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Abstract

Inspired by the observation that capacity contracts are used by some retailers and manufacturers to

increase their transport provider's investments in green vehicles, we investigate and compare a service

provider's optimal investment, and its environmental implications, when the service is sold to a down-

stream retailer under a volume and a capacity contract respectively. We solve the service provider's joint

pricing and investment problem for the contracts, under the assumption that the retailer uses the service

to replenish a warehouse with storable goods. We then show that a capacity contract leads to more trans-

ports being carried out using green vehicles, but not necessarily a larger investment in green vehicles.

Instead, investment is done in more inventory. In fact, the investment in inventory is non-decreasing

in the cost bene�t of the green vehicles, which may have a signi�cant negative environmental impact.

The implication is that a capacity contract will be better than a volume contract from an environmental

perspective only when the green vehicles' cost bene�t is within a given interval. Whether the capacity

contract is the more pro�table option for the service provider within this interval depends on inventory

costs and the relative environmental costs from transportation and inventory. Interestingly, owing to

this, regulation that target the price of the conventional vehicles, such as a carbon tax, may lead to both

an increase or a decrease in environmental performance.
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1 Introduction

With the increased interest in environmental sustainability, many �rms express a desire to reduce greenhouse

gas (GHG) emissions also from outsourced transport operations. In the 2013 Carbon Disclosure Project

(CDP) report, more than 30% of the �rms report that they measure and work with improving emissions

from outsourced distribution and transports (CDP, 2013). Manufacturer Unilever, for instance, claims that

�a major objective at Unilever is to reduce our carbon footprint in the distribution of our products...we need

logistics providers that are not only capable of moving and storing our goods in a service-driven, cost-e�ective

and reliable way, but also with the smallest carbon footprint possible� (Ehrhart, 2010). Retailer H&M has a

similar point of view: �we know that the biggest climate impacts along our value chain happen outside of our

operations�, adding that they therefore, �promote environmental consciousness at the transport companies

we work with� (H&M, 2013).

As the pressure from large clients such as Unilever and H&M increases, transport service providers

struggle to �nd a proper balance between conventional and green vehicles in their �eets. As one example,

when Bring Frigo, a large European transport service provider, was pressured to o�er a more carbon e�cient

replenishment solution for a customer, they decided to start investing in an intermodal truck-train solution

(see e.g. Lammgård, 2012; Eng-Larsson, 2012). Similar to other green vehicles (see e.g. Wang et al., 2013),

an intermodal solution o�ers lower operating costs than conventional vehicles due to lower fuel consumption,

but requires a larger upfront investment. To �nd the proper balance in the �eet, the service provider must

balance these costs. However, two complicating factors makes the problem challenging. First, compared

to conventional vehicles, a large part of the upfront investment in green vehicles is in location-speci�c

infrastructure and customer-speci�c assets. For instance, Bring Frigo would invest in railway and terminal

access to �t the customer's transport demand with regards to departure times, frequency, and priority. For

plug-in hybrids or natural gas vehicles, location-speci�c investments in charging stations and gas pumps are

required. As a result, the green transport capacity has a higher risk of being idle than the conventional

capacity of a service provider's �eet. In the words of Bring Frigo: �if the clients don't have the volume,

we're still stuck with 49 trailers� (Eng-Larsson, 2012). Second, owing to scale economies and strategic

interest, retailers increasingly work with only one service provider for a given replenishment �ow, using

long-term contracts (usually 1-2 years). Bring Frigo, for instance, is the sole contract service provider for

their customer's transports between the two regions. As a result, the contract, and the price it speci�es,

will impact the service provider's optimal investment. To see why, consider a contract where the retailer

pays for a �xed amount of capacity independently of utilization (a capacity contract), which is often used

for transport services (see e.g. Henig et al., 1997). Under such a contract, a higher capacity price will make
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it optimal for the retailer to purchase less transport capacity and instead hold more inventory. A higher

inventory level may lead to a more stable ordering pattern, and a more stable ordering pattern will make

a larger investment optimal. That is, the service provider's optimal investment is a�ected by the service

price. The service provider must therefore, for a given contract, decide how much green transport capacity

to invest in while simultaneously setting the price of the greener service.

In this paper we investigate the service provider's problem, and analyze the environmental implications

of the optimal decisions. We analyze and compare investment under two long-term contracts often found on

the transport market (see e.g. Mellin and Sorkina 2013; Lundin and Hedberg 2012): volume contracts, where

the retailer pays for each unit of service when performed; and capacity contracts, where the retailer pays

for a �xed amount of capacity in each period independently of utilization. Interestingly, some �rms have

argued that a shift to long-term capacity contracts will improve environmental performance. The argument

typically mirrors that seen in the capacity management literature (Jin and Wu, 2007; Erkoc and Wu, 2005):

by making a long-term commitment, the service provider receives a safe pro�t which enables investment in

transport technology that, at scale, is both less costly and less polluting. Similar arrangements have been

seen in other industries. For instance, Plambeck and Denend (2011) report that Walmart uses long-term

comitments to increase suppliers' incentives to invest in more sustainable production technology. They quote

the executive Vice President of Private Brand Operations saying: �to get from here to scale might require

an investment that takes two and a half or three years to pay o�. O�ering a two-year commitment gives a

supplier enough incentive to make the investment.� But - taking into account the optimal decisions of the

service provider - does a shift to long-term capacity contracts really lead to less environmental impact in the

transport context? And what incentives does a carbon tax create under such an arrangement? In this paper

we seek to answer these questions.

In the supply chain literature, volume and capacity contracts have been extensively studied in both one-

period settings (e.g. Erkoc and Wu, 2005; Tomlin, 2003; Cachon and Lariviere, 2001; van Mieghem, 1999)

and multi-period settings without inventory (Ak³in et al., 2008). For instance, Aksin et al. (2008) analyze

the same contracts as we do in the context of call center outsourcing. The major di�erence between these

settings, however, is that in the transport service context, the buyer (i.e. the retailer) keeps an inventory

which is a�ected by the contract parameters. This complicates the problem, since the service provider needs

to consider how pricing a�ects the ordering pattern, which depends on downstream operations changes.

Our �rst contribution is to extend this literature by considering a multi-period setting, where inventory

can be kept between periods. In our model, a volume contract or a capacity contract (or a combination) is

implemented before the start of the �rst period. From the �rst period on, in each period, the retailer observes

demand and places a replenishment order which is transported to the warehouse by the service provider.
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Thus, the work by Henig et al. (1997) and Serel et al. (2001) is perhaps most closely related to this work. In

these papers, the authors consider a multi-period problem, where reserved capacity can be combined with a

spot-market to replenish a storable good with stochastic demand. Henig et al. (1997) derive the retailer's

optimal inventory policy. Given the buyer's response in Henig et al. (1997), Serel et al. (2001) determine the

optimal pricing policy for the service provider numerically. We propose a slightly di�erent approach to study

the multi-period problem. To derive closed form expressions, we use tools from the literature on periodic

review capacitated production-inventory systems (see e.g. Alp and Tan, 2008; Angelus and Porteus, 2002),

which we embed in a Stackelberg contracting model. By proceeding in this way, we can extend previous

work to compare contracts, and conduct sensitivity analyses to understand the impact of e.g. carbon taxes.

Our second contribution is in characterizing the players optimal decisions, and identifying some interesting

structural properties. In our analysis, we derive closed form expressions for the retailer's problem which is

then used to solve the service provider's joint investment and pricing problem under the di�erent contracts.

