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Abstract

A surface with periodic corrugations of sufficiently small periodicity is shown
to be electromagnetically equivalent to an inhomogeneous transition region
(slab). Explicit expressions for the inhomogeneous transition region are found
for one-dimensional corrugations and for two-dimensional corrugations a local
elliptic problem has to be solved in order to find the equivalent electromag-
netic properties. The homogenized surface can be characterized by its surface
impedance dyadic or its reflection dyadic. A few numerical examples illustrate
the theory.

1 Introduction

This paper deals with the homogenization of the electromagnetic parameters of an
interface between two dielectric materials where the interface shows a periodic varia-
tion on a length scale much smaller than the wavelength of the problem. The height
of the periodic variation, however, needs not to be small compared to wavelength,
but is arbitrary.

This problem in not new. Several attempts have been presented in the literature
for the scalar problem [13], but less attention is paid to the electromagnetic case
presumable due to its more complex structure. Approximative methods have been
applied in the past, see e.g., [3, 5, 6], but only few records of the exact limit result
as the periodicity goes to zero seems to be reported in the literature.

The paper by Nevard and Keller [13] addresses both scalar and electromagnetic
problems. The electromagnetic results reported in the paper by Nevard and Keller,
however, are not correct. Specifically, the homogenization result for the electro-
magnetic problem in [13] shows an extra term in the homogenized Maxwell curl
equations implying a coupling equivalent to that of a bianisotropic material. This
form of the curl equations is also inconsistent with the corresponding divergence
equations. This inconsistency was one of the reasons to revisit this homogenization
problem, but also to exploit some of the potential applications of this problem and
to develop its connection to the propagator technique to find the equivalent surface
impedance of the homogenized material.

2 Prerequisites

The lateral position vector in the ê1-ê2-plane is denoted1 y = ê1y1 + ê2y2. The
interface between the two homogeneous, isotropic materials is denoted x3 = h(y) ∈
C1

#(Y ) (C1
#(Y ) is the space of continuously differentiable functions in the unit cell

Y =]0, l1[×]0, l2[ that are Y -periodic), see Figure 1.
The permittivity ε(y, x3) is a Y -periodic function in the lateral variable y, and

1The local (microscopic) position variable is denoted y and the global (macroscopic) position
vector x in this paper.
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Figure 1: The interface problem and its geometry. a) The interface is given by the
function x3 = h(y). The unit cell Y and its two disjoint parts Y± are shown. b) An
interface with two-dimensional corrugations. c) The unit cell Y and its two disjoint
parts Y± in the ê1-ê2-plane.
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defined by

ε(y, x3) =

{
ε+, x3 > h(y)

ε−, x3 < h(y)
(2.1)

and similarly for the permeability µ(y, x3)

µ(y, x3) =

{
µ+, x3 > h(y)

µ−, x3 < h(y)
(2.2)

where ε± and µ± assume constant complex values. As a consequence, space consists
of two different homogeneous, isotropic materials that have an interface with periodic
corrugations in the lateral dimensions.

We denote the minimum and maximum values of h(y) by h− and h+, respectively,
see Figure 1, and the unit normal vector to the surface ν̂, i.e.,

ν̂ =
−∇yh(y) + ê3√
1 + |∇yh(y)|2

where gradient in the ê1-ê2-plane is denoted ∇y = ê1∂1 + ê2∂2. This unit normal
vector is assumed to be directed into the upper region2 with permittivity ε+ and
permeability µ+, see Figure 1.

The intersection between the two different materials in the unit cell Y for fixed
x3 is defined by x3 = h(y) and denoted C, see Figure 1 c). We denote the two
disjoint regions (not necessarily simply connected) separated by C by Y+(x3) and
Y−(x3), respectively. The unit normal vector to C (lies in the ê1-ê2-plane) is

n̂ =
−∇yh(y)

|∇yh(y)|
As a final remark, we notice that a slightly more general geometry with different

permittivity or permeability outside the region x3 ∈ [h−, h+] can also be analyzed
with the methods used in this paper. This leads to rather obvious and trivial
extensions of the results and therefore not pursued here. However, the results are
used in Section 6.

3 The interface problem

We analyse the homogenization of a general two-dimensional corrugated surface
in this section. The special properties of the homogenization of one-dimensional
corrugations are presented in Section 4.

The underlying equations that model the behavior of the electromagnetic field
on the microscale are the Maxwell equations.{

∇× E(x) = ik0µH(x)

∇× H(x) = −ik0εE(x)

2This expression of the unit normal vector assumes the ∇yh(y) �= 0. Standard modifications
have then to be made.
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which is assumed to hold in all space which is filled with the materials described in
Section 2. The permittivity and permeability are given by (2.1) and (2.2), respec-
tively. The wave number in vacuum is denoted k0 = ω

√
ε0µ0, where the permittivity

and permeability of vacuum are denoted ε0 and µ0, respectively. These fields are
subject to boundary conditions at the interface, x3 = h(y), between the two mate-
rials. 


[ν̂(x) × E(x)] = 0

[ν̂(x) × H(x)] = 0

[ν̂(x) · εE(x)] = 0

[ν̂(x) · µH(x)] = 0

(3.1)

where the bracket [ ] denotes the finite jump discontinuity at the boundary x3 =
h(y), i.e., the limit value of the field from above minus its limit value from below.
We have here explicitly assumed that there is no surface current density present.

3.1 Multiple scale analysis—basic equations

We are now in a position to scale the problem and to investigate the limit of the
solution to the Maxwell equations as the periodicity of the corrugations approaches
zero. The permittivity and the permeability of the material are assumed to be
Y ε-periodic in the ê1-ê2-directions, i.e.,{

ε((y + εliêi)/ε, x3) = ε(y/ε, x3)

µ((y + εliêi)/ε, x3) = µ(y/ε, x3)
i = 1, 2

where the Y -periodic permittivity and permeability are given by (2.1) and (2.2).
The solution to the Maxwell equations then satisfies


∇× Eε(x) = ik0µ(y/ε, x3)H

ε(x)

∇× Hε(x) = −ik0ε(y/ε, x3)E
ε(x)

∇ · {ε(y/ε, x3)E
ε(x)} = 0

∇ · {µ(y/ε, x3)H
ε(x)} = 0

x = y + ê3x3 ∈ R
3

We adopt the method of multiple scales in this paper. This method is well
established and found in may places in the literature [1, 12, 18], but for completeness
some of the relevant steps in the derivation are presented. To this end, the solution
is assumed to be of the form{

Eε(x) = E(0)(x, y) + εE(1)(x, y) + . . .

