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Abstract

Knowledge of the current distribution on a radome can be used to improve

radome design, detect manufacturing errors, and to verify numerical simula-

tions. In this paper, the transformation from near-�eld data to its equivalent

current distribution on a surface of arbitrary material, i.e., the radome, is

analyzed. The transformation is based on the scalar surface integral represen-

tation that relates the equivalent currents to the near-�eld data. The presence

of axial symmetry enables usage of the fast Fourier transform (FFT) to reduce

the computational complexity. Furthermore, the problem is regularized using

the singular value decomposition (SVD). Both synthetic and measured data

are used to verify the method. The quantity of data is large since the height

of the radome corresponds to 29 − 43 wavelengths in the frequency interval

8.0 − 12.0 GHz. It is shown that the method gives an accurate description

of the �eld radiated from an antenna, on a surface enclosing it. Moreover,

disturbances introduced by copper plates attached to the radome surface, not

localized in the measured near �eld, are focused and detectable in the equiva-

lent currents. The method also enables us to determine the phase shift of the

�eld due to the passage of the radome, cf., the insertion phase delay.

1 Introduction

This paper provides a wrap-up and a �nal report of the reconstruction of equivalent
currents in the scalar approximation. The theoretical derivation is a summary of
the work [11]. The new aspect in this report is mainly the analysis of the measured
near-�eld data, especially the investigation of the phase information. Di�erent ways
of visualizing the results are also discussed and presented.

1.1 Ranges of application

There are several applications of a near �eld to equivalent currents transformation.
For example, in the radome industry it is important to have accurate models of the
�eld radiated from the antenna placed inside the radome. It is hard to measure
this �eld directly since the radome often is located very close to the antenna and
at these distances, there is a substantial interaction between the antenna and the
measuring probe [6, 13, 19]. It is also important to have a powerful tool to determine
the insertion phase delay (IPD), also known as the electrical thickness of the radome.
The IPD is often one of the speci�ed qualities given to characterize a radome. One
way to measure the IPD is to place two horn antennas in such a way that the
incident angle on the radome coincide with the Brewster angle, which is the angle
where the transmitted �eld has its highest value [12]. To get the IPD, the phase
of the transmitted �eld is subtracted from the phase of the measured �eld with no
radome between the horn antennas. This process is very time consuming since it
has to be repeated several times to cover the whole radome surface. Using the scalar
surface integral equation, the phase shift due to the propagation through the radome
is determined.
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Another �eld of application is in the manufacturing of radiating bodies, i.e.,
antenna arrays etc., when the radiation pattern from the body does not exhibit the
expected form. By determination of the equivalent currents on the radiating body,
the malfunctioning areas or components can be found.

1.2 History

A common method, transforming near �eld to equivalent currents and vice versa,
is to use modal-expansions of the electric �eld [6]. This is a very e�cient method
for radiating bodies with certain geometrical symmetries, i.e., planar, cylindrical,
and spherical. Having a planar aperture, the plane wave spectrum of the �eld
is utilized in the back transformation [3, 5]. The fact that the expression of the
far �eld originating from a planar surface is equal to the Fourier transform of the
radiating �eld on the aperture has been investigated in [10, 13]. The paper [10] also
illustrates that defects, i.e., patches of Eccosorb, can be detected on the aperture. If
the radiating body is of cylindrical or spherical geometry, the radial solutions contain
cylindrical and spherical Bessel functions, while the angular solutions are described
by trigonometric functions and the associated Legendre functions [6, 17]. For general
geometrical symmetries, where modal-expansions do not exist, the modal-expansion
is less applicable.

Moreover, di�erent combinations of the electric- and magnetic-�eld integral equa-
tions (EFIE and MFIE) derived from the Maxwell equations, have been used to back
propagate �elds towards their sources, i.e., a linear inverse source problem is solved.
By this method it is possible to handle a wider class of geometries [13]. In [18] the
dual-surface, magnetic and electric-�eld integral equations are investigated. The
�elds are transformed back to a cubic perfect electric conductor by solving the dual-
surface magnetic-�eld integral equation using the conjugate gradient method. Other
work using the integral equations is reported in [14], where the near �eld is measured
on a arbitrary surface and later inverted to a planar, perfectly conducting surface
by using a singular value decomposition (SVD) for regularization.

1.3 The scalar surface integral representation

In this paper, the approach is to investigate a scalar surface integral representation
that does not require the aperture to be a perfect electric or magnetic conductor.
The representation provides a relation relating the unknown electric and magnetic
equivalent currents on a surface to the measured electric �eld. An additional relation
is given by the fact that the equivalent currents are constructed such that the integral
is zero inside the volume, on which surface the currents exist, i.e., the extinction
theorem [16].

