks and communication protocols.

• Application integration concerns interoperability of applications on het-
erogeneous platforms as well as access to common shared data by the
various applications.

• Business integration concerns integration at the enterprise level, i.e. busi-
ness process coordination.

Eversheim, Bochtler, Grassler & Kolscheid (1997) classifies integration in
three main categories.

• Information-oriented integration involves integration of tools for com-
puterized support such as CAD (Computer Aided Design), CAPP (Com-
puter Aided Process Planning), CAM (Computer Aided Manufacturing),
CIM (Computer Integrated Manufacturing), etc.

• Organizational-oriented integration concerns implementation of team-
oriented concepts such as SE (Simultaneous Engineering), CE, etc.

• Procedure-oriented integration is the use of methods and techniques for
structuring the work in the development process such as QFD (Quality
Function Deployment), DFMA (Design For Manufacturing and Assembly),
AD (Axiomatic Design), etc.

Parks et al. (1994) means that system models can be categorized along three
axes of integration: domain views, levels of abstraction and life cycle phases,
shown in Figure 4.1. Domain views is the integration between different engin-
eering discipline views of the system. Levels of abstraction is the integration
between different levels of detail. Life cycle phases is the integration between
phases of the design life cycle.

According to Parks et al., three types of integration exist among the models
distributed.

• Static translation exists when similar tools need to exchange information,
e.g. CAD tools that exchange their models.

• Dynamic integration is characterized by the ability to exchange state
information between several tools each modeling some behavioral as-
pect of the complex system, e.g. distributed simulation (see e.g. Fujimoto
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Figure 4.1: Different modeling views of a system (Parks et al. 1994).

1999, Norman, Tinsley, Barksdale, Wiersholm, Campbell & MacNair 1999,
Prabhu & Duffie 1995, Vinoski 1997).

• Model transformation allows a representation of common entities in one
model to be mapped or transformed into another model’s representation
of that same entity. Unlike static translation, these tools may be in dif-
ferent domains, levels of abstraction or life cycle phases, e.g. a process
model is translated into a DES model (Bernard 2000).

As can be seen, there are several terms with the same or similar meanings,
and in some cases they are overlapping. Here I will use the terms in the fol-
lowing section headings to describe different types of integration within the
scope of this thesis.

4.2 Information Integration

Information integration is when information is shared/exchanged in between
different applications. Information integration can be within the same do-
main or between several domains. The key point is that there is no informa-
tion loss and that the communication thus can be bi-directional in contrast to
transformation integration discussed in Section 4.3.

A common vision is that of monolithic software systems solving many of
the integration problems. In this vision the product development process
will be supported by a single integrated application suite. Since a monolithic
system is intended to be as complete a solution as possible, interoperability
is of less importance. Monolithic systems tend to be expensive and thus too
expensive for small and medium sized enterprises, usually being a substantial
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part of the supply chain. Furthermore, the number of applications is limited
thus resulting in suboptimal solutions (Szykman et al. 2001).

To support geographically and temporarily distributed teams in heterogen-
eous software environments a design repository concept has been developed
at NIST (National Institute of Standards and Technology). A design repository
is an intelligent knowledge-based design modeling system used to facilitate
the representation, capture, sharing, and reuse of corporate design knowledge
(Szykman et al. 2000a, Szykman et al. 2000b, Szykman et al. 2001).

4.2.1 STEP

STEP was originally designed as a successor of exchange standards such as
IGES (Initial Graphics Exchange Specification), SET, and VDA-FS although the
scope is much wider today. Tests have shown that STEP performs better than
IGES in most cases (Brunnermeier & Martin 1999, Strub 1998, PDES 1998). The
STEP standard does not only cover traditional file exchange, but have a much
broader scope. The three major concepts are product data exchange, product
data sharing, and product data archiving (Johansson 2001, Kemmerer 1999).

When using product data exchange, STEP defines the form of the data that
is transferred between two applications. Each application holds its own rep-
resentation of the data, i.e. a redundant copy of the data is created and the
information is thus represented in multiple places and thereby put a demand
for revision control of the files used. Information exchange also demands a
control of what is original data and who is responsible for it and the copies.
The data conforming to STEP is transitory and defined only for the purpose of
exchange. The transfer is initiated by the originator, i.e. there is an informa-
tion push. The content is determined by a discrete event in time, i.e. the data
is only a snapshot valid for at certain point in time.

In product data sharing, STEP defines the information interface structure
when multiple applications access and operate on the same data, potentially
simultaneously. The applications do not hold the data in their own preferred
form. The product data of prime interest in this case is the integrated product
data and not the portions that are used by the particular product data applic-
ations. The access of data, that appears to come from a single source, is done
in real-time initiated by the receiver and will be accessed upon demand. Data
access levels are embedded in the protocol. The share environment puts a
demand for controlling the access of the data with check-in and check-out
procedures.

In product data archiving, STEP is used to define the interface to the archive
and possibly the structure of the data itself. Archiving requires that the data
conforming to STEP for exchange purposes is kept for use at some other time.
This subsequent use may be through either product data exchange or product
data sharing.



40 Discrete-Event Simulation and Integration

4.2.2 Using STEP for Manufacturing System Data

Johansson (2001) addresses the use of STEP for the manufacturing system in-
formation in an integrated model with product and process information. The
manufacturing system can also be seen as a product and AP214 (Application
Protocol) can be used to capture relevant design data. Thus the structure of
AP214 can be used to describe both the manufacturing system and product
data and also the coupling between product and manufacturing system data
in the form of a process. Data that is not in the scope of AP214, e.g. NC-
code, can be attached through an external reference mechanism (Johansson &
Rosén 1998, Johansson & Rosén 1999).

4.2.3 Exchanging and Sharing Discrete-Event Simulation Models

The NIST SIMA (Systems Integration of Manufacturing Applications) project fo-
cused on providing the models, integrated framework, operating environment,
common databases and interface standards for a wide variety of emerging
tools and techniques for designing manufacturing processes, equipment and
enterprises. The primary output of the SIMA Program is a collection of specific-
ations called IMES (Initial Manufacturing Exchange Specifications) (Bartolotta
et al. 1998, McLean & Leong 1997).

Bartolotta et al. (1998) presents a document that specifies an interface spe-
cification for the exchange, archiving and sharing of DES models of manu-
facturing systems. An overview is shown in Figure 4.2. The objective is to
provide a neutral mechanism capable of describing input data to a DES sys-
tem for manufacturing systems, independent from any particular commercial
simulation system. The nature of this description makes it suitable not only
for neutral file exchange between dissimilar DES systems, but also as a basis
for implementing and sharing databases and archiving.

4.2.4 Tool Kit Technology

A computer-aided METK (Manufacturing Engineering ToolKit) prototype has
been developed at NIST as part of the CAME (Computer-Aided Manufacturing
Engineering) project. The purpose of the CAME project is to provide an integ-
rated framework, operating environment, common databases and interface
standards for manufacturing engineering software applications. The toolkit
consists of COTS (Commercial Off-The-Shelf) manufacturing software applic-
ations on heterogeneous platforms housed together and the METK integrates
those applications to support data sharing between the applications, see Fig-
ure 4.3 (Iuliano 1995, Iuliano & Jones 1996, Iuliano 1997, Iuliano, Jones &
Feng 1997). The packages implement the following functions: cell control, ma-
chine control, cell simulation, machine simulation, routing, operations plan-
ning, scheduling, NC verification and shop-floor data collection.

The METK project is centered around the concept of an engineering data
package that is thought of as a package containing all the engineering data
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elements required for the production of a part. The engineering data elements
consist of tool lists, fixture lists, NC programs, operation sheets, route sheets
and geometry models.

A key point in the METK project is data validation. The integrated toolkit
of software applications cross-check each other for consistency and accuracy.
The QUEST simulation environment is, for instance, intended to validate the
routing data in the engineering data package.

The METK was used to demonstrate that tools were commercially avail-
able to perform computer-aided manufacturing system engineering, develop a
better understanding for individual engineering tools and the overall environ-
ment and identify integration standards and issues which must be addressed
to implement plug-compatible environments in the future.

The goal was to have the virtual cells emulate a real factory as closely as
possible. However, in the presented implementation there are some slight
differences. In an integration context the most important one being that the
machine controllers are embedded in the machine simulators (compare to
Section 4.4.1).

4.2.5 Information Integration without Standards

Many of the previously cited authors used standards, such as STEP to facilitate
integration. Parks et al. (1994) argue that in the development of a manufac-
turing system specialists of the different disciplines has their own methods
and modeling techniques. Instead of trying to develop a single methodology
or modeling approach used by every discipline, an integrated methodology,
which melds the existing methods and models, can be developed. Parks et al.
propose an architecture, Integrated Manufacturing Design Environment, with
the characteristics:

• Coordination of design and modeling in an environment that allows de-
signers to operate on common, familiar tools;

• Data will be stored on the local tools in the format specified by the tool
vendor;

• Tools can be added and removed through an automated registration
mechanism;

• Interfaces will be developed to minimize the effort that is required to
attach them to existing tools;

• A message system will be incorporated to notify all concerned parties
about conflicts, data updates, constraint violations etc.

With a holistic view it can be argued whether implementing and maintain-
ing an integrated manufacturing design environment will be simpler than de-
veloping applicable standards that can be used by several enterprises and
organizations.
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4.3 Transformation Integration

Transformation integration is a special case of information integration where
the original information is transformed to be used by another application in
another domain than the original application. Parks et al. (1994) gives an ex-
ample of a common problem where a simulation engineer develops a model
of a manufacturing system. Many control issues, e.g. queue discipline, rout-
ings etc., are embedded in the simulation model. Other engineers need this
information for their development of e.g. SFCSs. With an integrated solution
the embedded information would be available and exchanged/shared among
the different engineers.

McHaney (1988) identify four methods of facilitating logic transfer: philo-
sophic transfer, pseudocode transfer, data base transfer, and actual code trans-
fer. The methods are applied when simulation is used as a design tool. The
goal of the simulation is to identify all the logic necessary to implement a
controller for the system.

When philosophic transfer is applied, the simulation key ideas and assump-
tions are communicated textually or verbally to the system design team, which
then implements this in the actual system software. One of the risks with
this approach is that pieces of information is neglected, or not communicated
properly resulting in a misinterpreted or omitted portion of logic which in
turn will result in a discrepancy between the simulated system and the imple-
mented real system. Philosophic transfer makes validation a more complex
task. To avoid some of the problems pertaining the approach the system
design team could be integrated, hence containing both simulation engineers
and software engineers.

The pseudocode transfer approach is based on pseudocode generated by
the simulation engineers as a method of documenting what has been imple-
mented in the simulation model. The software engineers then analyze the
pseudocode and implement it. The pseudocode transfer is more detailed thus
taking into account the problem in the philosophical transfer. Validation is
also facilitated. However, there is a duplication of the programming effort
both to and from the pseudocode.

The database transfer approach relies on the transfer of a database de-
veloped during the simulation phase to drive the actual system. The software
used has to be available for both the simulation model and the actual system
controller for this approach to be applicable. The main advantage is that test-
ing and debugging can be performed during the simulation phase and the du-
plicated programming effort is almost eliminated. Changes to the simulation
and actual system can be done easily and consistently. Validation is facilitated
as well. The disadvantage is that flexibility is lost since unusual cases and
exceptions become difficult to incorporate (McHaney 1988) (compare to the
database stored models described by e.g. Centeno & Standridge 1993, Weaks
& Barret 1997).

In the actual code transfer approach the actual code is written in a con-
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ventional language that can be called from both the actual system and the
simulation model. The actual code can be implemented by either the simula-
tion engineers or the software engineers. With this approach the duplicated
effort is reduced and validation is performed for both systems simultaneously.
The approach requires the simulation engineers and the software engineers
to work closely. A disadvantage is that simulation engineers and software
engineers has to cross the domain borders which requires knowledge in both
domains. Another disadvantage is that of a more concerted effort and added
debugging time initially. The actual code transfer is similar to the application
integration presented in Section 4.4.1

Xu & AbouRizk (1999) presents an approach that focuses on the product,
the simulated object, instead of the processes or activities. Xu & AbouRizk
calls this a product-oriented simulation environment that achieves integration
by adopting a product view of the constructed facility. All relevant data related
to the constructed facility is stored in the product hierarchy. The product
hierarchy represents the products’ physical attributes, their relationships and
the methods by which they are constructed. The product network is a concept
used to define the construction sequence for each construction phase.

The simulation model of the project is composed by linking the product
model in a given construction phase to simulation models from a library of
flexible/modular models. The simulation model also represents the methods
by which the project will be constructed and the process to be followed.

Moorthy (1999) have used a similar approach. FactoryCad is used within
AutoCad to generate factory layouts where the objects contain simulation data
stored as attributes. The basic purpose of the project was to develop a seam-
less automated method of generating simulation models and 3D model anim-
ations directly from CAD drawings. The simulation model data is saved in a
SDX (Simulation Data Exchange) file, which is used to generate a simulation
model through a translator.

The geometries are generated in FactoryCAD or other applications. Sim-
ulation relevant data is then embedded into the objects in the FactoryCAD
model. Then the SDX file is generated and transformed into a simple sim-
ulation model. Additional simulation data maintained in other tools is then
imported.

The point of the approach is to reduce the effort of maintaining simula-
tion models including the geometries as the project is evolving. Continuous
updates of the geometries of the simulation model are thus avoided.

Gmilkowsky et al. (1997) means that there has been a trend to integrate
simulation applications in existing corporate information and communication
systems. They present a simulation toolkit that is capable of generating con-
text and granularity sensitive simulation models. The automatic generation
contrasts to the component oriented systems where the modeler builds mod-
els by combining components with predefined functionality, (see e.g. Bley &
Wuttke 1999).

Tatikonda & Stietz (1994) presents a methodology where the manufactur-
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ing system analysis is performed in stages. In the first stage input data is
collected and stored and analyzed in a spreadsheet. In the second stage a
rough-cut analysis is performed using a queuing theory tool (MANUPLAN).
The queuing theory simulations are used to decide on which alternative to
continue to investigate in the next stage. In the next stage the queuing theory
model is translated into a SIMAN model using the SimStarter program. With
the SIMAN simulation model a more detailed analysis of the selected altern-
atives is performed. The methodology integrates a set of tools, but relies on
the interoperability of that specific set of tools.

Another example of transformation integration is OLP (Off-Line Program-
ming). Volvo’s Olofström Plants estimate that from the very start, by using
simulation and OLP, 20% has been gained in time of the design, manufacture,
and installation of assembly equipment. 90% of the effort goes into the simula-
tion and only 10% is needed for OLP, but 100% of the reward comes from OLP.
Furthermore, the consistency of methods, syntax and improved processes, is
often overlooked but can generate considerable cost savings (Rooks 1997).

It should be noted that some of the approaches presented above are not
really transformation integration in that the information transformed is added
to the original tool and thus redundant in that context. The original tool is
thus only used to store data for the other tools.

4.4 Application Integration

Here a distinction is made between information integration and application
integration. In the case of information integration the applications do not have
to be aware of each other. That is, the interface between the applications is
the information exchanged/shared. In the case of application integration the
interface is specified for both the exchanged information and how to perform
the interactions, i.e. the interaction is performed in a structured manner.

Application integration has several benefits. The logic of the integrated
application does not have to be modeled twice (Ball & Love 1992, Smith, Wysk,
Sturrock, Ramaswamy, Smith & Joshi 1994). The double maintenance problem
(Babich 1986) is avoided since changes in either system will be reflected in
the total system. Since it is the real application or system that is integrated
with the simulation, accuracy is improved (Smith et al. 1994). Furthermore,
validation of the simulation model is facilitated since parts of the modeled
system is the real system (Ball, Boughton & Love 1994, Ball & Love 1992, Love
& Barton 1996). The integrated application or system, e.g. a control system,
can be tested prior to startup, and not during commissioning (Miles 1989). In
addition, data management is simplified since the data is already present (Ball
et al. 1994).

Real-time planning, scheduling, and control in conjunction with simulation
is referred to as on-line simulation by Drake & Smith (1996). On-line simulation
systems incorporate the ability to reliably predict the future behavior of the



46 Discrete-Event Simulation and Integration

studied system given its current status, and the ability to emulate and/or
dictate the control logic of a manufacturing system.

The choice of MRP II (Manufacturing Resource Planning) policies and para-
meters will have an effect on the success of MRP II, and thus financial per-
formance of the company. Love, Clarke & Gooden (1987) therefore conclude
that there is a need to model the real manufacturing system and the MRP II
system as a whole. Love et al. use the actual MRP II system being implemented
to provide the production control system. The second element of the model
consisted of a detailed simulation of the manufacturing facility.

Love & Barton (1996) present a demonstration system referred to as a
WBS (Whole Business Simulator). The demonstration system includes the
functions: customer demand generator, design, process planning, MRP II, ac-
counting system, etc. The idea is that it should be possible to simulate, with a
holistic view, the impact e.g. a design change will have on the overall financial
performance. They give an example where a minor design change results in
a different manufacturing process which, in turn, results in a better financial
performance although it, at first, appears to generate higher costs.

The same holistic approach where interacting subsystems influence a sys-
tems total performance is presented by Eatock, Serrano, Giaglis & Paul (1999),
Giaglis (1999), and Giaglis, Paul & O’Keefe (1999). The purpose of their ap-
proach is to propose an alternative approach to the problem of IT (Information
Technology) investment evaluation.

The system under study is a BP (Business Process) with supporting IT and
CN (Computer Network). The hypothesis was that there is a link between the
CN and BP level with an IS (Information System) level in between. Giaglis et al.
(1999) maintain that the interrelationships between BP, IT and CN are more
complex than the hierarchical structure would imply. Therefore two models
of the scenario were built, one that reflected the activities at the BP level and
one that represented the new CN. To integrate the two models a third interface
model was built, representing the IS infrastructure. Each model assessed the
performance of each system. The advantage of using the three levels was that
effects of changes in one system could be traced in the other systems.

Watt (1998) presents a case where several information sources and ap-
plications were integrated. Simulation was used for both off-line simulation
and scheduling. Most of the information used was present in the MES (Man-
ufacturing Execution System) and MRP (Manufacturing Resource Planning or
Manufacturing Requirements Planning) systems and missing data was added.

Periodically snapshots of the fab status and static data from the MES were
collected and schedules were generated by the AutoSched package. Off-line
simulations were performed to test what-if scenarios and reused the same
information for scheduling. New rules could be created and tested against
history data. The improved rules were then applied in the scheduling system.
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Figure 4.4: The life cycle of an simulation automated system (Hitchens 1989).

4.4.1 Simulation Integrated with Shop Floor Control Systems

A distinction is made between simulation and emulation. Simulation is gener-
ally applied in the early stages of a project while emulation is applied during
the detailed design and implementation phases. A simulation model consists
of two essential elements, the behavior of the system and the control logic. In a
simulation model these two elements are usually built into the same model. In
an emulation model the two elements are separated and reside on two systems.
Typically the simulation model then simulates the system behavior while the
control logic is run on the real control system (Hitchens 1989, Hitchens 1996).

Hitchens (1989) presents a life cycle approach to the simulation and emu-
lation of automated systems, see Figure 4.4. The approach uses simulation
in all the phases for different purposes and reuses the model from stage to
stage.

In the conceptional phase the simulation is used to market a project to
management.

In the design phase simulation is used to find the best solution from a set
of potential designs. The focus in this phase is the overall operating strategy.

During the fabrication phase in an automation project each subsystem is
built. The simulation is now connected to the real control software to test
the software implementation. The controllers use the emulation model as a
replacement for the physical equipment. In this way the control logic can be
tested for the entire facility. Hitchens (1989) refers to this as direct connect
emulation and states that the experience is that for every day of debug time
spent using an emulator, three days in the field are saved. Direct connect
emulation can reduce the cost of the software debugging task by 50-70% or
more.

In the installation phase, time consumption is reduced since all vendors
have tested their subsystem against a common emulation model. Hence the
subsystem integration effort is reduced. The debugging effort performed in
the previous phase is now increasing return on investment since time is not
spent waiting for the system to be debugged.

In the operation phase the emulation is used as a diagnostic tool and runs
in parallel with the operation of the physical system. If changes of the system



48 Discrete-Event Simulation and Integration

are required the simulation model is ready and can be used to improve the in-
stalled system or test suggested modifications before implementing changes.

Another approach to integrate simulation with SFCSs has been developed
at TAMCAM (Texas A&M Computer Aided Manufacturing Laboratory) (Peters
et al. 1996, Smith et al. 1994). The concepts seem the same as Hitchens at a
first glance, however, there are differences.

Hitchens use the emulation model as a replacement of the physical system
while the simulation is used as a MES at TAMCAM. In the TAMCAM implement-
ation the simulation is thus an active part of the final system. In Hitchens’
approach the simulation model is not an active part of the final system, but
remains a passive element for monitoring.

Another difference is that in the TAMCAM approach there are direct con-
nections to other manufacturing computer systems and databases. The sim-
ulation model, for example, is generated from the manufacturing information
system (compare to e.g. Centeno & Standridge 1993, Randell & Bolmsjö 2001).

Smith et al. (1994) describe the usage for the conceptual, design and fab-
rication phases. They also used the simulation in look ahead mode (compare
to Watt 1998).

Smith & Peters (1998) presents a paper where the focus is on the develop-
ment of the simulation portion of the SFCS from a high-level system descrip-
tion and the use of the simulation to drive the control system and direct the
activities of the FMS (Flexible Manufacturing System). The simulation level act-
ing as a MES uses a DES for decision making. In addition to decision making,
on-line simulation uses a real time link between a simulation model and the
production system as a direct method of process control.

Peters et al. (1996) describes a simulation control system that is developed
directly from information about the shop-floor stored in a relational database.
Processing times and fallout rates are also estimated directly from external
data sources.

Baudouin, Ruberti, Arékion & Kieffer (1995) presents a decision support
system for a semiconductor manufacturing environment. DES fed with cur-
rent fab data is used in the decision process. They have designed a LTS (Lot
Tracking System) that is constructed of integrated existing computer systems
and networks as well as automatic process control equipment.

To support decision making respective to scheduling or rescheduling after
recovery, they used a DES interfaced to the LTS. The simulation runs allowed
what-if scenarios to be tested and elaborate snapshots of the fab status. The
simulation results could then be used as parameters for the scheduling sys-
tem.

Judd & Abell (1996) describes an interface used to connect DES and RS pack-
ages to a PLC (Programmable Logic Controller). The interface was developed
to provide an environment to develop, test and debug factory control sys-
tem. From a PLC programming standpoint, there was no difference between
the PLC controlling the simulation models or the actual system. As long as
the simulation is written to emulate all the I/O of the actual system, the PLC
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system program can be fully written, debugged and tested in the simulated
environment.

4.5 Discussion and Conclusions

It has been shown that the term integration does have several meanings de-
pending on the context. It is believed that integration in different forms is
one key to reduce cost and time and thereby succeed with simulation and
especially DES.

It is evident that integration is an extremely complex matter. Most authors
cited here solved problems using tools within a suite of integrated tools or
developed there own tools to work in a limited context.

The dynamic information, e.g. cycle time variance and failures, seems to be
missing in most solutions. Another problem is the exchange of system logic.
No such solution has been found. Application integration partially solves that
problem, but a neutral modeling language that is capable of describing the
systems logic would solve the problem of exchanging both models in between
DES tools and the exchange of logic in between DES systems and e.g. SFCSs.
This is related to the criticisms of the modeling tools put forward in Sec-
tion 3.9. With a pessimistic view, the possibility to e.g. exchange DES models
in between tools might never ever come true. The vendors do their best to
protect their own interests instead of looking at the big picture and see to the
customers’ best interest.

In conclusion there is a large effort required to integrate the tools used
in the manufacturing system development process. My view is that the in-
tegration should not be performed within monolithic suites of tools, instead
standardization is required to integrate the tools. The main motive for stand-
ardization is the current interoperability cost highlighted by Brunnermeier &
Martin.
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Chapter 5

Software Configuration Management
and Product Data Management

In the presented case studies SCM have been used for evolution control. CM
is also a vital part of the methodology presented in Chapter 10. CM is well
established outside the DES domain and this chapter is supplied to provide
the basics.