Hε(x) = H(0)(x, y) + εH (1)(x, y) + . . .
x ∈ R

3, y ∈ Y

The nabla operator takes the form ∇ → ∇x + ε−1∇y, and the unit normal vector is
proportional to −ε−1∇yh(y) + ê3.
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Identification of powers of ε after these expansions have been introduced in the
Maxwell equations implies (j = −1, 0, 1, 2, . . .)



∇x × E(j)(x, y) + ∇y × E(j+1)(x, y) = ik0µ(y, x3)H
(j)(x, y)

∇x × H(j)(x, y) + ∇y × H(j+1)(x, y) = −ik0ε(y, x3)E
(j)(x, y)

∇x ·
{

ε(y, x3)E
(j)(x, y)

}
+ ∇y ·

{
ε(y, x3)E

(j+1)(x, y)
}

= 0

∇x ·
{

µ(y, x3)H
(j)(x, y)

}
+ ∇y ·

{
µ(y, x3)H

(j+1)(x, y)
}

= 0

(3.2)

The boundary conditions in (3.1) imply (j = −1, 0, 1, 2, . . .)




[
∇yh(y) × E(j+1)(x, y) − ê3 × E

(j)
t (x, y)

]
= 0[

∇yh(y) × H (j+1)(x, y) − ê3 × H
(j)
t (x, y)

]
= 0[

ε(y, x3)
(
∇yh(y) · E(j+1)

t (x, y) − E
(j)
3 (x, y)

)]
= 0[

µ(y, x3)
(
∇yh(y) · H(j+1)

t (x, y) − H
(j)
3 (x, y)

)]
= 0

x3 = h(y) (3.3)

where the bracket [ ] denotes the jump discontinuity at the boundary, and subscript
t denotes the lateral (transverse) components of the fields. The vertical component
of the fields is denoted by index 3.

3.2 First order term, j = −1

The lowest order term in equation (3.2) above is j = −1, i.e.,


∇y × E(0)(x, y) = ∇y × E
(0)
t (x, y) + ∇yE

(0)
3 (x, y) × ê3 = 0

∇y × H(0)(x, y) = ∇y × H
(0)
t (x, y) + ∇yH

(0)
3 (x, y) × ê3 = 0

∇y ·
{

ε(y, x3)E
(0)
t (x, y)

}
= 0

∇y ·
{

µ(y, x3)H
(0)
t (x, y)

}
= 0

(3.4)

subject to the boundary conditions at x3 = h(y), see (3.3)




[
∇yh(y) × E(0)(x, y)

]
= 0[

∇yh(y) × H(0)(x, y)
]

= 0
,




[
ε(y, x3)∇yh(y) · E(0)

t (x, y)
]

= 0[
µ(y, x3)∇yh(y) · H (0)

t (x, y)
]

= 0

which implies


[
n̂ × E

(0)
t (x, y)

]
= 0[

n̂ × H
(0)
t (x, y)

]
= 0

,




[
E

(0)
3 (x, y)

]
= 0[

H
(0)
3 (x, y)

]
= 0

x3 = h(y)



6

The two curl equations in (3.4) imply that the third components of the electric
and the magnetic fields are independent of y, and, moreover, have the form{

E(0)(x, y) = ∇yΦ(x, y) + E(x)

H(0)(x, y) = ∇yΨ(x, y) + H(x)

where E(x) and H(x) are the average electric and magnetic fields, respectively,
over the unit cell Y .



E(x) =
1

|Y |

∫∫
Y

E(0)(x, y) dSy =
〈
E(0)(x, ·)

〉

H(x) =
1

|Y |

∫∫
Y

H(0)(x, y) dSy =
〈
H(0)(x, ·)

〉

where the average 〈·〉 over the unit cell Y has been introduced.
Insert this form of the solution in the divergence equations in (3.4), and we get

∇y · {ε(y, x3)∇yΦ(x, y)} = −∇y · {ε(y, x3)E(x)} = −∇yε(y, x3) · E(x)

which suggests a solution Φ of the separated form

∇yΦ(x, y) = −∇yχe(y, x3) · E(x) = −∇yχe(y, x3) · Et(x)

where χe(y, x3) = χe
1(y, x3)ê1 + χe

2(y, x3)ê2, and χe
j(y, x3), j = 1, 2, solves the local

problem defined as the solution χe
j(y) = χe

j(y, x3) to the following uniquely soluble
boundary value problem for fixed x3 ∈]h−, h+[



∇y ·
(
ε(y, x3)

(
∇yχe

j(y) − êj

))
= 0

χe
j(y) continuous on x3 = h(y)

ε(y, x3)n̂ ·
(
∇yχe

j(y) − êj

)
continuous on x3 = h(y)

χe
j(y) Y -periodic〈
χe

j

〉
= 0

j = 1, 2

Finally, the first order field contributions are{
E(0)(x, y) = (I3 −∇yχe(y, x3)) · E(x)

H (0)(x, y) =
(
I3 −∇yχh(y, x3)

)
· H(x)

In the special case of piecewise constant permittivity, we have


∇2
yχe

j(y, x3) = 0, x3 �= h(y)

χe
j(y, x3) continuous on x3 = h(y)

ε(y, x3)n̂ ·
(
∇yχe

j(y, x3) − êj

)
continuous on x3 = h(y)

χe
j(y, x3) Y -periodic〈
χe

j

〉
= 0

j = 1, 2

The magnetic problem is solved in a similar fashion by the solution of a local
problem in χh(y, x3).
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3.3 Second order term, j = 0

The next order is j = 0 and is somewhat more complex to analyze and provides
explicit expressions of the homogenized material parameters. The divergence equa-
tions in (3.2) are




∇y ·
{

ε(y, x3)E
(1)(x, y)

}
= −∇x ·

{
ε(y, x3)E

(0)(x, y)
}

∇y ·
{

µ(y, x3)H
(1)(x, y)

}
= −∇x ·

{
µ(y, x3)H

(0)(x, y)
}

and the boundary conditions (3.3) are




[
ε(y, x3)

(
∇yh(y) · E(1)

t (x, y) − E
(0)
3 (x)

)]
= 0[

µ(y, x3)
(
∇yh(y) · H (1)

t (x, y) − H
(0)
3 (x)

)]
= 0

x3 = h(y)

Integrate the divergence equations over the unit cell (over Y+ and Y−, which
depend on x3) and pay special attention to any contributions from the boundary
curve C. We get (E(1)(x, y) is assumed Y -periodic, and n̂ is the outwardly pointing
unit normal vector to C, into the region Y+, and the integration along C(x3) is in
the counter wise direction in the ê1-ê2-plane), see also Lemma A.1 in Appendix A

