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Abstract. We consider the problem of detecting exploits based on return-oriented
programming. In contrast to previous works we investigate to which extent we can
detect ROP payloads by only analysing streaming data, i.e., we do not assume
any modifications to the target machine, its kernel or its libraries. Neither do we
attempt to execute any potentially malicious code in order to determine if it is
an attack. While such a scenario has its limitations, we show that using a layered
approach with a filtering mechanism together with the Fast Fourier Transform,
it is possible to detect ROP payloads even in the presence of noise and assuming
that the target system employs ASLR. Our approach, denoted eavesROP, thus
provides a very lightweight and easily deployable mitigation against certain ROP
attacks. It also provides the added merit of detecting the presence of a brute-
force attack on ASLR since library base addresses are not assumed to be known
by eavesROP.

Keywords: Return-Oriented Programming, ROP, Pattern Matching, ASLR

1 Introduction

Buffer overruns [3] have for a long time been a common source of software vulnerabilities.
The buffer overrun vulnerability may be exploited to perform a code injection attack,
where the goal is to inject arbitrary data and replacing the return address with the
address of the injected data. There are several well-known and widely used mitigations
against this approach. Since the injected code should not be executable, but rather
considered as data, the memory pages corresponding to this data can be marked as
non-executable. Data Execution Prevention (DEP) [19] is a hardware supported OS
feature implementing this idea. A similar approach is the W ⊕X security feature [33]
in which memory pages are either writeable or executable, but not both. While this will
prevent the classic code injection attacks, it will not prevent code reuse attacks. In these
attacks, the adversary will not inject the code to be executed, but will instead direct the
program flow to code that is already loaded by the process, typically a shared library.
One example of a code reuse attack is the return-to-libc attack [7] in which the attack
points to existing code in libc, a library used by many programs.

A more advanced code reuse attack is Return-Oriented Programming (ROP), in
which the attacker identifies small pieces of usable code segments, called gadgets, and



chains them together using a ret instruction. A ret instruction will pop an address
from the stack and continue execution at that address.

One available countermeasure against code injection, which can also be applied to
prevent code reuse attacks, is Address Space Layout Randomization (ASLR) [31]. ASLR
will randomize the base address of the program’s text, stack, and heap segments and
the adversary will not know at which address a library starts, or where the gadgets will
be located. However, it has been shown that ASLR can sometimes be bypassed [37].
The addresses of certain instructions can be leaked through other vulnerabilities and in
some cases it is feasible to brute force the start address of a library, thereby succeeding
with a ROP attack even in the presence of ASLR.

There have been several proposed defenses against ROP attacks, all taking slightly
different approaches and using different assumptions. A typical mitigation is to identify
some specific features in the attack that distinguishes it from benign code execution and
then build a mitigation technique based on those distinguishing features [10,11,15,17,30,32].
Another approach is to rewrite libraries or targeted code such that it is not usable in an
attack [23,27] or to randomize addresses which are needed by an attacker [18,20,29,45].

Instead of detecting the attacks on the target systems, another goal may be to detect
ROP attacks in data. In [32] data was scanned and possible expoits were speculatively
executed in order to determine if they were exploits. This requires a snapshot of the
virtual memory of the process that is protected. In [40] the authors consider a detection
approach where documents are analyzed to find ROP attacks. Documents are collected
and sent to a separate virtual machine, where they are opened in their native application,
and a memory is then analyzed for ROP payloads.

In this paper we present eavesROP, which is a more lightweight approach where no
execution takes place. We try to identify ROP payloads by looking at network traffic
only, i.e., we do not make any modifications to machines, programs, libraries or operating
systems; nor do we try to execute any of the received data. We do not even require any
kind of access to the machines. Scenarios could be an implementation in a gateway
to a corporate network, ROP payload detection in switches or at an ISP before data is
forwarded to the end user. The question that we try to answer is: How much information
can we deduce by just looking at the data? We target ROP exploits where gadget
addresses can be explicitly found in the data sent to the application. We assume that
ASLR is enforced by the operating system, and that the attacker has information about
the location of libraries, either through information leakage or a brute-force attack.
Of course, our detection mechanism has no such information. We show how to filter
out possible ROP payloads and how to determine if the candidate payload is a ROP
attack or not. Even with just a moderate number of gadgets, we can detect the payload
efficiently. This is true even if there is a large amount of noise present.

We have tested eavesROP using several available exploits and it is able to detect all
tested exploits with no false negatives.

2 Background

In this section we provide the necessary background on return-oriented programming
and address space layout randomization.



