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Abstract— Complete data center failures may occur due
to disastrous events such as earthquakes or fires. To attain
robustness against such failures and reduce the probability
of data loss, data must be replicated in another data center
sufficiently geographically separated from the original data
center. Implementing geo-replication is expensive as every
data update operation in the original data center must be
replicated in the backup. Running the application and the
replication service in parallel is cost effective but creates a
trade-off between potential replication consistency and data
loss and reduced application performance due to network
resource contention. We model this trade-off and provide a
control-theoretical solution based on Model Predictive Control
to dynamically allocate network bandwidth to accommodate the
objectives of both replication and application data streams. We
evaluate our control solution through simulations emulating the
individual services, their traffic flows, and the shared network
resource. The MPC solution is able to maintain a consistent
performance over periods of persistent overload, and is quickly
able to indiscriminately recover once the system return to a
stable state. Additionally, the MPC balances the two objectives
of consistency and performance according to the proportions
specified in the objective function.

I. INTRODUCTION

Today, there is an ever increasing reliance on cloud
services for business critical operations. Outsourcing op-
erational applications to one vendor expose businesses to
potential revenue losses incurred by for example downtime
due to failures [10]. In cloud computing, failures are the norm
rather than an exception. Failures are unpredictable and may
happen at any time, as exemplified by the cascading power
blackout that swept cities from Detroit to New York City
in 2003 [1]. The interruption in business continuity and the
information lost when storage devices or a complete Data
Center (DC) hosting an application fail can even put entire
enterprises out of business [9]. Two out of five enterprises
that experience a disaster are out of business within five
years [11] from the outage. Furthermore, cost estimations for
data unavailability can reach millions of Euros per hour [8].
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These events and revelations have incited the development
of Disaster Recovery (DR) schemes that provide reduced
interruption of service in case of disasters.

Current DR schemes typically achieve redundancy by
mirroring all relevant data on the application’s primary
operational node to one or multiple secondary replicas. The
replicas are persistently standing by to assume the responsi-
bility for hosting the applications, in the event the primary
fails. In order to be tolerant to disasters severe enough to
bring down an entire DC, such as a fire or an earthquake,
replicas are kept geographically separated, known as geo-
replication. We therefore consider a setup in which there are
two geographically distinct sites. In order to achieve data
replication, backups should be shared between the primary
and the secondary site. As a result, the applications can stay
available even as the primary replica is lost or becomes
unreachable [8]. However, such DR solutions increase the
overall network traffic from the primary node shared between
the replication service and the applications. The additional
traffic can lead to network contention between the tenants on
the primary node during high loads. To mitigate this potential
contention, the system administrators typically assign a static
quota for the network bandwidth allotted to the replication
service traffic. As an example, the Distributed Replicated
Block Device (DRBD) replication tool documentation rec-
ommends a 30% bandwidth allotted to the replication service
traffic1.

Such solutions are inherently inflexible, as they do not
cope well with irregular traffic patterns and the heteroge-
neous objectives of the different streams, manifested in their
different goals. The replication service seeks to maintain
the replicas as closely synchronized as possible to minimize
potential data loss and unavailability in case of a failure.
It does so by attempting to minimize the delay imposed
to each write operation. On the other hand, the application
traffic needs to be served at a certain rate to meet perfor-
mance objectives, e.g., end-user response time. Therefore,
there is an inherent trade-off between data consistency and
delivered application performance, which strongly depends
on the available bandwidth. We argue in this paper that these
conflicting goals can be managed using a dynamic bandwidth
allocation approach.

To this end, we propose a dynamic bandwidth allocation
1https://drbd.linbit.com/en/users-guide/s-configure-sync-rate.html
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solution for DR systems based on Model Predictive Control
(MPC). We propose a two fold solution: (1) differentiating
between different traffic flows and concurrently use different
replication modes; and (2) an MPC solution that dynamically
adjusts resource allocations for the different traffic flows over
time based on the prevailing conditions in an attempt to
meet their individual performance objectives. Our proposed
solution dynamically adapts to changes in egress (outgoing)
traffic and provides an optimized scheduling of bandwidth, in
order for the replication service traffic to be handled with low
latency at the same time as the ordinary application traffic
can keep its performance objectives. The fundamental prin-
cipal is a holistic one, we allow the controller to compromise
the throughput of one of the services while maintaining its
performance goals to meet the objectives of achieving better
overall system performance and cost-efficiency, with the
resources at hand. We validate our strategy with a simulator
that executes a variety of workloads and measures the amount
of data loss in case of a disaster. Finally, to evaluate the
replication performance of our solution, we formulate a
performance metric that captures the momentary disaster
recovery readiness of the system.