SCM will be compared with PDM to highlight differences and similarities.
The simulation tool used in the research, QUEST, can be said to lie in both
domains. Information about the manufacturing process, geometries, etc. is
in the PDM domain, while programming the simulation model is in the SCM
domain.

In the performed research a SCM system, CVS, has been used for controlling
the evolution of the simulation models and related documents. CVS was selec-
ted because it was free, easy to install, easy to learn, and available on several
platforms. It also worked very well for controlling the evolution of simula-
tion studies. PDM on the other hand seems, in general, to be complex and
expensive.

5.1 Similarities and Differences

PDM is the discipline of controlling the evolution of a product design. SCM
is the discipline of controlling the evolution of a software product design
(Crnkovic, Persson Dahlqvist & Svensson 2001, Persson Dahlqvist, Asklund,
Crnkovic, Hedin, Larsson & Ranby 2001a, Persson Dahlqvist, Crnkovic &
Larsson 2001b).

The characteristics of SCM and PDM originate from the nature of the ar-
tifacts developed. In the life cycle models, PDM is focused on the hardware
design phase and the production and maintenance/support phase. In the soft-
ware product life cycle the development phase is usually regarded as the most
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intensive part (Persson Dahlqvist et al. 2001b).
Both the PDM and SCM domains appear to be similar. However, that is

true only in principle, implementations are different. Persson Dahlqvist et al.
(2001a) have categorized the differences as follows:

• system architecture,

• product model,

• evolution model, and

• process model.

In the following sections issues important in a DES context will be dis-
cussed.

5.1.1 System Architecture

Both domains use a server with a database and a server application. The client
contains a user interface and some application functionality.

The data representation in PDM and SCM are fundamentally different. PDM
uses an object oriented data model where data is represented via a business
item connected to a data item. The data representation in SCM is more or less
a file system with directories and files. The meta data is stored together with
the file itself. In SCM meta data is of little importance while it is the other way
around for PDM.

A PDM tool is integrated with various applications and builds an informa-
tion infrastructure where data from applications is gathered and exchanged.
A SCM system can be used as a stand-alone tool, or set of tools. It can also be
used as a set of functions that can be used by other tools. SCM tools are often
designed to provide information and data to other applications and is easy to
encapsulate in other tools. PDM tools provides the central process that cre-
ates activities in other tools. PDM has standards defining transfer protocols
while SCM uses plain files (Persson Dahlqvist et al. 2001a).

5.1.2 Product Model

In PDM an explicit product model is used while there is little support for
product models in a SCM system where the product structure is defined in
tools such as Make (Feldman 1979). Behind the product model in PDM is a
data model, which describes the types of objects, relationships and attrib-
utes used in it. Sets of industry specific data models are included in the STEP
standard (Persson Dahlqvist et al. 2001a).



5.2 Software Configuration Management 53

5.1.3 Evolution Model

PDM recognizes three different concepts for versioning. Historical versioning
is conceptual and similar to SCM versioning, dealing with revisions/versions
of a product. Logical versioning manages versions of parts as alternatives.
Domain versioning is the generation of different views of product structures,
e.g. as-planned, as-designed, and as-manufactured.

The emphasis in SCM is on historical versioning, including the possibility
to create and merge branches and to present the differences between ver-
sions. Logical versioning does not exist. The concept of view is related to the
flexibility to create configurations by selection of correct versions of the files
included in a specific configuration (Persson Dahlqvist et al. 2001a).

5.1.4 Process Model

The process models of SCM and PDM are conceptually the same. A state trans-
ition diagram describes, for a product type, the legal succession of states. The
alternative way to model processes is the so-called activity centered modeling,
in which the activity plays the central role, and the models express the data
and control flow between activities (Persson Dahlqvist et al. 2001a).

5.2 Software Configuration Management

Technically, the purpose of using SCM is to solve some of the problems related
to the evolution of a software product. These problems center around the lack
of control and understanding of all the components that make up a product.
Furthermore, the product evolution should be coordinated over time by many
people (Dart 1990).

The goals of using SCM are to ensure the integrity of a product and to make
its evolution more manageable. Integrity is defined as the state or quality of
being entire or complete. Bersoff, Henderson & Siegel (1980) defines product
integrity as being the intrinsic attributes which characterize a product that
meets user requirements imposed, assumed, presumed or intended during
any stage in its life cycle, which facilitate traceability from product conception
through all subsequent stages in its life cycle and which characterize a product
that meets specified performance criteria.

SCM can, however, be used more generally to control and manage any set of
documents, usually files, for some purpose. The software development com-
munity has already faced the size, complexity and concurrent development
problems that are facing DES model developers as well. SCM solutions prom-
ise to overcome these common development problems (McClanahan 1996):

• lead-time,

• increased size and complexity,



54 Software Configuration Management and Product Data Management

• heterogeneous platforms,

• geographical separation,

• quality-assurance requirements,

• emphasis on reusability and

• impact of programmer turnover.

Although there is overhead involved in using SCM, it is generally agreed
that the consequences of not using SCM can lead to many problems and inef-
ficiencies (Babich 1986, Bersoff et al. 1980, Dart 1990).

5.2.1 Software Configuration Management Definition

While there is no single definition of SCM, there are three widely disseminated
views from three different sources: IEEE (Institute of Electrical and Electronics
Engineers), ISO (The International Organization for Standardization) and the
Software Engineering Institute at Carnegie Mellon University. The definition
given here is a synthesis of the different views.

Identification An identification scheme is needed to reflect the structure of
the product. This involves identifying the structure and kinds of docu-
ments, making them unique and accessible in some form by giving each
document a name, a version identification and a configuration identific-
ation.

Control Control is performed by controlling the release of a product and
changes to it throughout the life cycle. This is done by having con-
trols in place to request, evaluate, approve or disapprove and implement
changes.

Status accounting Recording and reporting the status of project configura-
tion items and change requests performs status accounting. Such in-
formation includes initial approved version, status of change requests,
implementation status of approved changes.

Audit and review Audit and review is about validation of the completeness
of a product and maintaining consistency among the components by en-
suring that components are in an appropriate state throughout the entire
life cycle and that the product is a well-defined collection of components.

Dart (1992b) adds the following concern to the definition, which is of interest
here:

Team work Controlling the work and interactions between multiple developers
on a product.
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In the definitions, words specific to software development, e.g. code and
documentation, could be replaced with the more general word document as
done in some literature (Asklund & Magnusson 1997, Minör & Magnusson
1993, Olsson 1994, Magnusson, Asklund & Minör 1993). Documents can then
be code, models, documentation, CAD models, etc. The more general word
document also reflects the more general use of SCM as described in Dart
(1992a) and Dart (1992b) that is applicable to the usage described in this
thesis.

5.2.2 The Repository and Sandboxes

Most SCM systems use some kind of notion of a repository that is a centralized
library of files. Not only the files can be retrieved from the repository but also
file history information which includes the different versions of the files, the
reason for a change, who replaced that version of the file and when. Usually
only the actual difference between each version is stored which reduces space
requirements and access time to a particular version. Access time is especially
important when files are large and transmitted over a slow network.

To work on a file or collection of files, users withdraw, check out, files into
their private workspace (sandbox). When done editing, the modified files are
checked in/committed. A new revision is created of a file when replaced. The
private workspace protects the developer from changes made in the repository
and protects other developers from changes made locally which results in a
stable and controlled work environment for all developers.

5.2.3 Group Awareness

To reduce the amount of communication between developers some sort of
group awareness is desired. The larger the project the more important group
awareness becomes.

The collaboration mechanism in CVS sends e-mail messages to those who
‘watch’ a document (Cederqvist 1993). When a developer makes a file edit-
able, locks a file, or commits a file, an e-mail is sent. The e-mails contain
information about the performed operation, on what file and by whom. This
mechanism reduces the need to communicate who is editing what file thus
enabling effective project management. The e-mail mechanism is, however, a
rather blunt tool for group awareness.

The Mjølner orm project has a better approach and has support for shared
revision graphs to view who is editing what (Magnusson et al. 1993, Olsson
1994, Minör & Magnusson 1993). The system also supports both asynchron-
ous and synchronous editing. A synchronous editor allows multiple users to
access and edit shared material simultaneously employing a WYSIWIS (What-
You-See-Is-What-I-See) metaphor.

Another useful utility is active diffs (Olsson 1994). Active diffs are an auto-
matic merge of two revisions of a file that is shown but not saved.
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The active diffs and synchronous editing utilities are made for making
aware of or showing differences of text files such as program code. These
mechanisms are of no use when working with simulation models with obscure
code developed through a GUI or binary files such as documents generated by
a word processor. The shared revision graphs, however, are usable for all
document types.

5.2.4 Configuration Save Mechanism

Two lacks in current SCM systems have been pointed out by Asklund and Mag-
nusson (Asklund & Magnusson 1997). CVS, as well as a number of commercial
systems, uses a very simple mechanism for saving configurations. During a
certain development stage all current revisions of the documents under con-
trol are tagged or labeled. It is then possible to restore the same set of files
by retrieving the revisions with a particular tag. However, the configurations
in between these tagged events are not known. Opposed to this, systems like
Aegis (Miller 1999) and the system in the Mjølner orm project (Magnusson
et al. 1993), stores the entire configuration each time a file is committed. It
should be noted that the possibility to retrieve a set of files from a certain stage
in the development process does add considerable functionality compared to
no configuration management at all or manual version control.

5.2.5 Managing the System Life-Cycle

A system life cycle can be said to have milestones to mark progress along the
path. These milestones are in this context called baselines. Bersoff et al. (1980)
describes typical baselines in a life cycle:

Functional Baseline The functional baseline ends the system concept formu-
lation stage. Typically this is a requirements document.

Design Baseline The detailed design is critical to successful system develop-
ment. Generalizing this to any design means that the design is made up
of a number of modules that should fit together, i.e. should have well
defined physically or logically compatible interfaces. It should be noted
that no code or hardware has been built at this stage. The system still
only exists as a collection of documents. It may seem as a lot of work
is put on producing nothing except a number of documents. However,
this approach imposes the efficiency and discipline required to produce
a system with integrity.

Product Baseline The product baseline is the first system that works accept-
able, but often does not represent the final system implementation. Dur-
ing this development a lot is learned, but there is not time to implement
all possible enhancements.
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Operational Baseline The operational baseline represents the system used in
production. This system includes appropriate improvements learned
during the development up to the product baseline.

5.2.6 The Configuration Control Board

The CCB (Change Control Board or Configuration Control Board) has two fun-
damental responsibilities of configuration control. One is to approve, monitor
and control the conversion of design objects into system configuration items.
The other is to approve, monitor and control changes to the system (Bersoff
et al. 1980).

Representatives from the developer, customer and user should be mem-
bers of the CCB. For a simulation project the domain experts can be added to
the CCB. The domain experts are important in that they are the suppliers of
the information that affects the model design and simulation results.

5.3 Discussion and Conclusions

In the choice in between SCM and PDM one should consider the systems avail-
able and the methods used in the organization. In this research the quickest
approach was to use SCM and it proved to be sufficient for the usage presen-
ted in this thesis. Developing a DES model is quite similar to developing a
software product in many ways. One of the main advantages has been the
possibility to view changes made in the source code.

In the performed research the usage of SCM has been extended further and
all documents created performing the research, including this thesis, has been
under SCM control. The benefits of using SCM have been so convincing that
SCM will most likely be used in future work as well.
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Part III

Case Studies





Chapter 6

The Profilgruppen Case Study

The case study at Profilgruppen in Åseda 1997 was performed to verify a not
yet built factory. There were doubts about whether a new planned manufac-
turing system would cope with the planned throughput. The performance of
the two last blocks of the system was considered uncertain due to new equip-
ment. An overview of the new factory is shown in Figure 6.1

The objectives were to find maximal throughput for a specific set of orders
and the bottleneck limiting throughput. Another objective was to find ways
to enhance the manufacturing system.

The simulation study was performed when the main parts of the new fact-
ory was designed. The construction of the factory began before the simulation
study was completed.

Input data was a file containing an expected order list with a number of
attributes controlling the processing of the parts. No failure processes or
other stochastic behaviors were included in the model.

The model conceptualization and translation was performed through in-
terviews. Personnel at the company were educated in basic DES methodology
to facilitate the interviews.

Model verification and validation was performed by studying simulation
model behavior and by analyzing each code segment together with a domain
expert.

6.1 The Studied System

The manufacturing system was divided into three blocks. In the first block
the profiles are extruded, cut in appropriate lengths and stacked in a rack.
In the second block the racks are stacked and then the profiles are annealed
and cooled. The third block consists of destackers, conveyors and packing
stations.
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Figure 6.1: The new factory at Profilgruppen.
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The actions in the second and third block were controlled by controllers
that interacted. The controllers in the model simulated the logic in the real
controllers and some of the actions performed by operators. The simulated
controllers consisted of two parts. The first part received requests and re-
turned signals. The second part did the matching between requests according
to a number of priorities and requirements. The controllers and connected
elements required two thirds of the 3000 lines of SCL code. Another reason
for the vast amount of code was that what was considered being a part was
context dependent and thus required coding.

6.2 Results

The simulation showed that orders could be run in certain sequences to reduce
idle time. There was a bottleneck at the end of the manufacturing system and
most of the time lost was due to transports. These losses could be reduced by
changes of the layout. The simulation model was used to analyze the number
of racks required in the material flow and it was found that the number of
racks could be reduced with 44% without a decrease in performance. As a
consequence the WIP (Work In Progress) was reduced as well.

The cost reductions of the proposed changes was substantially greater than
the cost of performing the simulation study. A rough estimation, made by the
company, of all the possible savings, showed that this project alone could pay
for the simulation education, computer, simulation program and the simula-
tion model development without taking into consideration the long term cost
reductions.

6.3 Discussion and Conclusions

Some of the proposed enhancements of the manufacturing system could have
been found using static calculations. However, the most important enhance-
ments would not have been found without simulation since they were depend-
ent of the dynamic behavior of the system.

One of the reasons not to implement simulation is cost. In this project it
was proved that although simulation is costly and difficult, cost can be reduced
considerably.

The match mechanism in the controllers was so complex and the logics so
intertwined that code maintenance was complicated.

As soon as there is a draft of the manufacturing system a draft model
could be made. In this project the simulation was made to late and some of
the proposed enhancements was no longer possible to implement.
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Chapter 7

The ABB and Volvo Case Study

In 1997 a project was initiated together with ABB BiW (ABB Body-in-White)
in Olofström and VCBC in Olofström. The two companies work intimately
together when designing new manufacturing systems. ABB BiW designs and
delivers complete production lines with VCBC being one of their major cus-
tomers. Their main interest was to have high accuracy throughput estimations
when designing new manufacturing systems.

The case study was developed further in 2002 as a master’s thesis work
(Pålsson & Quist 2002) supervised by the author and Lars Holst. The focus in
the second project was somewhat different, but many of the results from the
first case was reused and developed further. The results from the second case
study are presented in Chapter 13.

The studied system prepared and married the inner and outer car hood
parts in a flexible production line. Robots where used for material handling,
processing or to hold and move parts during processing. The production line
was divided in three blocks with buffers in between, shown in Figure 7.1.

As can be seen in Figure 7.1, the material flow was straight and simple.
However, there was a complex SFCS and robot controllers that complicated
model building.

The following main topics could be identified for the project:

• determine DES accuracy for the studied system,

• development of an input data collection method,

• development of an input data analysis method,

• development of an input data generalization method,

• development of an integrated manufacturing system design process

Inaccuracy in predicted manufacturing system performance is costly and
even small errors generate high costs over time. To achieve simulation results
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Figure 7.1: An overview of the system studied at Volvo.
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with high accuracy cycle time estimations, failure distribution estimations,
and system logic coding has to be performed with high accuracy.

To validate the accuracy of the throughput measures generated from the
DES it was decided that the developed methods should be applied to an exist-
ent manufacturing system. The advantage of choosing an existing manufac-
turing system was that data was available and the model could be compared
to the real system. Knowing the accuracy of the modeled system compared to
the real system could then be used to assess the accuracy of simulation mod-
els in future manufacturing system development projects. Potential errors in
the estimations of performance could also be detected and accounted for in
future projects.

7.1 Input Data Source

Semiautomatic data collection was installed in the studied manufacturing sys-
tem and in other similar manufacturing systems at VCBC. Data was used to
generate system performance reports. It was to be determined whether the
input data available could be used for DES. If usable, a suitable method to
transform and analyze data was also required.

A manufacturing system of the studied type can be said to have a hierarch-
ical structure with the levels: line, block, safety zone, cell, device and sensor.
A safety zone is the part of the manufacturing system that is stopped when
an operator enters the zone, e.g. when performing maintenance.

Operation of the manufacturing system was facilitated by a system referred
to as XGOT (GOT (Graphical Operator Terminal)) that worked at the sensor
level. The XGOT system displayed the system’s state and assisted operators
in locating causes of stops.

The XGOT system also delivered data to the data collection system, PANDA,
which worked at the cell level. The operators classified stops with stop codes.

There was a 60-second timeout between the XGOT system and the PANDA
system, which worked as a low pass filter, i.e. a state with duration shorter than
the timeout was not collected by the PANDA system. The extracted production
data files had events ordered chronologically with fields for date, time, activity
code, activity comment, and shift. Input data was collected for a month.

7.2 Input Data Structure

Production stops was classified as having internal or external causes with re-
spect to the production line, i.e. stops within control of personnel at the pro-
duction line and those out of control. Stops with external causes, e.g. material
starvation, were sampled as being in an inactive (I) state. Down time with in-
ternal causes were sampled as being in a stop (S) state. When the cells were
operational, but not necessarily operating, they were in the production (P)
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Table 7.1: Selected fields of typical entries from the PANDA database.

Date Time Block Stop State
Code

1998-05-19 15:37:14 190321 nil P
1998-05-19 15:38:45 190321 nil S
1998-05-19 15:39:27 190321 nil P
1998-05-19 16:04:05 190321 6016 S
1998-05-19 16:09:28 190321 nil P
1998-05-19 17:07:03 190321 5100 I
1998-05-19 17:21:14 190321 nil P

state. Each stop was identified with a stop code that identified in what cell or
block the stop had occurred.

7.3 Stop Codes

The stop codes could be defined for one or several cells and could be overlap-
ping as well, shown in Figure 7.2.

When the required manual classification was not performed the stop code
got the value nil. In the simulation model the undefined stops were assumed
to affect the entire block, which is a reasonable approximation since the entire
block will stop when corrective maintenance is performed. On the average only
50% of the stops were classified. The result of this was that the real TBF (Time
Between Failures) and TTR (Time To Repair) data samples were known only to
some extent.

The stops could be extracted from the database principally in two ways:
per cell, i.e. with all stop codes affecting the cell aggregated or per stop code.
The latter is preferable since it gives the failure behavior for a certain kind of
cell and is thus more generalizable.

Table 7.1 shows a few selected fields from a few typical entries in the
PANDA database. To calculate the duration of a state the time for the next
state shift was subtracted from the time for the previous state shift. The time
in the (I) state was subtracted when calculating TTR and TBF times since the
simulation was only run during the operational time.

7.4 Input Data Analysis

Methods for assessment of TBF and TTR distributions was to be developed
based on collected production data. Input data analysis methods were to be
implemented so that input data analysis could be made automatically or semi-
automatically for the studied system and other systems at VCBC.

Filters written in Perl (Practical Extraction and Report Language) were used
to convert input data into TBF and TTR times. The filters were highly flexible
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Figure 7.2: The stop codes in the studied system.
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and could be told to include or exclude one or several stop codes, which made
it possible to model the failure processes in several ways. The filters could
generate data for file driven simulations, i.e. the time stamps was calculated
from a common origin, or for statistical analysis on different time-scales.

A number of routines where written in Matlab for automatic analysis of in-
put data. The routines use conventional chi-square tests with an equiprobable
approach for goodness-of-fit tests (Banks et al. 2000, Law & Kelton 1991). The
routines used the Matlab Statistics Toolbox for parameter estimations and for
hypothesis tests. The Matlab Statistics Toolbox parameter estimation routines
are based on ML (Maximum Likelihood).

There were 22 data sets which yields 44 failure and repair processes for
each model to update. To reduce the time for updating all the failure processes
in the models, a BCL script was automatically generated from the output of
the Matlab analysis. The BCL scripts were then used to update the simulation
models failure and repair processes automatically.

When there were to little data or when data could not be fitted to an ana-
lytical distribution file driven failure and repair processes were defined.

7.5 Managing a Family of Models

The simulation study resulted in a family of similar simulation models that
was to be managed when performing the simulation study. One of the pur-
poses of SCM is managing a family of products that stems from a common
base (Babich 1986) and thus a SCM system was to be tested as a mean to keep
track of the different models and their evolution.

Two types of models were built from a base model. The first type of model
was built with detailed logic, replicating the SFCS and thus required manual
coding of object logic. The second type of model was built mainly through the
QUEST GUI and thus reduced the modeling time. The two different types were
used to test if it was sufficient with the simpler approach for adequate accur-
acy. The simple model took 50-70 hours to make while the more complicated
one took slightly more than 100 hours. The simplified model type later proved
to be an insufficient way of modeling the system and was abandoned.

The two types of models were driven in three ways with respect to failure
and repair input data. Data was collected in wall-clock time and could be
extracted and transformed to be used in a simulation in different ways:

(a) file driven, i.e. TBF and TTR times were based on raw data read from a
file, or driven by distribution functions,

(b) busy-time mode or simulation-time mode or

(c) a mixture of the two approaches.

This resulted in six (2×3) variants of the simulation model derived from a base
model, shown in Figure 7.3.
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Model Input data

Raw input data

patches

type b

base

type a

type a

type c

type II

type c

type I

type b

Figure 7.3: Variant tree of the simulation models with patches merged into
head revisions.
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Table 7.2: Results from the statistical analyzes.

Frequency
Distribution TBF TTR
exponential 3 1
gamma 5 1
lognormal 6 4
Weibull 6 2
Normal 0 0
To little data 12 16
No fit with any of the tested dis-
tribution functions

1 5

7.6 Results

Output data was analyzed using conventional confidence intervals. There were
not several parameters in the model to be analyzed, omitting the need for
advanced methods (described by e.g. Eriksson 1997).

The stops appeared with short intervals and were short in their dura-
tion. This kind of behavior is well described by e.g. the lognormal, Weibull,
Gamma or exponential distribution. These distributions were therefore used
for the distribution function hypotheses. The Normal distribution function
was tested as well but could not be fitted to any data. Results from the statist-
ical analyzes are shown in Table 7.2. Note that some data sets could be fitted
to more than one distribution function. The chi-square tests were performed
with α = 0.05.

The statistical analyzes showed that the most appropriate distribution
functions were the Weibull distribution and the lognormal distribution. In
many cases the distribution hypotheses had to be rejected since there were to
few data samples which in turn probably was a result of the large number of
unclassified stops.

Building different models from a base model can be done by simply copy a
model and modify it. However, by creating branches on a revision tree with a
SCM system it is possible to merge changes, or patches, in the base model into
branches, i.e. the model variants shown in Figure 7.3. If models were copied
without using SCM each model variant would have to be modified manually
when maintaining the simulation model.

Merging patches into model variants has its application. When performing
test runs, a bug inherited from the base model was discovered. The bug could
then be fixed by correcting the bug in the base model and merge the patch into
the six variants thus reducing the overall maintenance effort for the family of
models. This approach works well with source code, but not with binary files
and in some instances simulation model files.
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7.7 The Scania Data Collection System

As a comparison to the data collection system studied at Volvo another case
performed by Ingemansson (2002) is presented. Ingemansson analyzed data
from a manufacturing system at Scania in Södertälje. This data collection
system collected data with higher granularity.

