
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Combining parallel search and parallel consistency in constraint programming

Rolf, Carl Christian; Kuchcinski, Krzysztof

2010

Link to publication

Citation for published version (APA):
Rolf, C. C., & Kuchcinski, K. (2010). Combining parallel search and parallel consistency in constraint
programming. Paper presented at TRICS workshop at the International Conference on Principles and Practice of
Constraint Programming.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 07. Oct. 2022

https://portal.research.lu.se/en/publications/1318f0f6-c09a-432e-972f-a1b1c46dd0bf


Combining Parallel Search and Parallel Consistency in
Constraint Programming

Carl Christian Rolf and Krzysztof Kuchcinski

Department of Computer Science, Lund University, Sweden
Carl_Christian.Rolf@cs.lth.se, Krzysztof.Kuchcinski@cs.lth.se

Abstract. Program parallelization becomes increasingly important when new
multi-core architectures provide ways to improve performance. One of the great-
est challenges of this development lies in programming parallel applications.
Declarative languages, such as constraint programming, can make the transition
to parallelism easier by hiding the parallelization details in a framework.
Automatic parallelization in constraint programming has mostly focused on par-
allel search. While search and consistency are intrinsically linked, the consistency
part of the solving process is often more time-consuming. We have previously
looked at parallel consistency and found it to be quite promising. In this paper we
investigate how to combine parallel search with parallel consistency. We evaluate
which problems are suitable and which are not. Our results show that paralleliz-
ing the entire solving process in constraint programming is a major challenge as
parallel search and parallel consistency typically suit different types of problems.

1 Introduction

In this paper, we discuss the combination of parallel search and parallel consistency in
constraint programming (CP). CP has the advantage of being declarative. Hence, the
programmer does not have to make any significant changes to the program in order to
solve it using parallelism. This means that the difficult aspects of parallel programming
can be left entirely to the creator of the constraint framework.

Constraint programming has been used with great success to tackle different in-
stances of NP-complete problems such as graph coloring, satisfiability (SAT), and sche-
duling [1]. A constraint satisfaction problem (CSP) can be defined as a 3-tuple P =
(X,D,C), where X is a set of variables, D is a set of finite domains where Di is the
domain of Xi, and C is a set of primitive or global constraints containing several of
the variables in X . Solving a CSP means finding assignments to X such that the value
of Xi is in Di, while all the constraints are satisfied. The tuple P is referred to as a
constraint store.

Finding a valid assignment to a constraint satisfaction problem is usually accom-
plished by combining backtracking search with consistency checking that prunes in-
consistent values. In every node of the search tree, a variable is assigned one of the
values from its domain. Due to time-complexity issues, the consistency methods are
rarely complete [2]. Hence, the domains will contain values that are locally consistent,
i.e., they will not be part of a solution, but we cannot prove this yet.



P1 P2 P3

(a)

P1 P2 P3

(b)

Fig. 1. The position of the solution in a search tree affects the benefit of parallelism.

The examples in Fig. 1 illustrates the problem of parallelism in CP. We use three
processors: P1, P2, and P3 to find the solution. We assign the different parts of the
search tree to processors as in the figure. The solution we are searching for is in the
leftmost part of the search tree in Fig. 1(a) and will be found by processor P1. Any
work performed by processor P2 and P3 will therefore prove unnecessary and will only
have added communication overhead. In this case, using P2 and P3 for parallel consis-
tency will be much more fruitful. On the other hand, in Fig. 1(b), the solution is in the
rightmost part of the tree. Hence, parallel search can reduce the total amount of nodes
explored to less than a third. In this situation, parallel consistency can still be used to
further increase the performance.

X ∈ {5..9}X ∈ {0..4}

Y ∈ {0..4}

P1

P2

Y ∈ {0..2}
X ∈ {5..9}
Y ∈ {2..4}

P3

Start

Fig. 2. Parallel search in constraint programming.

