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Abstract— The paper presents sufficient and almost nec-
essary conditions for the presence of periodic solutions for
zero dynamics of virtually constrained under-actuated Euler-
Lagrange system. This result is further extended to detect
periodic solutions for a class of hybrid systems in the plane
and analyze their orbital stability and instability. Illustrative
examples are given.

Index Terms— Motion planning, Hybrid systems, Orbital
feedback stabilization, Virtual holonomic constraints, Lyapunov
lemma

I. INTRODUCTION

This note addresses the question of description of the
qualitative behaviour of a particular class of second order
dynamical systems. The following systems

d?q

a’q dg
dt?

2
a(g)—3 + 6(q) <dt) +7(q) =0, (D)
are investigated. Here ¢ € R'; a(q), B(q) and v(q) are
continuous scalar functions.

It turns out that the dynamical systems (1) naturally appear
following the control design method based on an idea of
virtual holonomic constraints recently elaborated in [7], [8]
and others.

To give an insight how the system (1) gets into consider-
ation, let us briefly repeat the motivation example from [8]:
Consider the cart-pendulum system

(M +m)i+mlcos06 —mlsinfd® = f o)

mlcosO & +ml20 —mglsing =

where x € R is the horizontal displacement of the cart, § €
St is the angle between the pendulum rod and the vertical
axis, which is zero at the upright position; m, M are the
masses of the pendulum and the cart respectively; [ is the
distance from the pendulum’s suspension to the center of
mass of the rod; f is the control variable, see Fig. 1.

0-7803-9568-9/05/$20.00 ©2005 IEEE

Fig. 1.

The cart pendulum system

The problem is then how to generate and further orbitally
stabilize a periodic motion (with approximately given fre-
quency w.) of the pendulum around the upright equilibrium
when the cart moves forwards with a prescribed average
velocity (= V) over the oscillation period.

To simplify the calculations, we will assume that m =
M =1 = 1. Then the equations (2) are

2i + cos 0 — sin 00? = f 3)

cos@i‘—i—é—gsine =0 4)

Consider the following virtual constraint that relates the
position of the cart x and the angle of the pendulum 6

r=vat-t - [1+ L] m (L) g

2 cosf

where w,. is a desired frequency of the pendulum oscillations;
V. is a desired speed of the cart; ¢ is time; ¢y is an initial
time instant.

Supposing that there is a controller' that ensures that (5)
holds along the solutions of the closed-loop system, then we

!t is constructed in [8].
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can rewrite (3)—(4) into the new form

. g 1 . g | sinf .,
1+ = 0 1+ = 0 =
o { +w§} cos + [ erg] cos2 6 0 ©
cos@i—i—é—gsinﬁ = 0@

where (6) comes from double differentiation of (5). Solving
and substituting the expression for & from (6)—(7), one gets
the following equation for 6

q g | sind .
—=0—- |1+ = 0 — 0=0
w? { " wg] cos 6 g=m
or equivalently
. 27 «inf -
i+ {ch} S g2 4 w2 sing = 0. (8)
g | cosf

The system (8) has the same structure as the general equation
(1) with

27 .
al@) =1, B(9) = [1 + u;;} %, 7(0) = w?sinf
Only solutions of (8) could be observed in the closed loop
(after transition) if a controller stabilizes the geometrical

relations (5).

The problem of providing a qualitative description of the
dynamics of (8) or in general (1) becomes then of interest?. It
happens that the system (1) cannot have asymptotically stable
solutions, and search of conditions when it has bounded
motions is quite nontrivial.

The situation gets even more complicated, if one includes
and takes into consideration a discontinuous update law

la(t4), 4(t4)] = F(q(t-), q(t-),t-) ©)

acting from time to time on solutions of (1). Introduction of
the map (9) makes the combined system (1), (9) hybrid in
nature. Such systems have gained a lot of attention during
the last decade. Recently the application of hybrid control
strategies has been used for generating periodic pattens for
locomotion of walking robots, see [1], [6] and references
therein.