II. RELATED WORK

In this section we provide an overview of fault tolerance
and disaster tolerance techniques for cloud services, and of
replication challenges in general. We begin by discussing
prevalent replication techniques, their inherit challenges, and
the current state of the research in that area. We then tie it
into the problem we are addressing.

Making DR cost-efficient is a significant research area [8].
More and more companies are focusing on recovery plans, in
an attempt to achieve what is generally known as business
continuity [13]. The main principal of business continuity
is to offer application owners the assurance that their appli-
cations will have as few service interruptions as possible.
To achieve this, many business services utilize (1) fault
tolerance techniques and (2) disaster recovery techniques.
Fault tolerance techniques, such as Remus [3] or COLO [5]
are used to recover from sporadic failures by synchronizing
what a VM is doing into a secondary copy of the VM.

Other work highlight the importance of data replication
and try to reduce the incurred cost of replication. One
example is [2]. In this case, the main objective is data
durability and how to protect against both independent and
correlated node failures by means of a tiered replication
scheme that splits the cluster into a primary and a backup tier.
Regarding disaster recovery techniques, in [13] the authors
propose to use a public cloud to recover in case of a disaster
instead of a backup site.

Replication incurs additional overhead during the normal
execution of the DC. In general, in response to client-issued
requests, applications continuously write data onto their at-
tached virtual disks. As part of the DR solution, a replication
service is then responsible for mirroring the write operations
at the secondary replica. Such mirroring can be carried out by
either synchronous or asynchronous write operations. Syn-

chronous writes provide a higher degree of data consistency
between replicas as each write operation at the primary
replica has to be verified to have been carried out also at
the secondary replica before completing. Pipecloud [14] is a
synchronous backup strategy that addresses the impact of
replication latency on performance by efficiently overlap-
ping replication with application processing for multi-tier
servers. However, as write operations must await response
from the backup site before completing, synchronous backup
guarantees consistency at the expense of collocated services
sharing the same resource. The primary replica is essentially
allowed to pull ahead of the secondary replica by completing
write operations when they have been made to the local
file system, without waiting for the secondary replica. The
replication service is then responsible for carrying out the
write operations at the secondary replica.

This is especially benefician in a Metropolitan Area Net-
work (MAN) or Wide Area Network (WAN) setting, where
bandwidth limitations and high latency can make replication
unacceptably slow, as the network connectivity between
replicas becomes a performance bottleneck. Performance are
then improved at the expense of consistency guarantees by
using asynchronous replication. This clearly creates some
inconsistencies, until the write operations have been propa-
gated to the secondary replica, but at the same time avoids
performance bottlenecks. For instance, in SnapMirror [10],
batches of updates are periodically sent to the backup site,
aiming at trading off cost and performance. SnapMirror’s
asynchronous solution does, however, not offer continuous
mirroring but only guarantees that the copies are in sync
when backups are performed. The degree of replica con-
sistency is thus proportional to the delay incurred by the
intermediate network and the availability of shared resources.

One frequently employed service for replicating file sys-
tems in Linux systems is DRBD [12] and DRBD Proxy,
which have support for both synchronous and asynchronous
replication modes. The DRBD [12] asynchronous replication
mode sends data continuously but only waiting for the
acknowledgement that the packages has reached the send-
TCP buffer in the local server, unlike synchronous mode
that waits for the acknowledgement of the write operation
at the remote location. DRBD is our choice as an enabling
technology for the design of our DR solution.

As regards to the interference between the replication
service traffic and the normal DC operation, besides the
well known techniques to differentiate traffic flows at routing
level (such as DiffServ or IntServ2), there are tools available
for traffic sharing, allowing traffic differentiation per process
or flow at server level. For instance, Dusia et al. present a
network quality of service guaranteeing approach [6] capable
of prioritizing some processes (in their case containers) by
making use of the Linux traffic control (TC) utility. However,
they define an static setting, not aware of current buffer status
or data flow needs.