−
∫
C

n̂ ·
[
ε(y, x3)E

(1)(x, y)
]

dly

=

∫∫
Y+

∇y ·
{

ε(y, x3)E
(1)(x, y)

}
dSy +

∫∫
Y−

∇y ·
{

ε(y, x3)E
(1)(x, y)

}
dSy

= −
∫∫
Y+

∇x ·
{

ε(y, x3)E
(0)(x, y)

}
dSy −

∫∫
Y−

∇x ·
{

ε(y, x3)E
(0)(x, y)

}
dSy

= −∇x · 〈{ε(y, x3) (I2 −∇yχe(y, x3))}〉 · E(x)

−
∫∫
Y+

∂

∂x3

{
ε+E

(0)
3 (x)

}
dSy −

∫∫
Y−

∂

∂x3

{
ε−E

(0)
3 (x)

}
dSy

= −∇x ·
{
εh(x3) · E(x)

}
+ E

(0)
3 (x) [ε]

∫
C

1

|∇yh(y)| dly

where [ε] = ε+ − ε− and where we have introduced the homogenized permittivity

εh(x3) =
1

|Y |

∫∫
Y

ε(y, x3) (I3 −∇yχe(y)) dSy
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The left hand side is rewritten, due to the boundary conditions, and we get

−
∫
C

n̂ ·
[
ε(y, x3)E

(1)(x, y)
]

dly =

∫
C

[ε(y, x3)] E
(0)
3 (x)

|∇yh(y)| dly

= E
(0)
3 (x) [ε]

∫
C

1

|∇yh(y)| dly

and we obtain
∇x ·

{
εh(x3) · E(x)

}
= 0

A similar treatment of the magnetic field gives the homogenized permeability

µh(x3) =
1

|Y |

∫∫
Y

µ(y, x3)
(
I3 −∇yχh(y)

)
dSy

The effective (homogenized) parameters, εh(x3) and µh(x3), can also be written
in terms of a line integral by an application of the Gauss’ theorem in the plane.
We have (the unit normal vector is as above pointing into the region Y+ and the
integration along C(x3) is in the counter wise direction in the ê1-ê2-plane)




εh(x3) =
1

|Y |


(ε+|Y+|(x3) + ε−|Y−|(x3)) I3 + (ε+ − ε−)

∫
C(x3)

n̂χe(y, x3) dly




µh(x3) =
1

|Y |


(µ+|Y+|(x3) + µ−|Y−|(x3)) I3 + (µ+ − µ−)

∫
C(x3)

n̂χh(y, x3) dly




We now proceed with the curl equations (3.2), which are{
∇x × E(0)(x, y) + ∇y × E(1)(x, y) = ik0µ(y, x3)H

(0)(x, y)

∇x × H(0)(x, y) + ∇y × H(1)(x, y) = −ik0ε(y, x3)E
(0)(x, y)

and the boundary conditions are, see (3.3)




[
∇yh(y) × E(1)(x, y) − ê3 × E

(0)
t (x, y)

]
= 0[

∇yh(y) × H(1)(x, y) − ê3 × H
(0)
t (x, y)

]
= 0

x3 = h(y)

The first line in the boundary conditions is split into its horizontal and vertical
components. The result is


ê3 ×

[
∇yh(y)E

(1)
3 (x, y) + E

(0)
t (x, y)

]
= 0

ê3 ·
[
∇yh(y) × E

(1)
t (x, y)

]
= 0

x3 = h(y)
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Integrate the curl equations over the unit cell (over Y+ and Y−, which depend
on x3) and pay special attention to any contributions from the boundary curve C.
We get (E(1)(x, y) is assumed Y -periodic, and the unit normal vector n̂ is as above
pointing into the region Y+ and the integration along C(x3) is in the counter wise
direction in the ê1-ê2-plane)∫∫

Y+

∇x ×
{

E(0)(x, y)
}

dSy +

∫∫
Y−

∇x ×
{

E(0)(x, y)
}

dSy

+

∫∫
Y+

∇y ×
{

E(1)(x, y)
}

dSy +

∫∫
Y−

∇y ×
{

E(1)(x, y)
}

dSy

= ik0

〈
µ(y, x3)

(
I3 −∇yχh(y, x3)

)〉
· H(x) = ik0µ

h(x3) · H(x)

or

∇x × E(x) − ê3 ×
∫
C

[
E

(0)
t (x, y)

]
|∇yh(y)| dly

−
∫
C

n̂ ×
[
E(1)(x, y)

]
dly = ik0µ

h(x3) · H(x)

The line integral is simplified by the use of the boundary conditions. We get

∫
C

n̂ ×
[
E(1)(x, y)

]
dly = −

∫
C

ê3 ×
[
E

(0)
t (x, y)

]
|∇yh(y)| dly

We finally get
∇x × E(x) = ik0µ

h(x3) · H(x)

Similarly, for the curl of the magnetic field holds

∇x × H(x) = −ik0ε
h(x3) · E(x)

3.4 Main theorem of homogenization

In the preceding section we showed that the corrugated surface, in the limit of
vanishing periodicity, is equivalent to an inhomogeneous transition region or slab,
with permittivity εh(x3) and permeability µh(x3) as illustrated in Figure 2. The
explicit permittivity and permeability dyadics, εh(x3) and µh(x3), of the slab were
also found. In this section we collect the main result of the paper given by the
following theorem:

Theorem. The scaled problem, i.e., x3 = h(x1/ε, x2/ε) (Y ε-periodic surface in
R

2), converges in the limit ε → 0 to the following Maxwell equations in the region
x3 ∈]h−, h+[ {

∇ ·
(
εh(x3) · E(x)

)
= 0

∇ ·
(
µh(x3) · H(x)

)
= 0
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ε− µ−

ε+ µ+

ε− µ−

ε+ µ+

{ εh(x3)

µh(x3)

Figure 2: The original material (left) and the homogenized material (right).

and {
∇× E(x) = ik0µ

h(x3) · H(x)

∇× H(x) = −ik0ε
h(x3) · E(x)

where (dSy = dy1 dy2)


εh(x3) =
1

|Y |

∫∫
Y

ε(y, x3) (I3 −∇yχe(y)) dSy

µh(x3) =
1

|Y |

∫∫
Y

µ(y, x3)
(
I3 −∇yχh(y)

)
dSy

(3.5)

The vector-valued function χe(y, x3) = χe
1(y, x3)ê1 + χe

2(y, x3)ê2 solves the local
problem



∇y ·
(
ε(y, x3)

(
∇yχe

j(y) − êj

))
= 0

χe
j(y) continuous on x3 = h(y)

ε(y, x3)n̂ ·
(
∇yχe

j(y) − êj

)
continuous on x3 = h(y)

χe
j(y) Y -periodic〈
χe

j

〉
= 0

j = 1, 2 (3.6)

Outside the slab x3 ∈ [h−, h+] the permittivity is εh(x3) = I3ε±, respectively. A
similar local problem holds for the magnetic field.