In this paper, we will refer to parallel search (OR-parallelism) as data parallelism,
and parallel consistency (AND-parallelism) as task parallelism. Parallelizing search in
CP can be done by splitting data between solvers, e.g., create a decision point for a
selected variable Xi so that one computer handles Xi <

min(Xi)+max(Xi)
2 and another

handles Xi ≥ min(Xi)+max(Xi)
2 . An example of such data parallelism in CP is depicted

in Fig. 2. The different possible assignments are explored by processors P1, P2, and P3.
Clearly, we are not fully utilizing all three processors in this example. At the first level
of the search tree, only two out of three processors are active. Near the leafs of the
search tree, communication cost outweighs the benefit of parallelism. Hence, we often
have a low processor load in later part of the search.



X ∈ {0..9}

Y ∈ {0..9}

C2C1

P1

C2C1

C3

C3

P2 P3

Start

Fig. 3. Parallel consistency in constraint programming.

Figure 3 presents the model of parallel consistency in constraint programming which
we will partly discus in this paper. In the example, the search process is sequential, but
the enforcement of consistency is performed in parallel. Constraints C1, C2, and C3
can be evaluated independently of each other on different processors, as long as their
pruning is synchronized. We do not share data during the pruning, hence, we may have
to perform extra iterations of consistency. The cause of this implicit data dependency
is that global constraint often rely on internal data-structures that become incoherent if
variables are modified during consistency.

The problem of idle processors during the latter parts of the search is pervasive [3,
4]. Regardless of the problem, the communication cost will eventually become too big.

Data parallelism can be problematic, or even unsuitable, for other reasons. Many
problems modeled in CP spend a magnitude more time enforcing consistency than
searching. Using data parallelism for these problems often reduces performance. In
these cases, task parallelism is the only way to take advantage of multicore processors.

By combining parallel consistency with parallel search, we can further boost the
performance of constraint programming.

The rest of this paper is organized as follows. In Section 2 the background issues are
explained, in Section 3 the parallel consistency is described. Section 4 details how we
combine parallel search and parallel consistency. Section 5 describes the experiments
and the results, Section 6 gathers our conclusions.

2 Background

Most work on parallelism in CP has dealt with parallel search [5, 6]. While this offers
the greatest theoretical scalability, it is often limited by a number of issues. Today, the
main one is that processing disjoint data will saturate the memory bus faster than when
processing the same data. In theory, a super-linear performance should be possible for
depth-first search algorithms [7]. This, however, has only rarely been reported, and
only for small numbers of processors [6]. The performance-limits of data parallelism in
memory intense applications, such as CP, are especially apparent on modern multi-core
architectures [8].



Task parallelism is the most realistic type of parallelism for problems where the
time needed for search is insignificant compared to that of enforcing consistency. This
happens when the consistency algorithms prune almost all of the inconsistent values.
Such strong pruning is particularly expensive and in a greater need of parallelism. The
advantage of these large constraints over a massively parallel search is that the execution
time may become more predictable. For instance, speed-up when searching for one
solution often has a high variance when parallelizing search since the performance is
highly dependent on which domains are split.

Previous work on parallel enforcement of consistency has mostly focused on paral-
lel arc-consistency algorithms [9, 10]. The downside of such an approach is that pro-
cessing one constraint at a time may not allow inconsistencies to be discovered as
quickly as when processing many constraints in parallel. If one constraint holds and
another does not, the enforcement of the first one can be cancelled as soon as the incon-
sistency of the second constraint is discovered.

The greatest downside of parallel arc-consistency is that it is not applicable to global
constraints. These global constraints encompass several, or all, of the variables in a
problem. This allows them to achieve a much better pruning than primitive constraints,
which can only establish simple relations between variables, such as X + Y ≤ Z.

We only know of one paper on parallel consistency with global constraints [11].
That paper reported a speed-up for problems that can be modeled so that load-balancing
is not a big issue. For example, Sudoku gave a near-linear speed-up. However, in this
paper we go further by looking at combining parallel search with parallel consistency.