We illustrate how the investment in green transport capacity, under capacity contracts, is non-monotonic

in a retailer's capacity reservation. We show that this also implies that with capacity contracts, a carbon

tax may, in fact, lead to less green capacity and a higher expected environmental footprint. This is of

particular interest, since carbon taxes has gained traction in business media and among regulators (see e.g.

Hargreaves, 2010). In fact, some of the sustainability policies of �rms like Unilever and H&M are motivated

by an expectation of higher future tax pressure. As discussed by Krass et al. (2013), carbon taxation is an

indirect tool, through which regulators try to provide incentives for �rms and people to make the �right�

technology choice. However, what we see is that this is not necessarily the case: if a regulator decides to

make conventional vehicles more expensive to operate, it will not create incentives for investments in green

vehicles, it will only make transports more expensive. This �nding is similar to the �nding of Krass et

al. (2013), although the underlying mechanism is slightly di�erent. Here, the investment is non-monotonic

because an increase in the cost of the conventional technology makes it optimal for the service provider to

increase the price of the greener service. This reduces the retailer's optimal capacity reservation which, under

certain circumstances, reduces the service provider's optimal green capacity investment as well.

Our third contribution is in conducting a numerical comparison between the volume and capacity con-

tracts, as to understand when it is feasible and environmentally preferable to use each of the contracts. We

show that the share of transports being carried out using green vehicles is higher with a capacity contract.

Also, in line with previous research in the capacity management literature (e.g. Jin and Wu, 2007), the

capacity contract typically leads to a larger investment in green capacity. However, a capacity contract also

leads to more inventory at the retailer. This creates an interesting trade-o�. According to a report from

WEF (2009), warehousing accounts for roughly 10% of all logistics-related emissions. McKinnon et al. (2012)
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argue that warehousing accounts for 2-3% of the world's total energy related emissions. Consequently, the

increase in inventory may even o�set the reduction in transport related emissions. In the numerical study

we show when this is the case. Through this analysis, we hope to add to the growing discussion about the

e�ects of operations decision-making on environmental performance (see e.g. the reviews by Dekker et al.,

2012 or Corbett and Klassen, 2006). Previous research on green versus conventional vehicles by e.g. Wang

et al. (2013) and Kleindorfer et al. (2012) consider a centralized decision-maker. However, as shown by

Mellin and Sorkina (2013), Jaafar and Ra�q (2005) and Hong et al. (2004), most transports are outsourced

and controlled by di�erent service providers. In this research we aim to show how this decentralized nature

of transport operations is important in determining the environmental impact from a supply chain, through

the optimal investment in green transport capacity as well as the e�ect of carbon taxes.

The remainder of the paper is organized as follows. Our multi-period model is described in greater detail

Section 2. In Section 3, we characterize the players' optimal decisions under a volume contract and a capacity

contract, and identify structural properties regarding the sensitivity to changes from a carbon tax. Section

4 discusses an extension for the case when a volume contract and a capacity contract is combined, and

in Section 5 we present a numerical illustration to compare contracts and elaborate on the environmental

implications of the players' optimal decisions. Finally Section 6 concludes the paper. All proofs can be found

in the Appendix.

2 Model

We consider a service provider (she) and a retailer (he) that engage over multiple periods of equal length

(Figure 1). Before the �rst period, a contract is implemented and the service provider chooses a green

capacity investment level. We refer to this phase as the contracting and investment phase. From the �rst

period on, in each period, the retailer observes demand and places a replenishment order, which is transported

to the warehouse by the service provider. We refer to this as the replenishment phase. Since the contracting

horizon (usually 1-2 years) is generally much longer than a replenishment period (usually one or a few days),

we assume an in�nite horizon in our dynamic program. In the following, we �rst explain the replenishment

phase, before we explain the game played in the contracting and investment phase. The two phases are

illustrated in the timeline in Figure 2.

2.1 The replenishment phase

In the replenishment phase, decisions are made with the contract type and service price as given. In each

period of the replenishment phase, the retailer faces stochastic demand Dt = D, which is assumed to be i.i.d.
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Service Provider Buyer

Subcontractor-

market

min(D-K,0)

Q
K D

min(Q-K,0)

Retailer

Figure 1: The model

with strictly increasing cumulative distribution FD(·), and P{D = 0} = 0. Let dt denote the realization of

demand in period t. At the start of a period t, the retailer observes the demand dt and places a replenishment

order of Qt units, which is transported to the warehouse by the service provider. At the end of the period,

any remaining inventory incurs a holding cost for the retailer of h per unit, while backorders incur a penalty

b per unit. We assume full backordering in case of any shortages in a period.

The choice of ordering quantity Qt is limited by the contract. In this paper we focus on volume contracts

and capacity contracts and, as an extension, a combination of the two:

• With a volume contract, the retailer has made no capacity reservation, and Qt can be determined

freely by the retailer.

• With a capacity contract, the retailer reserves a capacity z per period, for all coming periods. The

retailer is thus constrained by the reservation and can never replenish more than the reserved quantity

in any period, i.e. Qt ≤ z.

• Under a capacity-and-volume contract, the retailer reserves a capacity z per period, but can order

additional units after demand has been observed. Therefore, no constraint exists on the replenishment

quantity, and Qt can be determined freely.

Without loss of generality, we assume that each unit demanded by the end customer requires one unit of

transport, so in the long run E[D] must equal E[Q].

2.2 The contracting and investment phase

In this phase the pricing and capacity terms for the contract is determined and the investment in green-

capacity is made. This capacity and the contract terms are not changed later in the replenishment phase.
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Figure 2: Timeline

2.2.1 Investment-related costs

The service provider has access to an in�nite pool of conventional vehicles. We refer to this pool of vehicles

as conventional capacity. The pool of vehicles is used by the service provider and other �rms to produce

strandard transport services. For such services, as well as other commodity services, barriers to enter the

market are small, and �rms tend to compete in a Bertrand-like fashion for any origin-destination pair on the

market. This forces the price close to marginal production cost. To capture this, we let the service provider's

marginal production cost when using a conventional vehicle on the given route be the same as the market

price for a standard transport service over the same route. We refer to this price as the conventional market

price, or just market price, p. A conventional vehicle that is not used by the service provider in a given

period does not generate a cost for the service provider. This captures both cases when the service provider

owns the asset and can use it for any other retailer, and cases when conventional capacity is subcontracted.

The service provider can make an investment in transport capacity from green vehicles. This will provide

access to green vehicles � i.e. green capacity � starting at the beginning of the �rst period. The green

capacity comes with a �xed cost cF per unit and period, independently of whether or not that unit of

capacity is used. This cost represents all �xed costs of the capacity, e.g. investment �nancing, monthly

lease payments, the depreciation of vehicles, or the cost to ensure railway access. We assume that cF is

constant and non-negative. In addition to the �xed cost there is a variable cost, cV , per unit that is only

paid when the green vehicles are used. This corresponds to the operating cost, e.g. the fuel and driver cost.
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Furthermore, to avoid non-trivial solutions, we assume that the total cost per period of investing and using

the green vehicles is less than the cost of using subcontractor market capacity, i.e. cF + cV < p. Clearly,

this leads to a situation where green transport capacity comes at a cost also when idle.

2.2.2 Sequence of events

The contract and investment phase starts when the retailer chooses the service provider as the sole provider

for the replenishment. As is common in the supply chain contracting literature, we assume full information,

that is, we assume the service provider has full information about the demand distribution and the relevant

costs. Consequently, before setting the price and choosing investment level, the service provider observes

the retailer's demand distribution (or, equivalently, she receives a forecast). Based on this information, she

anticipates the retailer's ordering behavior under both types of contracts in line with Section 2.1, and decides

on an investment level, K, and service price, w, to maximize pro�t. Implicitly, this means that she is also

choosing contract (unless that has been speci�ed in advance).