The data collection system studied by Ingemansson sampled the following
states continuously:

• stop,

• warning,

• idle, starved or blocked,

• busy,

• shut off,

• NC program is being executed (sub-state of the busy state)

The data collection system was fully automatic and no manual intervention
was required to classify the stops. The stop classes described what subsystem
that failed and there were stop classes for manual shutdown and unclassified
stops.

One of the problems encountered was that most of the stops where unclas-
sified or the machines where manually shut down. These two classes stood
for 65% to 84% of the downtime. In the studied system the planned stops were
tool changes which automatically were classified as manual stops. This can to
some extent explain the large amount of manual, and thus unclassified, stops.

The unplanned stops had several stop classes. One lack with the data
collection system noted by Ingemansson (2002) was that the WT (Waiting Time)
was not detected. Even though it is difficult to sample the WT it is desirable
to do so since previous case studies have shown that more than 90% of the
down time can be WT (Ingemansson & Bolmsjö 2001).

Another lack identified in the data collection system, was the undetected
quality losses, i.e. scrap and added work.

The simulation model showed that, with the high quality input data avail-
able in this case, it was possible to generate a high accuracy simulation model.

The large amount of unclassified stops should be reduced for usage of the
data when improving the manufacturing system. Ingemansson (2002) sug-
gests that a manual classification be added to classify all stops. This classific-
ation should then be predefined and simple to enter.

7.8 Discussion and Conclusions

Due to the large amount of unclassified stops it proved to be difficult to val-
idate the model. The model and data filters were modified in several ways to
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improve accuracy, but eventually it was concluded that data was not usable
for high accuracy simulations. Furthermore, it was revealed during the er-
ror tracking process that some of the stop classifications were incorrect. The
main reason for not classifying the stops correctly or not at all was probably
the required manual entries. It was therefore concluded that data has to be
collected automatically.

Mostly it is the complex control systems in the manufacturing system that
causes extensive coding. In principle they work the same way, i.e. sending
signals and waits for signals before performing an action. The code written
to replicate such behavior is usually quite complex and hard to comprehend,
especially when maintaining the code. The program code becomes highly un-
structured accessing other objects inner details and is thus not at all modular.
In the second case performed on the same system the code was modularized
and parameterized to avoid this problem, see Chapter 13.

The manual editing of the imported geometries consumed considerable
time and is not a practical method if time is an issue. As a result most of the
available geometries were not used in the simulation model. However, other
methods have not been found and this method seems to be common practice.
It should be noted that direct import from the original CAD format or STEP
format and more powerful computers would reduce this problem in the near
future.



Chapter 8

The First BT Products Case Study

The case study described here was performed in cooperation with BT (BT
Products), a world leading manufacturer of electrical warehouse trucks in
Sweden. There were four simulation model developers at two geographic-
ally separated sites. The developers worked in a heterogeneous environment
using MS Windows NT and IRIX respectively.

A manufacturing system for truck mast manufacturing was studied, shown
in Figure 8.1. The simulation study was explorative and performed to find
possible ways of reducing lead-time.

The research objective was to develop and test a methodology for concur-
rent development of DES models in a heterogeneous environment. The com-
pany’s objective was to reduce simulated lead-time by 25% and the throughput
was to be increased with 25%.

8.1 Configuration Management

Each developer was assigned modules to develop. A structured naming con-
vention was used to facilitate a later merge of the modules.

Model files were locked in the SCM system to avoid merge conflicts while
SCL sources were kept unlocked. The developer that locked a file owned it
until it was unlocked or checked in to the repository.

Concurrent development was performed through a central repository via
Internet. The repository was set up on a SGI (Silicon Graphics) IRIX computer
in Lund. The SCM system kept track of all the file revisions, who edited a file
and comments regarding what changes had been made.

Group awareness was facilitated through the watch mechanism in CVS that
was set up to send an e-mail message every time a developer was making a file
editable, locked a file, or committed a file. The e-mails contained information
about what operation had been performed, on what file and by whom. Such
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Figure 8.1: The central part of the simulation model at BT.
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a mechanism reduces the need to communicate who is editing what file and
thus facilitate project management.

Instead of a formal CCB, change requests was documented in the meeting
protocols containing information about what had been performed, what was
to be performed and by whom.

8.2 The Model

For effective concurrent development a draft base model with a detailed layout
was split into sub-models, or modules. When all the modules were ready they
were merged again to form the final model.

During development of the modules stubs were used, replacing the not yet
developed modules connected to the module under development. The stubs
did not have logic but generated the same kind of output or accepted the same
input with the same interface as the real module would have done.

The model consisted of an NC-machine, an automated robot cell, a paint
shop and a number of assembly stations. The studied system had several
interactions with the surrounding system, which complicated input data ana-
lyzes.

The studied systems logic was mapped through interviews with planners,
the production engineer and operators. The conceptual model was created
and documented as the project went along. Data was collected from the
scheduling system, a SFCS and manually with a stopwatch when not available
in digital format. Some of the data with long cycle times had to be collected
for complete days, and still only a few samples was obtained.

For each module there was a file for each type of logic, e.g. route, request,
process, etc., named with a structured naming convention. The structured
naming convention made it easy to keep track of the sources and avoided
name clashes when later merging the modules. A separate directory contained
include files for common definitions and declarations, such as constants, at-
tributes and routines.

To a large extent the failure, repair and cycle processes were file driven.
Either there was to few samples to perform a chi-square goodness-of-fit test
or no analytical statistical distribution could be fitted.

Approximately 2800 lines of code were written in this project to add func-
tionality to the model that was not achievable through the GUI. As in the other
case studies described here, it was complex control systems that caused much
of the coding together with manufacturing control rules.

8.3 Communication Channels

Large simulation models are inherently complex. With multiple developers
project management becomes even harder due to the increased need for com-
munication, as demonstrated in Figure 8.2 (Babich 1986).



78 The First BT Products Case Study

Figure 8.2: The increasing number of communication channels with multiple
developers. In this case two, four and six developers. Adopted from Babich
(1986).

The case was used for training at BT and thus extra communication was
required which slowed down the development process. Developers had more
knowledge about each other’s modules than required.

8.4 Documentation

The documentation was hard to keep updated as development progressed and
new information became available. Documentation was transferred via e-mail
in several instances, causing the expected problems with different versions on
different computers.

Documentation of the SCL code was fairly simple since the user is in con-
trol and can add as many comments as needed. However, when it came to
extracting the source documentation into the project report there was a vast
amount of cut-and-paste needed. Once that was done the maintenance of the
model documentation force the modeler to update the documentation in the
model source as well as in the model documentation. This is what Babich
(Babich 1986) refers to as the double maintenance problem. A solution to this
problem was developed after this project and is presented in Chapter 11.

8.5 Results

The first bottleneck was identified, and by removing that bottleneck the next
bottleneck was found and so on. Thus the maximum capacities for each of
the elements in the model was identified as an basis for an investment plan.
That is, if an investment was planned to remove a bottleneck it was known
in advance where the next bottleneck would occur and what the maximum
throughput for the entire system would be. This is a useful result when com-
paring different investment alternatives and when performing the investment
analysis.
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The desired reduction in manufacturing lead-time could not be verified
since there was no data available.

One of the main experiences in this project was that a simulation study
should be performed continuously, i.e. without to long interrupts. The inter-
rupts in this case generated much overhead since the developers had to get
into the conceptual model repeatedly before they were able to do any product-
ive work.

8.6 Discussion and Conclusions

It was experienced that the need for structure increases drastically with the
number of developers. Structure is needed in all activities of a simulation
study, i.e. there has to be a well defined structure of:

• the organization,

• the project plan,

• the method,

• the documentation and

• the simulation model.

As with CM, formal structure generates overhead. However, the overhead
is small compared to the increase in process efficiency. Without a well defined
structure the informal communication increases although being hard to de-
tect. Documentation of the structure and documents describing the project
details was an important tool to reduce this communication. The document-
ation was also an important part of the verification and validation process.

The problems that arose with filenames and revisions when files where ex-
changed by other means than through the SCM repository showed that mul-
tiple developer projects have to use some notion of a central repository and
a mechanism for locking files or allowing concurrent editing of files.

CVS made it possible for the developers to work with files locally without
disturbing the work of others and collaborate over distance transparently. The
need to lock certain files did not pose a problem since the model was divided
into modules.

The difficulty to keep the documentation updated showed that a differ-
ent approach had to be implemented. Generating the main part of the docu-
mentation before generation of the model would provide a better base for the
modeling effort and allow verification of the conceptual model before imple-
mentation of the simulation model.

Documenting the simulation study is a complex problem when the simu-
lation software has as structure like the one in QUEST. It is desired that the
documentation is in one place to avoid the double maintenance problem and
at the same time it should be easily available for the part of code, or element
under study at the moment.
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Chapter 9

The Second BT Products Case Study

The BT factory in Mjölby was increasing their production volumes rapidly. To
accomplish this, investments were made in equipment to store and process
the beams for the truck mast manufacturing system described in Chapter 8.

This case study differed from the previous in that it was performed for
verification of a new system while the former was performed to improve an
existent manufacturing system.

The studied system had been designed and the simulation was to verify
that the system would be capable of the specified capacity. The analysis of
the simulation was to find:

• bottlenecks,

• buffer placement and size,

• balancing the material flow,

• maximum capacity if the new plasma cutter was not operable, and

• impact of different product sequences

As in the previous case study, the project team consisted of personnel from
both Lund University and BT. From BT there were both manufacturing system
engineers and simulation engineers.

9.1 System Description

A number of attributes controlling cycle times and routings attached to the
parts was collected. The attributes were then stored in an order list. The
information content in this order list differed from the information content
of the order list in the former case study.



82 The Second BT Products Case Study

Figure 9.1: The new truck mast system simulation model at BT.

The system started where the beams for the truck masts were unloaded
from the trucks. The beams were then loaded into an automatic storage. The
beams were then retrieved for processing according to an order list at the other
end of the storage. The beams were cut and sent to a grit blast machine, in
some cases via a plasma cutter. The beams were then transported to the CNC
(Computer Numerical Control) mill that was the first element of the simulation
model described in Chapter 8. The studied system is shown in Figure 9.1.

Since this was a new system there was no TBF and TTR input data available.
Most TBF distributions were estimated by domain experts to be exponentially
distributed while the repair distributions were estimated with maximum and
minimum TTR times.

9.2 Verification and Validation

Being a new system the validation of the simulation was difficult. In order
to verify and validate the model, verification of input data, running and ob-
serving model behavior, and verification and validation of simulation results
was performed. Each activity was performed together with domain experts at
BT. The verification and validation was performed on a base model that was
modified for different scenarios.
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9.3 Experiments

There were nine different cases that were run to study the proposed manu-
facturing system. Loading the beam storage system proved to have a large
impact on performance and therefore loading at different times of the day
was tested. A different configuration of the storage system was also tested.
One of the models tested how the system would perform without the plasma
cutter and it was tested how improved cycle times in the CNC mill would affect
performance. These different changes of the base model were then combined
to generate the nine scenarios.

9.4 Results

The simulation results identified one major bottleneck and a second bottle-
neck if the first bottleneck was removed. The systems functionality and per-
formance was verified. The production sequence was found to have little im-
pact on system performance, but had an impact on buffer sizes. The conclu-
sion was that the buffers were sufficient, but could be reduced with a better
sequence. Work procedures could be developed from the simulation model to
enhance performance by performing beam storage loading in a certain pattern.
The studied system is now implemented and running.

9.5 Discussion and Conclusions

Experiences from the previous case study were implemented in this case study.
In the first case study it was concluded that continuity was important and
therefore the project was performed at a high pace.

It was concluded in the first case study that SCM facilitated project man-
agement, and it was therefore decided to use SCM in this case study as well.
However, a central repository could not be implemented in this case study due
to technical problems. SCM was therefore implemented by exchanging files
via email and performing the required configuration management on a com-
puter in Lund. Being aware of the problem with multiple developers, files were
locked via verbal communication, i.e. one developer explicitly told the others
that he owned the file until further notice. Through these manual routines in
combination with the use of the SCM system the documents in the project was
kept under control for the duration of the project.

The methodology presented in Chapter 10 was implemented to a large
extent. Functional, conceptual and design documents were prepared before
model building began. The documents were expanded as work proceeded.

As expected, many possible problems were detected during the first phases
of the simulation study and additional information was therefore gathered to
reduce the risk of the project.
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Part IV

Contributions





Chapter 10

Discrete-Event Simulation
Methodology

DES is well covered in the literature with a number of textbooks and papers
covering several areas associated with the technique. This chapter presents
a methodology for performing simulation study that is also well covered in
the literature. However, presented here is a methodology with an emphasis
on the management of the simulation study and the integration of the simula-
tion process in the manufacturing system development process and thus the
product realization process.

According to a survey on development, operation and maintenance of man-
ufacturing systems in Swedish companies, all companies use some kind of pro-
ject management strategy, which give guidelines for how the project should
be carried out. However, these guidelines are generally not documented and
do therefore not provide information on how tasks should be performed. The
working procedure mainly relies on experiences from past projects (Gullander
& Klingstam 1998). The presented methodology is an attempt to provide a
base for a working procedure, based on experiences from case studies, for DES
studies in the context of manufacturing system analysis and development.

10.1 Capability Maturity Model

The CMM (Capability Maturity Model) for software, adopted from (Paulk, Curtis,
Chrissis & Weber 1993a), provides a model for how organization can improve
their DES maturity and describes appropriate future research.

Paulk et al. (1993a) begins with a statement, in a software development
context, that applies equally well in a DES context.

After two decades of unfulfilled promises about productivity and
quality gains from applying new software methodologies and tech-
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nologies, industry and government organizations are realizing that
their fundamental problem is the inability to manage the software
process . . .

Success that rests solely on the availability of specific individuals
provides no basis for long-term productivity and quality improve-
ment throughout an organization. Continuous improvement can
occur only through focused and sustained effort towards building
a process infrastructure of effective software engineering and man-
agement practices.

Most DES professional would agree on this quote if the word ‘software’ was
exchanged with the word ‘simulation’.

10.2 Process Maturity Levels

The CMM describes the levels of process maturity. Process maturity is the
extent to which a specific process is explicitly defined, managed, measured,
controlled, and effective. By institutionalizing the process via polices, stand-
ards, and organizational structures, an organization gains in process maturity.
Institutionalization entails building an infrastructure and a culture that sup-
ports the methods, practices, and procedures so that the organization endures
in case of personnel turnover (Paulk et al. 1993a).

As stated by Paulk (1998), obtaining senior management sponsorship is
a crucial component of building organizational capability. Individuals can
exercise professionalism and discipline within their sphere of control. If an
organization as a whole is to change its performance senior managers must
actively support changes.

According to Paulk et al. the five maturity levels are characterized by, see
Figure 10.1:

(1) Initial The process is characterized as ad hoc. Few processes are defined,
and success depends on individual effort.

(2) Repeatable A basic project management process is established to track
cost, schedule, and functionality. The necessary process discipline is in
place to repeat earlier successes.

(3) Defined Both the management and engineering processes are documented,
standardized, and integrated into a standard process for the organiza-
tion.

(4) Managed Detailed measures of the process and product quality are col-
lected. Both the process and products are quantitatively understood and
controlled.
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Figure 10.1: The five levels of process maturity with key process areas. Adopted
from Paulk et al. (1993a).
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(5) Optimizing Continuous process improvement is enabled by quantitative
feedback from the process and from piloting innovative ideas and tech-
nologies.

The presented work aims at providing some of the material required reach-
ing Level 2 and to some extent Level 3. This might seem like a less ambitious
objective, but it should be related to common practice where Level 2 hardly
has even been considered. According to Paulk et al. it can take several years
to move from Level 1 to Level 2, and moving between the other levels will usu-
ally take on the order of two years, all in a software context. This is thus not
an effortless task, but is considered necessary to make the DES process ma-
ture and reliable. DES organizations are in general smaller than their software
counterpart, but that does not imply that capabilities are less important.

10.3 Key Process Areas

Key process areas identify the issues that must be addressed to achieve a
maturity level, see Figure 10.1. Each key process area identifies a cluster of
related activities. To achieve a key process area all the goals of that area
has to be performed collectively. When the goals of a key process area are
accomplished on a continuing basis across projects, the organization can be
said to have institutionalized the process capability characterized by the key
process area (Paulk et al. 1993a).

The key process areas are categorized in Table 10.1 (Paulk, Weber, Garcia,
Chrissis & Bush 1993b). The management process category contains the pro-
ject management activities. The organizational process category contains the
cross-project responsibilities. The engineering process category contains the
technical activities.

Each key process area is described by key practices that describe the in-
frastructure and activities that contribute to the implementation and institu-
tionalization of the key process area (Paulk et al. 1993b).

10.3.1 Level 2 Key Process Areas

The key process areas at Level 2 concerns establishing basic project manage-
ment controls. Descriptions of each of the key process areas for Level 2 are
given in the following sections.

Requirements Management

The purpose of requirements management is to establish a common under-
standing of the requirements that will be addressed in a project. This agree-
ment with the customer is the basis for planning and managing the project.

• Requirements allocated are controlled to establish a baseline for model
development and management use.
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Table 10.1: Key process areas assigned to process categories. Adopted from
Paulk et al. (1993b).

Levels Management Organizational Engineering
(5) Optimizing Technology

change
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prevention

Process change
management

(4) Managed Quantitative
process
management

Quality
management

(3) Defined Integrated
management

Organization
process focus
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engineering
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coordination

Organization
process
definition

Peer reviews

Training
program

(2) Repeatable Requirements
management

Project
planning

Project
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Subcontract
management

Quality
assurance

Configuration
management

(1) Initial Ad hoc
processes
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• Plans, project team, and activities are kept consistent with the require-
ments allocated.

• The parties agree on the requirements.

Project planning

The purpose of project planning is to establish reasonable plans for perform-
ing and managing the project.

• Estimates are documented for use in planning and tracking the project.

• Project activities and commitments are planned and documented.

• The parties agree to their commitments related to the project.

Status Accounting

The purpose of status accounting is to establish visibility into actual progress
so that management can take effective actions.

• Actual results and performances are tracked against the plans.

• Corrective actions are taken and managed when results and performance
deviate significantly from the plans.

• Changes to commitments are agreed to by the parties.

Subcontract Management

The purpose of subcontract management is to select qualified sub-contractors
and manage them effectively. It combines the concerns of requirements man-
agement, project planning, and status accounting for basic management con-
trol, along with necessary coordination of quality assurance and CM.

This issue especially concerns organizations that use sub-contractors to
develop and implement the manufacturing system and where the DES model
is a part of the documents supplied with the system. This situation has been
noticed to emerge lately. Subcontract management is also an issue when con-
sultants are building the model or parts of it.

• The customer and the sub-contractor agree to their commitments to each
other and the commitments are documented.

• The customer and the sub-contractor maintain ongoing communications.

• The customer tracks the sub-contractor’s results and performance.
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Quality Assurance

The purpose of quality assurance is to provide management with appropriate
visibility into the process being used by the project and the documents cre-
ated. This is vital if models are to be reused and if sub-contractors builds the
model or parts of it. Note that this is the quality assurance of the process and
how the model is built, which is not the same as verification and validation of
the model.

• Quality assurance activities are planned.

• Adherence of model and activities to the applicable standards, proced-
ures, and requirements is verified.

• The parties are informed of quality assurance activities and results.

The base for the audits is the documents generated so far. Easily browsable
documentation, e.g. HTML (HyperText Markup Language) or PDF (Portable Doc-
ument Format) documents placed on the intranet, facilitates such activities.
The use of an SCM system facilitates the audit process by supplying a change
log used to review what documents has been changed, in what way, by whom
and what new documents have been added.

Configuration Management

The purpose of configuration is to establish and maintain the integrity of the
products of the project throughout the project’s life cycle.

• CM activities are planned.

• The CM organization is defined.

• Selected tools, methods, procedures and reusable modules are identified,
controlled, and made available.

• Changes to identified tools, methods, procedures and modules are con-
trolled.

• The parties are informed of the status and content of baselines.

• CM activities are performed continuously.

Several simulation studies have been performed or supervised and one of
the experiences is that people in general have difficulties keeping track of
the documents pertaining the simulation study. There is a lack of structure,
naming conventions, version handling and CM. Time is thus spent cleaning up
the mess created and restoring lost information.

Utilizing an SCM system facilitates the task of keeping track of documents.
All documents in a project are related to each other in one way or another and
should therefore be under CM control. The methodology strives to keep all
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project documents under control for the entire life cycle of the simulation
model. CM is thus a vital part of the methodology. As stated by Paulk (1998),
a small project might not require a CM group or a CCB, but CM and change
control are always necessary.

The concept that all documents in a project are part of a configuration
can be extended further. Most documents are generated using some tool and
different versions of a tool might not be compatible. To avoid future problems,
notes on the working environment, simulator version, etc., is documented. In
short, anything that affects the simulation study should be under CM control.

10.3.2 Level 3 Key Process Areas

The key process areas at Level 3 address both project and organizational is-
sues, as the organization establishes an infrastructure that institutionalizes
effective DES processes and management processes across all projects. De-
scriptions of each of the key process areas for Level 3 are given in the following
sections.

Organization Process Focus

The purpose of organization process focus is to establish the organizational
responsibility for process activities that improve the organization’s overall
process capability. The result of the organization process focus activities is a
set of process assets that are used by the projects.

• Process development and improvement activities are coordinated across
the organization.

• The strengths and weaknesses of the processes used are identified rel-
ative to a process standard.

• Organization-level process development and improvement activities are
planned.

Organization Process Definition

The purpose of organization process definition is to develop and maintain a
usable set of process assets that improve process performance across the pro-
jects. These assets provide a stable foundation that can be institutionalized
via mechanisms such as training.

• A standard DES process is developed and maintained.

• Information related to the use of the standard process by the projects is
collected, reviewed, and made available.
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Training Program

The purpose of training program is to develop the skills and knowledge of
individuals so they can perform their roles effectively and efficiently. The or-
ganization is responsible for training, but the project should identify required
skills and initialize training when necessary.

• Training activities are planned.

• Training for developing the skills and knowledge required to perform
management and technical roles is provided and performed.

Integrated Management

The purpose of integrated management is to integrate the engineering and
management activities into a coherent, defined process for a specific project,
which is tailored from the organization’s standard process and related process
assets. Integrated management evolves from project planning and audit and
review at Level 2.

• The project’s defined process is a tailored version of the organization’s
standard process.

• The project is planned and managed according to the project’s defined
process.

Simulation Engineering

The purpose of simulation engineering is to consistently perform a well-defined
modeling process that integrates all the modeling activities to produce correct
models effectively and efficiently, see Section 10.10.

• The activities are defined, integrated, and consistently performed to pro-
duce the model.

• Reusable modules are kept consistent with each other.

Intergroup Coordination

The DES process should be integrated, coordinated and controlled with other
groups, e.g. manufacturing process engineers, SFCS programmers, etc. The
purpose of intergroup coordination is to establish a means for the simulation
engineering group to participate actively with the other engineering groups so
the project is better able to satisfy the customer’s needs. Intergroup coordin-
ation extends beyond simulation engineering.

• The customer’s requirements are agreed to by all affected groups.
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• The commitments between the engineering groups are agreed to by the
affected groups.

• The engineering groups identify, track, and resolve intergroup issues.

Peer Reviews

The purpose of peer reviews is to remove defects from the model early. An
important corollary effect is to develop a better understanding of the model
and of the defects that can be prevented. Peer reviews have proven highly
effective in detecting errors prior to test. Reductions in coding errors of as
much as 80 percent have been shown (Conwell et al. 2000).

• Peer review activities are planned.

• Defects are identified and removed.

10.4 Simulation Study Participant Roles

The participants in a simulation study are here dubbed customer, domain
experts, and simulation engineers. For simplicity, the customer and user roles
have not been separated and the project manager is implicitly understood
to exist. The manager’s responsibilities have been discussed in the previous
sections.

The customer is responsible for formulating the objectives and require-
ments of the simulation study. The simulation engineers and domain experts
aid in this process to avoid objectives not realizable.