2https://tools.ietf.org/html/draft-ietf-diffserv-rsvp-02
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Fig. 1. System abstraction for the set-up considered from the primary
replica’s viewpoint. The application replies to incoming client requests,
while the replication service is responsible for mirroring the data written
by the application as well as the state of the VM at the remote replica. The
application and replication service share a common network resource.

III. SYSTEM ARCHITECTURE MODEL

In this section we outline the system architecture model
used in this paper. Emphasis is given to describing traffic
streams and system components through which they can
be managed. We consider applications that are hosted in a
primary replica executing in either a Virtual Machine (VM)
or container that in turn is hosted on a Physical Machine
(PM) in a DC. Requests from clients are received by the
application, in turn prompting the computation of responses
that are returned to the issuers.
A. Dynamic Control for Concurrent Flows Transmission

Apart from mirroring the data that the application writes
during runtime, the DR service also needs to transfer the
information regarding the VMs running the application,
including the VMs image and meta-data on its current state
such as virtual disks attached (known as volumes) and
network configurations. As such configurations usually are
not frequently updated, the transfer of the corresponding data
to the remote site is usually initiated at set time intervals.
Figure 1 provides an overview of the system.

To reduce cost, the replication service is not given a ded-
icated interface for its traffic. Instead, the network resources
are shared between the application and replication service.
This introduces inherent conflicting goals, since the Quality
of Service (QoS) of an application is typically directly related
to the rate at which it can serve requests from clients. On
the other hand, the degree to which the application remains
disaster tolerant is subject to the rate at which the application
write operations can be mirrored to the remote replica and
how expediently the transfer of VM images and related
meta-data can be completed. By not considering this trade-
off, high load situations can lead to unacceptable service
degradation or disaster tolerance. On the other hand, existing
solutions to addressing said trade-off can prove too inflexible
in a dynamic setting where traffic conditions are subject
to unpredictable changes. Hence the need for a dynamic
solution.
B. Flows Differentiation and Traffic Model

The solution proposed in this paper builds on differen-
tiating the three traffic flows described previously, denoted
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Fig. 2. Structural overview of system components relevant to traffic
management. The Replication service, Application and individual VM image
copy streams are differentiated. Multiple VM image copies are kept differ-
entiated from each other. Streams try to deposit packets in target QDisc
buffers and wait if the target buffer is full.

Application, Replication service, and VM image, and tak-
ing into account their different time-variant features when
managing them. The approach considered here is black-box,
agnostic to and decoupled from the actual application and
the replication service. This is to make the approaches as
general and as portable as possible, and to facilitate easier
deployment in a future test-bed. Separating the solution from
the nature of the application means that traffic sent by the
Application and Replication service from the traffic manage-
ment component’s point of view can be seen as exogenously
generated. The Application and Replication service traffic
streams generally have time-varying rates at which data need
to be sent. In this paper, we assume the traffic streams to be
non-homogeneous Poisson processes [7]. The VM image flow
is also exogenous to the traffic management, but for reasons
outlined earlier it can be assumed to instead arrive in bulks
at given time intervals. An illustration of the structure of
the traffic management solutions discussed here is given in
Figure 2.

When there is data ready for transmission, the system
needs to decide which differentiated traffic stream gets
access to the network resource. In Linux and other operating
systems, egress network traffic can be managed, policed,
and shaped through a QDisc [6], which acts as a sched-
uler on the outgoing interface. By default most systems
perform no traffic differentiation and the QDisc acts as a
simple FIFO buffer. This can be disadvantageous in some
circumstances as it allows one traffic stream to grab an
unproportionally large share of the bandwidth by sending
packets at a high rate. A more flexible alternative, QDiscs
such as Hierarchical Token Bucket (HTB) [4] employ filters
to give the system administrator large freedom in managing
outgoing traffic per traffic type. Combining differentiation
to classify traffic streams and HTB filters, individual traffic
streams can be allotted a share of the network bandwidth
over a certain time period, and bandwidth sharing hierar-
chies can be constructed. This way, each traffic stream is
guaranteed to receive its share of the bandwidth and is not
vulnerable to bandwidth hoarding streams in the way the
FIFO solution is. Yet another commonly used approach for
traffic management is to prioritize traffic streams, where
higher ranked streams persistently pre-empts lower ranked



streams. This is supported by default in the QDisc structure
in most Linux distributions, pfifo fast, which combines
FIFO scheduling with three priority levels. Traffic streams
are given a priority, and packets are buffered in three FIFO
buffers, one for each priority level. The QDisc then schedules
packets for transmission from buffers in falling priority order.
This type of traffic management is ideal for allowing interac-
tive latency-sensitive applications transmitting relatively little
data to still access the network resource while larger bulk-
type transfers also are active.

