LUND UNIVERSITY

Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and DVS

Processors

Gruian, Flavius

Published in:
[Host publication title missing]

DOI:
10.1109/LPE.2001.945370

2001

Link to publication

Citation for published version (APA):

Gruian, F. (2001). Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and DVS Processors. In

[Host publication title missing] (pp. 46-51) https://doi.org/10.1109/LPE.2001.945370

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://doi.org/10.1109/LPE.2001.945370
https://portal.research.lu.se/en/publications/075ce9f5-767b-41b9-a995-1736d34ce054
https://doi.org/10.1109/LPE.2001.945370

REVISED version, September 4, 2001. Note that this version is not the one officially available. Corrections
were made on pages 2 and 6, all in blue. Thanks to Jacob R. Lorch for detecting the errors on page 2.

Hard Real-Time Scheduling for Low-Energy
Using Stochastic Data and DVS Processors

Flavius Gruian
Department of Computer Science, Lund University
Box 118
S-221 00 Lund, Sweden
Tel.: +46 046 2224673

e-mail: Flavius.Gruian@cs.lth.se

ABSTRACT real-time systems, where deadlines can be missed if the Quality of
The work presented in this paper addresses scheduling for reducedervice is kept. Several scheduling techniques for soft real-time

energy of hard real-time tasks with fixed priorities assigned in a rate {8Sks, running on DVS processors have already been described
monotonic or deadline monotonic manner. The approach we [3:18,19,23]. Energy reductions can be achieved even in hard real-
describe can be exclusively implemented in the RTOS. It targets time systems, where no deadline can be missed, as shown in
energy consumption reduction by using both on-line and off-line [6:7,10,20,24]. In this paper, we also focus on hard real-time sched-
decisions, taken both at task level and at task-set level. We considetling techniques, where every deadline has to be met.

sets of independent tasks running on processors with dynamic volt-) o

age supplies (DVS). Taking into account the real behavior of a real- Task level voltage_ scheduling deC|S|or_15 can reduce even further the
time system, which is often better than the worst case, our methods€nergy consumption. Some of these intra-task scheduling methods
employ stochastic data to derive energy efficient schedules. TheUSe several re-scheduling points inside a task, and are usually com-
experimental results show that our approach achieves more impor-p”er assisted [11,16,21]. Alternatively, fixing the schedule before

tant energy reductions than other policies from the same class. the task starts executing as in [6,7,8] eliminates the internal sched-
uling overhead, but with possible affects on energy reduction.

Keywo rds Statistics can be used to take full advantage of the dynamic behavior
Low-energy, hard real-time, RTOS, scheduling of the system, both at task level [16] and at task-set level [24]. In our

approach we employ stochastic data to derive efficient voltage
1. INTRODUCTION schedules without the overhead of intra-task re-scheduling.

Low energy consumption is today an increasingly important design . .)
requirement for digital systems, with impact on operating time, on 1€ rést of the paper is organized as follows. In section 2 we
system cost, and, of no lesser importance, on the environment.d€scribe our hard real-time scheduling strategy, pointing out the
Reducing power and energy dissipation has long been addressed b{/elate_d work for each decision we make. Sectlgn 3 contains several
several research groups, at different abstraction levels. We focuseXPerimental results conducted both on real life examples and on
here on methods applicable at system-level, where the system to bd@ndomly generated, large task sets. Finally, we present our conclu-
designed is specified as an abstract set of tasks. Selecting the right'o"S In section 4.
architecture has been shown to have a great influence on the system
energy consumption [4,5]. Recently, with the advent of dynamic 2. RT SCHEDULING FOR LOW-ENERGY
voltage supply (DVS) processors [2,22,25], highly flexible systems In the work described here, we address independent tasks running
can be designed, while still taking advantage of supply voltage scal- on a single processor. The processor has variable speed (supply
ing to reduce the energy consumption. Since the supply voltage hasvoltage and energy) adjustable at runtime. The tasks arrive with
adirect impact on processor speed, classic task scheduling and supgiven periods and have to be executed before certain deadlines. The
ply voltage selection have to be addressed together. Schedulingpriorities are fixed, assigned in a rate-monotonic (RM) or deadline
offers thus yet another level of possibilities for achieving energy/ monotonic (DM) manner [14]. The runtime scheduling also oper-
power efficient systems, especially when the system architecture isates as in RM/DM scheduling with the difference that each task
fixed or the system exhibits a very dynamic behavior. For such instance is assigned a maximum allowed execution time. The
dynamic systems, various power management technigues exist angcheduling strategies we adopt at task-level are presented in sub-
are reviewed for example in [1,17]. Yet, these mainly target soft section 2.1. The allowed execution time are influenced by task
group level decisions, taken both off-line and on-line. The off-line
phase is presented in sub-section 2.2 and the on-line phase in sub-
section 2.3. Sub-section 2.3 also contains a proof that our schedul-
Permission to make digital or hard copies of all or part of this work for ~ ing method keeps the response times from the original RM/DM