2.1 Return-Oriented Programming

Return-oriented programming [36] is an exploitation technique that allows for arbitrary
code execution without having to inject code into the vulnerable process. To achieve
this, an attacker constructs a payload of addresses, each pointing to a small sequence
of instructions reachable and executable by the affected process. These instruction se-
quences are called gadgets and typically consist of very few instructions, ending with
a return instruction (ret). This return instruction will pop the next dword from the
stack, put it into the instruction pointer register (EIP) and continue execution at the
next gadget. Gadgets do not have to be aligned with the intended instructions. Any
byte that represents the opcode of a ret can potentially be used as a gadget.

Not only ret instructions can be used in these types of attacks. It is also possible
to use jump-based instructions as in [5,9]. We will not consider these type of attacks in
this paper, but note that it would be possible to extend our algorithms to detect these
gadgets as well.

As an example [25], one frequently used ROP exploit pattern disables DEP, which
makes normal code injection is possible. Figure 1 shows the layout of the payload, resid-
ing on the stack, and the corresponding gadgets found in a library. DEP call represents
the address of the function to disable DEP for the current process.

77BF362C

Stack

FFFFFFFF
<junk bytes>
<junk bytes>

77CF0B7E
77BEBB36
<DEP call>
77BF3B47
<nop gadget>

77BF1891
<nop gadget>

77CEAC2B

77BEBB36 pop EBP

Library

77BEBB37 ret 0

77BF1891 pop ESI

77BF1892 ret 0

77BF362C pop EBX

77BF362D ret 8

77BF3B47 pop EDI

77BF3B48 ret 0

77CEAC2B pushad

77CEAC2C ret 0

77CF0B7E inc EBX
77CF0B7F ret 0

Fig. 1. An example of a ROP exploit. The addresses to gadgets are located on the stack,
together with necessary integers and junk. The junk bytes are used when the ret instruction
pops several values from the stack before continuing execution.

This exploit includes six instructions and if used as in the referenced exploit, where
each instruction is included in its own gadget, we will have six gadgets each consisting
of one instruction. As will be shown later, we are able to detect this payload.



2.2 Address Space Layout Randomization (ASLR)

ASLR protects from buffer overflow attacks by randomizing the location of the stack,
the heap and the location of all dynamically loaded libraries. The term was coined by
the PaX project [33] which also has a well-known implementation.

Following the introduction of ASLR in Windows XP SP2 (2004) and the Linux
Kernel (since version 2.6.12, 2005) built-in ASLR support, writing exploits has become
much more difficult. Since then, the number of base addresses that are randomized has
increased, and so has the entropy of the randomization.

However, the efficiency of ASLR is limited. First, some small amount of code is not
randomized, leaving the possibility to still use gadgets in the code where the location is
predictable. Even though this code is rather small, it has been shown that it is possible to
find usable gadgets in it [34]. Randomizing the application code is one kind of protection
against these attacks [45]. Another aspect of ASLR, as was shown in [37], is the limited
entropy in the address space, which makes it possible to brute-force absolute locations.

In addition to brute-forcing the ASLR, it has been shown that information leakage
can occur through e.g., buffer and heap overrun bugs [16,43] and other types of vulnera-
bilites [35,39]. This could give an attacker at least partial information about the location
of ASLR-affected code. Being able to read a return address on the stack is enough to
deduce information about the base address of a DLL.

The exact means by which an attacker bypasses ASLR, may it be through brute
force or information leakage, are independent of our payload detection algorithm.

3 Overview of Approach

In this section, we give a brief overview of our eavesROP. The entire exploit payload
detection mechanism can be regarded as a black box device that takes a data stream as
input and raises an alarm if it finds a ROP payload. The analysis of the data is based
on the property that a payload consists of several 4-byte aligned addresses to gadgets
within one library or chunk of executable code. Note that not all gadgets have to be in
the same library. We only require a certain number (T ) to be in one known library. The
rest can be located anywhere.

The analysis performed inside the black box is divided into four layers, each with a
distinct task, see Figure 2.

Data
Stream

Data
Pre-filter

Cluster
Detection

Pattern
Matching

Statistical
Test

Alarm

Fig. 2. Data flow overview.



Optional Data Pre-Filter The optional data pre-filter is a simple filter designed to
discard all data that is unlikely to represent memory addresses.

Even though eavesROP is not very noise sensitive for detection, its performance
is sensitive to data with very small variations, as this type of data could potentially
represent memory addresses that are closely grouped. Plain text data has this near-
recurring property and can thus for performance reasons be thrown away in a data pre-
filter. A well-designed data pre-filter will significantly lower the processing requirements
of the exploit payload detection mechanism since fewer blocks of data will be passed on
to the next layer—the address cluster detection layer.

Cluster Detection An actual exploit payload will contain several gadget addresses
that lie close together with respect to the entire addressable memory space. The purpose
of the address cluster detection is to find and isolate the congested parts of the memory
space for further processing.