Since a simulation study usually cross traditional domain borders the do-
main experts come from several domains, e.g. production engineers, man-
agers, operators, etc. The domain experts are the suppliers of the information
required to build, verify and validate the simulation model.

The simulation engineers compile the information to generate the simula-
tion model. The simulation engineers also build, verify, validate, and execute
the simulation model. The simulation engineers work tightly together with
the domain experts to create the conceptual model and when verifying and
validating the simulation model.

10.5 Simulation Model Properties

This section presents desired model properties that can be used as a checklist
in the functional, conceptual and design phases.

Several considerations can be made to enhance the model’s usability over
time. The model and it’s components should be general, i.e. the range of
utilization should be as large as possible. The simulation model should, if
possible, be domain independent, e.g. a model can be used both for testing the
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control logic in a system as well as assessing the performance measures. A
life cycle analysis is made to evaluate what the simulation model will be used
for. However, the scope should be as narrow as possible to reduce complexity.

When appropriate, the simulation model should be made extensible. For
instance, commonly a part of a manufacturing system is studied and it might
be of interest to extend the model later to include other parts, as described
in the BT case studies. Thus, when working with models incrementally or
modular models, consistency is vital.

A model should be efficient, i.e. the model’s ability to efficiently support
problem solving and reasoning without the need for any transformation. The
model should be perspicuous, i.e. easily understood by the participants in the
simulation study and especially those affected by the simulation study. Here
the graphical presentation of the model is one of the important properties
(Savén 1995) and then of course the documentation. It is to be considered what
it is worth spending hours on graphic appearance. It is also to be considered
how output data should be collected, analyzed and presented.

A model should be complete in that it contain all the information necessary
to solve problems that it is supposed to be able to solve (Vernadat 1996). The
simulation is also supposed to be accurate, i.e. yield accurate assessments of
performance measures and mimic the systems dynamic behavior accurately.
It is to be considered what the required accuracy is since there is no point
in investing in productive but expensive production equipment. Nor is there
any point in investing in cheap equipment that will reduce the manufactur-
ing system’s overall performance. The simulation model accuracy will have
implications in the risk analysis of the investment, shown in Figure 10.2. It
should be noted that simulation accuracy is hard or even impossible to de-
termine if audits and reviews of previous cases have not been performed.

10.6 Simulation Study Properties

A simulation study should be complete, i.e. answer the questions posed in the
functional phase.

A simulation study should be fully documented. This includes not only
the model, but also what the model is based on, methods, etc. All documents
pertaining the simulation study should be maintainable if the model is to be
used over time.

The former properties are closely related to the credibility, i.e. the simu-
lation study participants and those affected by the simulation study should
believe in the results which is vital for successful implementation. It is be-
lieved that active participation, and thereby verification and validation of the
simulation study, is a vital prerequisite for credibility. When the participants
in the simulation study actively have supplied and reviewed the information
that constitutes the simulation study they are bound to believe the results
assuming that they have confidence in the technology behind the results.
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Figure 10.2: Model accuracy effects on the risk of the investments studied. The
model accuracy is a function of logic accuracy and input data accuracy. Note
that the actual system performance is within the actual model accuracy limits
in both cases. Similarly, the required performance is below the lower predicted
accuracy limits in both cases.
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A simulation study should be delivered on time at a low cost. The cost of
a simulation study does not only consist of the time spent, but also includes
the infrastructure required to perform a simulation study, e.g. simulator, PDM
system, translators, training, input data collection systems, etc.

10.7 Simulation Methodology Properties

A simulation study methodology should be reusable, i.e. should be transfer-
able from one project to another (Holst, Randell & Bolmsjö 2000a). A sim-
ulation study methodology should be life cycle supportive, i.e. support all
phases in the simulation study which may include all phases from the func-
tional phase of the system to the final removal of that system. It may also
be a limited study that is used for a limited time of the studied systems life
cycle. A simulation study should reduce nominal time consumption and lead-
time consumption for the manufacturing system development process. This
can not always be achieved, but it is argued that the quality of a simulation
study results are higher than if simpler methods are used and thus achieving
a price/performance advantage. As a consequence of the lead-time require-
ment, a simulation study methodology should support concurrency. Further-
more, a simulation study methodology should allow performance in distrib-
uted and heterogeneous environments.

10.8 Documentation

The proposed methodology is based on continuous and incremental gener-
ation of documents where the documentation is a vital part. Each baseline
concluding one phase is the base for the next phase. Accordingly there are no
separate phases for documentation and reporting.

Here the term document is used in a general way, i.e. a document can be a
project plan, input data file, model file etc. A document is thus not the same
as documentation that is a document describing a part of a document or one
or several other documents.

Documentation is time consuming, but necessary during the life cycle of a
simulation study. It is believed that, with a life cycle view, the net time is re-
duced when proper documentation procedures are followed. Documentation
lives over time as opposed to verbal communication.

• The documentation communicates the current state of the project among
the project team members and spreads the accumulated knowledge in
the organization.

• The documentation communicates results and findings.

• Documenting general or specific experiences facilitates future projects.
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• The documentation ensures model quality and credibility by being open
for discussion to all project members. Documentation is also required
in the verification and validation process.

• Documentation is a protection against large time and knowledge losses
in case of personnel turnover.

• Maintaining a simulation model without documentation is difficult. Doc-
umentation of the model and all things that affect the model, e.g. input
data, requirements etc., facilitate maintenance and CM ensures that all
documents are traceable.

10.9 Verification and Validation

As pointed out by several authors, verification and validation should not be
viewed as separate phases, but as continuous actions carried out through-
out the project. Therefore there are no separate phases for verification and
validation in the process described in Section 10.10.

By continuously documenting and evaluating the simulation project with
increased granularity, the model is to a large extent documented, verified and
validated when finished.

10.10 Simulation Study Phases

The phases presented here are similar to the phases presented by e.g. Banks
et al. (1996), Law & Kelton (1991) and Harrell & Tumay (1995). A few phases
have been added and some activities are performed continuously. The pro-
posed DES process is presented with IDEFØ notation in Appendix A and is
commented in more detail in the following sections.

The simulation study have been divided in the following phases:

1. functional phase,

2. conceptual phase,

3. design phase,

4. realization phase,

5. experimental phase,

6. implementation phase, and

7. review and learning phase.
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I want to make clear the difference between what is referred to as an iterat-
ive modeling process by e.g. Pidd (1996) and Harrell & Tumay (1995) and what
is here referred to as an iterative modeling process. It is here stated that the
simulation study should not be an iterative process, instead it should follow
the phases presented here to the extent possible. However, in the conceptual
and design phases the work performed is very much iterative as described
in Willemain (1994) and Willemain (1995). It is also recommended to look
ahead to assess the implications of a decision in the later phases. However,
the simulation model should not be built iteratively and incrementally. The
argument is that what takes a few minutes or even seconds in a human brain,
takes hours to implement in a simulation model. Thus, if the model building
would be performed iteratively it would take hours to rebuild the model for
each iteration.

Although presented here as a linear development one realizes that changes
of the baselines might be needed. This results in change requests and then
in updates of the baselines. However, the whole point of the methodology is
to reduce the number of back-steps by investigating everything thoroughly in
advance. By formally issuing change requests, their refusal or acceptance and
implementation is under control. If a change request is accepted for imple-
mentation the activities proposed here are performed for the change. That
is, each change has to go through all activities necessary up to the current
point in the process. This might look like overdoing things. However, if one
of the relations in between requirements and how to solve that requirement is
neglected serious problems might arise in the realization phase or the experi-
mental phase. It is here implicitly understood that the CCB consists of at least
one representative from each of the parties in the simulation study team.

An important aspect of the proposed methodology is that the documents of
the simulation study are created and updated continuously. That is, the study
begins with problem identification and ends with a complete set of documents.
For each phase documents are added, extended or edited. Each phase ends
with a so-called base line. A base line is a verified set of documents that
constitutes the requirements and the information required for the next phase.

In the audits it is considered whether the simulation study should be dis-
rupted, aborted or continued, based on the current situation and the informa-
tion collected so far in the study. Often enough information is revealed during
the early phases to base a decision on. For instance can simple assessments
reveal a major bottle neck and possible solutions. The study can then be
disrupted until the effect of the implemented enhancements have been eval-
uated, or canceled if there seem to be no point in continuing the study. The
study can also continue, but with other methods than DES, if it is revealed
that more feasible tools can be used to achieve the objectives of the study,
see Figure 10.3. The latter approach can still be performed within the same
methodological framework.
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Figure 10.4: Resource allocation in the simulation study.

10.10.1 The Functional Phase

The functional phase is typically a requirements document. There should be
consensus on the requirements between the simulation engineer, domain ex-
perts and customer. The responsibilities of the customer and domain experts
are not restricted to this phase, but several phases, shown in Figure 10.4.

When the simulation study is a subprocess of the manufacturing system de-
velopment process, the base requirements document is produced in that pro-
cess, see Figure 10.5. The integrated simulation study can then be developed
according to the incremental concept described by Randell et al. (1999) where
the model building starts at a rather abstract level and ends with a highly
detailed model, shown in Figure 10.6.

Simulation
study

process
development
system
Manufacturing

process

Figure 10.5: Integrated discrete-event simulation study. Adopted from Holst
(2001) and Klingstam (2001).
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Figure 10.6: Incremental development of a simulation model with increased
granularity.

In the audit it is evaluated whether stated requirements are complete, con-
sistent and unambiguous. The functional baseline is the functional basis of the
entire project and thus defines what is to be established. Experience shows
that this phase seldom is performed to the level required.

The functional baseline should contain all the information required to pro-
ceed with the project. Typical sections in such a document are shown below.

Background The background section contains a short introduction to the pro-
ject and the reasons for the existence of the project. The purpose is to
gain a common view of the reasons for performing the project and put
it into context.

Problem statement What is the project to solve? The problem statement
should be rather narrow in scope and well defined. Ideally the problem
statement focuses on a few measures such as throughput, cost per part
or WIP with regard to a set of parameters such as scheduling policies,
buffer sizes, product mix etc.

Objectives Objectives are typically to improve the studied system in one way
or another, validate its functionality or validate performance before im-
plementation, e.g. increase throughput with 25%, reduce WIP with 25%,
validate SFCS functionality, estimate cost per part etc.

Scope The scope declares under what circumstances the objectives will hold.
Also considerations about other usages of the simulation model is con-
sidered, see Section 10.5.

Organization Documentation of the project organization and the individual
tasks.
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Project plan Documentation of the expected consumption of resources, nom-
inal time, lead-time and how consumption of resources and time is dis-
tributed over time. It should be noted that the expected consumption
of resources is only a fair guess at this stage. The project plan may be
revised in later phases due to a better understanding of the studied sys-
tem and its implications on the required effort. When higher levels in
the CMM have been reached, better assessments can be made without
having to revise the plan in later phases.

Materials and Methods Documentation on how the study will be performed
thus including references to process description, methods, and tools to
be used, their versions and the environments in which they are to work.
This avoids a number of unnecessary problems and must be dealt with
especially when there are several developers in distributed and hetero-
geneous environments.

When performing the functional phase it should be realized that even small
changes in the requirements might have large consequences for the model
design or implementation. If requirements are unclear and discovered late
or if changes of the original requirements are put forward at a late phase in
the development process, the total development time might increase consid-
erably. It has been noticed in the performed case studies that, by producing
documentation, the simulation study team members are forced to deliver in-
formation that is complete, consistent and unambiguous. Verbal information
and requirements contain implicit details and are put forward in a context
that is lost in later stages of the study. Furthermore, written documents are
an efficient way of communicating between team members over time.

It has been experienced that the performance measures commonly used
for the studied system are not always appropriate. It should be considered
whether the measures really give a good picture of system performance. In
some cases measures are used by convention and are not always related to
company goals. A classic example that has been experienced in practice, is the
factory that is to produce x tons of nails per hour. With a product mix with
a large portion of small nails, this measure will be low although profits might
be higher for small nails than for large ones. If this is used as a performance
measure, profits might suffer considerably after implementation of simulation
results. In other words, a simulation study only gives answers to the questions
posed in a certain context. If the wrong questions are posed the answers are
wrong too.

10.10.2 The Conceptual Phase

The conceptual phase is performed to map the system under study into a con-
ceptual model describing the system variables and entities and their relations.

In the methodology proposed here, the documentation is generated before
the actual model is built. This effectively avoids the problem of non-existent or
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poor documentation. Furthermore, the documentation itself is what the model
and the code is generated from, thus facilitating verification and validation.

Vernadat (1996) identifies two different approaches to collect information
for enterprise modeling which applies equally well for DES modeling: inform-
ation collection by group meetings and information collection by interviews.
Experience shows that the latter approach provides results of the same quality
as the first in a much shorter period of time. In the first case study at BT, see
Chapter 8, the first approach was applied due to the training requirements.
However, it was discovered that to much time was consumed in that project
and in the second case study, see Chapter 9, the number of meetings where
all or most parties was gathered, was reduced considerably and so was the
development time.

A third approach can be used when DES has been used for some time and
Level 3 in the CMM has been reached. When participants in the simulation
study are well acquainted with the methods, what information to collect, and
how to document that information, the conceptual phase can be performed
concurrently by the participants. Such an approach will speed up the process
even more.

During the conceptual phase extensive communication with the domain
experts is required. The domain experts supply information during the con-
ceptual model phase and verify the conceptual model during the audit. Com-
munication across domain borders is of importance since the domain experts
usually have different views of the same entity studied.

As pointed out by Lee (1999a), it is useful to establish a set of naming
conventions at an early stage. Advantages of using naming conventions are:
consistency, ease of identifying entities and ease of collaboration. The nam-
ing convention is developed further in the design phase. In the presented
case studies, naming conventions was established early in the projects. Sim-
ilarly it is useful to develop a glossary of terms used when communicating.
Sometimes the same terms have different meanings depending on the indi-
vidual or different terms may have the same meaning. A glossary is a way
of avoiding such problems. As DES maturity grows, the glossary will become
institutionalized.

When designing new systems it is important that this phase contains a cre-
ative process. In the creative process different solutions are proposed and
roughly specified. Such a creative process creates a number of possible solu-
tions of the system to be. The solutions are then matched with the functional
baseline and results in a few possible scenarios of the system to be. Several
scenarios complicate the following steps and phases. However, the scenarios
typically has the same components but in different configurations or differ-
ent components in similar configurations. Modeling several scenarios is thus
facilitated considerably by modularization.

In the description of the conceptual model document below, some of the
items are defined in more than one place. Where to describe routings are
dependent of the tool used and the context. AutoMod, for instance, is part
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oriented and the routing is described for the part while QUEST is element ori-
ented and describes the routing for each part at each object. Thus, depending
of the kind of simulation tool used, routings are specified either for the parts
or for the elements, but not both.

The description of each object in the system does not necessarily have to
be fully defined in the conceptual phase. The conceptual baseline should not
contain more information than is required for the design phase. The miss-
ing information fields are left empty as a checklist for later phases. It is, for
instance, unnecessary to specify all times at this stage since such studies re-
quires much resources and could therefore be left out until required. It is,
however, of importance that the availability of the information is secured to
avoid modifications of the model at a later stage. How the final model is imple-
mented is to a large extent dependent of the input data available. Therefore,
this is the right time to find the input data sources, their content, format,
etc. without collecting the input data. Especially, an evaluation of the inform-
ation content is performed to assess e.g. dependencies, which implies that
pre-evaluations of data sometimes are necessary.

The system is a complex network of objects that is difficult to describe
and document. In the performed projects the conceptual model has been de-
scribed in textual form. Textual information is comprehensive but difficult to
browse especially when projects are large, therefore it is important to have
a logical structure of the document, e.g. a structure that follows the material
flow. IDEFØ, IDEF3, flowcharts and similar methods can be used to comple-
ment the written text. Graphic information is easier to communicate which is
important when discussing the conceptual model with e.g. domain experts.

The same set of questions can be posed to several different domain experts,
each with their own view of the studied system. It has also been noticed that
the same question can get different answers from the same person over time.
This can be explained by that posing the question, makes the person think
about it a while and thus get a more detailed view of the question. Another
reason is probably that, as a project proceeds, new information becomes avail-
able to all parties resulting in a new answer the next time the question is posed.
This is one of the reasons why it is so important with documentation and that
all parties verify documents. The documents and the review of them are a
vital part in a learning organization.

Temporary Objects

The section on temporary objects (Pidd 1992a), usually referred to as parts,
should contain a short description of the part and it’s purpose, routings, and
where applicable, sequences, IAT (Inter Arrival Time), IRT (Inter Request Time),
and geometries. When attributes are used they should be described with their
type, purpose, and planned usage. Attributes are typically used to control
routes, processing times, etc. in the elements processing the part.
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Permanent Objects

The permanent objects section should contain a short description of the ob-
jects and their purpose.

The object logic is described, possibly including a description of interac-
tions with other objects. The object logic description includes:

• initialization logic,

• process logic, i.e. how to process parts depending on what part, system
state, part attributes or object attributes,

• route logic, i.e. where to send parts, and

• request logic, i.e. where to require parts from.

Schedules applied are described as well.
Process descriptions specify e.g. times, restrictions, requirements, inputs

and outputs. In the case of transport objects speeds are defined instead of
times. The different processes can be cycle, setup, load, and unload.

Failure and repair processes are described by the time scale they are defined
on, distribution assumptions or input data sources, and when applicable, labor
requirements.

Times and speeds should be described with their dependencies, auto cor-
relation and inhomogeneities if existent.

All attributes used are described with their type, purpose, and planned
usage.

System Logic

The system logic describes the permanent objects that in some way affect or
control objects, but does not process parts. Each object should have a short
description of the object and it’s purpose. The detailed description of the ob-
ject is context dependent and not discussed here. Typical objects are planning
systems logic, scheduling systems logic, SFCSs logic, AGV (Automated Guided
Vehicle) control systems, material handling equipment control logic, organ-
izational logic, i.e. operator behavior, and interactions with the surrounding
system.

10.10.3 The Design Phase

A good strategy during all development is to design a good model structure
(as pointed out by e.g. Asklund 1999). That is, limit the dependency between
the developers, especially when they are dispersed geographically.

During the design phase the overall design of the model is described and the
conceptual baseline is filled with model design information, i.e. it is described
how conceptual objects will be implemented.
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File names and the directory structure is specified and the system is divided
into modules, i.e. the implementation infrastructure is defined.

This is a phase that consumes little time, but much rework is avoided in
the realization phase, assuming that the design is conceptually verified. Espe-
cially, no simulation model building is performed in this phase.

When there are several developers it is obvious that a design baseline is
required. A design baseline is also motivated in single developer projects
since writing down the design will force the simulation engineer to consider
the design and implementation of the model beforehand, which result in a
structured model. Furthermore, maintenance of a model is far simpler if the
overall structure of the model can be reviewed.

Investigating and designing before coding, not during coding, can avoid a
whole lot of work. An experienced simulation specialist will look ahead one
step and detect future implementation problems. For instance, being well ac-
quainted with the simulation tool used, details that are difficult or impossible
to implement is detected and the design is modified accordingly.

At the lower maturity levels it is not until the end of the design phase it
is possible to make a more correct project plan. At Level 4, when the pro-
cess has been quantified, enough experience has been gathered to make such
assessments earlier.

Model Design

The simulation model design baseline typically contains three sections (Babich
1986):

• a decomposition with modules and interfaces,

• descriptions of the modules, and

• descriptions of the interfaces.

Definition of interfaces will allow interchangeability of versions of modules
and thereby facilitate CM (Babich 1986), concurrent development and incre-
mental development. Each module is designed in increasing detail until there
is a detailed description of each object in the model.

For DES models an interface between two entities in a model or between
two modules is typically described with:

Connection The type of connection, i.e. push or pull. Note that the interface
description should not contain what objects to connect to. The interface
only describes how the connection works.

Parts Definitions of part types that can pass through the interface and the
number of parts if batched.

Attributes Temporary object attributes.
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Methods If other objects need to determine the state, e.g. current content,
means to do that should be supplied. Speaking in object oriented terms
this can be referred to as a method (Rumbaugh, Blaha, Premerlani, Eddy
& Lorensen 1991, Stroustrup 1991).

Variables Common global variables used are described and whether they are
read or altered. It should be noted that what is considered good pro-
gramming avoids global variables to the extent possible.

There are usually interfaces to other systems than simulation models, e.g.
data sources. These interfaces also have to be described and documented. An
example of an interface to an external data source is given in Chapter 14

Experimental Design

During the design phase not only the design of the model should be performed
but also the experimental design with respect to the functional baseline. Ex-
perimental design put requirements on the model design and it is therefore
suggested to place it in the design phase.

The experimental design in this phase is limited to the details that affect the
model design, e.g. what experiments to perform, parameters and variables that
should be traced and how they should be traced. The detailed experimental
design is done in the experimental phase.

Directory Structure and Naming Convention

It is desirable that a structured and comprehensible naming convention is
used. The naming convention is expanded from the incipient naming conven-
tion created in the conceptual phase. A well defined structure and a naming
convention effectively avoids name clashes and makes all modules, objects
and documents easily identifiable especially when distributed and concurrent
development is performed.

In the case studies a hierarchical naming convention has been used with
a structure as in ModuleObjectParticular, e.g. RbRobot1Cyc for the cycle
process of robot 1 in the robot line module.

The files in a module should be placed in such way that the configurations
are stored for all documents in that module. A hierarchical directory struc-
ture is easy to use and is attuned with how e.g. CVS stores configurations. The
CVS tag mechanism works recursively through subdirectories. Thus, placing
all files related to a module in one directory will assure that tagging only af-
fects the files in that module and the sub-modules. An example structure that
works well with CVS and the documentation method described in Chapter 11
is shown in Figure 10.7.
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model/
documentation
include_files
model_files
source_files
input_data
output_data
macros
module_1/

documentation
include_files
model_files
source_files
input_data
output_data
macros
submodule_1_1

...
module_2

...

Figure 10.7: Directory structure example.

10.10.4 The Realization Phase

During the realization phase the model is built, verified and validated. The im-
plementation of the model is just an extension of the design baseline created
earlier. With automatic extraction of documentation from the source code
documents, see Chapter 11, the design baseline is merely filled with imple-
mentation details. In this phase the input data is collected as well.

Building a basic model is easy and usually only takes a few hours, so how
come simulation projects tend to consume hundreds of hours? First of all, the
modeling time is only a part of the total time consumed in a simulation study
(see e.g. Trybula 1994, Umeda & Jones 1997). Secondly, the time to replicate
the complex logic commonly found in manufacturing systems tends to take
time to model. Thirdly, and most important, debugging tends to consume
large amounts of time. It should be noted that the debugging effort is large
irrespectively of whether the model is built entirely from the GUI or entirely
from scratch with a simulation language. One can argue that the code used
when using the GUI is debugged and that the effort therefore should be re-
duced. That is true to some extent, however, there are several behaviors not
anticipated that are well hidden in the built in code.

Verification and validation of the simulation model is made together with
domain experts and the customer. It usually only takes a few hours to step
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through a model and compare what the customer and domain experts believe
is right and how the model is built. If the other phases have been performed
correctly there should be no or little changes required.

10.10.5 The Experimental Phase

During the experimental phase, execution, analyzes and documentation of res-
ults and findings, is performed.

The model is executed to show the customer and domain experts how the
model work and early results are presented. The customer and domain experts
are now able to come with suggestions on how the experiments should be
performed. System behaviors not anticipated might generate new experiment
scenarios at this stage. Note that the new scenarios are not supposed to change
or add new parameters to be traced defined in the experimental design in the
design phase. Not anticipated efforts would be required if additional tracing is
required. This is the kind of added work that has been avoided by the careful
audits in the previous phases.

Although the basic experimental design was made in the design phase, the
details are highly dependent of the dynamics in the simulated system. The
number of runs, run lengths and warm-up periods are thus determined at this
stage.

Documentation of simulation results should be readable and understand-
able by all affected by the results, including shop-floor personnel when applic-
able. If the results are presented in an obscure or complicated way, credibility
will suffer and implementation might be postponed or never occur.