personal or classroom use is granted without fee provided that copies are scheduling, and thus does not affect the feasibility of the schedule.
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy _ ; s
otherwise, or republish, to post on servers or to redistribute to lists, 2.1 Task-level Schedullng Decisions

requires prior specific permission and/or fee. Task-level voltage scheduling has captured the attention of the
ISLPED'01, August 6-7, 2001, Huntington Beach, California, USA. research community rather recently [8]. Fine grain scheduling,
Copyright 2001 ACM 1-58113-371-5/01/0008...$5.00. where several re-scheduling points are used inside a task were pre-

sented in [11,16]. In [16] statistical data is used to improve the task presented here can be adapted to accommodate both the DC-DC
level schedule, by slowing down different regions of a task accord- delay and energy loss whenever the actual processor requires it.
ing to their average execution time. Our approach produces voltage
schedules only when a task starts executing, while using stochasticThe stochastic voltage schedule (mode 3 in Figure 1) for a task is
data more aggressively both at task level and task-set level. At taskobtained using the probability distribution of the execution pattern
level we generate voltage schedules that are correlated with the taskor a task (the number of clock cycles used). This probability distri-
execution length probability distribution. For task-set level schedul- bution can be obtained off-line, via simulation, or built and
ing decisions see sub-section 2.3. improved at runtime. Let us denote Mythe random variable asso-
ciated with the number of clock cycles used by a task instance. We
In our model atask; can be executed in phases, at different avail-will use the cumulative density of probability functiordf,, asso-
able voltages, depending on its allowed execution #n&he ideal ciated with the variableX, cdf, = P(X< x). This function
case states that the most energy is saved when the processor uses theflects the probability that a task instance finishes before a certain
voltage for which the task exactly covers its allowed execution time. number of clock cycles. If¥Xis the worst case number of clock
This corresponds to an ideal voltage which may not overlap with the cycles,cd f,,,x = 1 . Deciding a voltage schedule for a task, means
available voltages. A close to optimal solution is to execute the task that for every clock cycle up t8VX we decide a specific voltage
in two phases at two of the available voltages. These two voltageslevel (and processor speed). Each cycldepending on the voltage
are the ones bounding the ideal voltage [6,8]. adopted, will consume a specific energyBut each of these cycles
are executed with a certain probability, so in average the energy
An important observation is that tasks may finish, and in many consumed by cyclgcan be computed g4 — cd fy) [éy . To obtain
cases do finish, before their worst case execution time (WCET). the average energy for the whole task, we have to consider all the
Therefore it makes sense to execute first at a low voltage and accelcycles up to WX:

erate the execution, instead of executing at high voltage first and E = (1-cd fy) Eey Q)
decelerate. In this manner, if a task instance is not the worst case, 0<ySWKX
one skips executing high voltage (and power eager) regions. This is the value we want to minimize by choosing appropriate volt-