The main contribution of this paper is the derivation
of new sufficient conditions for the presence of periodic
solutions in dynamics of the continuous-time system (1) and
the hybrid system (1), (9). Both test are rigorously proven
and extend some of the known results reported in [3], [4]
and others.

II. IMPORTANT PRELIMINARY RESULT

The next statement extracted from [8] shows that any
dynamical system of the form (1) has a general integral of
motion, that is a function of 4 variables:

q0, q.Oa q, q

2t can be shown that any n-degree of freedom under-actuated controlled
Euler-Lagrange system with the degree of under-actuation equal to one,
always results in the system (1), provided a controller is chosen to stabilize
any (n — 1) constraints imposed on generalized coordinates [7].

which being evaluated along a solution

q¢=q(t), q=4q()

of the system (1) with the origin in [qgo, ¢o], remains equal
to a constant.
Theorem 1: Given initial conditions [qg, go], if the solu-
tion
[a(t). ()] = [a(t. a0.do) (¢, 0.do)]

of the system (1) exists for these initial conditions, then the
function

q
Io (4 dvaos o) = -exp -2 | gg;m x 0
q0

q

X Q(Q)—I-/exp Q(ZféE:;dT

q0

27(s)
a(s)

preserves a zero value along this solution irrespective of the
boundedness of the solution [¢(t), ¢(¢)]. m

ds

IIT. MAIN RESULTS

A. Sufficient Conditions for Existence of Periodic Solution
of Virtually Constraint Euler-Lagrange System (1)

Theorem 2: Let qo be an equilibrium of the system (1),
i.e., the solution of the equation

Y

Suppose that the scalar functions «(-), 3(+) and () are C-
smooth. Consider a linearization of the nonlinear system (1)
around this equilibrium

d® +[d%®}

7(q0) = 0.

z=0
q4=qo0

If the linear system (12) has a center at z = 0, then the
nonlinear system (1) has a center at the equilibrium ¢y. m

Proof. 1t is readily seen that if the constant

_ [d 7@}

dq a(q)

9=4o0

is negative, then the linear system (12) has a saddle point.
By the Hartman-Grobman theorem [2] the nonlinear system
(1) has a saddle point too. If w = 0, then (12) is a double
integrator that is again unstable, but this might not be related
to the behaviour of the nonlinear system (1).

If w is positive, then the linear system (12) has a center,
its solutions are oscillations of frequency +/w. This fact does
not directly imply that the nonlinear system (1) has a center
at qo, but it implies that the nonlinear system has either a
stable or an unstable focus at gy, or a center.

Introduce the polar coordinates

q—qo=rcosf, ¢=rsinf (13)

and consider a solution [r(¢),6(¢)] of (1), (13) with initial
condition at g > 0, 6y = 0.
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Due to the fact that the nonlinear system (1) has a focus at
qo, one can conclude that there exists a time moment 7' > 0
so that (T) = 0 and r(T) is positive®. It is seen that if
r(T) < ro then the focus is stable, while if »(T") > ry then
the focus is unstable.

To prove that r(7T") = 7o, consider the integral expression
(10) that remains zero on the solution [r(t), 0(t)]

0=1(q(T),4(T), q0, do) =

r(T) cos O(T)

p(7)

— 1 2_ — —
= [r(T)sinf(T)]” —expg —2 / a(T)d’T X
70 cos fg
r(T) cos O(T) s 9
x | [rosinfo)” — /exp 2/ @dT AY(S)ds
a(r) a(s)
ro cos fo 0 cos Og
r(T)
— exp -2 / ulr) 4 (14)
o(7)

To

T

r [ Bu(r)
X /exp 2/ al(:)dr

To

27(s)

als) ds

The exponential factor in the product (14) is positive, there-
fore, the equality (14) implies that

r(T) Sﬁ()
1\7T
/2exp 2/ (7 dr

To

Ls)ds:O

a(s)

(15)

By the mean value theorem, there exists 7. € [ro,r(T)] (or
r. € [r(T),ro] in the case if 7(T") < rp) such that

T

(T) s
/ 2exp {2 / il((:)) dr

To

(’I“(T) — ro) 2exp (2 f il((:)) dr

(s)
als) ds

If one supposes that r(7") # 7o then by necessity the next

equality
sexp {2 [ B0y 200
T

a(ry)

«

holds. However, this is not possible, because the exponential
function is positive irrespective of the argument value, while
the other factor satisfies the next equality

v(r)

—~ =wr+o(lr]) with lim °
r—0+4

a(r)

when the radius r remains sufficiently small.