By making the investment, the service provider creates a �technology monopoly� as the only service

provider that can serve the retailer at the lower marginal cost, selling the greener service. This position

means that she can set the service price freely. However, since the pool of conventional vehicles is available

to any �rm, it is also available to the retailer. The conventional capacity thus serves as an outside option

for the retailer: If he is unhappy with the service provider's o�er, replenishment can be carried out using

standard services. Consequently, the price of the greener service can be set freely, but only as long as the

retailer's total costs do not exceed those from using the outside option. For instance, if the service provider

decides to invest in an intermodal truck-train solution to serve the retailer, the price of the intermodal service

(greener service) can be set freely as long as the retailer is not less pro�table using the intermodal service

compared to using full truckloads (standard service) from the market. In the words of Wolf and Seuring

(2010): �Customer demands for environmentally adapted transport and logistics is rising, but as soon as

the question of costs comes up, transport buyers put environmental criteria in second or third line, if at

all�. Consequently, as long as the retailer's expected cost does not exceed the outside option, pE[D], the

retailer chooses the contract with the lowest expected cost. If a capacity contract is chosen, the retailer also

speci�es the capacity reservation level z that minimizes his long-run expected costs. Costs and pro�ts are

then realized in each of the subsequent periods, which we assume to continue inde�nitely.

8



3 Analysis

In the following section, we derive the players' optimal decisions under a volume contract (Section 3.1)

and a capacity contract (Section 3.2). Thereafter we analyze the sensitivty of the results with regards to

regulation through a carbon tax (Section 3.3). In each section, the replenishment phase is addressed �rst,

after which the contracting and investment phase is addressed. When needed, we let subscript �U � and �C�

denote volume and capacity contracts respectively, while subscripts �S� and �R� denote service provider and

retailer respectively. When applicable, we will consider the di�erence in forced and voluntary compliance.

3.1 Volume contract

With a volume contract, the retailer is fully �exible in his replenishment quantity Qt. Since the replenishment

order can be placed after demand has been observed, the optimal replenishment policy for the retailer is

simply to let Qt = dt. In this way, all of the period's demand can be satis�ed during the period and no extra

safety stock is needed. The retailer's expected pro�t is thus given by

CR,U (w) = wE[D]. (1)

Knowing the optimal replenishment policy, we move to the contracting and investment phase. We know

that the demand is drawn from a stationary distribution D, so the service provider's expected pro�t per

period is stationary, and given by

πS,U (w,KU ) = wE[D]− cV E [min (D,K)]− pE
[
(D −K)

+
]
, (2)

where pE
[
(D −K)

+
]

= pE [max (D −K, 0)] is the cost of using conventional capacity. Hence, for a given

w, the investment in green capacity is a newsvendor decision: πS,U (KU ) is concave in KU , maximized at

K∗U and increasing over [0,K∗U ]. It is also clear that the revenue and cost parts of the function are not

connected. This means that the price can be optimized independently of the green capacity investment. The

optimal price maximizes πS,U (w,KU ) subject to CR,U ≤ pE[D], which yields w∗ = p. That is, the retailer

will pay the same price for the greener service and the conventional service. This is also what Bring Frigo

did: �The pricing towards the customers is the same independently of whether we use the train or trucks.

Our customers don't buy an intermodal solution - they buy a transport solution.� (Eng-Larsson, 2012).

We thus get that the retailer's long-run expected cost per period is

CR,U = pE[D], (3)
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and the service provider's optimal green capacity investment is given by the newsvendor fractile,

FD(K∗U ) =
p− cF − cV
p− cV

. (4)

Consequently, the volume contract will always lead to a positive investment except in the trivial case

where cV + cF ≥ p. We will use this as a benchmark for the more complicated capacity contract.

3.2 Capacity contract

With a strict capacity contract, the retailer cannot order more than the reserved capacity z in any period,

i.e. Qt ≤ z. This means the retailer is facing a capacitated inventory decision, for which a modi�ed base

stock policy has been shown to be optimal, see Federgruen and Zipkin (1986). That is, in each period it is

optimal to order so that the inventory level reaches the base-stock level s if possible, otherwise order the

capacity limit z. (Note that in this case, by design, z ≥ E[D] or the expected backorder cost will grow to

in�nity.)

To solve the retailer's replenishment problem we will use the shortfall, Vt = s − ILt, i.e. the di�erence

between the desired inventory level, s, and the actual inventory level ILt. Previous work by e.g. Tayur

(1993) and Glasserman (1997) have shown that by considering the shortfall instead of the inventory level,

the analysis of a capacitated system is simpli�ed signi�cantly.

The shortfall at the start of period t+ 1 can be expressed recursively as Vt+1 = max (Vt +Dt − z, 0). If

demands are i.i.d. and E[D] < z, the shortfall converges to a random variable V ,

V =d max (V +D − z, 0) , (5)

where =d denotes equality in distribution. This means that we can express the retailer's long-run expected

cost per period by using the shortfall,

CR,C(s, w, z) = wz + hE
[
(s− V )

+
]

+ bE
[
(V − s)+

]
= wz + h (s− E [V ]) + (h+ b)E

[
(V − s)+

]
,

(6)

where s−E [V ] is the expected inventory on-hand at the end of a period, and E
[
(V − s)+

]
= E [max (V − s, 0)]

is the expected backorder log at the end of a period.

Due to the complexity of capacitated systems, we introduce two assumptions regarding the distribution

of the shortfall.
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Assumption (A1). The complementary distribution of the shortfall is

P{V > v} = F̄V (v) =


e−λ(v+z), v ≥ 0,

1, o.w.,

(7)

where λ is the conjugate point, that is, the (strictly positive) point where the moment generating function of

the tail distribution of the demand is 1,

E
[
eλ(D−z)

]
= 1. (8)

Assumption (A2). The conjugate point can be expressed as a function of capacity,

λ(z) =
W0(−µze−µz) + µz

z
, (9)

for z > E[D], where W0(·) is the single-valued Lambert's W-function.

A major reason for de�ning the conjucate point λ(z) according to (9) is that the expected shortfall

simpli�es to E[V ] = 1/λ(z) − 1/µ. This makes the analysis tractable, but it also provides a convenient

interpretation of the conjugate point: λ(z) can be interpreted as the desired rate of replenishment, since

1/λ(z) = E[D] + E[V ]. Note that the expected replenishment in each period E [min(V +D, z)] = E[D] is

less than the desired replenishment in each period 1/λ(z) due to the capacity limit z. Interestingly, more

reserved capacity leads to a smaller desired replenishment (�the more you have the less you need it�). That is,

the desired replenishment per period is decreasing in z. This is because more capacity leads to less shortfall

that needs to be satis�ed. A more technical motivation of the assumptions is found in the appendix.

For analytical purposes, we will assume that A1 and A2 holds for the remainder of the paper. As seen

in the appendix, this means that the results are exact for exponential demand.

The solution to the retailer's replenishment problem is summarized in Lemma 1 below.

Lemma 1. If assumptions A1 and A2 hold, then under a capacity contract,

i. the retailer's optimal base stock is

s∗(z) = max

(
1

λ(z)
ln

(
h+ b

h

)
− z, 0

)
, (10)

which is a convex function in z, decreasing from ∞ at z = E[D] to 0 at ẑ = 1
µ ln

(
h+b
h

) (
h+b
b

)
, after

which it remains constant; and

ii. the retailer's long-run expected cost with the optimal base stock level, CR,C(s∗(z), w, z), is convex and
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continuous in z

The �rst part of the Lemma shows that for the retailer, reserved capacity and inventory are economic

substitutes: as the reserved capacity increases, the optimal base stock level decreases. At ẑ, it is no longer

optimal for the retailer to keep inventory, and the base stock remains at zero as capacity reservation increases

further. That is, ẑ is the no-inventory-breakpoint.