The integral relations are discretized into matrix linear equations. The matrix
equations include an azimuthal convolution which is solved with a fast Fourier trans-
form (FFT) in the angular coordinate. The fast Fourier transform brings down the
complexity of the problem, i.e., the original surface-to-surface linear map is decom-
posed into a set of line-to-line linear maps. A singular value decomposition (SVD)
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Figure 1: The measured co- and cross-polarized electric �eld on the measurement
cylinder at 8.0 GHz. In (a) and (b) the angle is �xed at ϕ = 0, and the �elds are
normalized by the maximum value when no radome is present in (a). In (c) and (d)
the height is �xed at z = 0, and the �elds are normalized to the maximum value
when no radome is present in (c).

is used to invert each of these linear maps. As most inverse problems it is ill-posed,
i.e., small errors in the near-�eld data can produce large errors in the equivalent
currents. Thus, the problem needs to be regularized by suppression of small singular
values when inverted.

1.4 Results

In this paper, the measured electric �eld is presumed to be scalar, i.e., the scalar
surface integral representation is utilized. The assumption is acceptable since the
used near-�eld data, supplied by SAAB Bofors Dynamics and Applied Composites
AB, Sweden, clearly have one dominating component in the main lobe, see Figure 1.
The measured data is given for three di�erent antenna and radome con�gurations,
viz., antenna, antenna together with radome, and antenna together with defect
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Figure 2: Photo of the cylindrical near-�eld range at SAAB Bofors Dynamics,
Sweden. The antenna under test is rotated and the probe is moved in the vertical
direction. A close up of the re�ector antenna is shown in the upper right corner.

radome. The measurement set-up is shown in Figure 2. The height of the radome
corresponds to 29− 43 wavelengths in the frequency interval 8.0− 12.0 GHz.

As a start, synthetic data is used to verify the method. Veri�cation is also
performed by a comparison between the measured far �eld and the far �eld calculated
from the equivalent currents on the radome. The calculated far �eld agrees well
with the measured far �eld. Moreover, when the radome is introduced, the �eld is
scattered and �ash lobes arise. The equivalent currents on the radome, due to these
e�ects are identi�ed and the �ash lobes are accurately detected.

Manufacturing errors, not localized in the measured near-�eld data, can be fo-
cused and detected in the equivalent currents on the radome surface. In this paper,
it is shown that the �eld scattered by copper plates attached on the radome, is
focused back towards the original position of the copper plates. The length of the
side of the square copper plates is 6 cm, i.e., 1.6− 2.4 wavelengths corresponding to
the frequency span 8.0− 12.0 GHz.
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1.5 Outline

In Section 2, the experimental set-up is described and the measured near-�eld data
is presented. The scalar surface integral representation is introduced and adapted to
the speci�c problem in Section 3. Section 4 contains the implementation process of
the scalar surface integral representation. Results, using synthetic near-�eld data,
and the error of the method are presented. The results, when using the experimental
near-�eld data, are shown and examined in Section 5. To give the reader a under-
standing of the information that can be extracted from the resulting data, Section 6
gives examples of ways to visualize the results. The paper ends with the achieved
conclusions in Section 7.

2 Near-�eld measurements

The near-�eld data, used in this paper, was supplied by SAAB Bofors Dynamics and
Applied Composites AB, Sweden. The set-up with relevant dimensions indicated is
shown in Figures 2 and 3a. Three di�erent measurements were performed; data
measured without the radome, data measured with the radome, and data measured
with the defect radome. The defect radome has two copper plates attached to its
surface.

A re�ector antenna, fed by a symmetrically located wave-guide, generates the
near-�eld, see Figure 2. The diameter of the antenna is 0.32 m and its focal distance
is 0.1 m. The main lobe of the antenna is vertically polarized relative to the hori-
zontal plane. The standing wave ratio (SWR) is approximately 1.4 in the frequency
range 8.2− 9.5 GHz. The antenna is poorly adapted for other frequencies. A 10 dB
re�ection attenuator is connected to the antenna.

The height of the radome surface is modeled by

ρ(z) =

{
0.213 m −0.728 m ≤ z ≤ −0.663 m

−(bz′ + d) +
√

(bz′ + d)2 − a(z′)2 − 2cz′ − e −0.663 m < z ≤ 0.342 m

(2.1)
where z′ = z + 0.728 m and the constants are a = 0.122, b = 0.048, c = −0.018 m,
d = 0.148 m, and e = −0.108 m2, respectively. The material of the radome has a
relative permittivity of 4.32 and its loss tangent is 0.0144. The thickness of the
wall of the radome varies between 7.6− 8.2 mm. The near-�eld measurement probe
consists of a wave-guide for which no compensation is made in the �nal data. The
cylindrical surface, where the electric �eld is measured, is located in the near-�eld
zone [2].