Note that the results presented by Nevard and Keller [13] have two extra terms
in the curl equations. These terms should not be present.

We conclude that the effective permittivity, εh(x3), and permeability, µh(x3),
both have the form 

A11 A12 0
A21 A22 0
0 0 A33
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Y

ε+ µ+ ε− µ−

Y−Y+ Y+

ε+ µ+

l1y1 y20

Figure 3: The unit cell for a surface with two-dimensional corrugations.

in a Cartesian coordinate representation of the effective permittivity and permeabil-
ity dyadics. The 33-component has always the form

εh
33 = 〈ε(·, x3)〉 , µh

33 = 〈µ(·, x3)〉

where the average over the unit cell Y is

〈f(·)〉 =
1

|Y |

∫∫
Y

f(y) dSy

4 One-dimensional interface problem

There are considerable implications to be made if the corrugations of the surface
are only in one dimension, i.e., x3 = h(y1) (with cross section as in Figure 1 a)). In
this section we investigate these simplifications in more details.

We assume there are two regions in the unit cell, Y+ and Y−, with boundary
located at y1 and y2, respectively (we assume Y+ is the two intervals ]0, y1[∪]y2, l1[
and Y− is the interval ]y1, y2[), see Figure 3. These boundary locations depend on
x3. Generalizations to more complex geometries are straightforward.

The local problem is solved in Appendix B, see (B.1) (|Y | = l1, |Y+| = l1+y1−y2

and |Y−| = y2 − y1). The solution is

χe
1(y1, x3) =




|Y−| (2y1 − y1 + |Y | − y2) (ε+ − ε−)

2|Y+|ε− + 2|Y−|ε+

, 0 < y1 < y1

|Y+| (y1 + y2 − 2y1) (ε+ − ε−)

2|Y+|ε− + 2|Y−|ε+

, y1 < y1 < y2

|Y−| (2y1 − y1 − |Y | − y2) (ε+ − ε−)

2|Y+|ε− + 2|Y−|ε+

, y2 < y1 < l1

and consequently

∂χe
1(y1, x3)

∂y1

= ±|Y∓|
ε+ − ε−

|Y+|ε− + |Y−|ε+

, y1 ∈ Y±
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The second component χe
2 = constant, where the value of the constant is immaterial.

The effective permittivity, given by (3.5), can be written as

εh
11(x3) =

ε+|Y+(x3)|
|Y | +

ε−|Y−(x3)|
|Y | − |Y+||Y−| (ε+ − ε−)2

|Y | (|Y+|ε− + |Y−|ε+)

which we rewrite as

εh
11(x3) =

|Y |
|Y+(x3)|/ε+ + |Y−(x3)|/ε−

since

εh
11 =

1

|Y |

(
ε+|Y+| + ε−|Y−| −

|Y+||Y−| (ε+ − ε−)2

|Y+|ε− + |Y−|ε+

)

=
ε+ε− (|Y+|2 + |Y−|2 + 2|Y+||Y−|)

|Y | (|Y+|ε− + |Y−|ε+)
=

ε+ε−|Y |
|Y+|ε− + |Y−|ε+

The other two non-zero components of the effective permittivity are trivial averages.

εh
22(x3) = εh

33(x3) =
ε+|Y+(x3)|

|Y | +
ε−|Y−(x3)|

|Y |

The result can be summarized in

εh
ij(x3) =


 1

〈1/ε〉(x3)
0 0

0 〈ε〉 (x3) 0
0 0 〈ε〉 (x3)


 (4.1)

The solution to the corresponding magnetic homogenization problem is

µh
ij(x3) =


 1

〈1/µ〉(x3)
0 0

0 〈µ〉 (x3) 0
0 0 〈µ〉 (x3)




The lowest order electric field is

E(0)(x, y) = (I3 −∇yχe(y, x3)) · E(x)

=

(
I3 ∓ |Y∓|

ε+ − ε−
|Y+|ε− + |Y−|ε+

ê1ê1

)
· E(x)

=
ε∓|Y |

|Y+|ε− + |Y−|ε+

ê1E1(x) + ê2E2(x) + ê3E3(x)

y1 ∈ Y±

4.1 Perfectly conducting boundary as a limit case

The limit values of the effective permittivity and the fields as the lower material
becomes a perfectly conducting material is of interest. It is important to realize
that the perfectly conducting case already is a limit of vanishing penetration depth.
Since the homogenization also is a limit process, the question whether these limits
commute or not has been debated [2, 11, 14, 15].
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In this paper we present the limit of a perfectly boundary by letting ε− → ∞.
The effective permittivity in the slab x3 ∈]h−, h+[ then becomes

εh
ij(x3) =


ε+

|Y |
|Y+(x3)| 0 0

0 ∞ 0
0 0 ∞




and the lowest order electric field is

E(0)(x, y) =

{
|Y |
|Y+|
0

}
ê1E1(x) + ê2E2(x) + ê3E3(x), y1 ∈ Y±

5 Propagators and surface impedance dyadic

As a result of the homogenization analysis above, the action of the corrugated surface
is equivalent to an inhomogeneous transition region. This inhomogeneous transition
region, x3 ∈]h−, h+[, can be characterized with an effective surface impedance, Z,
or a reflection dyadic, r, if the incidence field is a plane wave from above (the
region x3 > h+). The incident direction of this plane wave is parameterized by its
horizontal wave vector kt (spatial Fourier variable in the ê1-ê2-plane). The angle of
incidence is determined by the size and the direction of this wave vector. Specifically,
the length determines the angle of incidence θ+ (and the angle of transmission θ−),
i.e., kt = |kt| = k± sin θ±, where k± = ω

√
ε0µ0ε±µ±. The direction of kt in the

ê1-ê2-plane determines the azimuthal direction φ of the incident wave, i.e., kt =
kt (cos φê1 + sin φê2).