The implication of part ii of the Lemma is that it is straight-forward to move on to the contracting and

investment phase; we can �nd the optimal price from �rst-order conditions and insert it into the service

provider's pro�t function to solve the service provider's revenue problem.

Theorem 1. Suppose assumptions A1 and A2 hold. Then, under a capacity contract, the following hold.

i. The service provider's optimal price for a given z is unique and given by

w∗(z) =


h
(

1− ln
(
h+b
h

)
· ddz

(
1

λ(z)

))
, z < ẑ

−b · ddz
(

1
λ(z)

)
, o.w.

(11)

which is a continuous decreasing function in z.

ii. The service provider's long-run expected revenue per period with the optimal price, RS,C(w∗(z), z) =

w∗(z)z, is convex in z for E[D] < z < ẑ, and convex decreasing in z for z ≥ ẑ.

The �rst part of the theorem follows from Lemma 1, since a one-to-one-mapping between price and

capacity reservation is guaranteed.

The second part of the theorem implies that if the service provider's cost function, CS,C(z), is concave

and increasing in z, there are two possible solutions to her pricing problem. The optimal price is either the

highest price (or, correspondingly, the lowest capacity reservation, zmin) where the participation constraint

CR,C ≤ pE[D] is binding, or the price for which the retailer's best response is ẑ. That is, there are two

possible pricing strategies that may be optimal for the service provider: 1) to set the price su�ciently low

to cover the retailer's additional costs from inventory holding/backorders (equivalently, z = zmin), or 2) to

set the price su�ciently low for the retailer to reserve enough capacity to make the holding of inventory

uneconomical (z = ẑ). Both strategies can be seen as a price reduction compared to the market price,

p. That is, the greener service is sold at a lower price than conventional transport services, but require a

long-term commitment.

Which price and corresponding capacity reservation that is optimal for the service provider depends on the

outside option pE[D] as well as the inventory costs of the retailer. For intuition, these can be translated to a
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cost for transportation and a cost for holding inventory. Lower inventory costs relative to the transportation

costs will lead to a higher price and less reserved capacity. If the inventory cost is su�ciently low compared

to the transportation cost, the equilibrium will be in z = zmin, where zmin falls within Region I in Figure 3.

In this region, the retailer holds inventory, and the optimal price covers the retailer's additional costs from

inventory holding. If the inventory cost is su�ciently high compared to the transportation cost, then again

z = zmin, but zmin will fall within Region III. In this region, no inventory is held, and a very small price

reduction is given to cover expected backorder penalties. Clearly, this is a much less pro�table scenario for

the service provider. Only in cases when the relative inventory costs are somewhere in the middle will the

solution be z = ẑ and fall within Region II. In this case the retailer will get some of the �nancial bene�ts of

the implemented contract since CR,C < pE[D].

We can now proceed to the cost-part of the service provider's problem.

Theorem 2. Suppose assumptions A1 and A2 hold. Then the service provider's optimal green capacity

investment under voluntary compliance is

K∗C(z) = F−1
Q|z

(
p− cF − cV
p− cV

)
= min

(
z, F−1

V+D|z

(
p− cF − cV
p− cV

))
, (12)

which is linearly increasing in z for z < ž = F−1
V+D|z

(
p−cF−cV
p−cV

)
and decreasing towards F−1

D

(
p−cF−cV
p−cV

)
=

K∗U for larger values of z.

From the theorem, we get that the service provider's long-run expected cost, with the optimal green
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capacity investment, is given by

CS,C(K∗C(z), z) =


cF z + cV E[D], z < ž,

cF z + (p− cV )
(´ z
K
FV+D(x)dx+ zF̄V+D(z)

)
+ cV E[D], o.w.

(13)

Under forced compliance, CS,C(K∗C(z), z) = cF z+ cV E[D] for all z which is trivially concave in z. Under

voluntary compliance the investment will be less than z if z is su�ciently high. Nevertheless, the cost

function it still concave increasing in these cases if the demand is exponentially distributed (and for several

other demand distributions under assumption A1 and A2). This means that the abovementioned possible

equilibria are unchanged by adding the cost-part of the problem, despite the fact that the cost and revenue

parts are connected for this contract.

Note that the critical fractile of (12) is the same as for the unit price contract (equation (4)), but for

this contract it is subject to another cumulative distribution. This has an interesting e�ect: an increase in

the capacity reservation does not always lead to a larger green capacity investment. Instead, as the capacity

reservation increases, the green capacity investment �rst increases linearly in the reservation, up to a point at

which it starts to decrease. Put di�erently, the capacity reservation leads to an investment that matches the

reserved capacity even under voluntary compliance but only up until a certain point: the non-compliance

breakpoint, ž. As soon as this point is reached, any increase in the reservation quantity will lead to a

smaller green capacity investment. This is due to the composition of the replenishment quantity, and can

be thought of as a pooling e�ect. The replenishment order consist of both shortfall-orders and the period's

demand. When the capacity reservation is low, the shortfall makes up a larger share of the replenishment

quantity than when the capacity reservation is large, which has a moderating e�ect on the variability of the

replenishment orders, Q. With larger variability in these orders � i.e. with a more unstable ordering pattern

� the optimal green capacity investment level is reduced. This e�ect is, in fact, more general than the lemma

states since it applies to all situations where the shortfall is stochastic decreasing in the capacity reservation.

As a consequence of Lemma 1 and Theorem 2, the green capacity investment and the base stock level

are positively correlated at higher reservation levels. This is the mirrored opposite of the optimal decision

in a centralized system, as seen in, for instance, Angelus and Porteus (2002). The di�erence is due to the

incentives created by the capacity reservation. More inventory at the retailer is advantageous for the service

provider from a cost perspective, since it enables more leveled replenishments which, in turn, reduces the

risk of having idle green capacity.
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3.3 Sensitivity to changes from a carbon tax

In the following section we will focus on the sensitivity of the results with regards to the conventional market

price p. By changing p while holding other parameters constant, we get an understanding of how sensitive

the results are to changes in the cost advantage of the green capacity. That is, an increase in p means that it

becomes increasingly advantageous for the service provider to invest in and use the green vehicles since the

cost of using conventional vehicles from the vehicle pool increases. The parameter p is, however, of particular

interest since it has a policy implication: a regulator can modify this cost upward through taxation that

target the transport market. As seen in the introduction, carbon taxes has gained traction in business media

and among regulators (see e.g. Hargreaves, 2010). For instance, the German �Maut� tax, and the state of

California carbon tax, have been implemented aiming to (among other things) increase the cost of using

conventional vehicles. In Europe, the EU is advocating increased road tolls through �a strategy to ensure

that the prices of transport better re�ect their real cost to society� (EU, 2008). Such, and similar, initiatives

will lead to an increase in p.

For a volume contract, changes in p are easily evaluated. An increase in p leads to a larger underage cost

which increases the optimal investment in green capacity. This change is continuous. Consequently, a higher

carbon tax reduces the environmental impact. This is well in line with conventional wisdom and requires no

further explanation.

For a capacity contract it is less straight-forward. That is shown in the following Theorem.