The amplitude and phase of the electric �eld are measured in the frequency
interval 8.0−12.0 GHz on a cylindrical surface by moving the probe in the z-direction
and rotating the antenna under test, see Figure 2. With this measurement set-up, the
�elds on the top and the bottom of the cylindrical surface could not be collected. It
would have been preferable to measure the �elds on an in�nite cylinder. However, the
size of the cylinder is chosen such that the turntable below the radome does not have
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Figure 3: (a) The dimensions of the re�ector antenna, the radome, and the cylinder
where the electric near �eld is measured. (b) A close-up showing the inner �ctitious
surface and the discretized geometric variables.

a major in�uence of the measurements and such that the �elds above z = 800 mm
are negligible, cf., Figures 1 and 3a. In the azimuth angle, 120 points are measured
between −180◦ and 180◦ in steps of 3◦. The z-dimension is divided into 129 points,
separated by 12.5 mm. This means that at 8.0 GHz the electric �eld is measured
3 times per wavelength, in the z-direction, and 1.5 times per wavelength, in the
azimuth direction, respectively. Together, a total of 120×129 = 15480 measurement
points are used for each radome con�guration and frequency. The co- and cross-
polarized measured electric �elds are shown in Figure 1. The di�erences between
the three di�erent antenna and radome cases arise from constructive and destructive
interference between the radiated �eld and the scattered �eld. In Figure 1 it is also
observed that the electric �eld consists of a dominating co-component in the main
lobe, i.e., a dominating z-component since the antenna is vertically polarized.

3 The surface integral representation

The surface integral representation expresses the electromagnetic �eld in a homoge-
neous, isotropic region in terms of its values on the bounding surface. The represen-
tation states that if the electromagnetic �eld on a surface of a volume is known, the
electromagnetic �eld in the volume can be determined [8, 16]. The representation is
derived starting from the time harmonic Maxwell equations with the time conven-
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tion eiωt. The Maxwell equations transform into the vector Helmholtz equation

∇2E(r) + k2E(r) = 0 (3.1)

since the material (air) is source free, homogeneous, and isotropic.
Assume that the electric �eld only consists of a component in the z-direction.

This is a good approximation dealing with the speci�c measurements described in
Section 2 since our prime interest is to reconstruct the electric �eld in the main lobe,
where the z-component is clearly the dominating one, cf., Figure 1.

Working with a scalar �eld, the surface integral representation only depends on
the scalar electric �eld, Ez, and its normal derivative, ∂Ez/∂n, i.e., not all compo-
nents of the electric and magnetic �elds need to be included. Observe that in the
vector integral representation all tangential components of the electric and magnetic
�elds must be taken into account [8]. The scalar surface integral representation is
derived using the free space Green function g(r, r′) = e−ik|r−r′|/4π|r−r′| giving [16]∫∫

S

[
∂g(r, r′)

∂n
Ez(r)− g(r, r′)

∂Ez(r)

∂n

]
dS =

{
−Ez(r′) r′ ∈ V
0 r′ /∈ V (3.2)

where V is the volume exterior to the closed surface S which consists of the radome
surface with an added top and bottom surface. Observe that the electric �eld does
not have to be zero outside the volume, i.e., inside the radome. The surface integral
representation (3.2) only states that the left-hand side of the equation, evaluated at
a point r′ outside the volume V , is zero, i.e., the extinction theorem [16].

The equivalent surface currents are introduced as

M(r) ≡ Ez(r) and M ′(r) ≡ ∂Ez(r)

∂n
(3.3)

which inserted in (3.2) give∫∫
radome

[
∂g(r, r′)

∂n
M(r)− g(r, r′)M ′(r)

]
dS =

{
−Ecyl

z (r′) r′ ∈ cylinder

0 r′ ∈ surface inside radome

(3.4)
where Ecyl

z is the z-component of the electric �eld on the measurement cylinder.
The �ctitious surface, inside the radome, is shaped as the radome and located close
to the radome wall.

3.1 Angular Fourier transformation

Due to the measurement set-up, the transformation, the Green's function, is axially
symmetric, see Section 2. The symmetry only applies to the transformation, not
to the electric �eld. Thus, the left-hand side in (3.4) represents a convolution and
by using a Fourier transformation of the azimuth coordinate, the computational
complexity can be brought down one dimension. This reduction of one dimension,
can be understood by writing the left-hand side in (3.4) as a matrix, X. This matrix
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is a circulant matrix, i.e., every row is shifted one step to the right compared to
the previous row. The eigenvectors of all circulant matrices are the column vectors
of the Fourier matrix, F . Multiplying a circulant matrix with the Fourier matrix,
i.e., performing the Fourier transformation, gives FX = FΛ where Λ is a diagonal
matrix, which can be seen as a reduction of one dimension [15].