10.10.6 The Implementation Phase

The implementation phase concludes the active work in the project, or sub-
project if incremental development is employed (Randell et al. 1999). The
performance of this phase is outside the scope of this thesis.

10.10.7 The Review and Learning Phase

Whether there is an implementation phase or not, a review of the simulation
study should be performed. Issues here can be methods, tools, organization,
etc. that are subject for improvement.

When the implementation is concluded an evaluation of real system per-
formance can be compared to the simulation performance estimates. With this
information it is possible to enhance prediction validity in future projects.

10.11 Discussion and Conclusions

Most of the time in a simulation study is used for other things than generating
a simulation model. Thus the greatest potential of improving the process is
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in all the other activities which is at focus here.
The proposed DES methodology is based on the CM methodology and the

basic concepts of that methodology has been retained. Applying CM, in this
case SCM, has been an invaluable help during the simulation studies. Perform-
ing CM using manual routines is possible, but hardly practical.

That quality assurance saves both time and money is a well known fact
from manufacturing. Producing a part of bad quality and sending it down-
stream will cost time due to rework or scrap. The analogy is then that the
operations performed in a manufacturing process and the parts produced
are in this context the activities in the simulation study and the documents
produced respectively. Quality assurance through the continuous audits and
reviews is a another basic property of the methodology. The efficient per-
formance of the audits is facilitated through the use of the continuous and
incremental creation of documents. The quality of the audits is secured by
the participation of the parties in the simulation study.

Another strategy to reduce time consumption has been to move all labor in-
tensive activities, i.e. simulation modeling and data collection, forward in time.
Moving those activities forward in time does not only reduce the amount of
rework that otherwise might be required, it also moves forward the decision
whether simulation will be used for analysis or not. Since it is the same activ-
ities that are performed in the early phases whether simulation will be used
or not, this decision can be made after the conceptual baseline. However, the
early phases are proposed to be performed in a way that makes simulation
possible in the later phases, i.e. information on e.g. dynamic behavior should
be documented as well. That is, no broad distinction is made between a man-
ufacturing system development process performed with simulation and one
that is performed without simulation, see Figure 10.3.

It is not too uncommon that simulation studies are initiated at a late stage.
For instance, in the Profilgruppen case study the simulation study started too
late diminishing the implementation of some of the results. The conclusion
is therefore that it is preferred that the simulation study is initiated when the
manufacturing system development process is initiated if the results should
be usable. Since both processes share the same activities in the first phases,
the conclusion is that there is no reason not to initiate the simulation study
from the start. That is, the added effort required to perform a simulation
study is not as big as might seem. Most of the activities have to be performed
anyway. The added effort is then model building, simulation and analysis.

It is my opinion that a simulation study that is performed and then not
used again is to some extent a wasted study. Although great improvements
can be made during a simulation study, it is continuous improvements that
will result in a state-of-the-art manufacturing system. Simulation can be a
powerful tool if such an improvement strategy is employed. Furthermore,
since the large bulk of the work have been performed in the first stage of
the simulation study, only minor efforts are required to use the model for
the manufacturing systems entire life cycle. When performing the succeeding
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stages of the study, the same methodological framework is employed.
The presented methodology is incremental in that so-called design objects

are turned into configuration items. I other words, each step in the phases
generates a requirement for the next step that is then fulfilled and in turn res-
ult in a requirement for the next step, and so on until completed. Appendix C
presents a trivial example.

The methodology focuses on the phases that precede the realization of the
simulation model to reduce the time consumption in those phases as well as
reducing the time consumption for realization. However, when studying the
time consumed during modeling, experience shows that most of the time is
spent on debugging rather than building the model. The methodology does
not address this problem since it is highly dependent on what simulation tool
used, but the problem is relaxed through peer reviews.

Another strong point in the proposed methodology is the emphasis on
reducing communication among team members. This was an expensive ex-
perience in the first case study at BT. Documentation and modularization is
the key factors affecting the amount of communication required. The com-
munication is moved from the later phases to the early phases. In the early
phases all parties are to agree on what is to be done and who is to perform
it. In the later phases the actions to be performed are well defined and thus
little communication will be required.

As can be seen in Table 10.2, the key process area activities are performed
in one or several phases in the DES process.

To be able to work actively with the CMM it is believed that simulation
expertise should be kept in a dedicated department. It would be difficult to
develop and maintain the expertise if simulation resources were dispersed
in the organization. This statement is supported by Hirschberg & Heitmann
(1997) that states that the most important factor for successful simulation is
professional and competent execution.

It is recommended to start by documenting the as-is process instead of
the to-be process. Mandating top-down a to-be process is a common recipe
for failure. If there is a focus on process management, the as-is and to-be
processes eventually will converge. The purposes of documenting the process
are (Paulk 1998):

• to communicate,

• to understand (if you can not write it down, you do not understand it),
and

• encourage consistency.
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Table 10.2: Key process areas mapped into the DES process phases. Not all key
process areas are represented as they are in the organization category and are
performed over time independent of the projects performed.
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(2) Repeatable
Requirements management •
Project planning •
Status accounting • • • •
Subcontract management • • • • • •
Quality assurance • • • • • • •
Configuration management • • • • •
(3) Defined
Integrated management •
Simulation engineering • • • • •
Intergroup coordination • • • • • • •
Peer reviews • • • •



Chapter 11

Documenting Discrete-Event
Simulation Studies

Here a method for documenting the simulation model is presented that is
designed as an extension of the methodology presented in Chapter 10. The
chapter is based on Randell, Holst & Bolmsjö (2000).

The basic idea for the presented documentation package is that the docu-
mentation of a piece of code and the code itself is a unity, i.e. a configuration,
and should be in one place to avoid the double maintenance problem. If code
and documentation is separated the documentation is bound to lag behind the
code development. Furthermore, it is easier to find the documentation for a
piece of code if it is in the same place as the code. To facilitate the document-
ation process a package was developed to extract the documentation from the
source files and generate formatted documentation.

The requirements for the described method for documentation of a simu-
lation study are summarized below.

Formats The method should be able to generate hypertext and printable out-
put. During development, hypertext documentation facilitates online
retrieval of the latest committed version of the documents. Hypertext
documents on the intranet or Internet facilitates development commu-
nication in distributed and heterogeneous environments. When a project
or baseline is concluded, printed documents are usually required.

HTML can be viewed on almost any computer but generates poorly format-
ted printed output. PS (PostScript) is good for printed output but can not
be used as hypertext. PDF has the benefit of being a hypertext format
making it easy to browse and is also formatted to generate a good prin-
ted output. Furthermore, PDF files can be viewed on several platforms
making it ideal.

Scalable The method should use tools that allow scalable generation of doc-
uments, i.e. there should be no upper size limit.
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Modular The method should support modular documents and be flexible
enough to include or exclude text or documents as the project goes on.

Configurable It should be easy or automatic to generate different versions of
the documentation for different usages. Executives need a short sum-
mary of the project while developers need an extensive documentation
with all the details both for quality assurance and for later maintenance.

Simple The tools used for documentation should preferably be well known
to the developers and if not, at least easy to learn. The generation of
the different formats should be easy and fast so that the latest versions
always can be kept updated.

Heterogeneous In the industry today most of the computers used are PCs
running MS-Windows of some flavor. However, there are other operat-
ing systems and platforms used making heterogeneous environments an
issue. The portability issue can be divided into generation of document-
ation and viewing documentation. If possible, the method for generating
the documentation should be portable. The generated output formats
should be portable between different environments for easy distribution
of documentation.

One source The documentation should be generated from one source, i.e. no
cut-and-paste should be required, thus avoiding the double maintenance
problem.

Transparent The tools used to generate the documentation should be trans-
parent to the development environment used.

11.1 Documentation Method Properties

LATEX and add on packages were used to tackle the documentation require-
ments. To generate the LATEX inputs the CodeDoc tool was developed. Using
different packages allowed automatic generation of HTML, PS and PDF docu-
ments. The Make (Feldman 1979) utility was used to keep track of the config-
uration and for building documentation.

All the tools and packages used together with CodeDoc are shareware dis-
tributed under the GNU Public License. As other GNU software they are of
high quality and are available on almost any imaginable platform.

In the developed method each developer responsible for a module is as-
signed a module directory where the Makefile is placed, see Figure 10.7. The
Makefiles are arranged hierarchically and any portion of the documentation
can be generated from any level by working down the hierarchy. The Make
utility only generates new documents for the sources that are updated since
the last document generation, reducing build time.

The approach is modular where the modules and interfaces are described
by the directory name, the document name and conditional compilation flags.
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The top level does not need to know how the sub levels have implemented the
generation of the documentation. The top level only need to know what files
to include and how to generate those files. The same holds for each lower
level in the documentation hierarchy.

The generation of the documentation is scalable and as many files of doc-
umentation and sources as needed can be added to form the final document-
ation.

Conditional compilation can be used to generate the entire project docu-
mentation in detail or a short summary.

11.2 The CodeDoc Tool

CodeDoc was developed to allow the code and the corresponding document-
ation resides in the same file, i.e. the source code. The basic ideas are similar
to DocStrip that is used to document and generate LATEX packages (Mittelbach,
Duchier, Braams, Woliński & Wooding 1999).

The developed CodeDoc tool is transparent to the development environ-
ment. The transparency is managed by using the comment characters of the
simulation or programming language used, in the case of SCL, ‘--’, and in the
case of C/C++, ‘//’. The comment characters of the language used are set
using a command line option.

The syntax of the CodeDoc tags is (with SCL comment characters):

--. Ordinary LATEX source

--(entity) The --( . . . ) sequence defines e.g. a procedure,
variable, constant or attribute

--/HEADING/ The --/ . . . / sequence defines a sub heading.

--{ The entity code is enclosed by two curly braces.
This code is excluded when the -v (verbose) com-
mand line option is not given.

--}

--[ Two brackets enclose code that is not excluded when
using the -v command line option is not given.--]

--<condition_flags> The current line is executed only if the flags are set

--<condition_flags Conditional execution begins with this line

-->condition_flags Conditional execution ends with this line

The condition_flags tags are currently not implemented.
An example of how a piece of documented SCL code would look like is

shown in Figure 11.1. The resulting formatted output is shown in Figure 11.2.
Note that each entry is automatically included in the table of contents and the
index.
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--(ExampleLogic)
--.\verb|ExampleLogic| performs a ... and returns ...
--.
--/SYNTAX:/
--[
--.routine ExampleLogic(InVar : type) : integer
--]
--.
--/ARGUMENTS:/
--.\verb|InVar| is a ...
--.
--/EXAMPLE:/
--[
--.var
--. RetVal : integer
--.begin
--. RetVal = ExampleLogic(InVar)
--.end
--]
--.
--/USES:/
--.\crossref{SomeRoutine}
--.
--/CAVEATS:/
--.This procedure only works when ...
--.
--/AUTHOR:/ Lars Randell (lrandell@robotics.lu.se)
--.
--/CVS:/ Revision: 1.5
--{
routine ExampleLogic(InVar : type) : integer
var

LocalVar : integer
OutVar : integer

begin
-- inline comment
LocalVar = SomeRoutine(InVar)
...
return(OutVar)

end
--}

Figure 11.1: Example of documented source code.
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ExampleLogic

ExampleLogic performs a ... and returns ...
SYNTAX:

routine ExampleLogic(InVar : type) : integer

ARGUMENTS: InVar is a ...
EXAMPLE:

var
RetVal : integer

begin
RetVal = ExampleLogic(InVar)

end

USES: SomeRoutine
CAVEATS: This procedure only works when ...
AUTHOR: Lars Randell (lrandell@robotics.lu.se)
CVS: Revision: 1.5

routine ExampleLogic(InVar : type) : integer
var

LocalVar : integer
OutVar : integer

begin
-- inline comment
LocalVar = SomeRoutine(InVar)
...
return(OutVar)

end

Figure 11.2: Example of formatted CodeDoc output generated in verbose mode,
i.e. with the code included.
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11.3 Discussion and Conclusions

The documentation extraction tool is developed for plain code. Many de-
velopers consider it simpler to develop models using a GUI. My view is quite
the opposite, at least when the GUI is a tool for building models instead of
a modeling tool. Well-structured code is easier to browse and comprehend
than trying to comprehend a model by using the GUI. Similarly it is easier to
build and comprehend a model using a programming language such as BCL.
The entire model is then easily viewed by browsing the code. The same docu-
mentation tool can then be used to document the BCL code and the SCL code
and thus can the entire simulation model be documented.

The right place for documentation of a simulation model is as ‘close’ as
possible to the object the documentation tries to explain. Furthermore, this
documentation should be simple to include in a simulation study report. The
support for such a strategy is, however, quite weak in simulation tools.

Whatever tool is used to facilitate the documentation of a model, in the
end it is the developers that has to change the documentation as they change
the code. Documentation of what has been done is not an effortless task and
requires discipline.

To fully integrate and utilize the documentation method the documents
generated in the conceptual, design and realization phases are partly stored
as documented source files that are continuously filled with more and more
information and finally the code.

The developed tool for documentation of sources has been used in a few
cases for documentation of SCL and C/C++ code. It has been experienced
that it is feasible and desirable to integrate code with the corresponding doc-
umentation. However, the tools are not simple enough for mainstream use,
thus the next step in the development of the methodology would be to build a
GUI that keeps track of the documents, their configuration and generates the
documentation with a few clicks. Another problem is that of using LATEX for
generating the documentation. LATEX is not a common tool for writing reports.
However, the principle the tool is based on, i.e. using tags in comments, is
generalizable. It should be possible to build a similar filter to extract docu-
mentation for e.g. MS Word using a Visual Basic script.

Since the code and the documentation of it is in one unit it is simpler to
reuse code and documentation in other projects. When the code is reused in
another project, the documentation of it is in place as well.



Chapter 12

Data Collection Framework

In Chapter 7 it became evident that most of the problems with producing a
high accuracy simulation model could be referred to the poor accuracy of the
input data.

In this chapter a classification of losses will be made that is used to define
time-scales. The different time-scales are used in different context to define
the failure processes and availability measures. The framework is then used
to specify how input data should be collected and analyzed.

12.1 Data Usage

This chapter should be viewed in the context of the life cycle of the manufac-
turing system, shown in Figure 12.1. Collection of data from the manufactur-
ing system can, and should, be used actively in many of the stages of the life
cycle. The goal of the data collection framework is to collect data that can
be used for a number of activities, of which one is input data for DES. Other
usages are online monitoring of the manufacturing system performance, ret-
rospective manufacturing system performance analysis, and continuous im-
provements of the manufacturing system. Data for different usages require
data to be collected with high granularity.

Managers need information on the system level to be able to monitor sys-
tem performance. They might also need information to set wages according
to some wage system.

Production engineers and operators require statistics to continuously im-
prove the manufacturing system and detect upcoming problems. Interviews
with production engineers have revealed that they would like to study data at
the sensor level to detect problems and their causes. Here it is proposed that
the causes of losses be collected which would provide the same information.

Manufacturing system developers should be able to predict cell and man-
ufacturing system performance of manufacturing systems using data from
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Figure 12.1: Usages of data in the manufacturing system life cycle.

existent systems. Data is used both for design of entirely new manufacturing
systems as well as for redesign of existent systems.

It became evident when analyzing the manufacturing system at Volvo that
it is important to take into account the dynamic behavior. The manufacturing
system was well balanced with little slack when using a static analysis. How-
ever, when the different failure processes were associated with the cells the
system became unbalanced due to different availabilities, hence the require-
ment of reliable statistics from similar manufacturing systems.

In discussions with Bengt-Göran Olsson at Volvo Car Corporation in Gothen-
burg, it was concluded that data has to be collected automatically to avoid the
unclassified stops. Ironically, Ingemansson (2002) concludes that the auto-
matic data collection should be complemented with manual entries. Short
stops are quicker to solve than register. However short the stoppages are, they
have a large effect on performance and should thus be collected (De Smet et
al. 1997, Kuivanen 1996). In conclusion, a data collection system should be
automated to the extent possible and manual entries are used when necessary.
The manual entries could be facilitated in that the system could propose a
number of possible stop codes based on the sensor information available.

Before input data becomes usable in a DES model the following steps has
to be performed;

Collection Input data is collected in the system under study at the granularity
level required.

Filtering Input data is then filtered or extracted to generate data samples that
can be used for input data analysis.

Analysis Parameter estimations and goodness of fit tests are performed to
generate appropriate distributions to be used in the simulation models.
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If this step does not succeed, empirical distributions or file driven dis-
tributions can be used.

12.2 Dependencies

The most common problem with input data is that it contains dependencies.
One of the major points of the presented framework is to generate input data
that does not have as many dependencies, i.e. it is more general than data
normally collected. Consider the data collected in the case study described
in Chapter 7. The TTR times included the time waiting for the operator to
arrive, i.e. there was a dependency between the repair times and the number
of operators. Furthermore, and perhaps more serious and deceiving, is the fact
that there will then be dependencies with all repair processes in the system
where an operator is required. If, for some reason, one of the repair time
distributions is changed the workload on the operators will change, and thus
will the wait time change for all repair processes in the system where operators
are required. To conclude, data collected with these kinds of dependencies
will only be useful when exactly the same system is modeled as where data
was collected from, i.e. data will not be as useful if the system is modified in
any way, which usually is the purpose of a simulation study.

12.3 Losses

When collecting data the causes of the losses are to be determined to the
extent possible. Examples of states are:

• busy

• idle

– idle due to starvation

– idle due to being blocked

– idle waiting for a signal from another entity or a control system

• setup

• down

– wait for repair

– repair

• tool change

• manual stop

• safety stop



124 Data Collection Framework

• preventive maintenance

• off shift or break

• shut off

The idle and busy states are required for correct analysis of the failure
distributions on the operative time scale. This is also the reason for including
the safety stop state. The wait for repair state is required to separate the wait
time from the actual repair time, which is used when the impact of the number
of operators and safety zone sizes are to be analyzed, see Section 12.5.

Losses can be classified along three dimensions. Firstly, losses can be in
control or out of control. The level of control depends on the cause and the
owner of the cause. Secondly, losses can be planned or unplanned. Thirdly,
losses are dependent of either a time scale or the number of cycles. The latter
is extremely important to be aware of, or the failure processes will be modeled
incorrectly and is thus the motivation for Section 12.4.

Typical causes of planned losses are: break, meeting, setup, and preventive
maintenance.

Synchronization losses can have the states: blocked, starved, and wait sig-
nal. Synchronization losses can be classified as static or dynamic. Static syn-
chronization losses are a result of static differences in average cycle times
between succeeding operations, usually referred to as slack. Dynamic syn-
chronization losses are generated by e.g. cycle time variance or delays gen-
erated by stops in upstream or downstream operations. Since dynamic syn-
chronization losses are dependent of several dynamic effects in the system,
both upstream and downstream, they can not be calculated analytically.

Unplanned losses independent of the busy time e.g. material starvation on
the line level, are handled separately since they usually are out of control and
not used for analyzes.

Unplanned losses dependent of the busy time can be said to be under control
in the long-term perspective. Typically preventive maintenance activities will
reduce losses and so might other productivity improving activities such as
reduction of setup times (Ericsson 1997). Failures are unplanned and usually
based on the busy time of an entity.

12.4 Time-Scales

In this section we will start with wall-clock time, subtract losses and end with
the busy time used for production. Each subtraction of a class of losses de-
scribes a new time-scale, shown in Figure 12.2. The different time-scales are
used for different purposes and can be redefined at will. To be able to use the
different time-scales in practice the states presented in Section 12.3 has to be
collected.

Ingemansson (2001) and Nord, Pettersson & Johansson (1998) present sim-
ilar classifications of losses. However, what is presented here is a framework
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Figure 12.2: Time-scales.

for how to collect data from a manufacturing system and extract times from a
database for usage with e.g. DES. By collecting detailed operations data from
a manufacturing system, time vectors for different classes of losses can be
generated for different purposes depending on how the system should be
modeled.

In order to put the time-scales in perspective in the context of the com-
monly used availability measures, Appendix B presents different availability
measures. They are presented because the way they are extracted is differ-
ent from the way data is extracted to generate the time-scales. Availability
measures are used to assess a component’s maintainability. However, when
assessing the total systems performance the losses included in the availability
has to be complemented with other losses as well. In summary, availability
measures are used to compare different competing components, while e.g.
throughput is used to assess the total system performance compared to an-
other competing systems performance. Both rely on the same set of data that
is treated the same way, but used differently.

12.4.1 Notations Used

A set of states is written as

Sj = {s1, s2, . . . , sn} ⊂ SΩ
where SΩ is the entire set of states defined for the system.
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Figure 12.3: Time Between for a set Sk on a time-scale defined by the set Sm.

Specific points in time are denoted

tSjk,begin/end

where the superscript is a set of states, Sj ≠ ∅, that might be a single state.
The subscript k is an index and begin/end is a specification whether the state
is entered or exited.

Time pairs that specifies when a set of states, Sj , have been entered and
exited is written as

tSjk =
(
tSjk,begin, t

Sj
k,end

)
An ordered vector of time pairs in a set of states, Sj , is written as

tSj =
[
tSj1 , t

Sj
2 , . . . t

Sj
n

]
The period of time in a set of states, Sj , is written as

T Sjk = tSjk,end − t
Sj
k,begin

and the vector of time periods is written as

TSj =
[
T Sj1 , T

Sj
2 , . . . T

Sj
n

]
On a time-scale described by a set of states, Sm, time between two success-

ive set of states in the set Sk ⊂ Sm can be written as

TBSk =∑T Smi ; tSkα,end ≤ tSmi ≤ tSkα+1,begin (12.1)

An example is shown in Figure 12.3
The filters written in Perl, see Section 7.4, was based on Equation 12.1 to

extract data samples on different time-scales.
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12.4.2 Wall-Clock Time

The wall-clock time set, SΩ, is the junction of all the time subsets arranged in a
hierarchical structure. Wall-clock time can be divided into time scheduled for
production and unscheduled time. These are more of administrative interest
and will not be discussed further. Instead we focus on the operational time,
i.e. the time left when planned losses have been subtracted.

TSΩ = TSoperational time + TSplanned losses

12.4.3 Operational Time

The operational time is the time available for production and is defined as

TSoperational time =TSsynchronization losses +
TSunplanned losses independent of busy time +
TSoperating time

The operational time-scale is used to extract TBF dependent on the time a
system is switched on or operational, but not necessarily busy. However, there
might be implementation problems depending on whether this time scale is
defined in the simulator or not. This time-scale is also suitable for productivity
measures since it is the time that the system is supposed to be busy.

12.4.4 Operating Time

The operating time scale is used to extract TBF dependent of the busy time.
On this time-scale an entity alters between the repair state and the busy state.
The operating time is defined as:

TSoperating time =TSunplanned losses dependent of busy time +
TSbusy time

12.4.5 Busy Time

Most stops are dependent of the busy time.

TSbusy time = TSlogistic losses + TSprocess time

The remaining measurable losses are then logistic losses, e.g. movements.
Although necessary things such as movements can not be removed entirely,
they can be reduced.

There is a point in measuring both these times since it indicates if it is the
process that has changed or if it is the devices surrounding the process when
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Figure 12.4: Indirect losses in a safety zone.

an increased cycle time is detected. Adding an online trend tracking system
to these times will facilitate the detection of upcoming problems.

12.4.6 Process Time

The process time is the time an entity is processing, i.e. adding value, e.g. the
cutting time in a lathe or the weld time in a welding cell.

The process time itself might also be improved, e.g. through high speed
welding or high speed machining.

12.5 Safety Zones

When a safety zone consists of several cells the other cells within the zone are
affected indirectly when the safety zone is entered to perform a repair, shown
in Figure 12.4. Cells upstream and downstream are affected either because
they are starved or blocked or because a safety stop is caused by an operator
entering the zone for repair.