age levels for each cycle. Sind¥X may be a large number in
In the following we will distinguish between three modes of execu- practice, in our implementation we group several consecutive clock
tion for a task, as depicted in Figure 1. The ideal case (mode 1) is cycles into equal size groups. For the sake of brevity and clarity we
when the actual execution pattern (the number of clock cycles) describe here only the simpler case, when the voltage levels are
becomes known when the task arrives. We can stretch then thedecided clock cycle by clock cycle.
actual execution time of the task to exactly fill the allowed time.
This mode requires rather accurate execution pattern estimatesA task has to complete its execution during an allowed execution
depending on the input data, and therefore is rarely achievable intime, A. If we denote the clock length associated to clock cydig
practice. The second mode (mode 2) is the WCE stretching - thek,, this constraint can be written as:
voltage schedule for the task is determined as if the task will exhibit ky <A 2)
its worst case behavior. These two modes use at most two voltage 0<y<WX
regions, and therefore at most one DC-DC switch. The third mode The clock cycle lengtlik dependency on the supply voltageand
(mode 3), described in more detail next, uses stochastic data tothreshold voltagé/t is according tok OV/ (V- V;)"™ wher@ is
build a multiple voltage schedule. The purpose for using stochastic the velocity saturation index. Wt is small enough or we use a vari-
data is to minimize the average case energy consumption. Note thagble threshold technology [22], this dependency is simplified to:
the voltage schedules in all these three modes are decided at a task ov=P The clock cycle energgis directly dependent on the
instance arrival. Unlike in [11,21] no rescheduling is done while the square of the supply voltage as im{] [6]. Eliminatiidgrom
task is executing. The only overhead during task execution is the the last two expressions we obtain the dependency between the
one given by the changes in the supply voltage. For instance, theclock cycle energy and length:
IPARM processor [2] needs at mostto switch from 1.2 to 3.8V. EB%lE
For closer voltage levels, the switch occurs faster. Depending on the ed1l/k 3)
actual task execution time, this delay may have some impact on theFor clarity we willbindnow 8 = 2, but the rest of the calculus can
schedule. The same goes for the energy lost during the DC-DC be carried out for any other reasonable valu@.df we substitute
switch. Although our discussion does not cover these, the methods(3) in (1), we obtain:

Used actual ET WCET | _ (1-cdf,)
Energy \ | 2 EO — Y (4
ﬁ |4/ H o<ygwx Ky
- | g which is the value to be minimized. By mathematical induction one
mode 1 . —--. 1® can prove that the right hand side of (4) has a lower bound (using
N also (2)):

Y I @ s yicear

mode
LB = Qsiswx 21y yi-cdrl)
B SIS

mode 3 | time 0<yS WX

This Iower bound can only be obtained if and onl

1
Figure 1. Voltage scheduling modes for tasks: 1) ideal schedule, — AC31—cdf)/ 31—cd 6
2) WCET oriented schedule, 3) stochastic schedule. [(V) 0<)/Z<wxﬁm (6)

These are the optimal values for the clock cycle length in each clock consider that the tasks in the group are indexed according to their

cycle up toWX In practice these values may not overlap with the

available clock lengths so they have to be converted to real clock

cycles. This conversion is done in a similar way to deriving a dual
level voltage schedule from an ideal one [6,8]. We find the two

bounding available clock cycleSK; <k < CK;,, and distribute
the work of the ideal cycle in two such that
ky = Aw; [CK; + (1-Aw;) [CK,, ,;, where Aw, is the work

given to CK; and the rest is the work given ©K,,. Thus, each
cycle in the task will distribute its work between two of the several
available clock lengths. Finally, the accumulated work loads for

priority, computed as in RMS.

We compute the stretching factors in an iterative manner, from the
higher to the lower priority tasks. An indeppoints to the latest task
which has been assigned a stretching factor. Initiglly; 0 . Each
of the taskst;,q<i<n has to be executed before one of its sched-
uling points S as defined in [13]:

S = {kT”lsjsi;lsksLTi/TJJ} ,if T, = D;. If T,2D;,

we only need to change the set of scheduling points according to
S' = {t|(t0S)O(t<D;)} O{D,} . For each of this scheduling

each available clock cycle is rounded to integers, since one can onlypoints S”- 0§ ,taskr; exactly meets its deadline if:

execute full clock cycles.

Note that the coefficient oA in (6) can be computed off-line or, if
the probability distribution is built at runtime, on-line from time to
time. Therefore, the on-line computational complexity for obtain-

ing the stochastic voltage schedule is given by the steps subsequertor we used that oney,

to (6). One has to compute the ideal clock cycle for each ofixe
clock cycles. Finding the bounding clock cycles takes logarithmic
time of the number of voltage level,. This gives a complexity of
O(WXUOog N)) .