5.1 Surface impedance

The relation between the horizontal components of the electric and magnetic fields
Et and H t, respectively, at x3 = h+, is characterized by the surface impedance
dyadic Z defined as

Et(h+) = η0Z · (ê3 × H t(h+)) = η0Z · J · H t(h+)

where J = ê3 × I3 = ê3 × I2 denotes a projection onto the ê1-ê2-plane followed by
a rotation of π/2 in the ê1-ê2-plane. The identity dyadic in R

2 and R
3 are denoted

I2 and I3, respectively.
The propagators, Pij(h+, h−), i, j = 1, 2, of the inhomogeneous slab, x3 ∈

]h−, h+[, relate the field at the top and bottom of the slab. They are defined as(
Et(h+)

η0J · H t(h+)

)
=

(
P11(h+, h−) P12(h+, h−)
P21(h+, h−) P22(h+, h−)

)
·
(

Et(h−)
η0J · H t(h−)

)
(5.1)

Efficient methods for analytical or numerical computation algorithms of these prop-
agators are found in e.g., [8, 9, 16].
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5.1.1 Perfectly conducting backing

If the lower surface of the inhomogeneous transition region is perfectly conducting
the tangential electric field is zero, i.e., Et(h−) = 0, and we get from (5.1)

Et(h+) = P12(h+, h−) · η0J · H t(h−) = P12(h+, h−) · P−1
22 (h+, h−) · η0J · H t(h+)

This is an exact relation between the tangential electric and magnetic fields on the
upper part of the slab if the lower material has a perfectly conducting backing. This
then gives the explicit expression of the surface impedance dyadic of the slab.

Z = P12(h+, h−) · P−1
22 (h+, h−) (5.2)

5.1.2 Dielectric backing

We now address the penetrable case, and assume there are sources only above the
interface. In the region below the transition region the fields satisfy a radiation
condition which is most conveniently expressed with the wave splitting concept
defined as [16](

F +(kt, z)
F−(kt, z)

)
=

1

2

(
I2 −W−(kt)
I2 W−(kt)

)
·
(

Et(kt, z)
η0J · H t(kt, z)

)
(5.3)

where

W−(kt) = ê‖ê‖

(
k2
− − k2

t

)1/2

k−
+ ê⊥ê⊥

k−

(k2
− − k2

t )
1/2

= ê‖ê‖ cos θ− +
ê⊥ê⊥
cos θ−

where ê‖ = kt/kt = cos φê1 + sin φê2 and ê⊥ = J · ê‖ = cos φê2 − sin φê1.
The appropriate radiation condition at the lower part of the transition region is

F +(h−) = 0 (only down-going waves) which implies

Et(h−) = W− · η0J · H t(h−)

Equation (5.1) then implies

Et(h+) =
(
P11(h+, h−) · W− + P12(h+, h−)

)
·
(
P21(h+, h−) · W− + P22(h+, h−)

)−1 · η0J · H t(h+)

and the surface impedance dyadic can be identified as

Z =
(
P11(h+, h−) · W− + P12(h+, h−)

)
·
(
P21(h+, h−) · W− + P22(h+, h−)

)−1

We observe that the perfectly conducting case, (5.2), is a special case of this general
expression, viz., W− = 0.
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5.2 Reflection dyadic

The reflection dyadic r of the slab can also be calculated. It relates the up- and
down-going fields F± at x3 = h+ by the use of a wave splitting similar to the one
in (5.3), i.e.,

F +(kt, h+) = r · F−(kt, h+)

and {
Et(h+) = r · F−(h+) + F−(h+)

η0W
+ · J · H t(h+) = −r · F−(h+) + F−(h+)

where

W+(kt) = ê‖ê‖

(
k2

+ − k2
t

)1/2

k+

+ ê⊥ê⊥
k+

(k2
+ − k2

t )
1/2

= ê‖ê‖ cos θ+ +
ê⊥ê⊥
cos θ+

We recombine these expressions to

Et(h+) = (I2 + r) · (I2 − r)−1 · η0W
+ · J · H t(h+)

and the surface impedance can be expressed in the reflection dyadic as

Z = (I2 + r) · (I2 − r)−1 · W+

This expression can be inverted to find the reflection dyadic in the impedance dyadic.
The result is

r = −
(
I2 + Z · W+−1

)−1

·
(
I2 − Z · W+−1

)
For a perfectly conducting backing, the impedance dyadic in (5.2) implies

r = −
(
I2 + P12(h+, h−) · P−1

22 (h+, h−) · W+−1
)−1

·
(
I2 − P12(h+, h−) · P−1

22 (h+, h−) · W+−1
)

or

r = −
(
I2 + P12(h+, h−) ·

(
W+ · P22(h+, h−)

)−1
)−1

·
(
I2 − P12(h+, h−) ·

(
W+ · P22(h+, h−)

)−1
)

=
(
P12(h+, h−) − W+ · P22(h+, h−)

)
·
(
P12(h+, h−) + W+ · P22(h+, h−)

)−1

which is in agreement with [9, p. 11].

5.3 Uniaxial materials

The theorem in Section 3.4 shows that the inhomogeneous transition region in gen-
eral is anisotropic. A special case of anisotropy with many applications is the uni-
axial case. In this section we treat the propagators for such a material in some
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detail. In [16] the propagators for homogeneous uniaxial materials are derived for
some special cases, and in this section we extend these results to inhomogeneous
profiles. The material is assumed to be non-magnetic, µ+ = µ− = 1.

The permittivity dyadic of the uniaxial medium can be written as

ε(x3) = ε⊥(x3) (I3 − ûû) + ε‖(x3)ûû

where the unit normal vector û defines the optical axis of the material. The permit-
tivity ε‖(x3) is the permittivity along the optical axis and ε⊥(x3) is the permittivity
orthogonal to this direction.

To proceed, the Maxwell equations are rewritten in a system of first order equa-
tions in the tangential components [16]

d

dx3

(
Et(x3)

η0J · H t(x3)

)
= ik0M(kt, x3) ·

(
Et(x3)

η0J · H t(x3)

)

= ik0

(
M11(kt, x3) M12(kt, x3)
M21(kt, x3) M22(kt, x3)

)
·
(

Et(x3)
η0J · H t(x3)

)

The blocks of the material dyadic, Mij(kt, x3), i, j = 1, 2, for a nonmagnetic, elec-
trically uniaxial material are [16]



M11 = − (ε‖(x3) − ε⊥(x3))u3

k0

(
ε⊥ + (ε‖ − ε⊥)u2

3

)ktut

M12 = −I2 +
1

k2
0

(
ε⊥ + (ε‖ − ε⊥)u2

3

)ktkt

M21 = −ε⊥(x3)I2 −
ε⊥(x3)(ε‖(x3) − ε⊥(x3))

ε⊥ + (ε‖ − ε⊥)u2
3

utut −
1

k2
0

J · ktkt · J

M22 = − (ε‖(x3) − ε⊥(x3))u3

k0

(
ε⊥ + (ε‖ − ε⊥)u2

3

)utkt = Mt
11

(5.4)

where the projection of the unit normal vector û on the ê1-ê2 plane is ut = I2 · û
and the projection along the ê3-axis is u3 = û · ê3. The identity dyadic in R

2 is
denoted I2.