The address cluster detection layer can be viewed as a transformation from data
space to address space. Given a data window of some size, the clustering algorithm
detects address windows that may contain dense memory activity. Thus, this layer also
has the task of aligning data into 4-byte chunks since ROP gadgets are called using a
4-byte address, assuming a 32-bit architecture. After alignment, a second filter can be
used in order to sort out certain addresses.

Based on clustered address windows, this layer will output a binary address vec-
tor, Pobs, of size L, i.e., the size of the largest targeted library. These vectors indicate
addresses found in the data.

Pattern Matching The vector Pobs from the previous step is matched with binary
library vectors. The relative distances of the memory addresses in an address window
form a very distinct pattern. This pattern is matched with the gadget address patterns
of libraries Plib.

Without ASLR, this pattern matching could be trivially achieved by simple constant-
time lookups into a suitable hash table (for example, see [28]). However, when we allow
ASLR, the precise memory location of the library is unknown, making pattern matching
more complex. By using the Fast Fourier Transform we can compute the maximum
matching between Pobs and Plib.

Statistical Test An address window containing only gadget addresses will give a perfect
match. However, since we do not know the size of a payload, an address window may
contain addresses that are just noise. The goal of the statistical test is to minimize false
positives (α) and false negatives (β) by using a threshold value for the maximum overlap
between Pobs and Plib. This threshold will depend on the Hamming weight of Pobs and
the targeted values of α and β.

4 A More Detailed Description

In this section we give a more detailed overview of the different parts of eavesROP.



4.1 Optional Data Pre-Filter

Certain input data can be expected to exhibit properties that make them look like
addresses close to each other in the memory space—thus looking like ROP payloads—
even though the data is actually non-malicious. Our goal is to filter out these addresses
before they reach later steps in the algorithm, to reduce the total computational overhead
of our system.

Of special interest are printable ASCII characters, not only because much data is
readable text, but also because large portions of adjacent ASCII data may—when com-
bined into 32-bit words—look like adjacent addresses. Filtering is however a trade-off
between performance and false negatives. There are techniques to make ROP payloads
printable [24]. Such a payload would be removed if a filter for printable characters is
enabled. This is why the filtering step should be considered optional.

If the pre-filter is enabled, it removes blocks of UTF-8 strings. In our implementation,
we define a block as a sequence of five or more adjacent, printable UTF-8 characters.
A printable UTF-8 character is defined as all ASCII characters in the range from 0x20

up to and including 0x7e. We also include the 0x09, 0x0a and 0x0d for tab separator,
line feed, and carriage return, respectively. Even though the last three are not printable
characters, they occur frequently in the same context as the printable characters and
whitespace. All valid multi-byte encoded UTF-8 characters are also considered printable.

When a matching block is found, the complete block is removed from the input. This
leads to potential noise as non-adjacent bytes become adjacent after the data between
them is removed. This does, however, only affect a few addresses, which does not cause
any problems in practice since our ROP pattern matching is very precise and noise
tolerant.

As our approach is modular, it is possible to add other heuristic pre-filters. Possible
ideas may be to filter out specific network packets, such as ARP-requests. Even when
using a very aggressive filter, if one or a few gadget addresses are filtered out, the
detection will still succeed as long as there are enough gadgets left in the data that
passes the filter.

4.2 Cluster Detection

We let M denote the maximum size of a ROP payload in 4-byte words that our detection
is guaranteed to support. A näıve approach to detect the gadget addresses is to pick
M words of data, map them to Pobs and match this vector with a known Plib. Doing
this byte by byte in the data would produce the correct maximum matching, but it is
a very slow approach. Moreover, all words but one will repeat every 4 bytes. Another
problem is that the addresses contained within the data window can be spread out over
the entire ASLR address space (N bytes), making Pobs very large. We propose to use
an algorithm that is much more efficient, and will still always find the correct maximum
matching.

Instead of considering M addresses, we pick a data window of size D = 2M . Thus,
we consider twice as much data as the maximum payload, but in return we consider
M + 1 possible payloads simultaneously. This is illustrated in Figure 3. Doubling the
data window size introduces a little more noise (more data in one window), so a few more



data stream

︸︷︷︸
max payload size data window

︸ ︷︷ ︸ · · ····

Fig. 3. Data window progression.

data windows will pass the cluster detection stage, but this effect is marginal compared
to the significant gain in processing efficiency.

When the data window slides over the next data chunk of size M , we begin by
extracting potentially viable addresses. As the offset of a ROP payload in the data buffer
is unknown, but we know that each address is four bytes and addresses are aligned inside
a payload, we create four lists, one for each offset, see Figure 4.

data window

offset 0

sorted addr.
sorted addr.

offset 1

sorted addr.
sorted addr.

offset 2

sorted addr.
sorted addr.

offset 3

sorted addr.
sorted addr.

window
address

Fig. 4. Memory address pattern extraction from data window.