Theorem 3. Suppose assumptions A1 and A2 hold. Then, under a capacity contract, the optimal capacity

z∗ is non-increasing in p. This implies that

i. K∗C(z∗) is non-increasing in p for z∗ ≤ ž and non-decreasing in p otherwise under voluntary compliance,

and non-increasing in p for all z∗ under forced compliance.

ii. s∗(z∗) is non-decreasing in p for all z > E[D].

iii. an increase in p leads to a smaller green capacity investment as well as more inventory if z∗ ≤ ẑ

and z∗ ≤ ž or if forced compliance is assumed; changes in outcomes under other circumstances are

summarized in Table 1.

Table 1: The impact of a change in p on outcomes

z∗ ≤ ž or forced compliance z∗ > ž

z∗ ≤ ẑ
Smaller green capacity investment Larger green capacity investment

More inventory More inventory

z∗ > ẑ No change Larger green capacity investment
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As seen in the theorem, when a capacity contract is used, the e�ect an increase in p has on the environ-

mental impact depends on the optimal capacity reservation and whether or not a matching green capacity

investment can be enforced by the retailer. As seen in Table 1, in several instances an increase in p actually

leads to a smaller investment in green capacity. Further, in several instances it leads to more inventory.

None of these changes improve the environmental performance. In certain instances, an increase in p leads

to both a smaller investment and more inventory, which means that the environmental impact is guaranteed

to increase. That is, making the conventional vehicles more expensive to operate through e.g. a carbon tax

leads, surprisingly, to worse environmental performance.

The intuition is the following. Due to the technology monopoly situation, the service provider can set the

price of the service freely, as long as the retailer's costs do not exceed the costs from using the outside option.

Consequently, when the cost from using the outside option increases, the service provider can increase her

pro�t by increasing the service price. When the service price increases, it is optimal for the retailer to reserve

less capacity and increase the inventory base stock (or rather, to not reduce it). That is, z∗ decreases and s

increases (or stays the same). The change in z∗ translates to di�erent e�ects on the service provider's optimal

green capacity investment depending on the situation. For z∗ ≤ ẑ, there is inventory in the system, and a

reduction in z∗ will lead to a build-up of inventory and an increase in inventory related environmental impact.

If z∗ ≤ ž, or if forced compliance is ensured, then all transports are already made using green capacity, so the

increase in inventory related impact cannot be o�set by a reduction in the transport related environmental

impact. If z∗ > ž a decrease in z∗ will lead to a larger green capacity investment and more transports made

using green vehicles. This can partly o�set the possible increase in inventory related emissions. If z∗ > ẑ an

environmental improvement will be seen, since their will be no increase in inventory.

It shall be noted that the above assumes that a capacity contract is used when p changes. However, this

choice may be endogenous to the service provider. For small values of p it is likely that a volume contract

provides the service provider with a higher pro�t, particularly if the inventory costs are high. The contract

preference, and its implication on the environmental performance, must be taken into consideration if this

is endogenous. This is further elaborated upon in the numerical illustration in the coming sections.

4 Extension: capacity-and-volume contract

We now consider the case where a capacity contract and a volume contract is combined. We refer to this as a

capacity-and-volume contract. With such a contract, the retailer reserves a capacity z but, after the demand

has been obsevered, has the option to order additional volume at a �xed price. Under such a contract, the

retailer's optimal replenishment policy is a two critical levels policy. That is, the retailer uses the available
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capacity to order up to s′ if possible, otherwise orders z, and then use additional volume to order up to s′′

to ensure that the shortfall does not exceed ∆ = s′ − s′′. Naturally, if demand in any period is less than the

reserved capacity, no additional volume is used.

The fact that the shortfall is capped by ∆ makes the analysis considerably more complicated. Denote

the new shortfall V ′, and note that this will depend on the maximum shortfall, ∆, as well as the amount of

reserved capacity, z. While the shortfall process V ′ converges, its distribution in stationarity is not known

for any demand distribution, and we will therefore resort to numerical techniques to solve the problem. If it

is assumed that the stationary complementary distribution of the shortfall is

P{V ′ > v} = F̄V ′(v) =


0, v ≥ ∆,

αe−βv, 0 ≤ v < ∆,

1, o.w.,

(14)

it can be shown that as ∆ increases, the shortfall approaches that of the shortfall without a cap in (7).

For smaller ∆, we can numerically evaluate α and β to provide a good �t for several types of demand

distributions. In our numerical study, we will however stick to exponentially distributed demand.

While we cannot provide explicit formulations for the two critical levels, we note that the total order

quantity in each period, Q′ = min(V ′ +D, z) + max (V ′ +D − z −∆, 0), has complementary CDF

F̄Q′(x) =


F̄D(x) +

´ x
0
F̄V ′(x− y)fD(y)dy, x < z,

F̄D(∆ + x) +
´∆

0
F̄V ′(∆− y)fD(y + x)dy, o.w.,

(15)

which is independent of s′. This means that the optimal base stock s′∗, is easily found, given a reserved

capacity z and a maximum shortfall ∆. The retailer's replenishment problem is therefore reduced to a

two-dimensional search over z and ∆.

This provides some structure for the contracting and investment phase. As for the pricing of the additional

volume, the logic from the volume contract still applies, which means that the optimal price for the additional

volume is p per unit. When it comes to the capacity part, numerical techniques are necessary. The service

provider's optimal capacity price and green capacity investment can be found through a search over w, with

KC′ given as the solution to newsvendor problem with FQ′(x) as the distribution:

K∗C′(z) = F−1
Q′

(
p− cF − cV
p− cV

)
= min

(
z, F−1

Q′

(
p− cF − cV
p− cV

))
. (16)

As we shall see, the key results from the previous section still holds for our examples, despite the increased
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Table 2: Speci�cation of baseline parameters for the study

Parameter Value

Expected demand in each period, E[D] 20

Intermodal truck-train transport:
Slot-fees and equipment leasing fee in each period, cF $1,000
Fuel, handling, and driving cost per trailer moved, cV $400
Emissions per trailer moved, eV 44

Truck transport:
Price for full truckload transport over the same distance, p $1750
Emissions per truckload transport, eP 100

Inventory holding:
Inventory holding cost per unit and time unit, h $50
Backorder penalty per unit and time unit, b $500
Emissions per unit and time unit in warehouse, eh 1

�exibility for the retailer. While the mechanisms seem to be the same, the green capacity investment, as

well as inventory, is signi�cantly reduced as ∆ becomes large.

5 Numerical Illustration

In this section we present a numerical study to corroborate the analytical �ndings, highlight some policy-

relevant results, and compare volume contracts and capacity contracts. The baseline parameters (Table

2) are based on discussions with industry and chosen to capture the case of a third-party logistics service

provider and a retailer importing goods from southern to northern Europe. The service provider handles

the transports, and can choose between �conventional� truck transports or invest in a �green� intermodal

truck-train solution. A longer discussion on the parameter calibration and the computation approach can

be found in an online companion.

To analyze the environmental implications we introduce the corresponding environmental costs ep, eV ,

and eh. These costs are the external cost faced by society but can also be seen as an arbitrary measure of

environmental impact reported by either player. For instance, if greenhouse gas emissions are measured and

reported by the retailer, ep captures the greenhouse gas emissions from the replenishment using one service

unit (e.g. one truckload) of the conventional capacity.