The continuous variables in (3.4) are discretized to give linear matrix equations.
The discretized cylindrical coordinate system is described by the integer indices
depicted in Figure 3b. Discretization and Fourier transformation, in the azimuth
coordinate, of (3.4) give

Nm−1∑
m=0

[
Ĝ ′im̂M̂m̂ − Ĝim̂M̂

′
m̂

]
= −Êcyl

i̂ for all i, ̂ (3.5)

and
Nm−1∑
m=0

[
Ĝ′pm̂M̂m̂ − Ĝpm̂M̂

′
m̂

]
= 0 for all p, ̂ (3.6)

where G and G are the surface integrals, taken over the radome, of the Green's
function multiplied with the basis functions used in the discretization process. G has
the discretized space variable r′ belonging to the measurement cylinder and G has
the discretized space variable r′ belonging to the �ctitious surface inside the radome,
respectively. The prime denotes the normal derivative of the Green's function, ̂ is
the integer index belonging to the Fourier transformed azimuth component, and the
�hat� denotes the Fourier transformed variables. The summation limits Nm and Np

are given in Figure 3b.
To solve the scalar surface integral representation, a limit process of (3.6) should

be performed, letting the �ctitious surface inside the radome approach the radome
surface [2, 9]. To avoid singularities, we let the �ctitious surface be located at a
�nite distance from the radome surface. This provides us with a simple and feasible
method to allocate the surface currents, i.e., the extinction theorem is used as an
approximate solution to the integral representation in (3.6).

Reduction of M ′ in (3.5) and (3.6) gives

Nm−1∑
m=0

{
Ĝ ′im̂ −

Np−1∑
p=0

Nm−1∑
q=0

Ĝiq̂ (Ĝ−1)qp̂ Ĝ′pm̂

}
M̂m̂ = −Êcyl

i̂ for all i, ̂ (3.7)

Equation (3.7) can also be written as ̂ matrix equations

Ĝ
radome

̂ M̂ ̂ = −Ê
cyl

̂ for all ̂ (3.8)

where the matrices are de�ned as M̂ ̂ ≡ [M̂m1]̂, Ê
cyl

̂ ≡ [Êcyl
i1 ]̂, and

Ĝ
radome

̂ ≡ [Ĝ ′im]̂ − [Ĝim]̂[Ĝmp]−1
̂ [Ĝ′pm]̂ for all ̂ (3.9)

The used notation of matrices is that of [1].
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3.2 Inversion with singular value decomposition

Since the matrices Ĝ
radome

̂ and [Ĝmp]̂ in (3.8) and (3.9) are not quadratic, a regular
inversion cannot be performed. A fast and easy way to solve this is to use the
singular value decomposition (SVD) [15]. This method is used on both matrices,

but the SVD-equations are only given here for Ĝ
radome

̂ . The matrix system (3.8)
can then be rewritten as

Û ̂Ŝ ̂V̂
†
̂M̂ ̂ = −Ê

cyl

̂ for all ̂ (3.10)

where V̂
†
̂ denotes the Hermitian conjugate of V̂ ̂. Both Û ̂ and V̂ ̂ are orthogonal

matrices. Ŝ ̂ is a diagonal matrix consisting of the singular values to Ĝ
radome

̂ in de-

creasing order. The singular values of both Ĝ
radome

̂ and [Ĝmp]̂ exhibit the tendency
shown by the curves in Figure 4a.

A cut-o� value, δ, normalized to the operator L2-norm of Ĝ
radome

1 is chosen. The

operator L2-norm of Ĝ
radome

1 is equal to the largest singular value (σ1) of the largest
Fourier transformed azimuth component [9]. All singular values smaller than δ are

ignored during the inversion of Ŝ ̂ and are afterwards set to zero. If this is not done
the small singular values create an uncontrolled growth of non-radiation currents
when inverted. The mathematical formulation then fails since very small electric
�eld contributions become dominating. Performing the inversion of (3.10) gives

M̂ ̂ = − V̂ ̂Ŝ
−1

̂ Û
†
̂Ê

cyl

̂ for all ̂ (3.11)

Before the system of equations is solved, it is necessary to convert it back from
Fourier space by an inverse Fourier transformation

M j = F−1

[
−V̂ ̂Ŝ

−1

̂ Û
†
̂Ê

cyl

̂

]
for all j, ̂ (3.12)

where j, as above, denotes the integer index belonging to the discretized azimuth
component, see Figure 3b.

4 Implementation

Some adjustments of the formulas are made in the implementation process. To
facilitate the calculations, the radome surface is reshaped into a closed surface by
adding a smooth top and bottom surface. These extra surfaces are useful since the
measurements are performed under non-ideal conditions. The turntable, on which
the antenna and radome are located, see Figure 2, re�ects some of the radiation,
which is taken care of by the added bottom surface. The top surface takes care of the
electric �eld that is re�ected on the inside of the radome and then radiated through
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Figure 4: (a) The typical behavior of singular values of Ĝ
radome

̂ and [Ĝmp]̂. Every
curve represents the singular values of a Fourier transformed azimuth component,
i.e., di�erent ̂. The horizontal lines describe the cut-o� values, δ = σ1[0.15 0.1 0.05
0.01 0.005]. (b) The synthetic equivalent currents, originating from three dipoles,
in a dB-scale [−15, 0], normalized to the highest current value, i.e., the maximum
current magnitude in sub�gure c. (c) The reconstructed currents in dB-scale [−15, 0],
normalized to its highest current value.

the top hole. If these factors are not considered, unwanted edge e�ects occur since
the electric �eld originating from the turntable and the top of the radome is forced
to arise from the radome itself.