As Figure 4 further illustrates, we need to keep track of eight such address lists,
four for each of the two M -word data chunks covered by the D-word data window.
Separating the lists per data chunk allows for incrementing the data window in steps of
M words, while reusing the four lists corresponding to the previous M words.

The four new address lists are sorted using an efficient linear-time sorting algorithm
such as bucket sort [12]. Such efficient sorting is possible since all addresses are of the
same size. Once sorted, we slide an address window of size L (same size as executable
part of the largest library) down the combination of the two lists for each offset. Since
each of the two lists is individually sorted, it is trivial to traverse the combination in
sorted order efficiently. The time complexity for this is linear in the number of stored
addresses, i.e., linear in D.

Let T be a threshold value that determines the minimum number of gadgets in an
exploit that we want to be able to detect. A small T leads to detection of more exploits,
but it also results in more pattern matching, slowing down the detection algorithm. In
practice, the lowest value that our algorithm can handle is T ≈ 6, depending on the



Algorithm 1 – Address Pattern From Data Stream

Input: data stream, maximum payload size in words M , address window weight
threshold T , size of library L, word size in bytes n.
Output: set of Pobs (address window patterns).

pos = 0; /* current byte position in data stream */
A(0,0) = . . . = A(0,n−1) = ∅; /* two address lists per offset */
A(1,0) = . . . = A(1,n−1) = ∅;
while (data stream not exhausted) {

for (each byte offset i ∈ {0, . . . , n− 1}) {
A(1,i) = M words from data stream starting at pos+ i;
sort A(1,i);

}
pos = pos+ nM ;
for (each offset i ∈ {0, . . . , n− 1}) {

slide address window of size L over A(0,i) ∪A(1,i) and find clusters;
A(0,i) = A(1,i);

}
}

instruction size of each gadget (see Section 4.3) and the error probabilities (see Section
4.4).

If we find an address window that contains at least T unique addresses, the binary
vector Pobs is constructed by entering a ’1’ in each position corresponding to an address
in the address window. To minimize redundant checks, Pobs is normalized to always
start with a ’1’. Then we proceed to perform pattern matching via FFT, as described
in Section 4.3. Algorithm 1 summarizes the cluster detection procedure.

4.3 Pattern Matching

In this section we give more details on the pattern matching layer. In order to pattern
match the Pobs vector we first need to construct a vector Plib of gadgets.

Identifying Gadgets in a Library In order to find all possible gadgets in a library, the
executable part of it is scanned for the opcode of different types of return instructions,
namely 0xC2 (retn imm16), 0xC3 (retn), 0xCA (retf imm16) and 0xCB (retf). For each
position of these bytes in the library we search backwards one byte at a time and try to
assemble a legal instruction flow ending with the return. We define the entry zone, z, as
the number of instructions we allow for each gadget, not including the return instruction.
This means that we can find many gadgets ending at the same return instruction due
to the possibility of instruction overlapping in the x86 architecture.

The starting byte of every possible gadget is used to construct the binary vector Plib.
This is the vector that is used for pattern matching with Pobs, which is the output of
the address cluster detection algorithm.

To understand how the gadget structure in a library is translated into a binary
pattern, consider the following sequence of nine bytes (hex):



21 16 0d 00 85 c0 0f 95 c3

21 16 0d 00 85 c0 0f 95 c3

21 16 0d 00 85 c0 0f 95 c3

1 1 1 0 0 1 0 1 0

0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1 0

0 1 1 0 0 0 0 1 0

Fig. 5. Translation of maximal length gadget sequences to binary pattern.

21 16 0d 00 85 c0 0f 95 c3

Using an entry zone of size z = 3 (at most three instructions), we construct maximal
gadget chains by interpreting the bytes preceding the return instruction c3 as consec-
utive instructions. There are three possible maximal gadget chains in the above byte
sequence, as illustrated in Figure 5.

The top two gadget chains are both of length three. While the top chain begins with
a single-byte instruction 16, the second chain extends this to a two-byte instruction
21 16. The third chain is of length 1, but it is maximal since it cannot be further
extended.

A sequence of bytes belonging to a library is translated into a binary pattern accord-
ing to the following rules. Every byte position is designated a ’0’ or a ’1’. A ’1’ is assigned
if any maximal gadget chain has an instruction that begins at that byte position. If not,
a ’0’ is assigned. Note that any unique sequence of valid instructions leading to a return
counts as a gadget. Counting the instruction subsets of the top two chains, there are
five gadgets in Figure 5. Algorithm 2 summarizes the construction of a Plib vector.

As an example, Table 1 shows the number of gadgets, G, found in libc given the
size of the entry zone. It should be noted that the gadget identification can be greatly
optimized by filtering out useless gadgets.