Notice that the result holds for materials that are stratified in the ê3-direction,
not only for the homogeneous case.

5.3.1 Vertical optical axis

In our first example we let the optical axis be vertical, i.e., û = ê3. We have ut = 0
and the projection along the z-axis is u3 = 1. The dyadic M then is, see (5.4)



M11(x3) = M22(x3) = 0

M12(x3) = −(ê‖ê‖ + ê⊥ê⊥) +
k2

t

ε‖(x3)k2
0

ê‖ê‖

M21(x3) = −ε⊥(x3)(ê‖ê‖ + ê⊥ê⊥) +
k2

t

k2
0

ê⊥ê⊥
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The four two-dimensional propagator dyadics, Pij, i, j = 1, 2, satisfy the same
set of ordinary differential equations (ODE) as the fields [17], i.e.,

d

dx3

P(kt, x3, h−) = ik0M(kt, x3) · P(kt, x3, h−) (5.5)

together with the initial condition

P(kt, h−, h−) =

(
P11(kt, h−, h−) P12(kt, h−, h−)
P21(kt, h−, h−) P22(kt, h−, h−)

)
=

(
I2 0
0 I2

)
= I4

Due to the fact that M11 = M22 = 0, we immediately see that propagator
equation, (5.5), splits into two non-coupling sets, viz.,


d

dx3

P11(x3, h−) = ik0M12(x3) · P21(x3, h−)

d

dx3

P21(x3, h−) = ik0M21(x3) · P11(x3, h−)

and 


d

dz
P12(x3, h−) = ik0M12(x3) · P22(x3, h−)

d

dz
P22(x3, h−) = ik0M21(x3) · P12(x3, h−)

which is a relation between two of the propagators Pij(x3, h−).
The propagators is diagonal in the basis {ê‖, ê⊥}, i.e.,

Pij(x3, h−) = PTM
ij (x3, h−)ê‖ê‖ + PTE

ij (x3, h−)ê⊥ê⊥, i, j = 1, 2

The TM-case, ‖-polarization, splits in two non-coupling sets of first order ordi-
nary differential equations.


d

dx3

PTM
11 = ik0

(
k2

t

k2
0ε‖(x3)

− 1

)
PTM

21

d

dx3

PTM
21 = −ik0ε⊥(x3)P

TM
11

{
PTM

11 (h−, h−) = 1

PTM
21 (h−, h−) = 0




d

dx3

PTM
12 = ik0

(
k2

t

k2
0ε‖(x3)

− 1

)
PTM

22

d

dx3

PTM
22 = −ik0ε⊥(x3)P

TM
12

{
PTM

12 (h−, h−) = 0

PTM
22 (h−, h−) = 1

(5.6)

Note that the equations are similar, but the initial conditions differ.
For the other polarization, ⊥-polarization, we obtain the TE-case, which also
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splits in two non-coupling sets of first order ordinary differential equations.


d

dx3

PTE
11 = −ik0P

TE
21

d

dx3

PTE
21 = ik0

(
k2

t

k2
0

− ε⊥(x3)

)
PTE

11

{
PTE

11 (h−, h−) = 1

PTE
21 (h−, h−) = 0




d

dx3

PTE
12 = −ik0P

TE
22

d

dx3

PTE
22 = ik0

(
k2

t

k2
0

− ε⊥(x3)

)
PTE

12

{
PTE

12 (h−, h−) = 0

PTE
22 (h−, h−) = 1

(5.7)

Again, the equations are similar, but the initial conditions differ.
For a general permittivity profile, the equations (5.6) an (5.7) have to be solved

numerically.

5.3.2 Homogeneous case

For an homogeneous profile the propagator dyadics can be found explicitly. The
general solution of (5.5) for an homogeneous profile is (M independent of x3). The
result is

P(kt, x3, h−) = eik0(x3−h−)M(kt)

where the material dyadic M has the form

M =

(
0 M12

M21 0

)

This form of dyadic has four distinct eigenvalues, viz.,

λ1,2,3,4 = ±

√
1

2
Tr (M12 · M21) ±

√
1

4
(Tr (M12 · M21))

2 − det (M12 · M21)

which are arranged in two pairs (λ2
+ �= λ2

−)

λ1 = −λ4 = λ+, λ2 = −λ3 = λ−

The propagator can then be obtained as [16] (d = x3 − h−)

eik0dM =
1

λ2
− − λ2

+

(
I4λ

2
− − M · M

)
·
(
I4 cos (k0dλ+) +

i

λ+

M sin (k0dλ+)

)

− 1

λ2
− − λ2

+

(
I4λ

2
+ − M · M

)
·
(
I4 cos (k0dλ−) +

i

λ−
M sin (k0dλ−)

)
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x3

Figure 4: The geometry of the cones in Section 6.1.

5.3.3 One-dimensional profile

For a one-dimensional profile the homogenized permittivity profile is given by (4.1).
Moreover, in this case the optical axis is û = ê1 and therefore u3 = 0, which imply
that the dyadic M is, see (5.4)



M11 = M22 = 0

M12 = −I2 +
k2

t

〈ε〉 (x3)k2
0

ê‖ê‖

M21 = − ê1ê1

〈1/ε〉 (x3)
− 〈ε〉 (x3)ê2ê2 +

k2
t

k2
0

ê⊥ê⊥

since by (4.1) ε−1
‖ (x3) = 〈1/ε〉 (x3) and ε⊥(x3) = 〈ε〉 (x3). The results in Section 5.3.2

can then be applied to obtain the propagators.

6 Examples

In this section, we present two examples that illustrate the theory developed in this
paper. In the first example the corrugations have a circular cross section so the
material is uniaxial with optical axis û = ê3. The second is the most simple one-
dimension case with constant-width corrugations. This second case can be solved
analytically by the results in Sections 5.3.3 and 5.3.2.