3This is true provided that 7 is chosen as a sufficiently small value.

It is readily seen that the last approximation implies that

V(r)

o(r)
remains positive on the interval [rq,r(T)] provided that r
is chosen sufficiently small. Therefore the identity (15) is
only valid when 7(T') = ro. In turn, this fact implies that
the nonlinear system (1) has a center at go. m

Remark 1: As well known, the dynamical system having
a center at its equilibrium is usually not structurally stable,
so that only a few mathematical tools are available for
establishing presence of the center. Most known are the
Lagrange-Dirichlet stability test and Lyapunov lemma.

The first one is applied to any Lagrangian system checking
sign-definiteness of the Hessian of its energy, which is its first
integral. If the Hessian is sign-definite (might be positive
definite or negative definite), then one can conclude that this
equilibrium is stable in Lyapunov sense. For a Lagrangian
system with one degree of freedom this conclusion implies
that the system has a center at the equilibrium.

The second one - the Lyapunov lemma - is applied only
to second order system, which might not be of mechanical
origin, but which have a first integral. The lemma says that
if a linearization of such a dynamical system has eigenvalues
on the imaginary axis, and if the first integral and the right-
hand side of the dynamical system are analytic functions,
then the nonlinear system has a center at the equilibrium.

It is readily seen that neither the Lagrange-Dirichlet sta-
bility test nor the Lyapunov lemma can be directly applied
to the system (1). Indeed, we have not been able to compute
the first integral of the system (1), and we have not assumed
any smoothness conditions for the functions «(q), 5(¢) and
~(q) in Theorem 2. m

Remark 2: Coming to the motivating example, it is seen
that the linearization of the nonlinear system (8)

- 27 ginf .
0—1—{1—1—%} o 0% + w?sinf = 0.
g | cosf

around its equilibrium € = 0, which corresponds to upright
position of the pendulum, is

0 + w26 = 0; (16)

and it is marginally stable. Hence, Theorem 2 ensures that the
nonlinear system (8) has a center at the equilibrium 6 = 0. m

B. Sufficient Conditions for Existence of Periodic Solution
of Virtually Constraint Hybrid Lagrangian System (1),(9)

Combination of the instantaneous update law (9) with
the continuous dynamics (1) gives a possibility to have a
hybrid cycle in the hybrid system even if the conditions of
Theorem 2 are not satisfied. Having in mind examples of
controlled mechanical system, especially bipeds, see e.g. [1],
[31, [4], [5], [6], for which the controller design reduces after
a number of steps to analysis of hybrid cycles in the system
(1), (9), let us impose assumption on the map F.
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Suppose that the updating law (9) is defined and acts on
a switching surface I'y, which is represented on the phase
plane of the continuous-time system (1) by some C°-curve.
More precisely, suppose that the curve I'; consists of two
components

Ig:F_Urﬁ (17)
where the partition is uniquely defined by the F'-operator
in (9): When a solution of the continuous-time system (1)
arrives to some point p_ € I'_, this solution exhibits an
instantaneous jump to a new point py € I'} of the phase
plane, which, in turn, serves as an initial condition for
reinitialization of the solution of the continuous-time system
(1) after update.

The search of periodic solutions in the hybrid system (1),
(9) can be organized based on the next statement.

Lemma 1: Suppose the hybrid system (1)-(9) has a peri-
odic solution

qt) = q(t+T)

of the period 7" with one nontrivial continuous-time sub-arc
and one nontrivial update jump, then it is by necessity a
stationary point of the next equations

I(Q—ad—aq+74+) = 07
[q+7 q+] = F(q,7 q*)

where the function I is defined in (10); and (¢—,qG-) is
uniquely defined point of the solution that belongs to I'_. m

(18)

Proof of the statement follows from the fact that the function
I preserves its zero value along the continuous-time arc of
the solution, see Theorem 1. m

Of course, the hybrid system (1), (9) might have a periodic
solution with multiple continuous-time sub-arcs, but if this
number of sub-arcs is finite, Lemma 1 can be easily extended
to cover the case.