Pattern Matching via FFT Perfect pattern matching can be performed efficiently
using a Fast Fourier Transform (FFT). Pattern matching, here, means that we want
to find the maximum weight of the overlap between two patterns that are overlaid,
possibly displacing the patterns linearly with respect to one another. We also want this
matching to be perfect, which is to say that all actual gadget addresses that are used in
an exploit will be counted. All actual gadget addresses in an exploit will, in the general
case, contribute positively to the weight of the maximal pattern match.

Table 1. The number of gadgets in libc for some choices of entry zone.

entry zone (z) 1 3 5 7
Number of gadgets (G) 12790 36113 57324 76796



Algorithm 2 – Gadget Pattern From Library

Input: entry zone z, library file f .
Output: library gadget pattern Plib.

Plib = (0, . . . , 0); /* same length as f */
for (every byte position i in f) {

if (byte i in f is not a return opcode) continue;
/* disassembly */
G = set of maximal gadget chains of length ≤ z ending at byte i;
for (every maximal gadget chain g in G) {

for (every instruction j in g) {
k = location of first byte position in instruction j in f ;
Plib[k] = 1;

}
}

}
return Plib;

Recall that L denotes the maximum size of the executable part of the libraries.
Focusing on one such library, Plib is a binary vector of length L. Correspondingly, Pobs

is a binary vector of length L from the address clustering detection step.
If both patterns are aligned, the maximum matching can be calculated as the dot

product between Plib and Pobs according to

Plib · Pobs =

L−1∑
i=0

Plib[i]Pobs[i].

However, we have no way of knowing if the alignment is correct, so we rather need to try
all alignments to see which one produces the highest fit. That is, we need to calculate
the dot products for all possible shifts of the two patterns. This can be accomplished
by using the Fast Fourier Transform (FFT). The FFT computes the circular discrete
convolution c of two vectors a and b of length L,

c [t] = (a ∗ bL) [t] =

L−1∑
i=0

a [i] b [(t− i) mod L] . (1)

For this to be applicable to our situation, we need to adjust two things. First of all, we
need to reverse one of the vectors, say Plib. Secondly, since indices in Eq. (1) are taken
modulo L, we need to pad both Plib and Pobs with zeros to double length. Without this
zero padding, the tails and fronts of the two vectors will contribute to the maximum
matching in an undesirable way, effectively bringing more noise into our result.

The FFT approach (see [6]) has time complexity O(L lgL), compared to O(L2) for
the näıve approach. Letting F denote the FFT version of the Discrete Fourier Transform
(DFT), we may compute c as

c = F−1 (F (a)�F (b)) ,

where � denotes componentwise multiplication.



We let a and b be the vectors Plib and Pobs respectively after the zero padding
as described above. The weight of the maximum matching is given as the maximum
component of c,

cmax = max
i
c [i] . (2)

Note that Plib is known beforehand, so we can precompute F (a) for efficiency. The
entire pattern matching procedure is illustrated in Figure 6.

precomputation

FFT

zero padding

b =

payload pattern
Pobs =

FFT

zero padding

a =

library pattern
Plib =

componentwise multiplication

FFT−1

c =

maximum component

Fig. 6. An overview of FFT pattern matching.

4.4 Statistical Test

The maximum overlap is given by the maximum value of the inverse Fourier transform
as given in Eq. (2). In order to find an expression for the number of overlaps we make
the following approximations.

– Locations corresponding to gadgets in Plib are uniformly distributed.
– The entries in the convolution vector c are approximated as independent events, all

with the same probability.

Using these approximations, the number of overlaps between Plib and Pobs is binomially
distributed, X(w) ∼ Bin(w, GL ), where w and G denote the Hamming weights of Pobs and
Plib, respectively. Recall that G should here be understood as the number of gadgets in
a library for a given entry zone and w is the number of addresses in an address window.
Thus, the probability that there are s overlaps is given by

Pr(X(w) = s) =

(
w

s

)(
G

L

)s(
1− G

L

)w−s

, (3)



with expected value and variance given by

E(X(w)) =
wG

L
,

V (X(w)) =
wG

L
(1− G

L
).

Since Plib and Pobs are convolved, each convolution consists of L such binomially dis-
tributed samples. In order to find the probability distribution for the maximum value
of the convolution array, we write the probability that any single value is at most s as

Pr(X(w) ≤ s) =

s∑
t=0

(
w

t

)(
G

L

)t(
1− G

L

)w−t

.

The probability that all values are at most s is then, using the second approximation
above, Pr(X(w) ≤ s)L. From this it follows that the probability distribution for the

maximum value of the convolution vector c
(w)
max is given by

f
c
(w)
max

(s) = Pr(c(w)
max = s) = Pr(X(w) ≤ s)L − Pr(X(w) ≤ s− 1)L (4)

with cumulative distribution function

F
c
(w)
max

(s) = Pr(c(w)
max ≤ s) = Pr(X(w) ≤ s)L.