It is worth noting that by their nature, buffer sizes of
QDiscs are relatively small, typically ranging from kilobytes
to a few megabytes. Accordingly, the QDisc buffers cannot
be expected to be able to accommodate all traffic at all times,
in particular during sudden bursts and when the system is
intermittently overloaded. In a real system, when a buffer
fills up, the transportation layer would incur back pressure
in the QDisc, thereby forming a closed loop system where
the rate at which packets are deposited into the buffer is
reduced to match the rate at which it is emptied. In this
paper we do not explicitly consider back pressure as it goes
against the application agnostic approach taken. Instead each
traffic stream is kept in its own infinite buffer that deposits
its content into the target QDisc buffer. For VM image traffic
this has some implications. In our set-up, whenever the DR
system schedules a VM image copy, it is treated as a bulk
arrival of packets that are deposited in its own buffer, which
in turn tries to make deposits in the target QDisc buffer. If a
copy is scheduled to start before a previous one is finished,
two streams would try to deposit in the same target buffer.
Effectively, this halves the potential bandwidth available to
each VM image copy stream until one of them is finished. It
is again worth noting that as the proposed method is agnostic
to the hosted services it cannot control the arrival of VM
image copies.

IV. CONTROL STRATEGY

This section describes our proposal for dynamically ad-
justing bandwidth shares to the traffic streams identified in
Section III. It is based on the HTB filter approach, where
traffic streams are differentiated and allocated a guaran-
teed minimum share of the available network bandwidth.
Typically, the guaranteed minimum share is set statically
depending on some knowledge of the system requirements.
In contrast to that, our MPC controller dynamically adjusts
the guaranteed minimum share for each of the traffic stream
using feedback of the current state of the system.

Let λi(k), i ∈ I = {a,r,vm} denote the amount of data
that the DC is requested to transmit in the sampling interval
[k,k+1] for each of the streams: Application (a), Replication
service (r) and VM image traffic (vm). These requests are
considered to be exogenous to the traffic management sys-
tem. Also, based on the total available network bandwidth
for the primary replica, let C denote the total amount of data
that can be sent during a sampling period, C being dependent
on the DC network link.

We denote with ui the control signal that we use, which

is the fraction of network bandwidth reserved for each of
the traffic streams. We actuate that via a minimum share
of the bandwidth Cui(k), ui = {ui|ui ≥ 0,∑ui = 1}. It is
important to notice that ui is only a minimum guaranteed
share, which helps us avoiding wasting available bandwidth3.
Bandwidth left unused by streams that did not have enough
data to transmit can then be used by other streams, thus
maximizing total bandwidth utilization. Conversely, if the
allocated bandwidth for a stream is insufficient to complete
the transmission, the exceeding data is buffered.

Let xi(k) denote the buffer levels at time k for each traffic
stream, i.e., the data that is ready to be sent at time k for each
stream. For each of the streams, ∀i ∈ I, we can then define
the following linear integrator dynamics for the system:

xi(k+1) = xi(k)+λi(k)−Cui(k)−di(k). (1)
In Equation (1), the disturbance terms di(k) model actions
that are not in direct relationship with the control signal, for
example taking into account the situation in which buffers
are emptied because there was not enough traffic in one of
the other streams. The actual sent traffic for traffic stream i
in the time interval [k,k+1] is therefore:

µi(k) =Cui(k)+di(k). (2)
We assume the buffer levels to be measurable4. Indeed, in
real implementations, a measurement of the amount of data
sent per traffic stream µi(k) is usually also available. Using
that, measurements of the data arrival processes λi(k) can be
reconstructed as follows:

λi(k) = xi(k+1)− xi(k)+µi(k). (3)
We model the arrival processes as standard input distur-
bances. VM image traffic is modeled as impulses arriving at
fixed intervals while for Application and Replication service
traffic one of two possible disturbance models is used. In
one case, traffic is assumed to be slowly varying, with the
following state space representation:

zi(k+1) = zi(k)+ ei(k) = Fzi(k)+ ei(k)

λi(k) = zi(k)+ vi(k) = Gzi(k)+ vi(k).
(4)

In the second case, we extend the previous model with a
local linear trend, with corresponding state space represen-
tation:

zi(k+1) =
(

1 1
0 1

)
zi(k)+ ei(k) = Fzi(k)+ ei(k)

λi(k) =
(
1 0

)
zi(k)+ vi(k) = Gzi(k)+ vi(k),

(5)

where ei(k)∼N(0,Σe) and vi(k)∼N(0,Σv). A Kalman filter
is used to estimate the states of the disturbance models,
which are then used as initial conditions for predicting future
traffic by the MPC controller. Among the traffic streams,
VM image stands out in the sense that the marginal benefit
from allocating bandwidth to it is zero up until the point
the transfer of a full image is completed. Bandwidth used
to serve an image transfer without completing it is therefore

3In other words, the traffic shaping is work preserving, meaning that
shares are only enforced if there is enough data to transmit for each traffic
stream.

4The lack of distinction between traffic stream buffers and QDisc buffers
in Equation (1) is due to the fact that traffic streams are differentiated. This
means that they are the only actor depositing packets in their target QDisc
buffers. Therefore it is possible to aggregate data residing in each QDisc
buffer and model it as one larger, measurable, buffer.



essentially wasted. For this reason, we augment the system
description with an integral state ivm for the VM image
buffer to incentivize the controller to finish image transfers.
By setting Fd = diag(F, F) we get a complete state space
description of the system, augmented with corresponding
disturbance and integral states, as

x(k+1) =

 I Gd 0
0 Fd 0
Z 0 1

x(k)−C ·

 I
0
Z

u(k)−

 I
0
Z

d(k),

(6)

Gd =

(
GT 0 0
0 GT 0

)T

, Z =
(
0 0 −1

)
,

with the state vector x =
(
xa xr xvm za zr ivm

)
. We

then use Equation (6) in our MPC controller design to predict
the evolution of the system, assuming that the disturbances
di are zero-mean and uncorrelated.

In the design of the MPC controller, we use a standard
quadratic cost function with penalties on buffer sizes and
control signal variations ∆ui(k) = ui(k)−ui(k−1),

J =
Hp

∑
k=1

∑
i∈I

(
qi x2

i (k+1)+ ri ∆u2
i (k+1)

)
+qnivm(k+1). (7)

Hp is here the prediction horizon, while qi and ri are
the penalties on buffer lengths and control signal variations,
respectively and qn the penalty on the integrator state. Neither
buffer lengths nor control signals can be negative, so those
properties enter as natural constraints to the problem.

The controller formulation then takes the form

minimize
Hp

∑
k=1

∑
i∈I

(
qix2

i (k+1)+ ri∆u2
i (k+1)

)
+qnivm(k+1),

subject to Equation (6),
0≤ xi ≤ x̄i,

ui ≥ 0,

∑
i∈I

ui ≤ 1,

(8)

where the upper limits x̄i on buffer levels represent a tun-
able maximal amount of buffered data we can tolerate for
each traffic type. The controller then selects ∆ui(k+1) and
therefore ui(k + 1) in order to minimize the cost function.
In the cost function, we decided to minimize ∆u as well,
to avoid incurring into the effect of the dynamics of the
TCP window and other unmodeled dynamics. The approach
allows us to trade data consistency (bandwidth share given
to the Replication service and the VM image traffic) and
performance (bandwidth assigned to the Application).

V. EVALUATION

This section discusses the evaluation of the proposed solu-
tion and the comparison of the results obtained with the MPC
controller, and comparing them with the other alternatives we
introduced in Section III. We tested the different strategies
with a simulator and in many different scenarios, two of
which are reported in the following. To compare the results,
we have identified three metrics that summarize the behavior
of the system and permit a comparison of the solutions. At
the end of this section, we present some general conclusions

that can be drawn from the experiments shown in this paper
and from our experience with other scenarios.