An important aspect of periodic solutions in the hybrid
system (1), (9), is their orbital stability/instability. For the
continuous-time system (1) asymptotic orbital stability of
any bounded motion cannot take place. Indeed, the general
integral preserving its value shows that any two periodic
solutions of the system (1) should remain separated and of
non-vanishing distance over all the time. In hybrid system,
this is not the case anymore and depending on the update
law (9) we can observe either orbitally asymptotically stable
or unstable periodic solutions.

It is clear that such analysis can be reduced to analysis of
the behaviour on the switching surface I'.

Theorem 3: Consider the hybrid system (1), (9), suppose
that it has a periodic solution

q(t) =q(t+T), T>0

of period T having one nontrivial continuous-time arc and
one non-trivial update. Then this periodic solution of the
hybrid system is orbitally asymptotically stable (unstable) if

the corresponding stationary point of the difference equation

I (qr41, Grt1, ae, de) = 0,

) (19)
F(qr+1, dr+1)
evolving on the switching surface I' is asymptotically stable
(unstable). m

[Qrt2, Grs2] =

Proof of Theorem 3 follows from the standard Poincare map
arguments. m

Remark 3: The main advantage of Theorem 3 is that we
know how to compute the integral function explicitly, that
is, we can avoid the difficult tasks of solving the differential
equations and find the analytical expression for the solution,
when it arrives at switching surface I'_. These results applied
to a class of particular virtually constrained systems - 2D
bipeds - have been the key point for proving stability of
newly generated cycles in hybrid dynamics of walking robot,
(3], [4]. m

IV. EXAMPLES
A. Example 1

Consider the case when the system (1) is a linear oscillator

Gg+q=0 (20)

defined only for ¢ > 0 and the nonlinear updating law (9) is
of the form

F: . .
4+ = 4—, 4+ = 4—,

To find periodic motions for the hybrid system (20), (21) fol-
lowing the Lemma, one needs to solve the system algebraic
equations (18), which in this case are

q+ =0, ¢4 = ¢-sin(¢-), ifg=0
+ + (4-) en

otherwise

(G+)* 4+ (g+)* = (4-)* = (¢-)* = 0
d+ = ¢-sin(¢-) 22
g- = 0
4+ = 0

where the last two equations are the equations of the switch-
ing curve I

In the case of I'_ = {q|¢ < 0)} and 'y = {¢lg > 0)}
straightforward calculations show that the solutions are those
trajectories of the system, whose velocity at ¢ = 0 equals to

q+:%rn+g,n:OJP” (23)

Remark: In fact, without the distinction of I'_ and I"; the
equations (22) have another set of solutions

. e
qf__(ﬂ—'n—’_i)v

which correspond to a set of stationary points of the hybrid
system on I'_.

Coming back to the example (20), (21), let us prove
that any found periodic solution is not orbitally stable*.

n=1,2 ... 24)

“the trivial periodic solution - the equilibrium at ¢ = ¢ = 0 is excluded
from consideration.
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(0)=0, dq(0)=1.5208 (0)=0, dq(0)=1.6208

Fig. 2. Simulation of hybrid system (20),(21) with different initial condi-
tions. (left): (o, go) = (0,7/2—0.05), (right): (qo,q4o) = (0, 7/2+0.05),

y=x sin(x) and y=x

Fig. 3. Plot of switch law (21) with intersections corresponding to (23).

Indeed, the subset of the switching curve I' in this example
coincides with the semi-axis ¢ > 0, ¢ = 0. Select any
equilibrium (23), let say ¢+ = 7/2 and consider the solution
of the difference system (19). For the example, it can be
equivalently rewritten as

1 = abs(xyg sin(xy)), o =¢

If one initializes this equation by value xy = ¢* — ¢, then it
is clear that x; will decrease in value and will never come
back to the initial value xp. See Fig. 2 for simulations with
varying initial condition around (g, fo) = (0, /2 + 27n).