3 Parallel Consistency

Parallel consistency in CP means that several constraints will be evaluated in paral-
lel. Constraints that contain the same variables have data dependencies, and therefore
their pruning must be synchronized. However, since the pruning is monotonic, the or-
der in which the data is modified does not affect the correctness. This follows from the
property that well-behaved constraint propagators must be both decreasing and mono-
tonic [12]. In our finite domain solver this is guaranteed since the implementation makes
the intersection of the old domain and the one given by the consistency algorithm. The
result is written back as a new domain. Hence, the domain size will never increase.

Our model of parallel consistency is depicted in Fig. 4, this model is described
in greater detail in [11] and in Fig. 6(b). At each level of the search, consistency is
enforced. This is done by waking the consistency threads available to the constraint
program. These threads will then retrieve work from the queue of constraints whose
variables have changed. In order to reduce synchronization, each thread will take sev-
eral constraints out of the queue at the same time. When all the constraints that were
in the queue at the beginning of the consistency phase have been processed, all prun-
ings are committed to the constraint store as the solver performs updates. If there were
no changes to any variable, the consistency has reached a fix-point and the constraint
program resumes the search. If an inconsistency is discovered, the other consistency
threads are notified and they all enter the waiting state after informing the constraint
program that it needs to backtrack.



Constraint 
Queue

Thread 1 Thread 2 Thread 3

Barrier

Done, waiting
Done, waiting

Perform updates

Add changed constraints to queue

Fig. 4. The execution model for parallel consistency.

Consistency enforcement is iterative. When the threads are ready, the constraint
queue is split between them, and one iteration of consistency can begin. This procedure
will be repeated until we reach a fixpoint, i.e., the constraints no longer change the
domain of any variable. The constraints containing variables that have changes will be
added to the constraint queue after the updates have been performed.

One of the main concerns in parallel consistency is visibility. Global constraints
usually maintain an internal state that may become incoherent if some variables are
changed while the consistency algorithm is running. If we perform the pruning in par-
allel, the changes will only be visible to the other constraints after the barrier. This
reduces the pruning achieved per consistency iteration. Hence, in parallel consistency,
we will usually perform several more iterations than in sequential consistency before
we reach the fixpoint.

4 Combining Parallel Search and Parallel Consistency

The idea when combining parallel search and parallel consistency is to associate every
search thread several consistency threads. A simple example is depicted in Fig. 5. First
the data is split from processor P1 and sent to processor P2. Then the search running on
P1 will perform consistency by evaluating constraints C1 and C2 on processors P1 and
P3 respectively. The search running on P2 will, completely independently, run consis-
tency using processors P2 and P4. Each search has its own store, hence, constraints C1
and C2 can be evaluated by the two searches without any synchronization.

More formally, the execution of the combined search and consistency in CP pro-
ceeds as follows. We begin with a constraint store P = (X,D,C) as defined earlier.
This gives us a search space to explore, which can be represented as a tree. The chil-
dren of the root node represent the values in Di. In these nodes, we assign Xi one of its
possible values and remove Xi from X . For example, assigning X0 the value 5 gives a
node n with Pn = (X \X0, D∪D0∩{5}, C). After each assignment, we apply the the
function enforceConsistency, which runs the consistency methods of C, changing
our store to (X ′, D′, C) where X ′ = X \Xi. D′ is the set of finite domains represent-
ing the possible values for X ′ that were not marked as impossible by the consistency



P1 P3 P2 P4
X ∈ {5..9}X ∈ {0..4}

P1

P2

C2C1C2C1

Start

Fig. 5. An example of combining parallel search and parallel consistency.

methods of C. The method enforceConsistency is applied iteratively until D′′ = D′.
Now there are two possibilities: either ∃D′

i = ∅, in which case we have a failure, mean-
ing that there are no solutions reachable from this node, or we progress with the search.
In the latter case, we have two sub-states. Either X ′ = ∅, in which case we have found
a solution, or we need to continue recursively by picking a new Xi.