5.1 Drivers of environmental impact

In our model, three measures drive the expected environmental impact: expected use of truck transports (per

period), expected use of intermodal truck-train transports (per period), and expected inventory-on-hand. A
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Figure 4: Changes in the three environmental drivers over the conventional market price, p, for three levels
of inventory costs. The three drivers are 1) the expected amount of intermodal truck-train transports,

E [min (Q,K)], 2) the expected amount of truck transports, E
[
(Q−K)

+
]
, and 3) the expected amount of

inventory on hand, E [IL+] (right-hand side axis). For reference, the optimal green capacity investment is
also included (grey).

change in the cost parameters have the potential to change the environmental performance of the system, by

changing the policies that control these drivers. This change can be gradual if it leads to minor adjustments

in e.g. the investment in intermodal transports, but also large and instantaneous if the optimal contract

choice changes, i.e. the service provider's preference shifts from a volume contract to a capacity contract or

vice verse. The existence of the break-points ẑ (no inventory) and ž (non-compliance) clearly complicates

the analysis. In the following, we will in more detail investigate how the market price, p, and the inventory

cost, h and b, impact the equilibrium and thus the drivers of environmental impact.

The market price p represents the cost of using conventional truck transports. An increase in p will lead

to a number of e�ects as seen in Section 3.3. For volume contracts we know that an increase in p would lead

to incrementally more intermodal transports. But what happens when capacity contracts are used?

In Figure 4 the expected use of truck transport and intermodal truck-train transport as a function of p

is illustrated. Figures 4a-c show a capacity contract, and Figures 4c-d show a capacity-and-volume contract.

Starting with the capacity contract, the �gures illustrate what we know from Theorem 3. In the �rst two

�gures, the non-compliance break-point, ž, is clearly visible. As stated in the theorem, for a market price

that leads to a capacity reservation higher than this break-point, an increase in p leads to a larger investment
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(the upper right hand cell of Table 1). In the �gure, we see that for small market prices, this is the situation

we get. As the market price grows larger, the break-point is reached and, as predicted by the theorem, we

see a smaller green capacity investment (we move to the upper left-hand cell of Table 1). In Figure 4c the

inventory cost is too large to reach the break-point over the selected values for p. However, we see that

the other break-point, i.e. the no-inventory break-point, ẑ, is crossed. For low market prices, the solution

belongs to the lower right-hand cell of Table 1. As the market price increases, the solution moves to the

upper right-hand cell. As we see in the �gures, even though the green capacity investment becomes smaller,

it does not necessarily a�ect the environmental impact, since all transports at that point use green capacity.

Rather, as also highlighted in theorem, the negative environmental impact in these cases come from increased

inventory holding. Nevertheless, this impact may be signi�cant (see e.g. McKinnon, 2010).

For the capacity-and-volume contract in Figures 4c-d, the same major mechanisms as in Figures 4a-c are

seen, albeit without the clear break-points. Inventory increases in p, while the expected use of capacity shifts

from conventional to green capacity. This means that the main �ndings for the capacity contract seem to

apply also for the much more complicated capacity-and-volume contract, only with a smaller optimal green

capacity investment and less inventory on hand. Also, due to the construction of the contract, there will

always be an expectation of some conventional capacity being used, which is not the case for a capacity

contract.

Figures 4a-f also show the impact of inventory costs on the three drivers. This can be seen by comparing

the di�erent �gures. As can be expected, the amount of inventory is decreasing with the inventory costs.

Since, for the retailer, inventory and reserved capacity are substitutes, this is compensated for by a larger

capacity reservation z. The increase in the capacity reservation will make the replenishment, Q, more

variable, which leads to a smaller investment and thus lower usage of intermodal transport and an increased

reliance on truck transports. The reduction in inventory and the increase in demand variability is faster under

the capacity-and-volume contract, as the retailer can use additional volume at cost p, while the di�erence

between p and b is decreasing. As a result, there is a faster shift from green to conventional vehicles. The

inventory costs has no direct in�uence on the volume contract. However, an increase of these costs make this

contract a more pro�table choice for the service provider compared to a capacity contract. This is further

explored next.

5.2 Contract comparison

We saw in the introduction that some �rms have argued that a shift to long-term capacity contracts will

improve environmental performance compared to volume contracts. The argument mirrored that seen in
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the capacity management literature (Jin and Wu, 2007; Erkoc and Wu, 2005): by making a long-term

commitment, the service provider receives a safe pro�t which enables investment in transport technology

that, at scale, is both less costly and less polluting.

So what is the bene�t of using a capacity contract compared to a volume contract, and how is this

bene�t impacted by the above-mentioned changes in market price and inventory costs? In this section we

try to answer this question by comparing �rst the �nancial performance of the contracts, and then the

environmental performance of the contracts.

5.2.1 Financial performance

If contract choice is endogenous, the service provider will set contract parameters so that the retailer chooses

the contract that is more pro�table for the retailer. The service provider's pro�t will, clearly, increase with

the revenue and decrease with the cost independently of what contract that is used. However, to understand

how pro�t di�ers between contracts, we need to know what drives revenue and what drives cost. Typically,

the revenue will increase with E[D] and p and decrease with cF and cV , but not in the same manner for

capacity contracts as for volume contracts. There are two factors that are driving the di�erence in pro�t

between the two contracts. I) The capacity contract will lead to a more stable demand for the service

provider, so it can be expected that the bene�t of using this contract will increase if the underage cost, cF ,

and/or the overage cost, p− cV − cF , increases. II) There is a cost associated with ensuring a more stable

demand, as it leads to more backorders and/or inventory at the retailer that he must be compensated for.

The �nancial bene�t of using a capacity contract can thus be expected to decrease with h and b. That is,

when inventory holding becomes more expensive, it becomes less pro�table to use a contract that increases

inventory holding. However, this is not always the case. If, for instance, z > ẑ, then an increase in h will

not make a di�erence, as no inventory is kept.

Figure 5a illustrates how the relative pro�tability for the service provider changes in h and p. As the

market price increases, the lowest holding cost for which a capacity contract provides a higher pro�t for the

service provider increases. For the service provider, capacity contracts are more pro�table for higher market

prices and low holding costs. In a transport services context, this translates to situations where the demand

is for transportation of commodity goods, in a transport market segment with few competitors and/or a

high variable transport cost due to, e.g., a long distance between the origin and the destination. That also

means that if a retailer wants to use capacity contracts to incentivize investment, this is the region where

the service provider can make pro�t under such an agreement.
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Figure 5
Comparison of a) the service provider's pro�t, and b) the total emissions; volume contract vs. capacity
contracts, as a function of the market price, p, and the holding cost, h (and backorder cost, b = 100h).

5.2.2 Environmental performance

Figure 5b illustrates the relative environmental performance (Ei denotes the environmental cost for contract

i) of the capacity contract and the volume contract. Due to the above-mentioned changes in capacity and

inventory, we see that capacity contracts lead to better environmental performance for low market prices

and low-to-medium inventory holding costs. In a transport services context, this means that incentivizing

though capacity contracts, similar to that reported in Plambeck and Denend (2011), is likely to improve

the environmental performance if competition among service providers is �erce and the goods are of low-

to-medium value. In a less suitable market, the intentions of such schemes may back�re. First because

it may be optimal for the service provider to only make a very small investment in green vehicles; second

because it will lead to inventory build-up. As seen in Figure 5b, this qualitative insight does not change

as the relation between capacity related and inventory related environmental impact increases, only the

break-point at which the change occurs. Already at very modest environmental impact from inventory, in

this example when inventory related impact per unit in relation to the transport related impact per unit is

4:100, is the zone in which capacity contracts outperform volume contracts very small. The zone in which

capacity contracts outperform volume contracts both environmentally and �nancially is even smaller. This

points to the di�culties of implementing such a scheme sucessfully.