Simulations show that the approximations give a distribution that is very close to the
real distribution. For detailed numbers, see Table 5 in the Appendix.

A threshold value for c
(w)
max is chosen, denoted ĉmax. If c

(w)
max ≥ ĉmax the payload is

considered a ROP. Associated with this decision are false positives and false negatives.
The false positive rate, denoted α, is defined as the probability that non-malicious data
is considered malicious (i.e., a ROP payload) while the false negative rate, denoted β,
is the probability that a malicious payload is mistaken for non-malicious data. To write
expressions for α and β, let the Hamming weight w of Pobs be written as w = wG +wN ,
where wG is the number of ROP gadgets and wN is the number of noise addresses. The

distribution of c
(w)
max for non-malicious data is given by Eq. (4). The value of c

(w)
max for a

ROP payload is given by
c(w)
max = wG +X(wN ),

where X(wN ) is distributed according to Eq. (3). Now, we can write the two error prob-
abilities as

α = Pr(c(w)
max ≥ ĉmax) = 1− Pr(c(w)

max ≤ ĉmax − 1)

=1− Pr(X(w) ≤ ĉmax − 1)L (5)

β = Pr(X(wN ) < ĉmax − wG) = Pr(X(wN ) ≤ ĉmax − wG − 1)

The false positives rate α is only for one library. If we want to test the payload
against a set of ` libraries, the total false positive rate α` is given by

α` = 1− (1− α)`.



By choosing α = 0.0001 we allow ` = 100 libraries to be supported, still keeping the total
false positive rate α` below 0.01. (We assume here that all libraries are of approximately
equal size.) to be the maximum size of all libraries.) We let the false negative rate
β = 0.01 since this is not affected by multiple libraries (the payload will only match one
library). Using these values for α and β allows us to compute the threshold ĉmax and
the minimum number of gadgets wG that are required for successful detection. Table 2
gives these numbers for z = 3 and some different choices of w. Results for other values
of z can be found in the Appendix. Note that for all values w such that ĉmax = wG, we
have β = 0. Thus we will only obtain false negatives for very large noise values.

Table 2. Threshold ĉmax and minimum number wG of gadgets needed for ROP payload de-
tection in an address window of weight w. Error rates α ≤ 0.0001 and β ≤ 0.01. The example
library used is libc 2.18 of size L = 1224144.

entity values

weight of Pobs w 7 10 15 20 25 30 50 100 200
threshold ĉmax 7 8 9 10 11 12 15 20 27
min num gadgets wG 7 8 9 10 11 12 15 20 26

The standard deviation of Eq. (4) turns out to be very small, with almost all proba-
bility mass concentrated to only a few values for s. This makes the detection algorithm
efficient, allowing us to choose small error rates while still requiring few gadgets to
succeed, even in the presence of a large amount of noise.

It can be noted that the required number of gadgets wN is very close to the threshold
ĉmax. This is because the expected number of overlaps stemming from noise at a given
offset in the convolution is very small. Only when there are relatively many gadgets
and/or the noise is large, the noise will be able to contribute enough to relax the re-
quirement on the number of gadgets needed. Thus, as a rule of thumb, the number of
gadgets required for successful detection is approximately equal to the threshold

wG ≈ ĉmax.

The false positive rate has been simulated using the data from Table 4. The simulations
indicate that the actual false positive rate is slightly larger than that given by Eq. (5).
This is not surprising, since the theoretical model assumes that gadget addresses are
uniformly distributed. Due to data redundancy and the proximity coupling between

gadgets and return instructions, a slightly larger c
(w)
max is expected. Still, according to our

simulations, increasing the threshold value by 2 will remove virtually all false positives.
This shows that the theoretical model is adequate.

5 Performance

The performance of eavesROP depends on the parameters used in the various stages of
the system. All simulations have been performed on an Intel Core i7 4770 @ 3.4 GHz
with 16 GB of RAM.



A more aggresive filtering in each step will reduce the amount of data sent to the
next stage, which will increase the overall performance. This is illustrated in Table 3,
where the throughput and input/output size ratio is given for various types of input
data when passed through the data pre-filter.

Table 3. Performance of data pre-filter.

type of data throughput (MiB/s) input/output size ratio

random 34.7 0.965

web (HTML, JPG,. . . ) 52.7 0.068

mp3 39.5 0.956

pdf 38.6 0.811

mkv (H.264/MPEG-4) 34.5 0.965

After the optional data pre-filter—which may have reduced the total amount of
data—the data is passed to the cluster detection step. This step has a throughput of
around 10 MiB/s. The output of the cluster detection step is multiple matched windows,
i.e. multiple Pobs. Table 4 shows how many Pobs vectors that are passed to the pattern
matching layer, for some different types of data and different choices for T and D.

Table 4. Number of matching address windows per GiB of input data, for a data window of
size D, and with at least T addresses within distance L = 1224144, for different types of data.
L is here the size of libc 2.18.