Parallel search means that we divide Di into subsets and assign them to different
processors. Each branch of the search tree starting in a node is independent of all other
branches. Hence, there is no data dependency between the different parts of the search
space. Parallel consistency means parallelizing the enforceConsistency method. This
is achieved by partitioning C into subsets, each handled by a different processor.

The pseudo code for our model is presented in Fig. 6. When a search thread makes
an assignment it needs to perform consistency before progressing to the next level in
the search tree. Hence, processors P1 and P2 in the example are available to aid in
the consistency enforcement. The consistency threads are idle while the search thread
works. If we only allocate one consistency thread per processor a lot of processors will
be idle as we are waiting to perform the assignment. Hence, it is a good idea to make
sure that the total number of consistency threads exceeds the number of processors.

As Fig. 6 shows, the parallel search threads will remove a search node and explore it.
In our model, a search node represents a set of possible values for a variable. The thread
that removes this set guarantees that all values will be explored. If the set is very large,
the search thread can split the set to allow other threads to aid in the exploration. When
there are no more search nodes to explore, the entire search space has been explored.

Since we have to wait for the different threads, some parts of the algorithm are, by
necessity, synchronized. In Fig. 6(a), line 15 requires synchronization while we wait for
the consistency threads to finish. In Fig. 6(b), lines 15 to 22, which represent the barrier,
are synchronized. However, each thread may use its own lock for waiting. Hence, there
is little lock contention. Furthermore, line 13 has to be synchronized in order to halt
the other threads when we have discovered an inconsistency. Depending on the data
structure, lines 6 and 7 may also have to be synchronized.



1 // search nodes to be explored N
2 // variables to be labeled V , with FDV xi ∈ V
3 // domain of xi is di, list of slave computers S
4
5 while N 6= ∅
6 Node ← N.first
7 N ← N \ Node
8 V ← Node.unlabeledV ariables
9 while V 6= ∅

10 V ← V \ xi
11 select value a from di
12 xi ← a
13 for each slave s in S
14 s.enforceConsistency
15 wait //wait for all slaves to stop
16 if Inconsistent
17 di ← di \ a
18 V ← V ∪ xi
19 end while
20 store solution
21 end while

(a)

1 // set of constraints to be processed PC
2 // set of constraints processed in this slave SC
3 // returns result to the constraint program
4
5 boolean enforceConsistency
6 while PC 6= ∅
7 PC ← PC \ SC
8 while SC 6= ∅
9 SC ← SC \ c

10 c.consistency
11 if c.inconsistent
12 for each slave s in S
13 s.stop
14 return Inconsistent
15 if all other slaves waiting
16 perform updates
17 for each changed constraint cd
18 PC ← PC ∪ cd
19 for each slave s in S
20 s.wake
21 else
22 wait //wait for updates
23 end while
24 end while
25 return Consistent

(b)

Fig. 6. The combined parallel search and parallel consistency algorithm. Parallel depth-first
search (a), slave program for parallel consistency (b).

4.1 Discussion

An alternative way to combine parallel search and consistency is to use a shared work-
queue for both types of jobs. Threads that become idle could get new work from the
queue, whether it was running consistency for a constraint or exploring a search space.
However, the performance of such an approach would be heavily dependent on the
priority given to the different types of work. If the priorities were just slightly incorrect,
it would hurt the performance of the other threads. For instance, a thread wanting help
with consistency might never get it because the idle threads are picking up search jobs
instead. It might be possible to solve this problem using adaptive priorities. However,
this is outside the scope of this paper

By combining parallel search and parallel consistency we hope to achieve a better
scalability. Unlike data parallelism for depth-first search, the splitting of data poses a
problem in constraint programming. The reason is that the split will affect the domains
of the variables that have not yet been assigned a value. In the example in Fig. 2, with
a constraint such as X > Y the consistency will change the shape of the search tree
by removing the value 4 from the domain of Y for processor P1. For more complex
problems, the shape of both search trees may be affected in unpredictable ways. Since
the consistency methods are not complete, there is no way to efficiently estimate the
size and shape of the search trees after a split. Parallel consistency allows us to use the
hardware more efficiently when parallel search runs into these kinds of problems.