A perhaps more realistic alternative is to use the capacity-and-volume contract, as it provides more

�exibility for the retailer. However, from Figures 4c-d it is clear that this is, from an environmental point of

view, rarely a better choice. Such contracts are environmentally ourperformed by volume contracts at high

market prices; and, if inventory related impact is su�ciently low, outperformed by capacity contracts at low
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market prices.

It should also be noted that even if an increase in p leads to more green transports under a capacity

contract than under a volume contract, volume contracts may still be the more environmental option as

it does not lead to inventory build-up. The result is that by increasing p one might �rst see a gradual

improvement of the environmental performance as the amount of transports using the environmentally

superior technology is increasing with p under a unit price contract. If the contract choice is endogenous,

then, at a certain p, the service provider's contract preference will change, and at this point there will be

a jump in the environmental performance. This jump can be upwards or downwards depending on the

relationship between ep, eV and eh. After the jump one might continue to see a gradual improvement but

eventually the environmental performance will start to gradually decrease with p and one will start to �push�

the equilibrium out of the overlapping area where capacity contracts are more pro�table and provide a better

environmental performance than unit prices.

6 Discussion and conclusion

This paper studied a system where a service provider sells a transport service to a downstream retailer, and

has the option to invest in green transport capacity that will be dedicated to the retailer. We investigated the

service provider's optimal green capacity investment and its environmental implications under volume and

capacity contracts, taking into account the special structure of the transport market and the fact that the

price of the service should be set simultaneously with the investment decision. To solve the service provider's

problem, we used literature on capacitated production-inventory systems to develop a multi-period model,

where the retailer could keep inventory between periods. We showed that by proceeding in this way, we

could extend previous research and investigate sensitivity to changes in carbon taxes and compare di�erent

contracts.

While the model is stylized in nature, we believe that it captures a few fundamental aspects of the trans-

port market not well researched in the past. Previous research on investments in green transport capacity has

largely ignored that most retailers (and manufacturers) have outsourced their transport operations. When

an operation is outsourced, incentives to make a certain investment will be dictated by the downstream

contract as well as market interactions, which may sometimes be di�cult to overview. In this research we

have aimed to provide a �rst step in this direction, by explicitly trying to model the service provider-retailer

relationship.

In the sustainability literature, long-term relationships between service providers and retailers is often

advocated. For instance, Plambeck (2012) states that �[�rms] must �nd ways not only to reduce emissions
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under their direct control but also to in�uence emissions caused by their suppliers and customers�by pro-

viding them information and incentives, and collaborating or even vertically integrating with them�. In

this research we see that if �rms such as Unilever and H&M decide to work with their service providers

in long-term relationships through capacity contracts, this may indeed be a way forward. As shown in

this paper, such contracts often lead to more investments in green transport capacity. However, as long as

the greener service cannot be sold at a higher price, there are often not enough incentives for the service

provider to transfer all freight to green vehicles. The operating cost for green vehicles may be lower, but

the dedicated nature and the higher �xed costs of green vehicles create a larger risk for the service provider

than conventional vehicles. This risk needs to be compensated for, in some way, if a large scale shift is to

be seen. Bring Frigo has tried to move in this direction with little results: �Goods owners are not willing to

take this risk at all�, they have stated, �we have tried. But right now it is a buyer's market.� (Eng-Larsson,

2012). Nevertheless, succesful examples exists, although these seem to be initiated by the retailer. And

there is more hope for service providers. According to Ehrhart (2010), �what will further drive the demand

for greener [logistics] products is the very fact that sustainability has become a key success factor in shaping

the reputation of a company and its brands. For multinational companies, in particular, it is important to

have a consistent approach to sustainability along the whole value chain�. If this increased focus will change

transport purchasing behavior remains, however, to be seen.

That investments in green vehicles often involves a rather complex set of motivators also needs to be

understood by the policy-makers. Transport services may be much like other commodities, but there are

several aspects of the market that means the actors on the market may react di�erently than expected to

carbon taxes or other regulation. One aspect was highlighted in this paper. When capacity contracts are

used, a carbon tax will in many cases not lead to more green transports, only more expensive transports

and more inventory.

The system can be made more realistic and several ways. This usually involves providing more options

for the players of the game. In reality, there are more contract types, as well as more technology types. There

may also be asymmetric information, even though, for an initiated seller, it should not be too di�cult to

get a good approximation of the true costs of the retailer. Nevertheless, including such aspects may enable

us to study a more realistic system, and this is an interesting venue for further research. Such studies could

corraborate the �ndings and investigate the generality of the results. Another direction would be to make

a thorough welfare analysis of transport market regulation, where the micro-level decisions that couples

inventory and transportation are taken into account. We hope and believe that this study will be of use for

such endevours.
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Appendix

For the derivations and proofs, we will use the single-valued Lambert's W-function, which is de�ned as the

solution to

x = W0(x)eW0(x), (17)

with the constraint that W0(x) > −1. The constraint makes the function single-valued and the unique

solution obtained corresponds to the largest solution to the unconstrained de�nition. Note that

W0(−xe−x) ∈ (−1, 0), x > −1, (18)

and

dW0(−xe−x)

dx
=

W0(x)

x(1 +W0(x))
, x > −e−1. (19)

To simplify notation we let g(z) = W0(−µze−µz), with −1 < g(z) < 0, for z > 1/µ. Using the above we

get that:

1

λ(z)
=

z

W0(−µze−µz) + µz
=

z

g(z) + µz
, (20)
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and the three �rst derivatives;

d(1/λ(z))

dz
=

g(z)

(g(z) + 1)(g(z) + µz)
< 0, (21)

d2(1/λ(z))

dz2
= − g(z)

z(g(z) + 1)3
> 0, (22)

(1/λ(z))(3) =
g(z)(g(z)2 + g(z)(4− 2µz) + µz)

z2(g(z) + 1)5
< 0. (23)

Assumptions A1 and A2

Glasserman (1997) has shown that the approximation in (7) is e�ective for demand distributions from the

Erlang and hyperexponential families, especially when the coe�cient of variation is low. For all distributions

that belong to the NBU-class (New Better than Used) the approximation provides a relatively strict lower

bound while for distributions that belong to the NWU-class (New Worse than Used) it provides a relatively

strict upper bound. In particular, if demand follows an exponential distribution, (7) is exact, and λ is given

as the smallest root to λ = µ (1− exp(−λz)). The approximation in (7) can also be slightly modi�ed to

provide a good approximation for normal demand, as shown in e.g. Glasserman (1997) and Roundy and

Muckstadt (2000). Similar approximations have been used and evaluated by e.g. Toktay and Wein (2001)

and Roundy and Muckstadt (2000).

The second assumption concerns how the conjugate point λ depends on z. It holds for exponential

demand, and for several other distributions under constraints on the relation between z and the demand

parameters. For example, if demand is normal (with E[D] = 1/µ), A2 holds for z = λ(z)(σ2/2) + 1/µ, while

it provides an approximation for other cases.

Proof of Lemma 1

Proof. Part i. From (7), FV (v) is increasing in v, which means that (??) is convex in s. The solution to the

inventory problem of (??) is thus given by F̄V (s) = h/(h+ b), which yields

s∗(z) =
1

λ(z)
ln

(
h+ b

h

)
− z. (24)

Let us de�ne ẑ as the capacity level where s∗(ẑ) = 0 from (24). By solving for ẑ we get

ẑ =
1

µ
· kek

ek − 1
, (25)
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where k = ln((h+ b)/h).

By construction, s∗(z) < 0 for for z > ẑ. This is not a viable solution to (??), since a negative base stock

means that there are backorders in each period by design, so costs can be reduced by setting the base stock

to zero (which does not lead to more inventory but less backorders). For z > ẑ the base stock level is thus

constant at zero. These observations together prove the �rst part of the lemma.