6.1 Conical corrugations

Consider circular cones with radius at the base b and height h in a quadratic lattice
with periodicity a, see Figure 4. This geometry has important applications in radar
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Figure 5: The reflection dyadic in the complex plane for the cone geometry shown
in the inserted figure. The cone structure is backed with a perfectly conducting
plane. The material parameters are b/a = 0.45, h/d = 0.3, d/a = 6, θ = 30◦,
ε− = 10(1 + i), and ε+ = 1. The finer dashed line depicts the TM-case and the
coarser dashed line the TE-mode. The frequency varies along the curve. The dots
show k0a = 0, 0.1, 0.2, . . . , 1 (k0a = 0 at −1).

absorbing materials and has been treated in the literature with different methods [4,
5, 10]. The permittivity of the inclusion is ε−. These cones are on top of an isotropic
material with the same permittivity ε− such that the total height is d. The radius
r(x3) of the cones then varies in the interval ]d − h, d[ as

r(x3) = b (d − x3) /h, (d − h) < x3 ≤ d

The cone structure is backed with a perfectly conducting plane at x3 = 0.
The Maxwell Garnett mixture formula [19] is used as an approximation to the

solution of the local problem, (3.6), in two spatial dimensions. Due to the circular
symmetry of the problem this approximation is very good [7]. We get

εeff = 1 +
2f(εr − 1)

2 + (1 − f)(εr − 1)
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Figure 6: The geometry of the problem in Section 6.2.

The permittivity εr is relative the background permittivity ε+, i.e., εr = ε−/ε+, and
f the volume fraction of the inclusion.

The homogenized material becomes uniaxial with vertical optical axis, and by
the Theorem in Section 3.4, we get


ε‖(x3) =

{
ε−, 0 ≤ x3 ≤ (d − h)

ε+ + (ε− − ε+)πr2(x3)
a2 , (d − h) < x3 ≤ d

ε⊥(x3) =

{
ε−, 0 ≤ x3 ≤ (d − h)

ε+ + 2πr2(x3)(ε−−ε+)/a2

2ε++(1−πr2(x3)/a2)(ε−−ε+)
, (d − h) < x3 ≤ d

These values of the permittivity are then used in the numerical solution of equa-
tions (5.6) and (5.7) to find the propagators. The reflection dyadics is then found
by utilizing the results in Section 5.2. The result is depicted in Figure 5. For
high frequencies the homogenized profile does not model the interaction of the inci-
dent electromagnetic wave with the cone structure very adequately, but independent
computations indicate that the solution is accurate up to k0a ≈ 0.2–0.3 [20].

6.2 One-dimensional example

The most simple one-dimensional geometry is depicted in Figure 6. The width
of the corrugations in this case is constant and the transition layer is therefore
homogeneous.

In the limit of a perfectly conducting material in the lower medium, we get in
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the ê1-ê2-basis

Z =

(
−i tan(k0hΨ)

Ψ
0

0 0

)

where Ψ =
√

ε11 − sin2 θ sin2 φ =
√

ε11 − k2
y/k

2
0, and ε11 = ε+a/(a−w) (0 < w < a is

the width of the ridges, h is their heights, and a is the periodicity of the corrugations,
se Figure 6). This result is consistent with the result reported in [6] provided the
permittivity of the material in the trough is interpreted as ε11.

The reflection dyadics of the corrugated surface is

r =

(
−Ψ cos θ+i(1−sin2 θ sin2 φ) tan(k0hΨ)

Ψ cos θ−i(1−sin2 θ sin2 φ) tan(k0hΨ)

−2i sin2 θ sin φ cos φ tan(k0hΨ)

Ψ cos θ−i(1−sin2 θ sin2 φ) tan(k0hΨ)

0 −1

)

7 Conclusions

It is shown in this paper that a corrugated surface can be replaced by an inhomo-
geneous transition region in the limit of vanishing periodicity of the corrugations.
The explicit expressions of the homogenized permittivity and permeability profiles
can be obtained by solving a two-dimensional local problem. Several cases can be
solved analytically, which leads to simple numerical computations.
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Appendix A Differential geometry

Lemma A.1. Assume Ω is a bounded, open set in R
3 with C1,1 boundary, ∂Ω. The

outward pointing unit normal vector to ∂Ω is ν̂, see Figure 7. We denote by S(x3)
the intersection between Ω and the plane x3 = constant. The boundary curve of
S(x3) is denoted C(x3), and the outward pointing unit normal vector to this curve
in the plane x3 = constant is denoted n̂. Then, for every function f ∈ H1(Ω), we
have ∫∫

S(x3)

∂f(ρ, x3)

∂x3

dSρ = F ′(x3) +

∫
C(x3)

f(ρ, x3)
ν̂ · ê3

ν̂ · n̂ dlρ

where the position vector in the ê1-ê2-plane is denoted ρ = ê1x1 + ê2x2, and

F (x3) =

∫∫
S(x3)

f(ρ, x3) dSρ

Here dSρ = dx1 dx2 denotes the surface measure of S(x3), and dlρ denotes the curve
measure of C(x3), which is oriented such that the direction in the right-hand sense
coincides with the positive ê3-direction.
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ν̂

x3

∂Ω

S(x3) Ω

ê3

C(x3)

Figure 7: The cross section area S(x3) of the intersection between Ω and the plane
x3 = constant. The plane S(x3) is perpendicular to the ê3-axis.

Proof of Lemma A.1: Let η > 0 and apply the divergence theorem to a vector-
valued field ê3f(ρ, x3) in the volume V , which is a subset of Ω bounded between
S(x3) and S(x3 + η). The result is∫∫∫

V

∇ · (ê3f(ρ, x3)) dv = F (x3 + η) − F (x3) +

∫∫
∂Ω∩V

(ν̂ · ê3) f(ρ, x3) dS

where dv denotes the volume measure of Ω , and dS denotes the surface measure of
∂Ω. In the limit η → 0 we get∫∫

S(x3)

∂f(ρ, x3)

∂x3

dSρ = F ′(x3) +

∫
C(x3)

f(ρ, x3)
ν̂ · ê3

ν̂ · n̂ dlρ

since for sufficiently small η, dv = η dSρ, and dS = η dlρ/(ν̂ · n̂), and the lemma is
proven.

Corollary A.1. If the surface ∂Ω be defined by x3 = h(ρ), then

ν̂ · ê3

ν̂ · n̂ =
±1

|∇yh(y)|

The plus-sign is applicable if n̂ · ∇yh < 0 and the minus-sign if n̂ · ∇yh > 0. The
Lemma A.1 becomes∫∫

S(x3)

∂f(ρ, x3)

∂x3

dSρ = F ′(x3) ±
∫

C(x3)

f(ρ, x3)

|∇yh(y)| dlρ

Proof of Corollary A.1: This is easily proven by using the form of the normal
vectors ν̂ and n̂ in Section 2.
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YC

Figure 8: The region Y and its boundary C.