In [11] we showed that parallel consistency scales best on very large problems con-
sisting of many global constraints. Solving such problems is a daunting task, which
makes it hard to combine parallel search with parallel consistency. Furthermore, find-
ing just one solution to a problem often leads to non-deterministic speed-ups.

The biggest obstacle we faced when developing a scalable version of parallel con-
sistency was the cost of synchronization. The problem comes from global constraints,
these typically use internal data structures. For instance, the bounds consistency for



AllDifferent constraint uses a list where the order of variables is given by Hall inter-
vals [13]. If pruning is performed instantly by other threads, instead of being stored
until a barrier, the integrity of these data structures may be compromised. Eliminating
barrier synchronization would greatly increase the performance of parallel consistency.

5 Experimental Results

We used the JaCoP solver [14] in our experiments. The experiments were run on a Mac
Pro with two 3.2 GHz quad-core Intel Xeon processors running Mac OS X 10.6.2 with
Java 6. These two processors have a common cache and memory bus for each of its four
cores. The parallel version of our solver is described in detail in [3].

5.1 Experiment Setup

We used two problems in our experiments: n-Sudoku, which gives an n× n Sudoku if
the square root of n is an integer and n-Queens which consists in finding a placement
of n queens on a chessboard so that no queen can strike another. Both problems use
the AllDifferent constraint with bounds consistency [13], chosen since it is the global
constraint most well spread in constraint solvers. The characteristics of the problems
are presented in Table 1.

The results are the absolute speed-ups when searching for a limited number of so-
lutions to n-Sudoku and one solution to n-Queens. For Sudoku we used n = 100
with 85 % of values set and searched for 200 and 5 000 solutions. For Queens we used
n = 550 and searched for a single solution. We picked these problems in order to il-
lustrate how the size of the search space affects the behavior when combining parallel
search with parallel consistency, while still having a reasonable execution time.

For each problem we used between one and eight search threads. For each search
thread we used between one and eight consistency threads. We used depth-first search
with in-order variable selection for both problems. The sequential performance of our
solver is lower than that of some others. However, this overhead largely comes from
the higher memory usage of a Java based solver. On a multicore system this is a down-
side since the memory bus is shared. Hence, lower sequential performance does not
necessarily make it simpler to achieve a high speed-up.

Table 1. Characteristics of the problems.

Problem Variables
Primitive Global

Constraints Constraints

Sudoku 10 000 0 300
Queens 1 648 1 098 3



5.2 Results for Sudoku

The results for 100-Sudoku is presented in Table 2 and Table 3, the speed-ups are de-
picted in Fig. 7 and Fig. 8. The bold number in the table indicates the fastest time and
the gray background marks the times slower than sequential. The results show that there
is a clear difference in behavior as the search space increases. When we have to explore
a larger search space, parallel search is better than parallel consistency. However, if we
have a more even balance between search and consistency, combining the two types of
parallelism increases the performance.

From the diagrams, we can see that it is good to use more consistency threads than
there are processor cores. However, using many more threads is not beneficial, espe-
cially when there are several search threads.

It is noteworthy that there is little overhead for using parallel consistency when
only running one search thread. Search for 200 solutions even increases the perfor-
mance somewhat. This is important because it means that parallel consistency can be
successful when it is difficult to extract data parallelism from the problem.

The reduction in performance when adding parallel consistency to the search for
5 000 solutions comes to some extent from synchronization costs. Synchronization in
Java automatically invalidates cache lines that may contain data useful to other threads.
With more precise control over cache invalidation, the execution time overhead added
by the parallel consistency can be reduced.