A. Simulation Framework
In order to evaluate our proposed solution we have de-

signed an event-based simulator using Python and SimPy5.
The simulator is based on the system model detailed in
Section III. It includes implementations of a set of alternative
traffic management solutions, the foundations of which are
outlined in Section III, together with the MPC controller
introduced in section IV. The policies that complement our
solution are the following:
• In FIFO, all traffic streams deposit packets in a shared

QDisc buffer that is served by the network resource
in a FIFO manner. When the buffer is full, the packet
waits until further space in the buffer is available. This
particular strategy mirrors a system’s default behavior
when no deliberate traffic shaping effort has been made
by the system administrator.

• The STATIC solution implements a static bandwidth
assignment, similar to the HTB filter approach described
in Section III. Each traffic stream is guaranteed a set
share of the network bandwidth at all times. In our case
we devote 30% of the bandwidth to the Replication
service traffic, following the guidelines for DRBD.
For the VM image traffic, we calculate the amount of
bandwidth necessary to finish a session copy before the
next is initiated. The remaining bandwidth is devoted to
the application traffic.

• The PRIO strategy relies on priorities, assigned to each
traffic stream. The priorities are fixed and assigned
by the system administrator, based on a ranking of
which traffic stream would benefit most from receiving
prioritized access to the network. In the simulator, we
have given the highest priority to the Application traffic
in order for it to be minimally negatively impacted by
the presence of Replication service traffic. The second
highest priority is given to the Replication service
traffic, with VM image traffic having the lowest priority.
As previously described, each priority level has its own
FIFO buffer in the QDisc that is served by the network
resource only if higher prioritized buffers are empty.

All these solutions are work preserving, thereby maximizing
bandwidth utilization. The total traffic is therefore the same
with all the solutions, the difference being how much of the
shared resource is allocated to the different traffic types.

B. Performance metrics
In order to evaluate the behavior of each bandwidth

allocation strategy, we perform simulations recording a set
of relevant performance metrics. The set of metrics assesses
the behavior of the traffic shaping solutions along different
axes: the performance delivered to the application, the traffic
needed for replication purposes, and the amount of data lost
in case a disaster happens, it being data that has been buffered
for replication but never sent out.

5http://simpy.readthedocs.org



For Application and Replication streams, we observe the
mean level i µ and 95th percentile i λ 0.95, ∀i ∈ {App,Rep}
of buffered traffic over the entire experiment. The VM image
transfer process is evaluated based on the average vm σµ and
95th percentile vm σλ of the time passed since the creation of
the most recent VM image available at the secondary replica.
This reflects the state to which a system could roll back in
case a disaster happens. We also observe the mean vm µ and
95th percentile vm λ of the transfer times for the completed
VM image transfers.

We evaluate the application performance based on the
waiting time spent in the system by each packet that belongs
to the Application stream. To provide a measure of the effort
required to restore a service following a disaster, at each
point in time we take the last available VM image at the
backup site and we sum the amount of write operations that
have been made since the timestamp associated with that
image. This gives us an indication of the amount of data that
should be recreated in case a replica should be fired up at a
third site. We refer to this metric as the Disaster Recovery
Overhead (DRO). Finally, we measure the amount of data
currently in the replication buffer. This data is considered
lost at the moment of a failure (Data loss) since it has not
been transferred to the replication site.
C. Experiment 1

Scenario: In this first experiment, we explore the behavior
of the system in a 3-hour long experiment. In this experiment,
the traffic mix changes slowly, producing periods in which
the DC is overloaded and periods in which the network
capacity is enough to serve the incoming traffic and the
replication traffic. More specifically, the significant contrib-
utor to overload alternates between Application traffic and
Replication service traffic. This traffic composition models
the normal operation of a DC with which daily patterns (for
example, a news website usually receives more visits during
the lunch break).

The total available bandwidth to the system C is 100 Mbps,
and the Application outputs on average 62.5 Mbps, while
Replication service operations are made on average at 32.5
Mbps. Every 10 minutes, a VM image copy is initiated with
a fixed size of 375 MB, which corresponds to an average
rate of 5 Mbps over a 10 minute period. The first plot in
Figure 3 shows the Application, Replication service streams
and the moments in which VM images are transmitted.