Two examples of stochastic voltage schedules are given in Figure 2.stretching factor

We assumed a normal probability distribution with the mean of 70
cycles, and standard deviation of 10. WX is 100. Assuming we only
have four available clock frequencies f, {/2, f/3, and f/4, we give two
voltage schedules obtained for two different values of the allowed

execution time. The schedules are given in number of clock cycles Thus,

+a; 0 z Cp)

g<psi

Sj

Sj Sj
c ol i
1squqr r#Tr—‘ E{Tp—‘

Note that for the tasks which already have assigned a stretching fac-
, while for the rest of the tasks we assumed
they will all use the same and yet to be computed stretching factor,
a;j , Which is dependent on the scheduling point. Forthe task the
best scheduling choice, from the energy point of view, is the largest
ofits a;; . Atthe same time, from (7), this has to be the equal for all
taskst;,g<i<n . There is a task with index for which its best

is the smallest among all other tasks:
m_ax(amj) = min(m_ax((xij)) . Note that this in not necessarily the
ladt task, . h‘qI = 0J, this task sets the minimal clock frequency as
computed in [20]. Having the index, all tasks between andm

can be at most stretched (equally) by the stretching factan.of
we assign them stretching factors as

executed at each available frequency. The allowed execution time is o, = max(a,,,;)),q < r <m . With this an iteration of the algorithm
reported in percentage of the time needed for executing the Worstforfindihg the stretching factors is complete. The next iteration then

case behavioM/X) at the highest clock frequency (f). Some exper-

proceeds forg = m . Finally the process ends wigereache,

imental results on how stochastic voltage schedule contribute atmeaning all tasks have been given their own off-line stretching

saving energy are presented in section 3.

2.2 Off-line Task Stretching
The scheduling condition proposed by Liu and Layland [14] is a

factors.

An example is given in Table 1. Note that tasks 3 and 4 can be
stretched off-line more than 1 and 2, while 5 has the largest stretch-

sufficient one and covers the worst possible case for the task groupd factor. The processor utilization changes from 0.687 to 0.994.

characteristics. Yet, an exact analysis as proposed in [13] may

e use the utilization after off-line stretching in computing the

reveal possibilities for stretching tasks and still keeping the dead- €nergy reduction upper bound in our experiments. fior D, '
lines. Based on this, [20] describes a method to compute the the difference between the stretching factors grows.

maximum required frequency for a task set (or the minimum
stretching factor). In similar way, we go further and compute mini-
mal stretching factor{a;},_,_~ for each task in the task
group {Ti}lsisn . A task is a defined by the triple
T; = (C;, T;, D;) composed of the WCET, period and deadline for
task 1; . Note that throughout the paggrrefers to the worst case
execution pattern WX running at the fastest clock frequency. We

1 df 1-cdf function
0.8 1-¢ for a normal
0.6 distribution
0.4 with mean 70
0.2 and standard

o deviation 10.

0 20 20 60 80 100

i 0,
(@707 [55075 B 208T] Aoustiss
27@f/3 26@f | Allowed is 200%

of WX at clock f
Figure 2. Two stochastic voltage schedules for a task with normal

distribution execution time and worst case behavior of Mles

Table 1: Numerical Example for Off-line Stretching

Task T Off-line Stretching factor a
No. WCET (C) Period (T) value iterations needed
1 1 5 1.428 1
2 5 11 1.428 1
3 1 45 1.785 2
4 1 130 1.785 2
5 1 370 2.357 3

2.3 On-line Slack Distribution

At runtime it is important to use the variations in execution length
of the various task instances to be able to stretch other tasks and
thus consume less energy. In [20] the only situation when a task is
stretched is when it is the only one running and has enough time
until the next task arrives. In all other situations tasks are executed
at the speed dictated by the off-line analysis. In [11] tasks are

stretch at their WCET at runtime, independent of other tasks, using The strategy of managing the slack we just described allows us to

several checking/re-scheduling points during a task instance. Thekeep the critical instance response time for all tasks, as we prove

work in [10] uses only two voltage levels. The slack produced by next. The response timdz;(t) for task is computed as

finishing a task early is entirely used to run the processor at the low R;(t) = A; +1;(t), where A is its allowed execution time, as

voltage. As soon as this slack is consumed, the task starts runningoefore, and;(t) is the interference from the other tasks. From the

at high voltage. Our method is perhaps most resemblant to the opti-managing strategy given before, the cumulated slack on each level,

mal scheduling method OPASTS presented in [7]. Yet, OPASTS at a certain timeéis of formi(.