Using too many threads will cause an undesirable amount of task switching and
saturation of the memory bus. We measured and analyzed how the number of active
threads, and their type, affects performance. The average number of active threads when
running two search threads and four consistency threads per search thread for 200 so-
lutions to n-Sudoku was 5.5. This is the average over the entire execution time. The
same number for the slowest instance, eight by eight threads, was 59 active threads.
The first case achieves a rather good balance given that it is hard to extract useful data
parallelism for the search threads. The number of active threads for the search threads
alone was 1.5 when using two search threads, and 7.1 when using eight search threads.

Table 2. Execution times in seconds when searching for 200 solutions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 176 125 122 145
2 176 124 143 177
4 158 110 142 210
8 162 127 192 269

The main bottleneck for the performance is the increased workload to enforce con-
sistency. The total number of times constraints are evaluated per explored search node
is depicted in Fig. 9 and Fig. 10. Clearly, using parallel consistency increases the num-
ber of times we have to evaluate the constraints. This is because we cannot share data
between constraints during their execution.



Table 3. Execution times in seconds when searching for 5 000 solutions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 3 663 1 882 1 720 1 649
2 3 931 2 293 2 565 2 782
4 3 995 2 161 3 224 2 735
8 4 254 2 556 3 997 3 192

1 2 4 8
0

0.5

1

1.5

2

1 2 4 8Consistency Threads per Search Thread

A
b

s
o

lu
te

 S
p

e
e

d
-u

p

Search Threads

Fig. 7. Speed-up when searching for 200 solutions to 100-Sudoku.

The second bottleneck for the performance of parallel consistency is synchroniza-
tion. In our solution, we have several points of synchronization. The barrier before
updates is particularly costly as the slowest consistency thread determines the speed.

The third bottleneck is the speed of the memory bus. Parallel search can quickly
saturate the bus. Adding parallel consistency will worsen the performance. The perfor-
mance clearly drops off towards the lower right hand corner of Table 2 and to the left of
Table 3. This problem can to some extent be avoided by having a shared queue of tasks
and a fix amount of threads in the program. These threads could then switch between
performing consistency and search in order to adapt to the memory bus load.

The only way to fruitfully combine parallel search with parallel consistency is if we
reduce the number of search nodes more than we increase their computational weight.
The inherent problem in doing this is clear from the differences in results between
Table 4 and Table 5. As shown by Fig. 9, when the problem is small there is an almost
linear increase in the number of consistency checks per search node as we add search
threads. On the other hand, Fig. 10 shows that the number of consistency checks varies
a lot depending on the number of consistency threads. The reason is that when we
have to explore a large search space we will run into more inconsistencies, which can
be detected faster when using parallel consistency. However, inconsistent nodes have
less computational weight. In conclusion, when parallel search starts to become useful,
parallel consistency cannot pay off the computational overhead it causes.



1 2 4 8
0

0.5

1

1.5

2

2.5

1 2 4 8Consistency Threads per Search Thread

A
b

s
o

lu
te

 S
p

e
e

d
-u

p

Search Threads

Fig. 8. Speed-up when searching for 5 000 solutions to 100-Sudoku.

Table 4. Number of times consistency was called for the constraints in 100-Sudoku when search-
ing for 200 solutions.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 23 475 47 487 122 587 217 339
2 36 585 73 017 171 613 243 754
4 36 585 72 833 169 849 231 745
8 36 585 73 369 160 696 242 317

Table 5. Number of times consistency was called for the constraints in 100-Sudoku when search-
ing for 5 000 solutions.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 364 718 435 524 1 102 162 1 613 385
2 721 723 933 104 2 453 025 1 604 395
4 720 976 925 494 2 089 093 1 571 044
8 720 980 920 276 1 731 205 1 470 914