The number of cells in a safety zone as well as the number of operat-
ors become a design parameter and it is thus desirable to model the correct
behavior in the simulation model. Starved and blocked states are handled
automatically in a simulation, but modeling failure processes for a cell that
after a stochastic period of time stops the cells within the safety zone is not
supported by simulators.

To attend to the problem of coupled stops the failure and repair logic of
QUEST was rewritten. The default behavior of the repair logic is to require
labor if required, and then put the element in the repair state for the specified
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Table 12.1: Data collection fields with examples for one entity.

Date Time Entity State Cause #
Pr

oc
es
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#
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ra
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#
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eg
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En
d

2002-04-10 08:56:27 4802 Off 9824 0 0 0 0 0
2002-04-10 08:58:30 4802 Busy 0 0 0 0 1 0
2002-04-10 08:59:30 4802 Busy 0 1 0 0 0 1
2002-04-10 08:59:30 4802 Idle Blocked 0 0 0 0 0
2002-04-10 09:01:27 4802 Idle Starved 0 0 0 0 0
2002-04-10 09:01:58 4802 Busy 0 0 0 0 1 0
2002-04-10 09:02:48 4802 WT 5607 0 0 0 0 0
2002-04-10 09:06:23 4802 Repair 5607 0 1 0 0 0
2002-04-10 08:59:48 4802 Busy 0 0 0 0 1 0

duration of time. The logic was rewritten to require labor and when the labor
arrived to perform the repair, the other elements in the safety zone were halted
in the repair state. When the repair was completed all elements within the
safety zone was put in ready state again. To do this each element belonging
to a safety zone had an attribute that designated what safety zone it belonged
to. The repair logic searched the element list to find those elements and then
scheduled failure interrupts for those elements. The pseudocode is shown in
Figure 12.5.

Note that personnel that performs repairs has to remain by the cell until the
system is up and running to verify the repair. Usually when modeling repairs
with personnel they are released immediately after the completed repair and
the real behavior is difficult to model.

12.6 Database

In summary the required fields in the proposed data collection framework
would include date, time, entity id, state, number of processed parts, scrapped
parts, reworked parts, part identity, and cause. To detect speed losses each
start and end of a work cycle should be stored. An example is shown in
Table 12.1

12.7 Input Data Generalization

As in the case of Volvo, many of the manufacturing systems might have similar
configurations making possible generalizations of interest.

As presented above the smallest entity for which data is collected is a cell.
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procedure zone_repair()
begin

-- get the repair process
repair_proc = get_curr_repair_proc()
-- require labor if required
pid = do_process_requirements(repair_proc)
-- get the user interrupt
the_uintr = get_user_interrupt(celem->zone_name)
-- get repair time
rep_time = sample_cycle_time(repair_proc)
-- create a BCL command to set the repair time
BCL_str = "SET USER INTERRUPT ’" + \

celem->zone_name + \
"’ ATTRIB ’rep_time’ TO " + \
str(’%g’, rep_time)

-- execute the BCL command
bcl_ret = BCL(BCL_str)
-- create a safety zone element list
zlist = list_create()
-- make a list of the elements in the safety zone
make_zone_list(celem->zone_name, zlist)
-- for each element in the safety zone, schedule a
-- repair interrupt
schedule_interrupt(the_uintr , zlist, 0)
-- do the repair in current element
do_repair rep_time

end

Figure 12.5: zone_repair is called by zone_failure to start the repair of
an element. Elements within a safety zone, i.e. those elements that will stop
as labor enters the safety zone, are associated with the safety zone through
an element attribute. The zone_failure logic is rather large and only minor
modifications were made and it is therefore not presented here.
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However, by collecting data on a lower level, i.e. the devices comprising the
cell, data can be made more generalizable. Each cell’s configuration might be
different in another manufacturing system. By collecting failure data on the
device level, the new configuration’s failure process can be assessed using the
aggregated failure processes of the devices of which it consists, provided the
stochastic variables are independent. Here that is performed by associating
each cause with a device, and thus can the failure characteristics of each device
be assessed.

When assessing the failure processes for the devices the time-scales have
to be taken into consideration again, but now on yet another level. The busy
time for a device might differ from the cycle time in which it is a component.
Thus is there a time scale for the device. This might be to take things a little
bit too far to be practical, but one should be aware of the problem.

In the case study presented in Chapter 7 it was hard to find any patterns
in input data. There are a few dependencies that might affect TBF and TTR
characteristics when trying to generalize.

The repair time is dependent of the skill level (as discussed by e.g. Ilar
1997). The TBF is dependent of how mature the process is, i.e. new processes
are more prone to production stops than old and well established processes.

Another issue is that the focus of improvement activities is most likely fo-
cused on the worst performing cell, which results in a not fully exploited per-
formance potential in the other cells. That is, the system is improved with the
total system performance in mind. When developing another manufacturing
system the not fully exploited cell configuration might become the bottleneck.
The new system will then be assessed using data from a system where the cell
performance was not fully exploited.

The stop characteristic of a device is dependent of the individual device,
the process and the configuration of the cell. That is, when the same type of
device is to perform the same operation on another part, it might not have the
same failure characteristic.

12.8 Discussion and Conclusions

There is a rule in simulation saying ‘Shit In Shit Out’ (SISO), i.e. if the input
data is corrupt, so are the results. Usually it is difficult to check the validity
of the simulation model and compare it to a real system with accuracy. In the
case study performed at VCBC such a comparison was possible and it became
painfully evident that input data quality is vital for high accuracy simulations.
One of the main reasons, besides time consumption, for not using DES at
ABB BiW and VCBC, was the lack of accurate input data. It was for the kind of
highly accurate simulations required at ABB BiW and VCBC that the proposed
data collection framework was developed.

The main advantage of the detailed input data collection is that it can be
used for several analyzes, not only for DES. If such a complex system were to
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be implemented for the purpose of DES only, there would be little motivation
to do so. However, with the multiple usages, the added cost of implementing
the more detailed data collection is motivated.

The ‘six big losses’ presented by Nakajima (1988) can all be handled with
the presented framework. That is, the down time, speed losses and defect
products classes of losses are all taken care of.

Another advantage of the detailed data collection is that dependencies are
removed. Such dependencies complicate model building and make results
less reliable.
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Parameterized Simulation Models

The case study described in Chapter 7 was later developed further as a mas-
ter’s thesis work (Pålsson & Quist 2002) supervised by the author and Lars
Holst.

In Chapter 7 it was established that making a simple model would not
mimic the systems behavior in an appropriate way and the complex model re-
quired too much resources. The complex model was not modularized and re-
using the simulation model was therefore difficult. Furthermore, maintaining
the code would prove difficult. A method for modularized and quick develop-
ment of DES models for the studied manufacturing system type is therefore
presented here.

13.1 Components

By modularizing the simulation model code it was possible to parameterize the
simulation models, i.e. most parts of the simulation model would be possible
to describe with a set of parameters. Many of the production lines at the
plant at Volvo were similar in their structure and logic, which enabled the
modularized code.

13.1.1 Spreadsheet

To build the model an ordinary spreadsheet generating the BCL code to build
the model was developed. The spreadsheet also generated the SCL code used
to initialize the model. The spreadsheet was composed of a number of sheets,
each dealing with a set of model constructs:

Elements The elements sheet contained the element names, element classes,
e.g. machine or buffer, geometry, x, y, and z position, element process
logic name, element route logic name, element request logic name, ele-
ment initialization logic name, and the number of cycle processes.
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Failures The failure sheet defined the failure and repair process for each ele-
ment by specifying the time scale, i.e. simulation time or busy time mode,
the failure distribution and the repair distribution with parameters.

Processes The process sheet defined the cycle times for each process associ-
ated with an element.

Connections Element connections, i.e. possible routings, were defined in the
connections sheet.

Parts The parts sheet defined the parts and their geometries.

Sources There was also a sheet that defined what sources to compile.

Signals Finally there was a sheet defining all the signals and attributes of the
elements that was used by the developed generalized logic.

The generated BCL scripts was then copied into the model generation script
that generated and compiled the model. The SCL code was copied to the
simulation initialization logic and the constants include file.

13.1.2 General Logic

The fundamental base for the generalized logic was variable passing by the
use of element attributes. This diminished the need to define element spe-
cific logic, constants and variables that were required in the case described in
Chapter 7.

The basic logic was the client server logic that then was used to build other
logics. A client could only have one server while a server could have several
clients. When there was a merging material flow the server logic was put on the
input side of the merging element. When there was a splitting material flow
the server logic was put on the output side of the splitting element. The same
logic could thus be used for all kinds of material flows where handshaking
was required.

The client server logic, shown in Figures 13.1 and 13.2, works as follows:

• The client requires service from the server by sending a request signal;

• The server selects the first request in the request queue and acknow-
ledges the request by sending an acknowledge signal when ready;

• The client locks the server to be it’s own and then performs a cycle. The
locking is performed by sending a lock signal;

• The client unlocks the server by sending an unlock signal allowing other
clients to access the server.



13.1 Components 135

procedure server_handshake(client_elem : element)
begin

-- wait until unlocked before executing requests
wait_unlocked(client_elem)
:WaitNewRequest:
-- wait for request signal from client
wait until signal client_elem->req_sig
-- If there are no clients waiting then set signal
-- to OFF.
if(NOT sig_wait_count(client_elem->ack_sig)) then

signal client_elem->req_sig OFF
goto WaitNewRequest

else
-- get first waiting client
sig_entry = get_sig_wait_entry(client_elem->ack_sig, 1)
-- signal acknowledgment to client
signal client_elem->ack_sig for sig_entry

endif
end

Figure 13.1: Pseudo code for the server_handshake routine.

procedure client_handshake(server_elem : element)
begin

-- signal request to server
signal server_elem->req_sig ON
-- wait for acknowledgment
wait until signal server_elem->ack_sig
-- lock server from others
lock_elem(server_elem)

end

Figure 13.2: Pseudo code for the client_handshake routine.
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Figure 13.3: The robot zones where handshaking was required.

Most robot cells had several zones, e.g. load zone, processing zone, unload
zone, and return zone, see Figure 13.3. Before entering a zone the access
to that zone had to be acknowledged to avoid several robots entering the
same zone at the same time. The client server routines made this possible. A
standard process logic, shown in Figure 13.4, worked as follows:

• request access to load zone,

• load the part and acknowledge that the zone have been exited,

• process the part,

• request access to the unload zone,

• unload the part and acknowledge that the zone have been exited, and

• return to the original position.

13.2 Synchronized Transport Logic

In one part of the system there was a synchronized transportation mechanism
between manufacturing cells, shown in Figure 13.5. This logic is slightly more
complicated since a controller is to synchronize the transport cycle between
a number of elements. Each position in the transportation line in turn has to
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procedure mach_split_merge_prc()
begin

-- require acknowledgment from input element
server_handshake(input_elem)
-- do the load cycle
execute_cycle(LOAD_CYCLE)
require part ANY
unlock_elem(input_elem)
-- do the process cycle
execute_cycle(PROCESS_CYCLE)
-- require acknowledgment from output element
client_handshake(output_elem)
-- do the unload cycle
execute_cycle(UNLOAD_CYCLE)
-- transfer the part
pass()
unlock_elem(output_elem)
-- do the return cycle
execute_cycle(RETURN_CYCLE)

end

Figure 13.4: Pseudo code for a typical machine that, in this case, has server
input and client output.

Figure 13.5: The transfer stations, controller and robots in a synchronized line.
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procedure ctrl_handshake(the_elem : element)
begin

-- tell the controller that it is ready to transfer
signal celem->rdy_transf ON
-- wait for transfer signal
wait until signal the_elem->start_transf ON
-- do the transfer
execute_cycle(G_MOVE_FORWARD_CYCLE)
-- signal that the transfer is ready
signal celem->transf_rdy ON

end

Figure 13.6: Pseudo code for the ctrl_handshake routine used in the transfer
stations process logic shown in Figure 13.8.

communicate with external elements, in this case robots processing, loading
or unloading parts.

The same basic signaling mechanisms was used here as well, and all para-
meters required was assigned as element attributes to make possible a gener-
alized logic.

The functionality, shown in Figures 13.6, 13.7, and 13.8, is as follows:

• Each transport element sends signals to the controller that they are ready
to transport;

• When the controller have received signals from all the transport elements
it returns a transport signal to perform the synchronized transport;

• The transport elements performs the transport cycle and then sends a
signal to the elements processing, loading or unloading parts;

• The process, load, and unloading elements performs a cycle and then
sends a signal to the transport element to acknowledge that the pro-
cessing is finished;

• When the transport element receives the process ready signal, the cycle
can start all over again.

13.3 Modeling Method

To model a new system the method described in Chapter 10 is used. In the
realization phase the following steps are conducted:

1. Define the model constructs in the spreadsheet.

2. When possible, use the readily available logic for the elements. If cus-
tomized logic are required, use the readily available logic as a template.
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procedure buf_handshake(the_elem : element)
begin

-- wait for ready to transfer signals
for ii = celem->first_rdy_transf to \

celem->last_rdy_transf do
wait until signal ii ON
signal ii OFF

endfor
-- signal transfer
signal celem->start_transf ON
-- wait until transfer is ready
for ii = celem->first_transf_rdy to \

celem->last_transf_rdy do
wait until signal ii ON
signal ii OFF

endfor
end

Figure 13.7: Pseudo code for the buf_handshake routine used in the transfer
line controller.

procedure transfer_elem_prc()
begin

require part ANY
-- wait until robot is ready to perform the process
server_handshake(celem)
wait_unlocked(celem)
-- tell the controller we are ready to transfer
ctrl_handshake(ctrl_elem)
pass()

end

Figure 13.8: Pseudo code for the transfer_elem_prc routine used in the
transfer stations. Note that the transfer stations communicates with both the
controller and the processing element.
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3. Cut and paste the BCL code into a macro file.

4. Cut and paste the SCL code into the simulation initialization logic.

5. Build and compile the model by executing the BCL macro.

13.4 Discussion and Conclusions

With the developed tools it is fairly simple to model a new manufacturing
system of the studied type. Furthermore, the development time is reduced
considerable without having to reduce model accuracy. The modeling time is
believed to have been reduced to 20–50 hours. The key to this is the use of
general logic with parameters passed as attributes.

The developed method is limited in that only models of manufacturing
systems of the studied type can be developed. However, the basic concepts
of parameterization and modularized and generalized code can be utilized in
similar contexts.



Chapter 14

Integrated Factory Simulation

Here an integrated approach to build large simulation models is presented.
The simulation model is built from, and driven by, a database reducing the
model realization and input data collection efforts. The chapter is based on
Randell & Bolmsjö (2001).

In general the most time taking phases of a discrete-event simulation study
is the input data collection and model building (Banks et al. 2000, Bernard
2000, Umeda & Jones 1997, Liyanage & Perera 1998, Trybula 1994, Heitmann
et al. 1997, Hirschberg & Heitmann 1997). Building large DES models of entire
factories with traditional methods is thus time consuming and the required
maintenance effort is bound to lag behind. A better solution would be to have
model information stored in a continuously updated database. However, cre-
ating and maintaining such databases is also time consuming. To motivate
such databases the information should be shared by several applications, thus
reducing the total information management time for the applications sharing
the information. The method proposed here reuse readily available manufac-
turing system information without creating new databases; instead informa-
tion stored in an ERP (Enterprise Resource Planning) database is reused.

The basic problem with large simulation models is the complexity of the
model logic and the amount of input data required. Conventional methods
embed data and logic into the simulation model, which works well until the
size of the simulation model reaches a certain size. This size is reached when
the simulation model cost reaches the potential cost savings, the system under
study changes before the model is ready, the results arrive after the point of
usage (Ball & Love 1994) or when the maintenance effort exceeds practical
limits. When this size is reached other methods have to be considered.
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14.1 Planned Usage

The set of tools developed was planned to be used for testing master plans a
few months ahead for the BT plant in Mjölby. The plant at Mjölby has 1’000
employees and produces approximately 35’000 warehouse trucks a year. To
test master plans the entire factory had to be modeled and all products pro-
duced in the factory had to be simulated.

The simulation was to be fed with a master plan that then was broken down
to production orders. The simulation was to be executed to find bottlenecks
and delayed deliveries. By identifying the bottlenecks, possible countermeas-
ures could be implemented in the simulation database before the simulation
was executed again. Since the simulation was entirely driven by a database
all modifications to the simulation model was performed in the database that
then was used to generate the modified simulation model. Possible counter-
measures were e.g. added shifts, outsourcing to suppliers or added resources.
The impact of future investments in new resources could also be tested. It was
estimated that approximately four experiments would be performed during a
day before establishing a final master plan. It was considered that not more
than one day could be spent on this activity each month.

14.2 Requirements

The following requirements were considered;

Time The method should reduce development time and project lead-time.

Modeling Creating and running a simulation model should require little or no
manual intervention.

Software independent The database should be built and maintained inde-
pendently of the DES software used. The DBMS (DataBase Management
System) should also be exchangeable.

Reusable The method should be transferable from one project to another.

Modular The method should be modular to support the reusability require-
ment.

Scalable The method should be applicable for large or even very large enter-
prises.

Heterogeneous The method should work in heterogeneous environments.
Furthermore, the software should be portable in between different plat-
forms.

Geographically transparent The method should be transparent to geograph-
ical separation.
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DatabaseDatabase
Online Simulation

Computer SystemComputer Systems Simulation Model

Offline

Figure 14.1: The database based input method based on a copy of the ERP
database.

Maintenance The simulation model maintenance effort should be limited.

Usability Data used to drive the simulation should be generated and main-
tained in software and through interfaces the users are used to. User
interfaces for production plan inputs and database modifications should
be simple for fast generation of new experiments.

Simulation speed Each simulation should be executed and analyzed within
two hours, say, making several iterations with model modifications pos-
sible within one day.

The following sections will present the method and how these requirements
have been achieved.

14.3 Model Building

The simulation model is built automatically from the resource register. Adding
additional fields for geometry and location in the resource register will allow
automatic generation of the visual model as well. Maintaining a geometry
register is a rather limited effort since changes are small and seldom made.
However, as the model is large and complex, visual interpretation of the sim-
ulation is hardly practical.

The model objects share common logic to retrieve the information required
to run the model. The input data collection is reduced to identifying the cor-
rect ERP database tables and copy them to the off-line simulation model data-
base, as shown in Figure 14.1. Furthermore, the model logic can be simplified
considerably since the operation lists in the database has information about
routings, which generally has to be embedded in the simulation model. The
result is thus a completely database-driven simulation model.

14.4 Used Software

The modeling and simulation tool used was QUEST from DELMIA. The pro-
ject was managed using CVS (Cederqvist 1993) for configuration management.
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Documentation of the project and the model utilized previously developed
methods for integrated documentation presented in Chapter 11.

The DBMS used, MySQL, is a fast, multi-threaded, multi-user, and robust
SQL (Structured Query Language) database server. MySQL is free software and
is licensed under the GNU General Public License (MySQL www). Using SQL
enables portability between different DBMSs. A SQL DBMS being available on
a number of platforms was chosen for portability reasons since the developed
tools were to be used on both SGI IRIX and MS Windows platforms.

14.5 Developed Software

The database integration was performed through a set of modules. The QDBC
(Quest DataBase Connection) module contained server and client routines to
connect the QUEST model to the database. The SQL module was used to format
queries. The third module contained the routines to execute a model driven by
a database using the former two modules. A fourth module that was to break
down the master plan, using ordinary MRP I (Manufacturing Requirements
Planning), is yet to be developed.

14.5.1 The QDBC Server

The QDBC server was implemented in C and relied on the MySQL C inter-
face and the socket routines supplied with QUEST. The database, host, user,
password and port to communicate through were specified when starting the
server. The server read messages on the TCP/IP (Transmission Control Pro-
tocol/Internet Protocol) socket and passed the query to the database. The
reply was then sent back to the client together with message identification,
message size and the number of rows and columns. Using TCP/IP allowed the
database and simulation engine to reside on different computers anywhere on
a network.

14.5.2 The QDBC Client Routines

The QDBC client routines were implemented in QUEST SCL. The routines read
the raw reply from the database and stored it in a dynamic list data structure.
A dynamic list structure was used for scalability, i.e. any number of rows, fields
and any size of the fields are allowed. A number of routines were supplied
to facilitate abstract and simple retrieval of individual rows or fields. The
QDBC client routines could be rewritten in C/C++ to enable exchange of the
simulator.

14.5.3 The SQL Routines

The SQL routines were supplied to simplify the programming and hide the
SQL implementation from the user. Thus, if another DBMS would be used
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-- Start by removing the existing database.
DROP DATABASE IF EXISTS mrp;

-- Create the database.
CREATE DATABASE IF NOT EXISTS mrp;

-- Use the created database.
USE mrp

-- Create operation list table.
CREATE TABLE IF NOT EXISTS operations (
article_nbr CHAR(12),
resource_nbr CHAR(4),
operation_nbr INT(3),
setup_time REAL,
load_time REAL,
cycle_time REAL,
unload_time REAL);

-- load the data
LOAD DATA LOCAL INFILE "operations.txt"
INTO TABLE operations;

Figure 14.2: An example of the SQL commands used to load the database.

it was simple to change the SQL syntax in the routines without affecting the
simulation model. This set of routines could also be rewritten in C/C++ for
portability reasons.

14.6 The Database

The original database was exported as field delimited ASCII files into a simu-
lation database. The simulation database had a defined set of tables that was
known to the simulator routines. Thus can the ERP system database come
from any vendor since the export/import of input data defines the interface
and only minor modifications were expected to be required. The simulation
database is created and data is loaded using a few SQL commands, shown in
Figure 14.2. In the proof-of-concept model the tables and fields in Table 14.1
were used. The simple database can be said to be a miniature ERP system
database.

A work calendar and shifts for all resources in the factory had to be defined
as it was not implemented in the ERP system and had to be defined manually.
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Table 14.1: The database tables and fields in the proof-of-concept model.

Table Fields
orders order number, article number, number of items, start

date, stop date
operations article number, resource number, operation number,

setup time, load time, cycle time, unload time
articles article number, article name, standard cost
resources resource number, resource name, setup time, load

time, cycle time, unload time, resource cost

14.7 The Simulation Model Objects

14.7.1 The Orders

The parts passing through the simulation model were in this case orders. An
order contained the search keys necessary to retrieve information from the
database at any point in the simulation.

As an order passed through the system, the article database could be up-
dated, i.e. decreasing an article register by requiring articles and increasing an
article register by generating articles.

Orders would be generated from a master plan defined by the user. Each
product could be made in a number of variants and historic data was to be
used to set the product variant mix. From the master plan and the structure
register, products were to be broken down to the article level and production
orders would be generated over time. The master plan break down routine
in the ERP system had long lead-time and was therefore to be performed in a
separate module.

14.7.2 The Scheduler

The scheduler first determined the first start date from the production plan,
i.e. the simulation time origin. Starting from the first start date, each date
was stepped through day by day. The scheduler retrieved the orders of the
current simulation date from the database and then each order was passed to
the first element in the operations list. Thus the material flow was started for
the entire simulation model using only one element. The dates were generated
using the built in date routines in the database server, removing the need to
explicitly build a calendar routine. It should be noted that the inter release
time of orders can easily be changed, to e.g. an hour or a week, depending on
the requirements at the company under study.
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require order
curr_op = get_current_op(art_nbr)
work res_setup_time()
for ii = 1 to nbr_of_items do

work res_load_time()
work res_cycle_time()
work res_unload_time()

endfor

Figure 14.3: The process logic pseudocode of the resource class.

while (num_routed < num_to_route) do
next_res = get_next_res(art_nbr, \

curr_op)
route order to next_res
num_routed = num_routed + 1

endwhile

Figure 14.4: The route logic pseudocode of the resource class.

14.7.3 The Resources

Each resource is of the same class and has the same logic. The difference
between instances of a class is the geometric representation, location, shifts
and the name. All element information is stored in the database.

The general resource process logic retrieves the setup, load, cycle and un-
load times from the database and executes them before passing the order to
the next element. The process logic of the resource class is straightforward
as shown in the pseudocode in Figure 14.3.