performs analysis over task hyperperiods, which may lead to work- S(t) = S _4(t) - ZACi 1 ZAAi _1.k= (_tﬂ (10)

ing on a huge number of task instances for certain task sets. Our Ti_1

method keeps a low and the same computational complexity, The slack of level is composed of all slack from levell, less the

regardless of the task set characteristics. slack used by the instances of tasks with priokitybut plus all the
slack generated by these. The number of instances exedyisd,

We describe next our strategy for slack distribution. In short, an determined by the task period. Note ti&tis always zero. Elimi-

early finishing task may pass on its unused processor time for anynating the iteration in the previous formula:

of the tasks executing next. But this time slack can not be used by j<i

any task at any time since deadlines have to be met. We solve this S(t) = Z %AAjk— ZACJ-'% k = (Lw (12)

by considering several levels of slacks, with different priorities, as i=1 Tj

in the slack stealing algorithm [12]. If the tasks in the task set The task with the highest priority will never receive slack and there-

{1, =(C;, T;, D)}, ., ., havem different priorities, we usen fore, AClk =0.

levels of slackg Si}_s_j <m - Without great loss of generality con-

sider that the tasks have different priorities= n. The slack in each The interference from the high priority tasks is the time used to exe-

level is a cumulative value, the sum of the unused processor timescute all arrived instances of these high priority tasks:

remaining from the tasks with higher priority. The invariant j<i
describing the state of the slacks in every level, at any time is given Li(t) = 2 ZEjk k = (lw 12)
by (10). Initially, all level slacks5 are set to zero. To maintain the i=1 Tj
relation between slack levels, the levels are managed at runtime adVNith the notations from the slack managing algorithm
follows: E:-(= A:-(—AA;(= C]- +ACjk—AA'j(. Introducing this in (12):
» whenever an instandeof a taskt; with priorityi starts exe- j<i
cuting, it can use an arbitrary patiC{ of the slack available =y Z(Cj + ACjk—AA'j() K = (iw (13)
atleveli, §. So the allowed execution time for task will be: i1 i
Ay = G +AC;. The remaining slack from level will The last two terms in the sum are actually giving the slack of level
degrade into levelt1 slack. Each level slack will be updated ;i (11), s0 we can re-write (13) as:
according to: g Ojsi ' ’ j <i
S, Esj_AC!‘, j>i ®) i) = 3 kCj=S(1) K = (H (14)
j=1 j

» whenever a task instance finishes its execution, it will generate Note that the maximal_ response time for a task is obtained when it
some slack if it finishes before its allowed time.Bf, s the USes all the slack available at its lev&(t) = C; +1;(t) + §(t)

actual execution time, the generated slackAs = A\—E;. . From the last two equations:
This slack can be used by the lower priority tasks. In this case j<i
the level slacks are updated according to: R(t) = C;+ z (LWC]‘ (15)
S, j<i LT
Lo g j=1)
§" =0 K. . which is exactly the response time when all tasks execute at WCET.
[0S, +AA), j>i

Thus, if the RM analysis decides that a task set is schedulable, it
remains valid when using our on-line policy.

idle processor times are subtracted for all slacks. This ensures
that the critical instance from the classic RM analysis remains
the same.

The computational complexity required by the on-line method is
linearly dependent to the number of slack levels.

In our implementation we additionally used a method similar to the
on-line method presented in [20]. Namely, whenever there are no
tasks in the Ready queue, the currently executing task can stretch
Iuntil the closest arrival time of a task instance. We will refer to this

Note that task instances can only use slack generated from highe >
in our experiments as thstretchmethod.

priority tasks and produce low priority slack. We call this slack deg-
radation. Whenever the lowest priority task starts executing, all

level slacks are reset. Note also that not necessarily all slack at one3- EXPERIMENTAL RESULTS

level is used by a single task. Various methods can be used, but weThe first experiment examines the energy gains of using a stochastic

mention here only the two we used in our experiments: voltage schedule at task level. For this we considered a single task
. Gre%dy the task gets all the slack available for its level: with execution time varying between a best case (BCE) and a worst
AC;” = § case (WCE) according to a normal distribution. All distributions
» Mean proportional : we consider the mean execution timg have the mean (BCE+WCE)/2 and standard deviation (WCE-

for each task instances waiting to execute (in the ready queue).BCE)/6. For a several cases ranging from highly flexible execution
The,slack is proportionally distributed according to these: time (BCE/WCE is 0.1) to almost fixed (BCE/WCE is 0.9) we built