The measured electric near �eld is only measured 1.5 times per wavelength, in
the azimuth direction, at the frequency 8.0 GHz, see Section 2. To be sure that the
equivalent currents on the radome are recreated in an accurate way, it is necessary to
have a high sample density on the radome. This is achieved by increasing the number
of discrete points, in the azimuth direction, on the radome surface by including extra
angles between the already existing ones. Thus, the axial symmetry of the Green's
transformation is preserved.

The sample density on the measurement cylinder contributes very little to the
total error. The scalar surface integral representation creates currents on the radome
such that the electric �eld is correct at the measurement points. However, if the
Nyquist theorem is ful�lled, then the electric �eld is correct at all points on the
measurement surface, i.e., not only at the measurement points [15]. As mentioned

above, the amount of data is large and the matrix Ĝ
radome

, cf., (3.9), has approxi-
mately 108 elements at the frequency 8.0 GHz when the sample density is 10 points
per wavelength both in the azimuth direction and in the z-direction on the radome.

To verify and �nd the error of the method, synthetic data is used. A synthetic
electric �eld, originating from three dipoles inside the radome is shown in Figure 4b.
The corresponding reconstructed currents on a surface shaped as the radome are
shown in Figure 4c where the sample density is 10 points per wavelength both in
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Figure 5: The reconstructed currents in dB-scale [−30, 0], all normalized to the
highest current value, i.e., the maximum current magnitude in �gure ac'. (a) The
di�erent measurement con�gurations are depicted at two di�erent frequencies. From
left to right; antenna without radome, antenna together with radome, and antenna
together with defect radome, respectively. The arrows point out the location of the
copper plates on the defect radome. (b) The defect radome case, shown at di�erent
frequencies.

the z-direction and in the azimuth direction. The inner �ctitious surface is located
one wavelength from the radome surface.

The error as a function of the Fourier transformed azimuth angle component is
de�ned as

Err(̂) = 20 log10

‖ M̂ ̂ − M̂
correct

̂ ‖2
‖ M̂

correct

̂ ‖2

= 20 log10

√∑Nm−1
m=0 | M̂m̂ − M̂ correct

m̂ |2 ∆Sm√∑Nm−1
m=0 | M̂ correct

m̂ |2 ∆Sm

for all ̂

(4.1)

where ∆Sm denotes the discretized area elements on the radome.
By using synthetic data and choosing appropriate cut-o� values, δ, the error is

shown to be below −60 dB for each existing Fourier transformed azimuth angle com-
ponent. To obtain these low error levels, the measurement surface must be closed,
i.e., �eld values at the top and bottom surfaces of the cylindrical measurement sur-
face must be included. The cut-o� values depend on the complexity of the speci�c
measurement set-up and must be investigated for each new set-up.
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Figure 6: Cross section of the reconstructed currents, on the radome surface, for
the di�erent measurement con�gurations at 8.0 GHz. The currents are shown as
functions of the radome height for a �xed angle. All graphs are normalized to the
highest current value, i.e., the maximum current for the defect radome case. (a) The
graph representing the currents in the main lobe, i.e., the front of the radome. The
positions of the copper plates are marked by thick lines on the horizontal axis.
(b) The currents on the back of the radome.

The total error of the scalar surface integral representation using the measured
near �eld described in Section 2 is hard to de�ne since the noise level and the amount
of �eld spread outside the measurement cylinder are unknown parameters. Instead,
we rely on the fact that the method handles synthetic data well and that the results
using measured data is satisfactory, see Section 5.

5 Results using measured near-�eld data

The measured near-�eld data, described in Section 2, is investigated. The inner
�ctitious surface is located one wavelength from the radome surface. The sample
density on the radome is 10 points per wavelength both in the azimuth direction
and in the z-direction. The cut-o� values are determined in accordance with the
discussion in Section 4.

Three di�erent measurement con�gurations are investigated, viz., antenna, an-
tenna together with radome, and antenna together with defect radome. The studied
frequency interval is 8.0 − 12.0 GHz. The results for the di�erent measurement
con�gurations are shown in Figure 5a at the frequencies 8.0 GHz and 10.0 GHz.
In Figure 5b the results for the defect radome case are shown for the frequencies
8.0 GHz, 9.0 GHz, 10.0 GHz, 11.0 GHz, and 12.0 GHz, respectively.