The route logic is general and is used by all elements driven by the data-
base, including the scheduler. The route logic determines the next resource
on the operation list and then routes the order, shown in the pseudocode in
Figure 14.4.

14.7.4 The Terminating Element

The terminating element is common for the entire simulation model and used
to store statistics and update registers before removing the orders from the
simulation.

14.8 Running the Simulation

Orders are generated from a master plan and the database connection is
opened before the simulation is started. The initialization logic read the data-
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base in order to create and connect all elements. It should be noted that there
was no model at all to begin with, only a simulation initialization routine that
created the model.

The article stock database could be initialized with the current actual stock
of material to reflect a probable outcome of the next period, referred to as
intelligent initialization (Banks et al. 2000). The current manufacturing system
state might, however, not be available and a warm up period would then be
required. The article stock database can also be set randomly to reflect a
general situation.

14.9 Discussion and Conclusions

The case has shown that it is easy to integrate a simulation system with other
computer systems. The proof-of-concept model has so far shown that it is
feasible to model and simulate entire factories using existing ERP databases
and that it can be performed with limited resources. Furthermore, it has been
shown that it is relatively simple to generate the software and routines neces-
sary to implement a database driven simulation model.

It is generally recommended to build simulation models with the stochastic
behavior correctly modeled (Banks et al. 2000, Law & Kelton 1991). The presen-
ted simulation model is dynamic, but has limited stochastic behavior due to
the lack of data for failures and cycle time variations in the ERP database. How-
ever, the simulation accuracy is expected to be better that a static CRP (Capa-
city Requirements Planning) analysis, but less than the accuracy achieved with
traditional DES methods. This is the trade off when using readily available,
but not complete, information. The result is a highly reduced modeling time
and an ability to model large factory models. Still, the simulation is dynamic
and interactions are captured. If failure statistics are available, they are easily
added to the database and thus to the simulation model. However, it has to be
considered whether failure losses are included in the aggregated cycle times
in the database.

Most of the routines and software is generalizable to any enterprise. The
method presented is general in that ERP databases contain the same sets of
data although being stored differently in another enterprise. By developing a
database export interface the simulation database can be made independent
of the original ERP database. Furthermore, the method is also platform and
DBMS independent. It is expected to be possible to simulate another enterprise
from scratch with limited efforts.

Costs for maintenance of the simulation model is anticipated to be reduced
considerably compared to traditional methods of building simulation models
since the simulation data is updated automatically as the ERP database is up-
dated in the daily operations.

As pointed out by Iuliano (1995) different versions of the used software
tools will create compatibility problems over time, not only in between ver-
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sions of the same software tool but also in between different integrated soft-
ware tools. Due to the modular design these problems will be reduced al-
though not removed.

The simulation model can be designed to handle several different perform-
ance measures. Furthermore, the performance measure sampling is easily
implemented in all the objects in the simulation model by changing a few gen-
eral routines. Delivery date, wait times, lead-times and WIP were planned to
be used as performance measures. Adding output data filters will facilitate
fast and easy identification of possible problems in the factory from the large
amount of output data.

The developed methods for integration of existing ERP databases can also
be used for manufacturing system redesign or modifying control strategies.
Delayed deliveries will work as a measure of how well a production plan can be
fulfilled. Wait times indicate bottlenecks. The differences in between delayed
and early deliveries in combination with wait times can be used to trace, not
only, what orders are delayed, but also why. The larger the difference between
delayed and early deliveries the more reason to modify control strategies. A
large number of both early deliveries and delayed deliveries imply that there
are synchronization problems, i.e. the early deliveries have been processed at
the expense of the delayed deliveries. The simulation model can thus be used
to increase the order promise accuracy, maximize utilization of production
capacity and to modify and test control strategies before implementation.

The simulation database is a copy of the real database not to affect the daily
operations. By running the simulation off-line the database can be updated
from the simulation and modified to simulate how, e.g. an investment, would
affect performance measures without affecting the daily operations.

So far only the basic routines to build and run the simulation model have
been implemented. However, the work remaining to get a fully operational
factory simulator is limited. The work remaining is also context dependent
and has therefore been left out until a real case study can be performed.

Since the proof-of-concept tools have not been tested in a full scale, there
are a couple of questions to be considered. Firstly, the system was planned
to be used during one day with a few iterations. This puts a demand on the
simulation speed. Since it is a large system that is to be simulated with a
large number of events it is unknown how fast simulation results could be
generated. Secondly, methods to extract vital data from the vast amounts of
output data have to be developed. It is this data that is the basis for making
decisions on both for the next simulation iteration and finally for the next
master plan. Thirdly, the accuracy of the simulation results has to be verified.
The input data is deterministic and might not be up to date.

In summary it can be said that the usability issues probably does not pose
any problems. Technically it is quite simple to filter data from a database and
once the right parameters have been determined this will pose no problem.
The accuracy, however, has to be verified in a real case.
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Chapter 15

Discussion

This chapter starts with a comparison between CAD, RS, and DES to put the
following discussion in a context. Then conceived problems with DES are
discussed. The following section discusses the contributions presented and
how they address the conceived problems. Finally there is a discussion on the
validity of the contributions.

15.1 Comparison Between CAD, RS and DES

The current usage of CAD, RS and DES is compared and it is considered for how
long the tools have been used. The comparison is made to study how usable
each tool has been considered to be in an industrial context. It is considered
for how long each tool have been around for use by researchers and specialists
and for how long the tools have been around for mainstream use. The time
comparisons are by no means exact, but give and indication of the speed of
implementation of the tools from early systems to mainstream use.

The first CAD systems were developed in the late sixties and the first work-
ing commercial systems were available in the seventies. During the eighties
CAD reached widespread industrial usage. RS were available as commercial
systems in the mid eighties and widespread usage can be said to have star-
ted in the mid or late nineties. DES has been around for about forty years and
commercial systems made for widespread use can be said to have been around
since the mid eighties. It is stated that DES still has not reached widespread
acceptance by the industry the way CAD and RS have.

The widespread usage of the tools currently differs fundamentally, which
is argued to be related to the benefits using the tools conceived by the industry
compared to the conceived cost of using the tools.

In the case of CAD it is very easy to show that it is more feasible to make
modifications to a CAD model than with eraser and pen on paper, i.e. the main
advantage of the tool is how easy it is to make changes. Current tools also
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facilitate the modeling process.
Similarly, RS has shown that many costly mistakes can be avoided by using

the tool. Since the user sees the problems on screen there is no doubt that
there are problems and possible solutions can be tested. The cost of modifying
the tools, jigs etc. are well known in this case, based on experiences.

DES is used to assess complex systems. As such, there are several paramet-
ers affecting performance, both soft and hard. Due to the many parameters
and that only a handful of them are modeled, it is far harder to show that
DES is valuable. The results have to be interpreted as well, while no inter-
pretation is required in the case of e.g. RS. Furthermore, in the case of DES,
there is usually little information to make comparisons to, i.e. the real systems
performance, before and after implementation of simulation results, are not
known. With CAD and RS one can compare what would be the result with or
without the tool and the tools are accepted to the level where alternatives are
not even considered while that is not the case for DES. With the exception of
a few cases, there are few hard core proofs presented that show that tangible
economic benefits have been achieved when using DES.

With this comparison it is concluded that there has to be one or several
problems still associated with DES that has to be solved before it is widely
accepted by the industry for mainstream use.

15.2 Problems

15.2.1 Cost and Benefits

There is a limited usage of DES in the Swedish industry. Possible causes are
lack of knowledge, failure to see the benefits compared to the cost, and the
complexity of the usage of the technology. The knowledge issue can not be
addressed by a thesis and instead the focus has been on facilitating the usage
of DES.

I have been using DES in several projects and have experienced some of
the advantages and problems. The main advantage is then the possibility to
make fairly correct model of a complex system and then study the system over
time and thereby gain both qualitative and quantitative information about the
system. The main problem is then the conceived benefit compared to the con-
ceived cost of using DES (an excellent discussion on this topic can be found
in Holst & Bolmsjö 2002). I have not addressed the problem of the conceived
benefit of using the tool directly. Indirectly the conceived benefit problem has
been addressed by presenting a methodology that generates credible simula-
tion results which is one part of the problem. Note that the word conceived is
used on purpose as explained below.

In the cases performed the benefits of the simulation studies were seldom
assessed or even been asked for. The customers believed in DES to start with,
and that is probably why no evaluation was made.
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It is believed that DES benefits, and especially economical benefits, has to
be highlighted to a larger extent than has been done traditionally. In the next
few paragraphs I will elaborate on the problem of quantifying the benefits of
DES using the presented case studies as examples.

In the Profilgruppen case study an assessment of the quantitative benefits
was made and the simulation study was shown to be profitable by avoiding
cost.

In the first BT case study the conceived bottleneck was the robot cell and
therefore there were plans in investing in another cell. The simulation showed
that there was another bottleneck in the system and that investing in an-
other robot cell would not yield higher throughput and thus that cost was
avoided. There was also a set of qualitative benefits in the study. The max-
imum throughput in three of the main cells in the system could be determ-
ined. It was thus known to what extent it was worth investing to increase
throughput in one of the cells before another cell would limit throughput.
The cost avoided with this kind of knowledge can not be quantified unless
the cost of such investments already are assessed without knowing the max-
imum required throughput, i.e. simulation results should not be used to be
able to correctly calculate the difference between the investment made if the
simulation results were not known and the investment made if the simulation
results were known. Such strategies can of course not be employed just to
assess possible cost reductions on the behalf of DES.

In the second BT case study such reduced cost assessments was difficult to
make since no changes of the developed manufacturing system was required
to achieve the objectives and no cost reductions could be proved. Was the
simulation without benefits then? One could argue that if the simulation study
would not have been used the investment risk would be higher. How is risk
quantified unless there are probabilistic chances of quantified outcomes of
different, in this case nonexistent, scenarios? On the other hand, if there
would have been a performance problem in the system and it could be solved
in the simulation study such and assessment could have been done, but again,
that was a nonexistent scenario.

The integrated factory simulation was developed to assess the impact of
master plans on resource utilization and delayed deliveries. There is no doubt
that the tool has benefits. How can the value of such a simulation tool be eval-
uated? What is the cost of delayed deliveries? When does delayed deliveries
cause customers to change supplier?

The tools developed for quick and correct modeling of the sub-assembly
systems at VCBC tries to increase the benefits by reducing modeling time and
increasing accuracy. The reduced modeling time is quantifiable, but how can
cost reductions based on more accurate simulation models be assessed. Obvi-
ously there is a benefit in making correct assessments in a way that the man-
ufacturing system is not too costly and at the same time reach performance
objectives. The same problem remains, it is difficult, not to say, impossible, to
make assessments of cost reductions. The same holds for the data collection
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framework.
Recently interviews with case study contacts was performed to find out

what their experiences were considering whether they were about to use DES
in future project or not and the reasons for their decision.

According to Michael Admyre at BT Products, they had quantified the re-
duced cost of using both RS and DES and were confident that there was a
benefit of using the tools. They considered the benefits versus cost to be
higher for RS than for DES.

Erling Samuelsson at ABB Body-in-White considered the lack of accurate
input data such a big problem that there was no reason to continue the use of
DES until the problem was solved due to the high accuracy required. Hence
the proposed data collection framework.

Joakim Karlborg at Volvo Articulated Haulers believed in simulation in gen-
eral and there was no doubt they were going to continue to use both RS and
DES. No quantitative assessments have been made to my knowledge, the de-
cision seems to be based on good experiences.

Ulf Hansén, formerly at Urshults Werkstads AB, agreed in that there were
several benefits, but that DES mainly was suitable for larger projects where the
large time consumption could be motivated by large possible cost reductions.

In summary it is generally difficult to prove the benefits of DES. However,
decisions more complex than choosing to use or not to use DES is made every-
day. These decisions are more based on hunches about what is right or wrong
than a detailed quantitative analysis. That seems to be the case for those
companies that has chosen to walk the simulation track as well.

15.2.2 A Defense of Discrete-Event Simulation

The following discussion might appear as a fool’s defense of a lost cause, but
is intended to highlight some issues that are not always considered.

Time and Simulation

Without changing methodology or using different tools, time consumption
can be reduced by letting the simulation study life cycle coincide with the
manufacturing system life cycle. DES is far to often used as a fire-and-forget
analysis tool, i.e. for single shot analysis of systems. Fire-and-forget yields low
efficiency since the results of the initial large effort is used only once. As an
analogy, it is like making a geometrical model of e.g. a car hood for the visual
appearance of the car. Then a new model is made from scratch to design the
tools and jigs, another one to make crash tests and yet another to make an
aerodynamic analysis. In reality the geometrical model is of course reused.
How come DES models are not? There is no claim that there is a problem free
and seamless reuse of the models in either case.

According to Kusiak & Lee (1996) as much as 60–80 percent of the total
manufacturing cost might be affected by the decisions made in the early phases
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of product design. There is reason to believe that this holds for the manufac-
turing system design as well. Therefore DES should be used when developing
the manufacturing system, and not to resolve the problems later because of a
poor manufacturing system design. It should be noted that there is no guar-
antee that the manufacturing system design becomes better because DES is
used, but the risk is believed to be reduced.

Another reason for the widespread misconception that simulation studies
consume more time than they really do, is that the simulation study is viewed
as an activity on it’s own and not as an effort integrated in the manufacturing
system development process or manufacturing system redesign process. No
matter how the analysis is performed, a large amount of information has to
be collected, but for some reason that entire cost is related to DES and not to
the study as a whole. The view put forward here is in line with ABC (Activity
Based Costing) and ABM (Activity Based Management) (Ax & Ask 1995, Kaplan
& Cooper 1998) where costs are associated with their proper cost drivers.

The presented methodology was mainly designed for usage as an integ-
rated part of the manufacturing system development process where the de-
cision on using DES or other means to assess the system is taken after the
conceptional phase, as shown in Figure 10.3.

To achieve a certain quality of the analysis of a manufacturing system the
analyst requires a certain amount of information about the studied system.
The functional and conceptional phases have to be performed either way. The
added effort is then in the design and realization phases. As mentioned, the
effort in the design phase is limited while it should be admitted that the realiz-
ation phase could consume much time, which is one of the reasons for reusing
the model. However, the time consumption should then be related to the qual-
ity of the analysis. An analogy would be to compare a detailed FEM analysis
with a simple calculation made on a calculator. Of course the FEM analysis
takes more time, but at the same time, the analysis is of much higher quality.
Similarly, one can not compare a simple analysis made with a spreadsheet with
the analysis made with a DES tool. Of course one has to consider whether a
detailed analysis is required, which is why the decision on whether using DES
or not is taken after the conceptual phase.

Complexity and Simulation

Another reason believed to affect the low usage is the conceived complexity of
using DES. The complexity issue can be divided into two parts, tool complexity
and inherent complexity.

Most DES tools of today are complex (with a few exceptions as discussed
by Johansson et al. 2002), but compared to e.g. CAD or RS tools, there is no
significant difference. A user is able to learn the tool basics within a few days,
while it takes months to become well acquainted and productive, which holds
for all three categories of tools.

The inherent complexity is due to the fact that complex systems are studied
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and thus is the analysis of the system complex. Therefore it is stated that it is
not the DES tool that is considered complex, instead it is the difficulty making
a valid conceptual model that can be translated into a simulation model. The
translation process that is quite complex can, however, be related to the tool.
The main problem is to make valid simplifications of the studied system that
can be used together with the input data that is possible to collect, i.e. there
are several difficult decisions to be made and it is hard to know if the chosen
paths are good enough.

15.3 Contributions

The first step to reduce time consumption is, based on the discussion in the
previous section, to use DES the right way, i.e. not for single shot analysis
unless it is believed that the value of the study is greater than the cost of
performing it.

The next step in improving the usage of the DES technology is to perform
the study with an efficient process, which has been presented in Chapters 10
and 11. The complexity problem has also been addressed by supplying a
methodology that structures the simulation study effort and at the same time
reduces the time consumption and lead-time of the simulation study. The
methodology also tries to overcome the credibility and validity problems by
thorough audits performed by the parties in the simulation study. Credibil-
ity as well as validity would suffer considerably if the customer and domain
experts did not contribute actively in the process.

Input data collection and analysis is identified as a problem by several
authors. In Chapters 12 and 14 two approaches have been employed to relax
the problem.

In Chapter 12 a framework was presented to collect input data from auto-
mated manufacturing systems in a way that very accurate simulation models
could be built. Since there would be little motive developing input data collec-
tion system for DES studies alone, the input data collected has several other
usages as well. The main advantage of the data collection framework is that
dependencies otherwise found in input data were avoided. The lack of de-
pendencies and the ability to collect data for devices make generalization of
the distribution functions possible which in turn make possible the assess-
ment of new, not yet existent, manufacturing systems. As pointed out, such
generalizations are complicated due to the dependencies not addressed by the
framework, but far more accurate than if no or little data is available.

In Chapter 14 generally available input data was used to relax the input data
problem and at the same time speed up the modeling process considerably.
The trade off was that the information content was limited, which resulted in
a model less accurate than desired. The approach did, however, result in an
extremely fast model building process and the maintenance of the model was
reduced considerably. The approach is also extremely scalable in that there is
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no relationship in between the size of the simulation model and the modeling
effort. The presented approach enables assessment of the impact of different
master plans and is believed to be applicable to almost any enterprise utilizing
MRP I for their production planning.

The other approach employed to reduce the modeling effort was to gener-
alize the modeling components so that parameterized models could be used,
as presented in Chapter 13. The approach, as many other similar approaches,
was limited in that only manufacturing systems of the studied type could be
modeled.

In Chapter 12 tools for accurate assessment of the size of safety zones and
the number of operators in the manufacturing system was presented. The data
collection framework, parameterized models and safety zone tools together
forms an approach that will make possible quick modeling of accurate DES
models for manufacturing systems of the type studied.

15.4 Construct Validity

The presented contributions aim at reducing time requirements for perform-
ing simulation studies in general and in particular contexts. However, proving
that it is so is quite difficult.

The approaches presented in Chapters 13 and 14 will obviously reduce
time consumption in the contexts they are designed to work.

To prove that the methodology presented in Chapters 10 and 11 will reduce
time consumption is complicated. There is no practical possibility to perform
the same case studies with another methodology and trace the differences.
Theoretically there are too many parameters affecting the outcome and in
practice it is hardly doable due to scarce resources. What I can refer to is
my, and the participants, image of the methodologies applicability. In the
second case study performed at BT there was a requirement from BT that
SCM should be used which indicates the practical usefulness of that part of
the methodology. In the software industry it is an accepted fact that CMM and
SCM is required for stable and repeatable development.

15.5 Internal Validity

Internal validity concerns the causal relationships, i.e. whether it was the pro-
posed methodology that generated the reduced time consumption or if was
an effect of other variables.

One variable that did affect the differences in time consumption was how
trained the participants in the performed case studies were. For instance,
the first case study at BT took considerable time due to poor training. In the
second case study at BT most parties had a common notion of how to perform
the simulation study, thus were there less meetings, less communication, the
case was performed without interrupts, etc. That is, all the lessons learned in
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the first case was implemented and thus reduced time consumption. The point
is here is not to compare the two simulation studies, only to highlight the big
differences in performance due to one single parameter although performed
within the same methodological framework.

Although it is difficult to pinpoint the causal relationships one can say that
the methodology does institutionalize the simulation process and thereby re-
duces the number of parameters that can affect the simulation process and
the impact of the remaining parameters. One of the points in using a meth-
odology is to reduce the variance of the outcome.

It can also be established that concurrent work will reduce lead-time if
the amount of communication required in between team members is kept
limited. The modular decomposition of the simulation model in the design
phase enabled concurrent model building in the realization phase.

The methodology’s focus on continuous audits will reduce the number
of mistakes made and the impact of those mistakes. Similarly, it can be es-
tablished that moving time consuming activities forward in the process will
reduce the collection of redundant information that otherwise might be col-
lected. These two properties alone will reduce the time consumption of the
simulation study.

The structured approach in developing a conceptual model and then design-
ing the simulation model will result in a more structured model and a better
understanding of the studied system before the time consuming activities be-
gin. These statements are hard to prove quantitatively with the case studies,
but is, for instance, how the software industry works, based on many years of
practical experience.

15.6 External Validity

External validity concerns whether the findings are generalizable beyond the
immediate case study. As discussed above, there are several parameters af-
fecting the findings and typically several case studies are required.

The methodology presented in Chapter 10 has been used to different ex-
tents in the BT Products case studies and in the most recent case study per-
formed at Volvo Articulated Haulers (not presented in this thesis). The meth-
odology was not developed when the Profilgruppen case study was performed
and the other projects have been performed to develop methods and tools
and are therefore not suitable for comparisons. The experiences from the case
studies are that the simulation study process does benefit from the structured
approach.

The data collection framework has not been tested in a practical applica-
tion. However, the input data from the input data collection system at Scania
had many of the properties of the proposed input data collection framework.
Simulations performed by Arne Ingemansson, Division of Robotics, Depart-
ment of Mechanical Engineering, Lund University, showed that the accuracy
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of the simulation model was good. The other properties follow from logical
deduction.

The integrated factory simulation method has not been tested in full scale,
but has been validated with a proof-of-concept model. The additional work
required to perform a full scale test is limited.

What would be interesting to find out in a real life application is the simula-
tion execution time for such large models and the accuracy of the output. The
test database was quite small and thus did not test simulation speed. There
was no real factory to compare to and thus the accuracy could not be tested
either. There was no guarantee that data for comparisons were available at
BT even if a full-scale test would be made. Therefore it was doubtful whether
it was possible to make good estimations of accuracy. It should be noted that
this is not a new idea, a similar system is used at Volvo Articulated Haulers
and the usability of the application is said to be good.

The parameterized modeling method is designed to work in a specific con-
text and is thus not generalizable. However, the general routines that are the
basis for the method, are generalizable to any manufacturing system where
the objects communicate before performing an action. Several automated
manufacturing systems work this way and it is recommended to replicate the
wait-until-condition-satisfied behavior in such systems. The default behavior
in DES systems does not take such behaviors in consideration.

Many of the developed tools were made for usage with QUEST and are thus
not directly generalizable, but the principles and ideas are.

15.7 Reliability

The objective of this section is to show that if the same case studies were
to be performed the same conclusions would be drawn. One prerequisite for
allowing another investigator to repeat an earlier case study is the need to
document the procedures followed in the earlier case. A good guideline for
doing case studies is therefore to conduct the research so that an auditor could
repeat the procedure and arrive at the same results. Since the presented thesis
is such a document this requirement is fulfilled to the extent possible.

15.8 Applicability

Since it was stated that the presented research was considered to be applied
a short note on that issue is in place. The case studies have been performed
together with the industry for which the presented results are aimed. The case
studies have been performed together with the industries on their conditions
and based on their requirements.

The proposed methodology is general and can be applied to almost any DES
study in any industry. The supporting documentation tools are, as discussed,
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applicable and desired in principle, but not with the tools currently used. The
applicability is also limited to source code, and not to non-editable model files.

The data collection framework and modeling tools developed in the case
studies at VCBC were designed to be applied at that company. The data col-
lection framework is applicable to any automated or semi-automated manu-
facturing system.

The integrated factory simulation was developed for usage at BT and was
considered applicable by BT. VAH (Volvo Articulated Haulers) considers the
similar system at VAH applicable.
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Conclusions

The overall objective of the presented work is to reduce time consumption
and lead-time.

In Chapter 10 the scope has been the discrete-event simulation study pro-
cess. The simulation study engineering and management processes were de-
scribed and a model for capability maturity was supplied.

In Chapter 11 a tool for documentation were presented to support the
developed simulation study process.

In Chapter 12 a framework for reducing the data collection effort has been
presented. The main advantage with the framework is that the collected data
is accurate and has few or no dependencies, i.e. data is of high quality. The
data collected with a high level of detail that enables the use of the data for
real-time operations and manufacturing system development within several
domains.