AG = § E"‘i/lj DRZ g Q“JD stochastic schedules for a range of allowed execution times (from
j OReady

WCE to 3x WCE). We assumed that our processor has 9 different using the off-line strategy, the on-line strategy with “mean propor-
voltage levels, equally distributed between f and /3. For a large tional” slack distribution (sub-section 2.3), plus the stochastic
number of task instances generated according to the given distribu-execution task model (mode 3 in Figure 1). The curves labeled
tion we computed both the energy of the stochastic schedule (mode‘ldeal stretch” were obtained by using the same method as the “All”
3 in Figure 1) and the WCE-stretch schedule (mode 2 in Figure 1). curves, except using an ideal-stretch task execution model (mode 1
We depict in Figure 3 the average energy consumption of the sto-in Figure 1). Note that this method implies knowing the actual exe-
chastic schedule as a part of the WCE-stretch schedule. Note thatution time at a task arrival, which is unlikely in reality. For the last
when the allowed time approaches either WCE or 3-times WCE, three methods, “Offline+1stretch,” “All,” and “Ideal-stretch,” when-
the energy consumptions become equal. The lowest possible clockever the processor is idle, it goes to a power down mode.
frequency is /3 which anyway means 3-times WCE, so there is no
better schedule for these cases. On the other hand when the allowedlVe also tested our scheduling policy on randomly generated task
time closes WCE, there is no other way but to use the fastest clock.sets of 50 and 100 tasks. The task sets were generated as follows.
Somewhere between the slowest and the fastest frequencied-or each set, the task periods (and deadlines) were selected using a
(Allowed/WCE = 2) is the largest energy gain since the stochastic uniform distribution in 100..5000 and 100..10000 respectively. The
schedule can use the whole spectrum of available frequencies. Notevorst case execution times were then randomly generated such that
that the energy gains become more important when the task executhe task set would yield approximately 0.67 processor utilization,
tion time varies much (BCE/WCE closes 0.1). It is important to for the fastest clock. The average utilization after off-line stretching
notice that WCE-stretch already gains very much energy comparedturned out to be 0.92 for the sets of 50 tasks, and 0.85 for the sets of
to the non-scaling case. For example when the allowed time is twice 100 tasks. Using the same processor type as in the previous experi-
the WCE, the WCE-stretch energy is around 25% of the no-scaling ment, we simulated the runtime behavior of several scheduling
energy. But a stochastic approach contributes even more to thesanethods. We also used post-simulation data to obtain the upper
gains, as the figure shows. bounds, as in the previous experiment. The values depicted in Fig-
ure 5 are averages over one hundred sets of tasks. As results from
Next we took two real-life hard-RT applications [9, 15] and applied these experiments, our policy (“All") performs best, when little
several energy reduction strategies. The results are depicted in Figinformation on task execution is available.
ure 4. We assumed tasks with normal distributions, with the same.oo?
characteristics as in the previous experiment. The 100% energy is800

the energy obtained by running all tasks as fast as possible and exe- ~_ "™~ UpperBound
cuting NOPs when no tasks are supposed to run. We assumed thaky| T LI | 00— N
the NOP instruction consumes only 20% of the average power, as ~ RN 99 " ==~ _Upper Bound

N ~

in [20]. The virtual processor used for these experiments has 1440% ~Jdeal stretc 9O~ _Ideal sretch * ~ -
voltage levels, with clock frequencies varying between f=100MHz

and 11MHz. A power-down mode is also available, in which the 2%

~
~—
-

-~

Offine-+Lstretch ™=~

S
Energy reduction
>

~
-~
-~

-

processor consumes 5% of the highest frequency average energy. BCE/WCE
Ot =T U077 T 07 957!
_ - BCEMCE
The curves named “Upper Bound” depict the upper bound of the a) avionics, 17 tasks b) CNC, 8 tasks