In the case when no radome is located around the antenna, the equivalent cur-
rents are calculated on a surface shaped as the radome, see Figure 5aa' and 5ad'.



13

a’ b’

(b)

8.0 GHz 9.0 GHz 10.0 GHz

11.0 GHz 12.0 GHz

c’

d’ e’ f’

8.0 GHz

10.0 GHz

(a)

0

π

−π

Figure 7: The reconstructed phase of the currents on the front of the radome.
(a) The di�erent measurement con�gurations are depicted at two di�erent frequen-
cies. From left to right; antenna without radome, antenna together with radome,
and antenna together with defect radome, respectively. (b) The defect radome case,
shown at di�erent frequencies.

The �gures show that the near �eld close to the antenna is complex and hard to
predict, i.e., the di�raction pattern must be taken into account. The di�raction is
explained as environmental re�ections and an o�-centered antenna feed.

The case when the radome is present, see Figure 5ab' and 5ae', shows in com-
parison to the case without radome that the radome interacts with the antenna and
hence disturbs the radiated �eld. However, the currents in the main lobe are hardly
a�ected by the radome, as seen in Figure 6a. The in�uence of the radome is clearly
visible in the reconstructed currents on the back of the radome where �ash lobes
occur, see Figure 6b.

The defect radome has two copper plates attached to its surface. These are
located in the forward direction of the main lobe of the antenna and centered at
the heights 41.5 cm and 65.5 cm above the bottom of the radome. The length of the
side of the squared copper plates is 6 cm, which corresponds to 1.6 wavelengths at
8.0 GHz and 2.4 wavelengths at 12.0 GHz, respectively. The locations of the copper
plates are detected as shown in Figure 5ac' and 5af', where the lower plate appears
clearly. The other plate is harder to discern since it is located in a region with low
amplitudes. However, a cross section graph through the main lobe detects even this
copper plate, see Figure 6a. Observe that the e�ects of the copper plates cannot be
localized directly in the near-�eld data, compare Figure 6a to Figure 1a. The near-
�eld data only shows that the �eld is disturbed, not the location of the disturbance.
Nevertheless, by using the scalar surface integral representation, the e�ects of the
plates are localized and focused. The defect radome also increases the backscattering
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Figure 8: The phase di�erence (antenna - antenna with radome) for several fre-
quencies.

as seen in Figure 6b. Due to the copper plates, the �ash lobes are di�erent compared
to the case with the non-defect radome.

Until now only the amplitude of the reconstructed currents has been investigated.
The phase of the currents is depicted in Figure 7. The vertical lines above the
main lobe in Figure 7a' and 7d' are due to phase jumps and are caused by the low
amplitude of the currents in these areas. The phase di�erence (antenna - antenna
with radome) reveals how the the phase is changed due to the in�uence of the
radome, see Figure 8. The phase shift, denoted ∆ϕ, is only known modulus 2π. The
phase shift in the main lobe is almost constant, especially for the low frequencies,
which is more clearly seen by looking at the cross section of the front side of the
radome, see Figure 9. What is noticeable in this image is the region between z =
−0.4 m and z = 0 m, i.e., the main lobe where the phase shift is nearly constant.
In areas where the amplitude of the �eld is small, cf., Figure 6a, the phase of the
�eld is not well de�ned, i.e., it is dominated by noise. This almost constant phase
shift, for the low frequencies, con�rms that the radome is quite well adapted to the
frequencies 8.0− 9.0 GHz, which is also the frequency interval where the antenna is
well matched, see Section 2.

Sometimes, when dealing with phase information, the �gures can be clari�ed by
using phase unwrapping [4]. It means that the jump in the scale between 0 and 2π
is removed. In our case phase unwrapping gives us no new information since the
area of interest is the main lobe and the phase shift there is almost constant.

To validate the calculation of the phase shift, the propagation distance of the
�eld through the radome, i.e., the actual propagation path of the �eld in the radome
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Figure 9: Cross section of the phase di�erence (antenna - antenna with radome) on
the front of the radome. Observe that in areas where the amplitude of the currents
are small, cf., Figure 6a, the phase of the �eld is not well de�ned, i.e., it is dominated
by noise.

material, is estimated and compared to the actual thickness of the radome given in
Section 2. The propagation distance of the �eld through the radome is longer than
the wall thickness since the �eld has an incident angle larger than zero. The phase
di�erence between two �elds propagating the distance d in air and in the radome
material, respectively, can be written as [12]

∆ϕ = Re
[
2πf

√
ε0εrµ0(1− i tan δ)

]
d− 2πf

√
ε0µ0 d (5.1)

where f is the frequency, d the propagation distance of the �eld, ε0 the permittivity of
vacuum, and µ0 the permeability of vacuum, respectively. The parameters belonging
to the radome, described in Section 2, are the relative permittivity, εr, and the loss
tangent, tan δ. Since only an estimation of the propagation distance is performed,
we assume that this distance is the same in both air and the radome material. We
assume perpendicular incidence and neglect all re�ections. According to Section 2,
the thickness of the radome is between 7.6 − 8.2 mm. The almost constant phase
shifts in the main lobe are approximated from Figure 9 for all frequencies. Solving
for d in (5.1) results in a propagation distance of 9.3 − 9.7 mm for all frequencies,
which is considered constant due to the crude approximations of the phase shifts.
The phase shift, ∆ϕ, is comparable to the insertion phase delay (IPD) often used in
the radome industry.