D = 50 D = 200 D = 1000

type of data T = 6 8 10 T = 6 8 10 T = 6 8 10

random 0 0 0 12 0 0 24749 53 0

web (HTML, JPG,. . . ) 1795 689 590 5589 1878 1208 40795 8007 3292

mp3 42 8 2 631 106 10 162014 8472 1023

pdf 4068 248 61 34718 5266 1316 1011850 176992 45289

mkv (H.264/MPEG-4) 354 2 0 513 81 66 35545 841 125

Each Pobs outputted from the cluster detection stage will be passed to the pattern
matching step. Each pattern matching sequence takes roughly 1 second using FFT
implemented in software. If necessary, this step could be accelerated using a hardware
FFT implementation.

All parts of eavesROP have been implemented and tested using real-world exploits.
We are able to detect all exploits of at least 6 gadgets, using a threshold value ĉmax = 6,
for example [8] and [41].



6 Strengths and Limitations

In this section we enumerate and clarify the different strengths and limitations in our
ROP payload detection approach.

6.1 Strengths

An important feature of the detection mechanism is that it works even when ASLR
is enabled on the targeted systems, assuming the attacker manages to bypass ASLR
through e.g., information leakage or brute force.

While we have described the address cluster detection algorithm for 32-bit systems,
it can also be applied to 64-bit systems. In this case brute-force attacks are out of scope
due to the large entropy of ASLR, but absolute addresses could still be found using
information leakage. The main modification is that the address cluster detection must
consider eight offsets instead of four, but in return there will be much fewer addresses
passing the cluster detection due to the large address space.

A distinguishing feature is the ability to detect ASLR brute-force attempts. As our
detection mechanism only considers differences between gadget addresses, and not the
addresses themselves, a probabilistic attack attempt will be detected as a ROP payload.

In the optional data pre-filter, we only apply one very simple UTF8-filter. However,
filtering options are abundant, and it is easy to imagine other ad hoc filters which will
significantly reduce the computational overhead of the detection.

While most examples have focused on one library, it is very cheap to add support
for a large set of libraries. It may also be noted that pattern matching over a set of
libraries is inherently parallelizable and can also take advantage of dedicated hardware
for computing the FFT.

Last but not least, the modular structure of eavesROP provides a flexible framework
that is easily adaptable to the characteristics of the target network. This makes it pos-
sible to tailor the system to match the desired detection and performance requirements.

6.2 Limitations

Since we do not have access to the target machine, but only consider a stream of bytes
in our search for a ROP payload, the detection mechanism has some limitations.

First, we need to know the libraries and binaries that can be used in an attack.
In general, this could be any library or binary, but by choosing the most commonly
used ones, it is still possible to detect a significant fraction of attacks. The FFT can be
precomputed for each library and the online time for each library will be limited to a
componentwise multiplication of two vectors and an inverse FFT computation.

The limited size D of the data window makes it possible to utilize the ret imm16

instruction which pops imm16 bytes from the stack. Using these returns with a large
imm16 would leave very sparsely located gadget addresses in the data window. This
could potentially avoid detection. However, it should be noted that we only require T
gadgets in the window of max payload size so the detection does in general not require
all gadgets to succeed.

Since we do not execute any potential exploits, we will not be able to detect exploits
that obfuscate the gadget addresses such that they are not visible in the data sent on the



network. Such obfuscation would include e.g., polymorphic ROP attacks [24], or gadget
addresses generated on the client-side using JavaScript or ActionScript.

As the FFT is rather computationally intensive, it would also be possible to mount a
denial of service attack by sending data that would be interpreted as adjacent addresses,
triggering false positives.

7 Related Work

There are several works describing defenses against ROP attacks. They can be catego-
rized using several metrics or properties, see e.g., [11].

The problem of detecting ROP payloads in arbitrary data was previously considered
in [32]. In that paper the gadgets were assumed to reside in the non-ASLR code segments.
We do not make that assumption and allow the gadgets to reside anywhere in memory.
Moreover, in [32] the executable memory segments of a process is needed and potential
gadgets are speculatively executed in order to decide whether they are ROP payloads or
benign data. We do not require any information regarding a process’ memory segments
and we do not care about the semantics of a gadget. On the other hand, we need to
target a specific set of libraries in which gadgets can be used.

Another detection approach is described in [40], where the authors consider an ap-
proach where documents are analyzed to find ROP attacks. The detection assumes that
documents are collected and sent to a separate machine, where they are opened in their
native application inside a virtual machine. A memory dump of the application is then
taken, and the dump is analyzed for ROP payloads by the virtual machine’s host. In the
same way as eavesROP this does not require any modification of the target machine,
and ASLR can be enabled.