energy reduction possibilities. These were obtained in a post-execuFigure 4. The energy reduction for an a) avionics application [15] and
tion analysis, by considering that the tasks are uniformly stretchedP) & controller CNC [9]. In b) the area between 70-100% is enlarged.
up to maximum processor utilization as computed in sub-section
2.2.2. This limit is hardly achievable in practice, since the actual 4. CONCLUSIONS
execution patterns for all task instances are never available before-\We presented and analyzed a scheduling policy for hard real-time
hand. Moreover, this optimum obtained by uniformly stretching all tasks running on a dynamic voltage supply processor, with the final
instances may violate some deadlines, being therefore useless irpurpose of reducing the energy consumption. The policy is
practice. A more realistic bound is given by the “Ideal stretch.” designed for sets of tasks with fixed priorities assigned in a rate/
deadline monotonic manner. It consists of both off-line and on-line
The curves named “Offline+1stretch” were obtained by using only scheduling decisions, taken both at task and task set levels. The off-
the off-line stretching method and tistretchmethod mentioned line decisions use exact timing analysis to derive off-line voltage
in sub-section 2.2.3. The “All” labeled curves were obtained by scaling factors for each task. The on-line policy distributes available
processor time on priority basis, using slack levels and statistics.

>
25 Levels Task-level voltage schedules are built using stochastic data, with the
0, o

52 1009 gg'gofﬁ_ goal of minimizing the average case energy consumption. The

Q : . . .

30 gg gg-}lgy— paper also contains a proof that our scheduling policy meets all

2= j 6% - deadli 0] hod be fully impl d in th

£ 76.6% - eadlines. Our method can be fully implemented in the RTOS,

oo 85%

E% 80 without appealing to special compilers or changing the software.

a5 75% Yet, combined with the afore mentioned methods, our approach

S 70% 0.9 : ; :

gE] 07 may yield even gr_eater energy reductions. The experimental results

0 e 3 <03 “BCEMCE show that our policy can be successfully used to reduce the energy
AllowedWee 13 1 consumption in a hard real-time system.

Figure 3. The average energy consumption of a stochastic voltage
schedule vs. the energy consumption of a WCE- stretch schedule.

100%)
90%

sets of 50 task

80%

70%

Energy reduction

60%

-

BCE/WCE

50%
|/\/\/ ~ — |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1009
sets of 100 tasHs
0%} - aao.
______ Upper Bound
80%c - — . TTeal.
S -~ - ~..
= -~ "=
ol © ~ < ...
0% 3 Al =L Teal
60%| >
1<y
[} s~
50%} e
Offline+1stretch ~ ~ ~ 4
40% ==
30% BCEMCE 3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5. The energy reduction using different strategies for sets of
50 tasks above and sets of 100 tasks bellow. The value are averag

over a hundred task sets.

5. ACKNOWLEDGMENTS

This work was funded by ARTES - A network for Real-Time

research and graduate Education in SwédEne author would like

to thank Petru Eles, Kris Kuchcinski, and Per Larsson-Edefors for

their helpful comments.

6. REFERENCES

(1]

(2]

(3]

[4]

[5]

[6]

[7]

Benini,

L.

and DeMicheli,

G. System-level

power

optimization: techniques and tools, in ACM Trans. on Design
Automation of Electronic Systems, No. 2, Vol. 5, April 2000,
115-192.

Burd, T., Pering, T., Stratakos, A., and Brodersen, W. A
dynamic voltage scaled microprocessor system in IEEE
Journal of Solid-State Circuits, No. 11, Vol. 35, November
2000, 1571-1580.

ChandrakasanA., Gutnik, V., and Xanthopoulos, T. Data
driven signal processing: an approach for energy efficient
computing in Proceedings of ISLPED'96, 347-352.

Dave, B.P., Lakshminarayana, G., and Jha, N.K. COSYN:
hardware-software co-synthesis of embedded systems in
Proceedings of the 34th DAC 1997, 703-708.

Gruian, F., and Kuchcinski, K. Low-energy directed
architecture selection and task scheduling for system-level
design in Proceedings of the 25th Euromicro Conference,
1999, pp. 296-302.

Gruian, F., and Kuchcinski, K. LEneS: task scheduling for
low-energy systems using variable voltage processors in
Proceedings of ASP-DAC2001, 449-455.

Hong, 1., Potkonjak, M., and Srivastava, M.B. On-line
scheduling of hard real-time tasks on variable voltage

Ihttp

Jlwww.artes.uu.se/

(8]

9]

(10]

(11]

(12]

(13]

(14]

5]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

processor in Digest of Technical Papers of ICCAD’98, 653-
656.