Table 6. Number of search nodes explored when searching for 200 solutions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 35 953 34 914 44 473 52 382
2 35 953 35 394 41 669 45 467
4 35 953 35 358 41 785 45 380
8 35 953 35 296 40 949 45 832



Table 7. Number of search nodes explored when searching for 5 000 solutions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 763 827 784 204 958 969 1 002 032
2 763 827 784 980 920 223 881 475
4 763 827 785 547 915 305 894 489
8 763 827 784 443 923 470 886 828

1 2 4 8
0

1

2

3

4

5

6

1 2 4 8Consistency Threads per Search Thread

C
o
n
s
is

te
n
c
ie

s
 p

e
r 

S
e
a
rc

h
 N

o
d

e

Search Threads

Fig. 9. Consistency enforcements per search node when searching for 200 solutions to Sudoku.

1 2 4 8
0

1

2

3

1 2 4 8Consistency Threads per Search Thread

C
o

n
s
is

te
n

c
ie

s
 p

e
r 

S
e

a
rc

h
 N

o
d

e

Search Threads

Fig. 10. Consistency enforcements per search node when searching for 5 000 solutions to Sudoku.

5.3 Results for Queens

It is much harder to achieve an even load-balance for Queens than for Sudoku. The
structure of Queens is quite different from Sudoku. In Sudoku we only have global
constraints with a high time complexity. In Queens, there are lots of small constraints to
calculate the diagonals. Hence, for most of the execution, we have a very low processor
load if we only use parallel consistency [11].

We used Queens in order to illustrate how parallel consistency can be useful when
parallel search is not. Problems with little need for parallel consistency have more room
for the parallel search threads to execute. However, Queens is a highly constrained prob-



lem. Even with 550 queens, there are very few search nodes that need to be explored.
Hence, parallel search will usually only add overhead. However, adding parallel con-
sistency can compensate for the performance loss.

As shown in Table 8 and Fig. 11, parallel search reduces performance. However,
parallel consistency gives a speed-up even when we loose performance because of par-
allel search. We can also see that adding search threads can lead to sudden performance
drops. This is largely because we end up overloading the memory bus and the processor
cache. For eight search threads the performance increases compared to four threads.
The reason is that we find a solution in a more easily explored part of the search tree.

Table 9, Table 10, and Fig. 12 all support our earlier observation that the workload
increases heavily if we use barrier synchronization. The results come from that we have
to evaluate the simple constraints many more times if we do not share data between
them and the alldifferent constraints. The reason why we still get a speed-up is that the
alldifferent constraints totally dominate the execution time and do not have to be run
that much more often in parallel consistency.

Table 8. Execution times in seconds when searching for one solution to 550-Queens.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 107 109 464 325
2 95 101 454 191
4 77 82 405 213
8 77 82 426 215

1 2 4 8
0

0.5

1

1.5

1 2 4 8Consistency Threads per Search Thread

A
b

s
o

lu
te

 S
p

e
e

d
-u

p

Search Threads

Fig. 11. Speed-up when searching for one solution to 550-Queens.



Table 9. Number of times consistency was called for the constraints in 550-Queens when search-
ing for one solution.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 322 415 662 392 2 475 709 2 560 781
2 772 585 1 566 891 5 551 542 6 159 671
4 771 537 1 554 595 5 182 159 6 153 881
8 769 972 1 543 778 5 014 605 6 152 789

Table 10. Number of search nodes explored when searching for one solution to 550-Queens.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 1 246 2 624 20 866 11 200
2 1 246 2 787 23 114 10 193
4 1 246 2 735 22 072 10 292
8 1 246 2 834 23 025 10 591

1 2 4 8
0

100

200

300

400

500

600

1 2 4 8Consistency Threads per Search Thread

C
o

n
s
is

te
n

c
ie

s
 p

e
r 

S
e

a
rc

h
 N

o
d
e

Search Threads

Fig. 12. Consistency enforcements per search node when searching for one solution to Queens.