B. Example 2

Consider the hybrid system defined by the dynamic equa-
tion

i+q-¢+q=0 (25)
valid for ¢ > 0 and the update law
qu:Oa q+:(q'_)2, lfq:O
F= ) (26)
9+ =q—, 4+ = g, otherwise

We readily obtain

alg) =1, Blg)=q, (@) =q (27)
and
I(q*7qf7q+vq+) = q3 — €Xp {_2/q féE:;dT} X
d

lq.i - /qj exp {2/{; ig_;dT} 232‘3 s]
= ¢ — e (a2 —d?) {qi _ (e(qz,—fﬁ) _ 1)}

From Lemma 1 we know that any cycles, if existing, must
satisfy the relations
4+ = 4=

I(Q—aq—7Q+7Q+):O7 Q+:q—:O7

Therefore

I<07 (j,7 O7d+) = q2— - q?k = q+(1 - q+) = 07 (28)

which implies that ¢ = 1 or ¢ = 0 Hence, the only
nontrivial cycle is initiated at ¢(0) = ¢4 = 0 and ¢(0) =
g+ = 1. Existence of solutions follows from analysis of
the system without updates. To check the stability we use
Theorem 3.

0y —0_(I=0):
Lk — Th+1
0_ — 04 (update) :

with (2441)? — (z£)? =0

Thi1 — Thyo  With (Tgy2) = (Tp41)?

The Poincare first return map z;, — xj4o 1S given by

Thpo = (zp)? (29)

and the cycle is thus unstable (ie., xg = 1 = x = 1,
To < 1=z — 0, 29 > 1= 2 — 0. ). For numerical
simulations of system (25),(26), see Fig. 4.

C. Example 3

Consider again the continuous dynamics as in the Exam-
ple 2, see (25), being valid for ¢ > 0, but introduce a new
update law according to

o 4+=0, ¢+ =5In(1—¢-), ifg=0
4+ =q—, 4+ = G, otherwise

For this hybrid system any cycles, if existing, must satisfy
the new relations

(30)

. . . In(1—q_
I(q-,G4-,q+,4+) =0, ¢4 =q- =0, ¢4 = %
which are equivalent to the following one
In(1+¢
4y = 2UE 0 G31)
In2

The reader is asked to check that its solutions again, as in
Example 2, are ¢+ = 1 or ¢+ = 0, while the only nontrivial
cycle is initiated at ¢(0) = ¢ = 0 and ¢(0) = ¢4 = 1.
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Fig. 4. Simulation results for system (25),(26) with initial conditions
(upper): (q(0), 4(0)) = (0, 0.9), (middle): (q(0), 4(0) = (0, 1),
(lower): (q(0), ¢(0)) = (0, 1.05).

This hybrid system generates the Poincare map on the
switching surface I' = {¢ = 0} and looks like

In(1 + xg)
In2

The stability of the found cycle with = = 1, can be accessed
by computing f’ at x = 1. The straightforward calculations

show that
d (1
d (In(l+ ) _ 1 <1
dz In2 o1 2In2

Hence the found hybrid cycle is asymptotically stable.

Tpto = flzg) = x>0 (32)

V. CONCLUSIONS

The paper presents several analytical results related to
the motion planning task, following the controller design
methodology based on the virtual holonomic constraint ap-
proach for feedback stabilization of under-actuated Euler-
Lagrange systems. Sufficient and almost necessary condi-
tions for the presence of periodic solutions for zero dynam-
ics of virtually constrained under-actuated Euler-Lagrange
system are given. This result is further extended to detect

theta(0)=0, dtheta(0)=0.9 theta(0)=0, dtheta(0)=1.1

Fig. 5.
Example 3 (different initial conditions). (left): (qo,do) = (0, 0.9), (right):
(90, 4o0) = (0, 1.1).

Simulations of stable cycle for the hybrid system (25),(30) in

periodic solutions for a class of hybrid systems in the plane
and to analyze the orbital stability/instability of the cycles.
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