Ishihara, T., and Yasuura, H. Voltage scheduling problem for
dynamically variable voltage processors in Proceedings of
ISLPED’98, 197-202.

Kim, N., Ryu, M., Hong, S., Saksena, M., Choi, C.-H., and
Shin, H. Visual assessment of a real-time system design: a
case study on a CNC controller, The 17th IEEE Real-Time
Systems Symposium, 1996, 300-310.

Lee, Y.-H., and Krishna, C.M. Voltage-clock scaling for low
energy consumption in real-time embedded systems in
Proceedings of the 6th International Conference on Real-Time
Computing Systems and Applications, 1999, 272-279.

Lee, S., and Sakurai, T. Run-time voltage hopping for low-
power real-time systems in Proceedings of the 37th DAC,
2000, 806-809.

Lehoczky, J., and Ramos-Thuel, S. An optimal algorithm for
scheduling soft-aperiodic tasks in fixed-priority preemptive
systems in Proceedings of RTSS'92, 110-123.

Lehoczky, J., Sha, L., and Ding, Y. The rate monotonic
scheduling algorithm: exact characterization and average case
behavior in Proceedings of RTSS'89, 166-171.

Liu, C.L., and Layland, J.W. Scheduling algorithms for
multiprograming in a hard real time environment in JACM 20
(1), 1973, 46-61.

Locke, C.D., Vogel, D.R., and Mesler, T.J. Building a
predictable avionics platform in Ada: a case study in
Proceedings of RTSS'91, 181-189.

Mossé, D., Aydin, H., Childers, B., and Melhem, R.,
Compiler-assisted dynamic power-aware scheduling for real-
time applications. Worksop on Compilers and Operating
Systems for Low-Power, October 2000.

Pedram, M. Power optimization and management in
embedded systems, Proceedings of ASP-DAC 2001, 239-244.
Pering, T., Burd, T., and Brodersen, R., The simulation and
evaluation of dynamic voltage scaling algorithms in
Proceedings of ISLPED’98, 76-81.

Pering, T., Burd, T., and Brodersen, R., \Voltage scheduling in
the IPARM microprocessor system in Proceedings of
ISLPED’00, 96-101.

Shin, Y., and Choi, K. Power conscious fixed priority
scheduling for hard real-time systems in Proceedings of the
36th DAC, 1999, 134-139.

Shin, D., Kim, J., and Lee, S. Intra-task voltage scheduling for
low-energy hard real-time applications, Special Issue of IEEE
Design and Test of Computers, October 2000.

Suzuki, K., Mita, S., Fujita, T., Yamane, F., Sano, F., Chiba,
A., Watanabe, Y., Matsuda, K., Maeda, T., and Kuroda, T. A
300MIPS/W RISC core processor with variable supply-
voltage scheme in variable threshold-voltage CMOS,
Proceedings of the ICC’'97, 587-590.

Weiser, M., Welch, B., Demers, A., and Shenker, S.
Scheduling for reduced CPU energy in Proceedings of the
First Symposium on Operating Systems Design and
Implementation, November 1994.

Yao, F., Demers, A., and Shenker, S. A scheduling model for
reduced CPU energy in Proceedings of the 36th Symposium
on Foundations of Computer Science, 1995, 374-382.
http://www.transmeta.com

	Keywords
	1. Introduction
	2. RT Scheduling for Low-Energy
	2.1 Task-level Scheduling Decisions
	Figure 1. Voltage scheduling modes for tasks: 1) ideal schedule, 2) WCET oriented schedule, 3) st...
	Figure 2. Two stochastic voltage schedules for a task with normal distribution execution time and...

	2.2 Off-line Task Stretching
	Table 1: Numerical Example for Off-line Stretching

	2.3 On-line Slack Distribution

	3. Experimental Results
	Figure 3. The average energy consumption of a stochastic voltage schedule vs. the energy consumpt...
	Figure 4. The energy reduction for an a) avionics application [15] and b) a controller CNC [9]. I...
	Figure 5. The energy reduction using different strategies for sets of 50 tasks above and sets of ...

	4. Conclusions
	5. AcknowledgmentS
	6. References
	Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and DVS Processors