ROP is a type of control-flow hijacking attack in which the attacker changes the
intended control-flow of the program. Control Flow Integrity (CFI) [1,2] can be used
to stop these types of attacks, including ROP. While this is a robust counter-measure
for many attacks, properties such as overhead and complexity has limited its adoption.
Still, it is a promising mitigation approach which has been given much attention and
several aspects of CFI have been considered recently [4,46,47]. While eavesROP is not
intended to be as robust as CFI, it has instead a very low complexity and does not need
to be implemented on the target systems.

There has also been much work on how to mitigate the source of the exploit, namely
the presence of a buffer overrun vulnerability. Well known defenses include Stack-
Guard [14], which is a compiler extension that places a canary value on the stack. Before
returning from a function, the integrity of the canary is verified. Stack Shield [42] makes
a copy of the return address and saves it in the beginning of the data segment. Before
returning from the function, the return address is compared with the saved value. These
mitigations have been followed by other compiler based solutions, e.g., PointGuard [13].
An overview and comparison of several buffer overflow prevention implementation and
their weaknesses can be found in [38].

Malicious code scanners [21,22,26] have been used to detect malicious code using
pattern matching. However, since the ROP payload does not include the malicious data,
just addresses to it, they can not be used to detect ROP attacks [44]. Our detection



mechanism looks for the addresses to gadgets and can be seen as an ad hoc mitigation
against ROP attacks, based on ideas from malicious code scanners.

8 Conclusions

We have investigated to which extent it is possible to detect a ROP payload by only
analysing data, and assuming that ASLR is used on the target system. If we have the
set of libraries and binaries that can be used to find gadgets, we show that it is possible
to detect a ROP payload even in the presence of noise and by applying suitable data
filters and the Fast Fourier Transform the detection has acceptable performance. The
exact performance will depend on the type of data and the number of gadgets that are
required for an exploit to be detected depends on the maximum allowed size for the
payload and the amount of noise.
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A Histogram overlap count

Table 5 shows the simulated and theoretical distributions for c
(w)
max when using random

data. The theoretical distribution is given by (4) and the simulations are performed
by taking 10,000 arrays (Pobs) with Hamming weight w, uniformly distributed over the
array. Using FFT, the maximum overlap between the array and an array corresponding
to libc with entry zone 3 is computed. A histogram for the 10,000 samples is used to
illustrate the probability distribution.
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Table 5. Histogram comparison of maximum overlap (c
(w)
max) for various address window weights

over random data and libc. Entry zone size is 3 instructions, sample size 10,000.

weight w

10 overlap 0 1 2 3 4 5 6 7 8 9 10

simulation 0 0 0 0 1672 7864 458 6 0 0 0

theory 0 0 0 0 22 8559 1392 26 0 0 0

20 overlap 0 1 2 3 4 5 6 7 8 9 10 11 12 . . . 19 20

simulation 0 0 0 0 0 43 6815 2957 176 8 1 0 0 . . . 0 0

theory 0 0 0 0 0 0 2686 6691 597 24 1 0 0 . . . 0 0

30 overlap 0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 29 30

simulation 0 0 0 0 0 0 30 5473 4077 392 26 2 0 0 . . . 0 0

theory 0 0 0 0 0 0 0 1007 7441 1446 100 6 0 0 . . . 0 0

40 overlap 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . . 39 40

simulation 0 0 0 0 0 0 0 52 5409 4026 474 36 3 0 0 . . . 0 0

theory 0 0 0 0 0 0 0 0 847 7100 1866 173 12 1 0 . . . 0 0

50 overlap 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 49 50

simulation 0 0 0 0 0 0 0 0 240 5886 3343 487 41 3 0 0 . . . 0 0

theory 0 0 0 0 0 0 0 0 0 1192 6736 1847 204 18 1 0 . . . 0 0

B Entry-zone

Table 6 gives the required threshold ĉmax for a given weight w of Pobs when error rates
are fixed to α ≤ 0.0001 and β ≤ 0.01.



Table 6. Threshold ĉmax and minimum number wG of gadgets needed for ROP payload detec-
tion in an address window of weight w. Error rates α ≤ 0.0001 and β ≤ 0.01.

entry zone entity values

1 w 6 10 15 20 25 30 50 100 200

ĉmax 6 7 7 8 9 9 11 13 17

wG 6 7 7 8 9 9 11 13 17

3 w 7 10 15 20 25 30 50 100 200

ĉmax 7 8 9 10 11 12 15 20 27

wG 7 8 9 10 11 12 15 20 26

5 w 8 10 15 20 25 30 50 100 200

ĉmax 8 9 11 12 13 14 17 24 35

wG 8 9 11 12 13 14 17 24 33

7 w 9 10 15 20 25 30 50 100 200

ĉmax 9 10 11 13 14 15 19 27 40

wG 9 10 11 13 14 15 19 26 36
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