The phase images in Figure 7b are not appropriate for �nding the location of the
copper plates. Instead, the phase di�erence (antenna with radome - antenna with
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Figure 10: The phase di�erence (antenna with radome - antenna with defect
radome) for several frequencies. The arrows point out the location of the copper
plates.

defect radome) is useful, see Figure 10. These images reveal the change of the phase
due to the attached copper plates on the defect radome.

As a �nal veri�cation of the method, the amplitude on a sphere in the far-�eld
region is studied. The electric �eld, originating from the equivalent currents on the
radome, is calculated on the sphere, i.e.,

Esph
j = −F−1

[
Ĝ̂M̂ ̂

]
for all j, ̂ (5.2)

in accordance with (3.8) and (3.12), except that Ĝ̂ now describes the transfor-
mation from the radome to the inner �ctitious surface and to the far-�eld sphere.
The denotions j and ̂ are, as above, the integer index belonging to the discretized
azimuth component and the Fourier transformed discretized azimuth component,
respectively.

The far-�eld amplitude F is derived as

F (θ, φ) = kr eikrEsph(r, θ, φ) as r →∞ (5.3)

where (r, θ, φ) denotes the spherical coordinate system [7]. The result is compared
with far-�eld data, supplied by Applied Composites AB, as shown in Figure 11. The
far �eld is depicted for the angles φ = 0 and φ = π, i.e., a cross-section through
the far �eld of the main lobe and the corresponding far �eld originating from the
currents on the back of the radome. There is a lack of agreement between the
measured far �eld and the calculated one at the angles corresponding to the top of
the radome, i.e., θ ≈ 0. This is due to the fact that �elds originating hereof are
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Figure 11: Comparison between the measured far-�eld data, supplied by Applied
Composites AB, and the far �eld calculated from the equivalent currents on the
radome surface. The far �elds are normalized to the maximum value of the far �eld
when no radome is present. (a) Antenna without radome. (b) Antenna together
with radome. (c) Antenna together with defect radome. (d) The calculated far-�eld
pattern for the three measurement con�gurations.

not all included in the measured near-�eld data, since the measurement surface is a
cylinder, see Figure 3a. The fact that the radome disturbs and re�ects the electric
�eld, as earlier seen in Figure 6b, can also be detected in the far �eld, see Figure 11d,
where �ash lobes appear when the radome is present.
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Figure 12: The reconstructed currents on the back of the radome in a dB-scale
[−30, 0], all normalized to the highest current value, i.e., the maximum current mag-
nitude in Figure 5ac'. (a) The di�erent measurement con�gurations are depicted at
two di�erent frequencies. From left to right; antenna without radome, antenna to-
gether with radome, and antenna together with defect radome, respectively. (b) The
defect radome case, shown at di�erent frequencies.

6 Alternative ways to visualize the electromagnetic

currents

6.1 Amplitude of the reconstructed currents

In the previous section, the amplitude and the phase of the reconstructed currents
have been visualized by showing the amplitude in dB-scale over the front side of the
radome in Figure 5, and over a cross section of the front and the back in Figure 6.
These ways of presenting the results are in this section supplemented in an attempt
to see what possibilities other visualization approaches o�er. First, the back side of
the radome is shown in a dB-scale in Figure 12. The absolute value of the currents is
also displayed in a linear scale on the front and the back of the radome in Figures 13
and 14, respectively. The �ash lobes clearly appear in both dB- and linear scale, see
Figures 12 and 14. Notice that the top copper plate is not resolved very well in the
linear scale compared to the dB-scale in Figure 5.
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Figure 13: The reconstructed currents on the front of the radome in a linear scale,
all normalized to the highest current value, i.e., the maximum current magnitude
in �gure ac'. (a) The di�erent measurement con�gurations are depicted at two
di�erent frequencies. From left to right; antenna without radome, antenna together
with radome, and antenna together with defect radome, respectively. The arrows
point out the location of the copper plates on the defect radome. (b) The defect
radome case, shown at di�erent frequencies.