To reduce the development time during in the realization phase two meth-
ods have been developed, presented in Chapters 13 and 14, each reducing the
development time in two different domains with two different approaches. In
Chapter 13 a set of tools was presented that made possible parameterized
modeling which in turn enabled the modeling process. In Chapter 14 existent
MRP I data was copied to a simulation model database. The method reduced
the modeling and maintenance effort considerably.

Another implicit objective has been to increase the DES model credibility.
In Chapter 10 model credibility was enhanced by thorough continuous re-

views of the activities performed and the activities to be performed. The cap-
ability maturity model also provided a model for continuous improvement of
the simulation engineering and management process as well as the simulation
organization, i.e. the infrastructure required for stable and reliable execution
of simulation studies.

In Chapter 12 model accuracy has been improved by addressing the input
data quality. Correct modeling of manufacturing systems of the type studied
at VCBC has been addressed in Chapters 12 and 13.
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Another conclusion was that to yield high efficiency performing simulation
studies requires correct usage, i.e. the simulation study should not be used
to correct mistakes made earlier in the manufacturing systems life cycle. The
mistakes considered are those not detected due to the omitted usage of DES
earlier in the life cycle. Instead the life cycle of the simulation study should
coincide with the life cycle of the manufacturing system. Related to this is
the widespread misconception that simulation studies consume more time
than it actually does. One reason for this misconception is the usage of DES
for fire-and-forget simulation studies which follows from the non-coinciding
life cycles. It was also concluded that it does take longer time to perform a
simulation study compared to simpler methods, but that added effort should
be related to the benefits of a more detailed analysis.



Chapter 17

Future Research

The thesis is on integration of DES in the manufacturing system development
process and a few problems have been identified. Below a few issues are
highlighted that is believed to facilitate the integration of DES into the manu-
facturing system development process.

First it should be made clear that if DES is to be integrated, it is in fact a
number of processes with tools, methods, and methodologies that should be
integrated. There is no intention to identify all the issues. That is a research
issue on it’s own. However, to identify the issues of integration (with all facets)
isolated to the usage of DES would be a first step towards an understanding of
the complexity of the integration issue. An identification of the information
required in the tools and processes in the manufacturing system development
process would clarify the requirements and form a base for future research.
Examples are SFCS development, robot cell development, and manufacturing
system process development. The mentioned domains are all related to the
simulation of the entire manufacturing system. Work has been performed in
these areas, although more efforts are required and, above all, standards for
the exchange and sharing of the manufacturing system design information
base are required.

The reason for integration of the information base is to reduce time con-
sumption and cost. In the case of DES the integration of information would
reduce the modeling effort and the input data problem.

Similarly to the integration of the information used in the manufacturing
system development it is believed that integration of e.g. SFCSs with DES has
the possibility to increase simulation accuracy, reduce development time con-
sumption, and reduce start up times. Integration of applications would in a
DES context reduce the modeling time.

This thesis has to some extent treated the integration of processes, i.e. the
DES process with the manufacturing system development process. However, it
is believed that more research is required in this area to make this integration
mature.
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Appendix A

Proposed Discrete-Event Simulation
Process

The discrete-event simulation process presented in Chapter 10 is here shown
with IDEFØ notation. The appendix is supplied to complement the description
in Chapter 10.



186 Proposed Discrete-Event Simulation Process

Figure A.1: Node A-0, Discrete-event simulation process.



187

Figure A.2: Node A0, Discrete-event simulation process.
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Figure A.3: Node A1, Fundamentals.
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Figure A.4: Node A11, Functional phase.
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Figure A.5: Node A111, What.



191

Figure A.6: Node A112, How, Who, When.
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Figure A.7: Node A12, Conceptual Phase.
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Figure A.8: Node A121, Temporary Objects.
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Figure A.9: Node A122, Permanent Objects.
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Figure A.10: Node A1222, Failure and Repair.
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Figure A.11: Node A123, Processes (Load/Unload/Setup/Cycle).
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Figure A.12: Node A1231, Requirements.
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Figure A.13: Node A13, Design Phase.
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Figure A.14: Node A131, Model Design.
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Figure A.15: Node A1313, Decomposition.
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Figure A.16: Node A13131, Failure and Repair.
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Figure A.17: Node A13132, Element Logic.
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Figure A.18: Node A1315, Processes (Load/Unload/Setup/Cycle).
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Figure A.19: Node A13151, Requirements.
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Figure A.20: Node A2, Realization Phase.
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Figure A.21: Node A21, Build.
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Figure A.22: Node A212, Build Modules.
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Figure A.23: Node A2121, Build Component.
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Figure A.24: Node A21211, Logic.
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Figure A.25: Node A21212, Processes (Load/Unload/Setup/Cycle).
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Figure A.26: Node A212121, Requirements.



212 Proposed Discrete-Event Simulation Process

Figure A.27: Node A21213, Failure and Repair.
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Figure A.28: Node A5, Experimental Phase.
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Appendix B

Availability Related Definitions

The material presented here is mainly extracted from Lindgren & Rychlik
(1997) and Lie, Hwang & Tillman (1977).

B.1 Basics

Definition B.1 Lifetime
The lifetime is the period of time from that an entity is started until it fails

the first time.

Definition B.2 Cumulative distribution function
The cdf (cumulative distribution function) is defined as

F(t) =
∫ t

0
f (u)du = P(T ≤ t) (B.1)

where f (u) is the pdf (probability density function).

Definition B.3 Reliability function
The probability that an entity will work at time t is

P(T > t) = 1− F(t) = R(t) (B.2)

where R(t) is referred to as the reliability function.

Definition B.4 Average lifetime
The average lifetime is defined as

E(T) =
∫∞

0
uf(u)du. (B.3)
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Proposition B.1 Mean time between failure and mean time to repair
For every stochastic variable T with P(T > t) = R(t)

E(T) =
∫∞

0
R(t)dt (B.4)

Definition B.5 Failure rate
If the lifetime T has the pdf f (t), the cdf F(t), and the reliability function

R(t), the failure rate is

z(t) = f (t)
1− F(t) =

f (t)
R(t)

(B.5)

Proposition B.2 Reliability function
If the lifetime distribution F has the failure rate z(t), then

R(t) = exp

(
−
∫ t

0
z(u)du

)
(B.6)

Definition B.6 Time between failure
TBF is defined as the time between two downtimes excluding the repair

time. TBF follows Equation 12.1

Definition B.7 Time to repair
The time an entity is in the repair state is referred to as TTR. This time

excludes the WT. Planned maintenance is denoted TTRp and corrective main-
tenance is denoted TTRc

Definition B.8 Downtime
The downtime is the total time an entity is down and can be written as the

sum of the WT (Ahlmann & Hagberg 190/91, Kiessling & Sandén 1981) and
TTR

DT = WT+ TTR.

When operators are modeled explicitly the WT should be excluded from the
repair distribution. Downtime is thus dynamic and dependent on the number
of operators in the system and the current system state. When operators are
modeled implicitly the WT is included in the repair distribution. If possible,
the WT and TTR should always be separated since all downtime distributions
otherwise will be dependent of the number of operators which is undesirable.

B.2 Availability

Availability is defined in several ways in the literature (Ericsson 1997, Lie
et al. 1977). Two classifications of the availability can be identified and are
presented in the following sections.
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B.2.1 Availability Based on the Time Interval

Depending on the time interval considered, availability is classified into the
three categories:

• instantaneous,

• average uptime, and

• steady state availability.

In this context it is the steady state availability that is of interest.

Definition B.9 Instantaneous availability
Instantaneous availability, A(t), is defined as the probability that the sys-

tem is operational at any random time t. Compare this with the definition of
reliability in definition B.3.

Definition B.10 Average uptime availability
Average uptime availability is the proportion of time in a specified interval

(0, T ) that the system is available for use and is expressed as

A(T) = 1
T

∫ T
0
A(T)dt (B.7)

Definition B.11 Steady state availability
Steady state availability is defined as

A(∞) = lim
T→∞

A(T) (B.8)

B.2.2 Availability Based on Downtime Type

A classification can also be made considering the types of downtime:

• inherent,

• achieved, and

• operational availability.

In this category, the form used to describe system availability is that of an
expected value function which assumes a steady state condition.

Definition B.12 Inherent availability
What most readers refers to as availability is here termed inherent avail-

ability, Ai, and is defined by

Ai = MTBF
MTBF+MTTRc

(B.9)

where MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair)
follows from Equation B.4. It includes only corrective maintenance downtime
and excludes ready time, preventive maintenance downtime, logistics time
and waiting or administrative downtime.
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Definition B.13 Mean time between maintenance
The MTBM (Mean Time Between Maintenance) is the mean interval of all

maintenance requirements, i.e. both corrective and preventive. For example
when preventive maintenance is scheduled at time T , it is expressed by

MTBM =
∫ T

0
R(s)ds (B.10)

Definition B.14 Mean maintenance time
The mean maintenance time, M, is the downtime resulting from both cor-

rective and preventive maintenance and is calculated by

M = MTTRcfc +MTTRpfp
fc + fp (B.11)

where fc and fp respectively denote the number of corrective and preventive
maintenance actions.

Definition B.15 Achieved availability
Achieved availability, Aa, includes corrective and preventive maintenance

downtime and is a function of the frequency of maintenance and the mean
maintenance time. It is expressed by

Aa = MTBM
MTBM+M

(B.12)

It excludes WT and thus both inherent and achieved availabilities are defined
in an ideal support environment.

Definition B.16 Operational availability
Availability defined in an actual operational environment is termed the

operational availability. Operational availability, Ao, includes WT and is ex-
pressed by

Ao = MTBM+ ready time
(MTBM+ ready time)+MDT

(B.13)

where

ready time = operational cycle− (MTBM+MDT)
MDT = M +WT.

Operational availability appears to be a more realistic measure than the
other two measures. Lie et al. argue that because delay time is determined
by administrative and supply factors that can not accurately be anticipated,
they are beyond the designer’s control, and accordingly, can play little part in
the maintainability of the design. However, within the framework presented
here, this information is available and can thus be used in the development
process.



Appendix C

An Example of the Incremental
Development of Documents

Here a trivial example of the incremental generation of documents is presented
for a few phases in the simulation study. The example below tries to replicate
a fictive trivial simulation study. The information added in each phase is
enclosed by XB ñ and ð XB , where XB is an abbreviation for the baseline. The
following abbreviations have been used:

FB Functional Baseline

CB Conceptual Baseline

DB Design Baseline

RB Realization Baseline

FB ñ

Objectives

Build a model of a system with one machine and measure throughput.
ð FB

CB ñ

System Description

Temporary Objects

The IAT of ThePart is one minute following an exponential distribution.
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Permanent Objects

The TheSource object creates ThePart and routes it to TheMachine. ð CB

DB ñ The TheSource is a source class object. ð DB

CB ñ TheMachine processes ten parts at a time. Each part takes one minute
to process. Each batch of parts takes one minute to load and one minute to
unload. There is no setup time. The parts are then sent to TheSink. ð CB

DB ñ TheMachine is a machine class object and has the following processes
attached:

Cycle process TheMachineCyc,

Load process TheMachineLoad, and

Unload process TheMachineUnload.

The process logic is defined by TheMachinePrc that is stored in TheMachine-
Prc.scl file. ð DB

RB ñ

TheMachinePrc

TheMachinePrc performs the process logic of the TheMachine.
SYNTAX:

procedure TheMachinePrc()

AUTHOR: Lars Randell (lrandell@robotics.lu.se)
CVS: Revision: 1.3

procedure TheMachinePrc()
var

ii : integer
begin

require part ThePart
DoLoadProcess(TheMachineLoad)
for ii = 1 to 10 do

DoCycleProcess(TheMachineCyc)
endfor
DoUnloadProcess(TheMachineUnload)
pass()

end

ð RB

DB ñ The TheSink is a sink class object. ð DB
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Acronyms

ABB BiW . . . . . . ABB Body-in-White

ABC . . . . . . . . . . . Activity Based Costing

ABM . . . . . . . . . . Activity Based Management

AD . . . . . . . . . . . . Axiomatic Design

AGV . . . . . . . . . . Automated Guided Vehicle

AP . . . . . . . . . . . . Application Protocol

In order to define implementable standard information mod-
els for specific industry needs the STEP standard contains a
construct called AP (Application Protocol). The AP defines the
context and scope for how to interpret and use the data mod-
els defined in the Integrated Resources (Johansson 2001).

AQNM . . . . . . . . Analytical Queuing Network Model

Simulations that provides quick estimates of steady state res-
ults regarding total system output and average resource util-
ization (Grewal et al. 1998).

ASCII . . . . . . . . . American Standard Code for Information Interchange

A character encoding.

BCL . . . . . . . . . . . Batch Control Language

Used with QUEST to run experiments, dynamically alter mod-
els etc.

BP . . . . . . . . . . . . . Business Process

BT . . . . . . . . . . . . BT Products

CAD . . . . . . . . . . Computer Aided Design

CAM . . . . . . . . . . Computer Aided Manufacturing
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CAME . . . . . . . . . Computer-Aided Manufacturing Engineering

See also CAMSE.

CAMSE . . . . . . . Computer-Aided Manufacturing System Engineering

McLean (McLean 1993) defines CAMSE as “the use of compu-
terized tools in the application of scientific and engineering
methods to the problem of the design and implementation of
manufacturing systems.” See also CAME.

CAPP . . . . . . . . . Computer Aided Process Planning

CCB . . . . . . . . . . . Change Control Board or Configuration Control Board

Dart (1990) and ? refers to this as the Change Control Board
while Bersoff et al. (1980) use the term Configuration Control
Board.

cdf . . . . . . . . . . . . cumulative distribution function

CE . . . . . . . . . . . . Concurrent Engineering

CIM . . . . . . . . . . . Computer Integrated Manufacturing

CM . . . . . . . . . . . . Configuration Management

CMM . . . . . . . . . . Capability Maturity Model

CN . . . . . . . . . . . . Computer Network

CNC . . . . . . . . . . Computer Numerical Control

COTS . . . . . . . . . Commercial Off-The-Shelf

CRP . . . . . . . . . . . Capacity Requirements Planning

CVS . . . . . . . . . . . Concurrent Versions System

CVS is a configuration management system in the public do-
main. CVS allow concurrent development in heterogeneous
environments, at different geographical sites.

DBMS . . . . . . . . . DataBase Management System

DELMIA . . . . . . Digital Enterprise Lean Manufacturing Interactive Applications

DELMIA develops a number of simulation tools and is a part
of Dassault Systemes that .

DES . . . . . . . . . . . Discrete-Event Simulation

DFMA . . . . . . . . Design For Manufacturing and Assembly

ERP . . . . . . . . . . . Enterprise Resource Planning
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EWP . . . . . . . . . . Enercon Windtower Production

A producer of towers for wind energy turbines.

FEM . . . . . . . . . . . Finite Element Analysis

FMS . . . . . . . . . . . Flexible Manufacturing System

GOT . . . . . . . . . . Graphical Operator Terminal

GUI . . . . . . . . . . . Graphical User Interface

HTML . . . . . . . . . HyperText Markup Language

HTML is the set of markup symbols or codes inserted in a file
intended for display on a World Wide Web browser page.

IAT . . . . . . . . . . . Inter Arrival Time

IEEE . . . . . . . . . . . Institute of Electrical and Electronics Engineers

IGES . . . . . . . . . . Initial Graphics Exchange Specification

IGES is an ANSI! graphics file format for three-dimensional
wire frame models.

IMES . . . . . . . . . . Initial Manufacturing Exchange Specifications

IRT . . . . . . . . . . . Inter Request Time

IS . . . . . . . . . . . . . Information System

ISO. . . . . . . . . . . . The International Organization for Standardization

IT . . . . . . . . . . . . . Information Technology

IT applied to business organisations can be split into two ma-
jor areas, IS (Information Systems) and CN (Computer Net-
works).

LTS . . . . . . . . . . . Lot Tracking System

MES . . . . . . . . . . . Manufacturing Execution System

METK . . . . . . . . . Manufacturing Engineering ToolKit

Results from the METK project at NIST is described in (Iuliano
1995, Iuliano & Jones 1996, Iuliano et al. 1997, Iuliano 1997, ?).

ML . . . . . . . . . . . . Maximum Likelihood

MRP . . . . . . . . . . Manufacturing Resource Planning or Manufacturing Require-
ments Planning

See also MRP I and MRP II.
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MRP I . . . . . . . . . Manufacturing Requirements Planning

MRP I enables a company to calculate how many materials of
particular types are required, and at what times they are re-
quired (?). See also MRP II.

MRP II . . . . . . . . Manufacturing Resource Planning

MRP II enables companies to examine the engineering and fin-
ancial implications of future demand on the business, as well
as examining the materials requirements implications (?). See
also MRP I.

MTBF . . . . . . . . . Mean Time Between Failures

MTBM . . . . . . . . Mean Time Between Maintenance

MTTR . . . . . . . . Mean Time To Repair

NIST . . . . . . . . . . National Institute of Standards and Technology

OLP . . . . . . . . . . . Off-Line Programming

PDF . . . . . . . . . . . Portable Document Format

PDF is a file format that has captured all the elements of a
printed document as an electronic image that you can view,
navigate, print, or forward to someone else.

pdf . . . . . . . . . . . probability density function

PDM . . . . . . . . . . Product Data Management

Perl . . . . . . . . . . . Practical Extraction and Report Language

Perl is a language optimized for scanning arbitrary text files,
extracting information from those text files, and printing re-
ports based on that information. It’s also a good language for
many system management tasks.

PLC . . . . . . . . . . . Programmable Logic Controller

PS . . . . . . . . . . . . . PostScript

Postscript is a programming language that describes the ap-
pearance of a printed page.

QDBC . . . . . . . . . Quest DataBase Connection

QFD . . . . . . . . . . Quality Function Deployment

According to Akao (1990), QFD “is a method for developing
a design quality aimed at satisfying the consumer and then
translating the consumer’s demand into design targets and
major quality assurance points to be used throughout the pro-
duction phase.”
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QUEST . . . . . . . . Queuing Event Simulation Tool

QUEST is a discrete-event simulation software from DELMIA
with 3D animation capabilities.

RS . . . . . . . . . . . . . Robot Simulation

SCL . . . . . . . . . . . Simulation Control Language

The simulation programming language in QUEST.

SCM . . . . . . . . . . Software Configuration Management

SDX . . . . . . . . . . . Simulation Data Exchange

A file format for exchanging simulation models (Moorthy 1999).

SE . . . . . . . . . . . . . Simultaneous Engineering

SFCS . . . . . . . . . . Shop Floor Control System

SGI . . . . . . . . . . . . Silicon Graphics

The company’s computer systems, ranging from desktop work-
stations and servers to supercomputers, deliver advanced com-
puting and 3D visualization capabilities to scientific, engineer-
ing and large enterprises. SGI also creates software for design,
Internet, and entertainment applications.

SIMA . . . . . . . . . Systems Integration of Manufacturing Applications

SQL . . . . . . . . . . . Structured Query Language

A database query lanquage.

STEP . . . . . . . . . . Standard for the Exchange of Product Model Data

The ISO 10303 STEP is a set of ISO standards which provide
for the exchange of engineering product data. These standards
can be grouped into infrastructure components and industry
specific information models. STEP covers a wide range of ap-
plication areas and each area has its own part of of the stand-
ard application protocols. STEP also provides a method for im-
plementation in file exchange and database access (Johansson
& Rosén 1999).

TAMCAM . . . . Texas A&M Computer Aided Manufacturing Laboratory

TBF . . . . . . . . . . . Time Between Failures

TCP/IP . . . . . . . Transmission Control Protocol/Internet Protocol

The main protocol of the Internet.
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TEC . . . . . . . . . . . Teknikcentrum Kronoberg

TTR . . . . . . . . . . Time To Repair

UWAB . . . . . . . . Urshults Werkstads AB

VAH . . . . . . . . . . Volvo Articulated Haulers

VCBC . . . . . . . . . Volvo Car Body Components

WBS . . . . . . . . . . . Whole Business Simulator

A concept where the entire enterprise is simulated (Love &
Barton 1996).

WIP . . . . . . . . . . . Work In Progress

WSC . . . . . . . . . . Winter Simulation Conference

WT . . . . . . . . . . . . Waiting Time

WYSIWIS . . . . . What-You-See-Is-What-I-See

A metaphor for a synchronous editor that allows multiple users
to access and edit shared material simultaneously.



Glossary

Aegis Aegis is a transaction-based software configuration management sys-
tem.

AutoMod A discrete-event simulation package from AutoSimulations.

AutoSched A simulation package for fabs from AutoSimulations.

CodeDoc A program for extracting documentation from source code.

deductive A conclusion received from common principles is deductive (Patel
& Tebelius 1987). See also inductive.

Delfoi Delfoi provides e-business solutions and distributes DELMIA products
in Scandinavia.

DocStrip DocStrip is a macro supplied with LATEX and is used to extract docu-
mentation and code from a source.

ecological validity The possibility of generalizing from one context to an-
other (Patel & Tebelius 1987).

EXPRESS EXPRESS is an object-flavoured information modeling language that
was developed as part of the STEP product data exchange standard.
In 1994 the language was approved as an ISO International Standard,
namely ISO 10303-11:1994.

IDEFØ IDEFØ is a method designed to model the decisions, actions, and activ-
ities of an organization or system. IDEFØ is useful in establishing the
scope of an analysis, especially for a functional analysis. As a communic-
ation tool, IDEFØ enhances domain expert involvement and consensus
decision-making through simplified graphical devices. As an analysis
tool, IDEFØ assists the modeler in identifying what functions are per-
formed, what is needed to perform those functions, what the current
system does right, and what the current system does wrong. Thus, IDEFØ
models are often created as one of the first tasks of a system develop-
ment effort (?).
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IDEF3 The IDEF3 process description capture method provides a mechanism
for collecting and documenting processes. IDEF3 captures precedence
and causality relations between situations and events in a form natural to
domain experts by providing a structured method for expressing know-
ledge about how a system, process, or organization works (?).

inductive A conclusion based on individual cases that connect to a principle
or a common law, is inductive (Patel & Tebelius 1987). See also deductive.

intranet Browsing software in conjunction with information servers and an
underlying network infrastructure allows a business enterprise to dis-
seminate and share all manner of business information efficiently, rap-
idly, and with a uniform user interface. As implemented within a single
enterprise — regardless of whether the enterprise is one facility or mul-
tiple, geographically separated facilities — this combination of informa-
tion and information dissemination mechanisms is known as an intranet
(?).

IRIX IRIX is a Unix System V flavor running on Silicon Graphics workstations.

Make Make provides a simple mechanism for maintaining up-to-date versions
of programs that result from many operations on a number of files
(Feldman 1979).

Matlab Matlab from MathWorks integrates mathematical computing, visual-
ization, and a language to provide a flexible environment for technical
computing.

model A model is a simplified or idealized description of a system, situation,
or process, often in mathematical terms, devised to facilitate calculations
and predictions. See also system.

MySQL MySQL is a very fast, multi-threaded, multi-user, and robust SQL data-
base server. MySQL is free software. It is licensed with the GNU General
Public License.

PANDA PANDA is a computer system for sampling production data from PRE-
VAS. Included in the system is also report generators.

population validity The possibility to generalize to a larger group (Patel &
Tebelius 1987).

Scania The core of Scania’s operations is the development, production and
marketing of trucks for heavy transport work and buses and coaches for
more than 30 passengers.
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simulation The technique of imitating the behavior of some situation or sys-
tem (economic, mechanical, etc.) by means of an analogous model, situ-
ation, or apparatus, either to gain information more conveniently or to
train personnel.

simulator An apparatus for reproducing the behavior of some situation or
system; esp. one that is fitted with the controls of an aircraft, motor
vehicle, etc., and gives the illusion to an operator of behaving like the
real thing.

system A system is defined as a group of objects that are joined together
in some regular interaction or interdependence toward the accomplish-
ment of some purpose, see also model.

theory A scientific theory comprise usually something more than a hypo-
theses. A theory can be said to be a system of hypothesis (Patel &
Tebelius 1987). See also hypothesis!.