Part ii. We prove this part of the lemma by �rst showing that CB,C(s∗(z), w, z) is convex and continuous

in (E[D], ẑ), as well as in [ẑ,∞). We then show that limz→ẑ
∂
∂zCB,C(s∗(z), w, z) is the same whether the

limit is taken from the left or the right. We have

E[V ] =

ˆ ∞
0

xλ(z)e−λ(z)(z+x)dx =
1

λ(z)
e−λ(z)z =

1

λ(z)
− 1

µ
, (26)

and

E
[
(V − s)+

]
=

ˆ ∞
s

(x− s)λ(z)e−λ(z)(z+x)dx =
1

λ(z)
e−λ(z)(s+z) =

(
1

λ(z)
− 1

µ

)
e−λ(z)s. (27)

Using (10), we get

E
[
(V − s∗(z))+

]
=


1

λ(z) ·
h
h+b , z < ẑ,

1
λ(z) −

1
µ , o.w.,

(28)

which yields

CB,C(s∗(z), w, z) = w · z +


h
(

1
µ + 1

λ(z) ln
(
h+b
h

)
− z
)
, z < ẑ

b
(

1
λ(z) −

1
µ

)
, o.w.

(29)

Since s∗(z) is continuous, CB,C(s∗(z), w, z) is continuous. Di�erentiation over z < ẑ gives us

∂CB,C(s∗(z), w, z)

∂z
= (w − h) + h ln

(
h+ b

h

)
d(1/λ(z))

dz
, (30)

which is increasing in z > E[D] if h ln((h + b)/h) > 0, which holds for all h > 0 and b > 0. Di�erentiation

over z ≥ ẑ yields
∂CB,C(s∗(z), w, z)

∂z
= w + b

d(1/λ(z))

dz
, (31)

which is increasing in z.

Recall that ẑ = µ−1kek/(ek − 1), where k = ln((h + b)/h). It follows that g(ẑ) = −hk/b, and thus

µẑ = k + hk/b, which gives us

d(1/λ(ẑ))

dz
= − h

b− hk
. (32)

Inserting (32) into (30) and (31) yields the same result, which means that the left and right derivatives
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are the same in ẑ. Since d(1/λ(ẑ))/dz < d(1/λ(z))/dz for all z > ẑ, it follows that the retailer's expected

cost is convex for all z > E[D].

Proof of Theorem 1

Proof. Part i. Continuity and convexity was proven in Lemma 1, which means there is a unique minimizer

z∗ for each price w. z∗ is found from �rst order conditions. Solving for w gives the result.

Part ii. Di�erentiating RS,C(w∗(z), z) over z yields,

dRS,C(w∗(z), z)

dz
=
dw∗(z)z

dz
=


h− hk

(
d
dz

(
1

λ(z)

)
+ d2

dz2

(
1

λ(z)

)
z
)
, z < ẑ,

−b
(
d
dz

(
1

λ(z)

)
+ d2

dz2

(
1

λ(z)

)
z
)
, o.w.,

(33)

where k = ln((h+ b)/h). Using equations (21)-(22), we get

dw∗(z)z

dz
=


h− hkj(z), z < ẑ,

−bj(z), o.w.,

(34)

where j(z) =
(
d
dz

(
1

λ(z)

)(
(g(z)+1)2−(g(z)+µz)

(g(z)+1)2

))
. Since 0 < (g(z) + 1)2 < 1, and d

dz

(
1

λ(z)

)
< 0, j(z) is non-

negative. Consequently, for z ≥ ẑ the revenue is strictly decreasing in z. The �rst case may be increasing in

z since h ≥ 0. To show that both segments are convex, we di�erentiate j(z) with respect to z,

d

dz
j(z) =

d

dz

(
d

dz

(
1

λ(z)

)
+

d2

dz2

(
1

λ(z)

)
z

)
= 2 · d

2

dz2

(
1

λ(z)

)
+ (1/λ(z))(3)z. (35)

For convexity, it should hold that

2 · d
2

dz2

(
1

λ(z)

)
+ (1/λ(z))(3)z < 0, (36)

which can be written as

− 2g(z)

(g(z) + 1)3
< −

g(z)
(
g(z)2 + g(z)(4− 2µz) + µz

)
z

(g(z) + 1)5
⇔ 0 < g(z)2 + 2g(z)µz − µz + 2. (37)

Note that G(z) = g(z)2 + 2g(z)µz−µz+ 2 < 3−µz, so G(z) ≤ 0 for all z ≥ z0 = 3/µ.Using this we have

G(z) = g(z)2 + 2g(z)µz − µz + 2 < 3− (1− 2g(z0))µz,z < z0 (38)
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with G(z) ≤ 0 for all z ≥ z1 = 3/ ((1− 2g(z0))µ), where z1 < z0. This procedure can continue, so that

G(z) = g(z)2 + 2g(z)µz − µz + 2 < 3− (1− 2g(zn))µz,z < zn, (39)

with G(z) ≤ 0 for all z ≥ zn+1 = 3/ ((1− 2g(zn))µ), where zn+1 < zn, and limn→∞ zn = 1/µ. Thus both

segments are convex which concludes the proof.

Proof of Theorem 2

Proof. The service provider's cost is

CS,C(K, z) = cFK + cV (K −
ˆ K

0

FQ|z(x)dx) + p(z −K −
ˆ z

K

FQ|z(x)dx). (40)

Since FV (x) and FD(x) are increasing in x, FQ|z(x) is increasing in x, and thus the cost is convex in K.

First-order conditions then give us

FQ|z(K
∗
C) =

cF + cV − p
cV − p

=
p− cF − cV
p− cV

. (41)

Now, the complementary CDF of Q = min(V +D, z) is given by

F̄Q|z(x) =


F̄D(x) +

´ x
0
fD(y)F̄V (x− y)dy, 0 ≤ x < z,

0, o.w.

(42)

Di�erentiation over z yields,

d

dz
F̄Q|z(x) =


´ x

0
fD(y) ddz F̄V (x− y)dy, 0 ≤ x < z,

0, o.w.,

(43)

which is non-positive, since

d

dz
F̄V (x) = −

(
(x+ z)

dλ(z)

dz
+ λ(z)

)
e−λ(z)(x+z) ≤ 0. (44)

Consequently, F−1
Q|z(·) is decreasing in z for F−1

Q|z(·) < z. The theorem follows.
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Proof of Theorem 3

Proof. Part i. Di�erentiation of CB,C(s∗(z), w∗(z), z) over z yields

dCB,C(s∗(z), w∗(z), z)

dz
=


hk g(z)

(g(z)+1)3 , z < ẑ,

b g(z)
z(g(z)+1)3 , o.w.,

(45)

which is strictly negative for all z > 1/µ. Using (23) we see that CB,C(s∗(z), w∗(z), z) is convex. Since the

cost is convex decreasing, an increase in pE[D] will lead to a decrease in z∗whenever z∗ 6= ẑ. If z∗ = ẑ, an

increase in pE[D] will leave z∗unchanged. Thus, z∗is non-increasing in p. Theorem 2 established that V +D

is stochastic decreasing in z. This means that F−1
V+D|z(

p−cF−cV
p−cV ) is decreasing in z. Consequently, K∗C is

decreasing in z and hence non-increasing in p when K∗C 6= z∗, and non-decreasing otherwise.

Part ii. Follows from above and the fact that s∗ is decreasing in z (Lemma 1). Part iii follows.

.
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