6.2 Di�erences between the measurement con�gurations

To further demonstrate the distinctions between the three radome con�gurations
their di�erences are calculated. The di�erence (|antenna| - |antenna with radome|)
is shown in Figure 15 in a dB-scale, and in Figure 16 in a linear scale. The images
show the in�uence of the radome and the appearance of �ash lobes at the back of
the radome. The dB-scale, Figure 15, has the advantage that also small current
values are made visible. The advantage with the linear scale is that the sign of the
di�erence is visible. In Figure 16, on the front of the radome, the �eld originating
from the antenna is the strongest, i.e., the di�erence is positive, while on the back
of the radome, the �eld passing trough the radome as �ash lobes is the strongest,
i.e., the di�erence is negative. This conclusion can not be drawn by looking at the
dB-scale in Figure 15, where only the amplitude of the di�erence is displayed.

To emphasize the contribution of the defect radome, the di�erence (|antenna
with radome| - |antenna with defect radome|) is studied in a dB-scale, see Figure 17
and in a linear scale, see Figure 18. The e�ect of the lower copper plate is clearly
detectable in both �gures, while the top plate is hard to discern in both scales,
i.e., these �gures are useful to get an overview, but when it comes to details, other
visualizations approaches are needed. The tricky part with the dB-scale is to choose
its lower limit. If a too low value is used, too much noise appears and blurs the
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Figure 14: The reconstructed currents on the back of the radome in a linear scale,
all normalized to the highest current value, i.e., the maximum current magnitude
in Figure 13ac'. (a) The di�erent measurement con�gurations are depicted at two
di�erent frequencies. From left to right; antenna without radome, antenna together
with radome, and antenna together with defect radome, respectively. (b) The defect
radome case, shown at di�erent frequencies.

image. However, if instead a too high value is picked, the �eld e�ects caused by the
copper plates are hidden. To reveal the exact positions of the copper plates, cross
section graphs through the front of the radome are presented in a linear and in a
dB-scale in Figure 19 for the frequency 8.0 GHz. The e�ects of the copper plates
are clearly seen in both scales, but their positions are somewhat o�-centered. This
is probably due to the fact that the copper plates cause di�ractions and re�ections,
which do not occur when only the radome is present. There is also an uncertainty
in the measurement set-up.

6.3 Propagation of the reconstructed �elds

To see how the waves propagate on the radome-shaped surface, the �eld values, i.e.,
Re (M eiωt) for 0 ≤ ωt ≤ 2π, are presented as a movie on http://www.eit.lth.se/

staff/kristin.persson under the link Research. The distinctions between the
di�erent frequencies and radome con�gurations are revealed on both the front and
the back side of the radome surface.

7 Discussion and conclusions

The scalar surface integral representation gives a linear map between the equivalent
currents and the near-�eld data for general geometries. It is shown that this map
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Figure 15: The amplitude di�erence abs(|antenna| - |antenna with radome|) for
several frequencies. The amplitude di�erences are normalized to the highest value
at each frequency and are all depicted in a dB-scale [−20, 0].

can be inverted for axially symmetric geometries. The model can theoretically be
adapted to geometries lacking symmetry axes. Although it is not a feasible approach
for radome applications, demanding large quantities of measured data, with the
present computer capacity.

The transformation method is stable and useful in radome design and for eval-
uation purposes. To investigate the electric �eld passing through the radome, the
current distribution on the antenna or on a surface enclosing the antenna must be
known. Using the surface integral representation, the equivalent currents, on a sur-
face enclosing the antenna, can be described. The insertion phase delay is estimated
by investigating the phase of the reconstructed currents.

In this paper, copper plates are attached on the radome, in the direction of
the antenna main lobe. The length of the side of the square copper plates is
1.6 − 2.4 wavelengths, corresponding to the frequency span 8.0 − 12.0 GHz. The
e�ects of the plates cannot be localized directly by using the near-�eld data, but by
using the equivalent currents, the e�ects are focused and detected on the radome
surface. Thus, by transforming the near-�eld data to the radome surface, �eld de-
fects introduced by the radome and other disturbances are focused back to their
origins. Another range of application within the radome industry is to study how
e.g., lightning conductors and Pitot tubes, often placed on radomes, in�uence the
equivalent currents. We predict that such in�uences and the �eld e�ects of the
radome itself can be detected.

It is concluded that the transformation method based on the scalar surface in-
tegral representation works very well and that the �eld of applications is large. A
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Figure 16: The amplitude di�erence (|antenna| - |antenna with radome|) for several
frequencies. The amplitude di�erences are normalized to the highest value at each
frequency and are all depicted in a linear scale.

natural continuation is to elaborate the algorithm by including near-�eld data with
cross-polarization, i.e., to implement the full Maxwell equations with a Method of
Moments (MoM). Nevertheless, if the measured near-�eld data consists of one domi-
nating component, the use of the full Maxwell equations are not necessary, as shown
in this paper.

Additional aspects to be investigated more thoroughly in the future are the
resolution possibilities of manufacturing errors and other external �eld in�uences.
Moreover, a study regarding the detection of di�erent materials attached to the
radome surface is desirable.
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with radome| - |antenna with defect radome|) in a linear scale.
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