A.1 Alternative lemma

Lemma A.2. Let the region Y (x3) ⊂ R
2 be defined as the interior of the closed,

smooth curve C(x3) defined by x3 = h(y), see Figure 8. The position vector in the
ê1-ê2-plane is denoted y = ê1y1 + ê2y2. Then

∂

∂x3

∫∫
Y (x3)

f(y, x3) dSy =

∫∫
Y (x3)

∂f(y, x3)

∂x3

dSy +

∫
C(x3)

f(y, x3)

|∇yh(y)| dly

The curve C(x3) is evaluated in the counter-clockwise direction if n̂ · ∇yh > 0 (n̂
is the outward directed unit normal vector to Y (x3)). If n̂ · ∇yh < 0 then the curve
C(x3) is evaluated in the clockwise direction.

Proof of Lemma A.2: The definition of the derivative on the left hand side is
(we assume η > 0)

∂

∂x3

∫∫
Y (x3)

f(y, x3) dSy = lim
η→0

1

η


 ∫∫

Y (x3+η)

f(y, x3 + η) dSy −
∫∫

Y (x3)

f(y, x3) dSy




= lim
η→0

1

η


 ∫∫

Y (x3+η)

(f(y, x3 + η) − f(x3)) dSy




+ lim
η→0

1

η


 ∫∫

Y (x3+η)

f(y, x3) dSy −
∫∫

Y (x3)

f(y, x3) dSy




The distance dry orthogonal to the curves, see Figure 9, is (we assume the gradient
is pointing outwards)

dry |∇yh(y)| = dry · ∇yh(y) = dh = η
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Y (x3 + η) Y (x3)

dry

Figure 9: The annulus between the regions Y (x3 +η) and Y (x3). Here n̂ ·∇yh > 0
provided η > 0.

The area element for the annulus is dry dly, and therefore the derivative is

∂

∂x3

∫∫
Y (x3)

f(y, x3) dSy =

∫∫
Y (x3)

∂f(y, x3)

∂x3

dSy + lim
η→0

1

η

∫
C(x3+θη)

ηf(y, x3)

|∇yh(y)| dly

=

∫∫
Y (x3)

∂f(y, x3)

∂x3

dSy +

∫
C(x3)

f(y, x3)

|∇yh(y)| dly

where θ ∈]0, 1[, and the lemma is proven.

Appendix B One-dimensional interface case

In this appendix we solve the local problem for a geometry where the corrugations
is only in one dimension, i.e., x3 = h(y1), see Figure 1. The unit cell is Y =]0, l1[.

If the surface only varies in the ê1-direction, the periodicity in the ê2-direction
is immaterial — any length in this direction is a material periodicity — and χe

1 and
χe

2 vary only in the ê1-direction. The local problem becomes


d

dy1

(
ε(y1, x3)

(
dχe

1(y1, x3)

dy1

− 1

))
= 0, x3 ∈]0, l1[

χe
1(y1, x3) continuous on x3 = h(y1)

ε(y1, x3)

(
dχe

1(y1, x3)

dy1

− 1

)
continuous on x3 = h(y1)

χe
1(y1, x3) Y -periodic

〈χe
1〉 = 0
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and 


d

dy1

(
ε(y1, x3)

dχe
2(y1, x3)

dy1

)
= 0, x3 ∈]0, l1[

χe
2(y1, x3) continuous on x3 = h(y1)

ε(y1, x3)
dχe

2(y1, x3)

dy1

continuous on x3 = h(y1)

χe
2(y1, x3) Y -periodic

〈χe
2〉 = 0

The second component χe
2 = 0 due to the unique solvability of the local problem.

The first component χe
1 is now addressed. We get from the differential equation,

consistent with the continuity requirement of the derivative, that

ε(y1, x3)

(
dχe

1(y1, x3)

dy1

− 1

)
= C ′, x3 ∈]0, l1[

The value of the constant is −εh
11.

We assume there are two regions in the unit cell, Y+ and Y−, with boundary
located at y1 and y2, respectively, see Figure 3. Integration w.r.t. y1 gives

χe
1(y1, x3) =




C ′y1

ε+

+ y1 + C1, 0 < y1 < y1 (Y+)

C ′y1

ε−
+ y1 + C2, y1 < y1 < y2 (Y−)

C ′y1

ε+

+ y1 + C3, y2 < y1 < l1 (Y+)

Y -periodicity, continuity over the boundaries, and zero average imply


C1 =
C ′l1
ε+

+ l1 + C3

C ′y1

ε+

+ C1 =
C ′y1

ε−
+ C2

C ′y2

ε−
+ C2 =

C ′y2

ε+

+ C3

C ′(y12
+ l21 − y22

)

2ε+

+ C1y
1 +

C ′(y22 − y12
)

2ε−
+ C2(y

2 − y1) + C3(l1 − y2) = − l21
2

with a unique solution since the determinant∣∣∣∣∣∣∣∣∣∣

1 0 −1 − l1
ε+

1 −1 0 y1

ε+
− y1

ε−

0 1 −1 y2

ε−
− y2

ε+

y1 (y2 − y1) (l1 − y2)
y12

+l21−y22

2ε+
+ y22−y12

2ε−

∣∣∣∣∣∣∣∣∣∣
= |Y |

( |Y+|
ε+

+
|Y−|
ε−

)

is non-zero.
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The solution is (|Y | = l1, |Y+| = l1 + y1 − y2 and |Y−| = y2 − y1)


C1 =
|Y−| (|Y+| − 2y1) (ε+ − ε−)

2|Y+|ε− + 2|Y−|ε+

C2 =
|Y+| (|Y−| + 2y1) (ε+ − ε−)

2|Y+|ε− + 2|Y−|ε+

C3 = −|Y−| (|Y | + |Y−| + 2y1) (ε+ − ε−)

2|Y+|ε− + 2|Y−|ε+

C ′ = − |Y |ε+ε−
|Y+|ε− + |Y−|ε+

and the solution to the local problem then becomes

χe
1(y1, x3) =




|Y−| (2y1 − y1 + |Y | − y2) (ε+ − ε−)

2|Y+|ε− + 2|Y−|ε+

, 0 < y1 < y1

|Y+| (y1 + y2 − 2y1) (ε+ − ε−)

2|Y+|ε− + 2|Y−|ε+

, y1 < y1 < y2

|Y−| (2y1 − y1 − |Y | − y2) (ε+ − ε−)

2|Y+|ε− + 2|Y−|ε+

, y2 < y1 < l1

(B.1)
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