6 Conclusions

The main conclusion is that it is possible to successfully combine parallel search and
parallel consistency. However, it is very hard to do so. The properties of a problem, and
size of the search space determines whether parallelism is useful or not. When trying to
add two different types of parallelism, these factors become doubly important.

In general, if a problem is highly constrained, there is little room to add parallel
search. If it is not constrained enough, there will be too many inconsistent branches for
successfully adding parallel consistency. Finally, if a problem is reasonably constrained,
the size of the search space, the uniformity of constraints, and the time complexity of
the consistency algorithms determine whether fruitfully combining parallel search and
parallel consistency is feasible.



In order to make sure that parallel consistency becomes less problem dependent, the
need for synchronization must be reduced. This requires data to be shareable between
global constraints during their execution. Since pruning is monotonic, this should be
possible. However, it depends on the internal data structures used by the consistency
algorithms. Hence, parallel consistency algorithms for each constraints may be a better
direction of future research. Another interesting aspect is how much the order in which
the constraints are evaluated matter to the performance. This is especially important for
inconsistent states.

References

1. Marriott, K., Stuckey, P.J.: Introduction to Constraint Logic Programming. MIT Press,
Cambridge, MA, USA (1998)

2. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (2003)

3. Rolf, C.C., Kuchcinski, K.: Load-balancing methods for parallel and distributed constraint
solving. Cluster Computing, 2008 IEEE International Conference on (2008) 304–309

4. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel constraint
programming. In Gent, I., ed.: Fifteenth International Conference on Principles and Practice
of Constraint Programming. Volume 5732 of Lecture Notes in Computer Science., Lisbon,
Portugal, Springer-Verlag (2009) 226–241

5. Schulte, C.: Parallel search made simple. In Beldiceanu, N., Harvey, W., Henz, M., Labur-
the, F., Monfroy, E., Müller, T., Perron, L., Schulte, C., eds.: Proceedings of TRICS: Tech-
niques foR Implementing Constraint programming Systems, a post-conference workshop of
CP 2000, Singapore (2000)

6. Michel, L., See, A., Hentenryck, P.V.: Parallelizing constraint programs transparently. In
Bessiere, C., ed.: CP. Volume 4741 of Lecture Notes in Computer Science., Springer (2007)
514–528

7. Rao, V.N., Kumar, V.: Superlinear speedup in parallel state-space search. In: Proceedings of
the Eighth Conference on Foundations of Software Technology and Theoretical Computer
Science, London, UK, Springer-Verlag (1988) 161–174

8. Sun, X.H., Chen, Y.: Reevaluating amdahl’s law in the multicore era. J. Parallel Distrib.
Comput. 70(2) (2010) 183–188

9. Nguyen, T., Deville, Y.: A distributed arc-consistency algorithm. Sci. Comput. Program.
30(1-2) (1998) 227–250

10. Ruiz-Andino, A., Araujo, L., Sáenz, F., Ruz, J.J.: Parallel arc-consistency for functional
constraints. In: Implementation Technology for Programming Languages based on Logic.
(1998) 86–100

11. Rolf, C.C., Kuchcinski, K.: Parallel consistency in constraint programming. PDPTA ’09:
The 2009 International Conference on Parallel and Distributed Processing Techniques and
Applications 2 (2009) 638–644

12. Schulte, C., Carlsson, M.: Finite domain constraint programming systems. In Rossi, F., van
Beek, P., Walsh, T., eds.: Handbook of Constraint Programming. Foundations of Artificial
Intelligence. Elsevier Science Publishers, Amsterdam, The Netherlands (2006) 495–526

13. Puget, J.F.: A fast algorithm for the bound consistency of alldiff constraints. In: AAAI/IAAI.
(1998) 359–366

14. Kuchcinski, K.: Constraints-driven scheduling and resource assignment. ACM Transactions
on Design Automation of Electronic Systems (TODAES) 8(3) (2003) 355–383