We configure STATIC and PRIO as outlined in Sec-
tion V-A. For the MPC, we set the state penalties to
(qa, qr, qvm, qn) = (600, 250, 50, 1) and for control signal
variations (ra, rr, rvm) = (106, 106, 106) with the prediction
horizon Hp = 30, corresponding to 5 minutes as the sampling
time is 10 seconds. The slowly varying traffic arrival model
outlined by Equation (4) is used, although we found during
the experiments that the performance of the MPC controller
was largely unaffected by the choice of traffic model. Lastly,
FIFO is configuration-free.

Results: Figure 3 illustrates the metrics for Experiment 1,
while Table I presents the resulting statistics of the exper-
iment’s outcome. The second plot in Figure 3 shows the

TABLE I
STATISTICS FOR EXPERIMENT 1

Application MPC FIFO STATIC PRIO
App µ [MB] 1616 3077 2076 183
App λ 0.95 [MB] 6988 8185 8100 1245

Replication
Rep µ [MB] 3442 2336 3168 2976
Rep λ 0.95 [MB] 6989 7944 9863 6807

VM image
vm σµ [sec] 1203 377 607 5388
vm σλ [sec] 2275 650 931 10126
vm µ [sec] 935 81 321 5211
vm λ [sec] 1881 90 433 9992

0

50

100

150

E
gr

es
s

tr
af

fic
ra

te
M

bp
s

App. traffic Rep. traffic
VM Image Capacity

0

200

400

600

800

W
ai

tin
g

tim
e

s

0

20000

40000

D
R

O
M

B

MPC FIFO
PRIO STATIC

0 1200 2400 3600 4800 6000 7200 8400 9600 10800
0

5000

10000

t [s]

D
at

a
lo

ss
M

B

Fig. 3. Results from experiment 1. Top figure shows the rates at which
Application, Replication and VM image traffic arrives. Next figure shows the
recorded waiting time before being sent for Application traffic. Thereafter
the DRO is shown, while the potential data loss in case of a disaster is
shown at the bottom.

waiting time for the read operations. At times, the DC is
overloaded and there is not enough bandwidth to transmit
the data belonging to all the streams. In this case, the
time that each packet belonging to the Application stream
waits in the system becomes larger. The FIFO strategy
results in a significant increase of the waiting time, therefore
reducing application performance. With FIFO, the system
recovers only after a large enough period of under load is
experienced. Conversely, when employing STATIC as traffic
shaping mechanism the Application’s performance is quickly
able to recover as soon as the arrival rate for the read traffic
does not exceed the static capacity allotted to it. The PRIO
is also penalized during overload — for example in the time
interval t = [1800,4200]. However, the Application penalty is
only due to the overload generated by the Application traffic
itself, which temporarily exceeds the capacity of the DC. The
proportionality of the overload contributed by the Application



is a common factor for both the STATIC and PRIO methods,
although the waiting time is penalized to different extents.
The MPC solution here provides a middle-ground with
acceptable buffering proportional to the aggregate overload.
The MPC is able to indiscriminately accommodate both types
of overload (read arrival rate exceeding the capacity and total
arrival rate exceeding the capacity) with a consistent level of
Application performance.

The third plot in Figure 3 shows the DRO. As can be seen,
FIFO and STATIC are able to accommodate the replication
traffic and provide good replication performance. On the
contrary, the priority given to the read traffic for PRIO
comes at a significant DRO. Not only does the overhead
fast exceed any other method but it diverges in this time-
frame. The MPC solution is able to quickly recover also in
terms of DRO. The last plot of Figure 3 shows the amount
of data that is not recoverable in case a disaster happens at a
specific time. When the read traffic is generating the overload
conditions, only the PRIO and MPC method suffer from the
possibility of data loss. On the contrary, when the write traffic
is higher than the static channels allocated for FIFO and
STATIC, the data loss of all the alternatives are comparable.
In Table I it is possibile to see that while PRIO is the best
in terms of Application performance, the MPC controller is
the second best (App µ , App λ 0.95), with STATIC and FIFO
not being a good fit to handle the read traffic. While FIFO
is good on average for Replication performance (Rep µ),
it is not consistently better (the 95th percentile Rep λ 0.95

is higher than with PRIO and MPC). The MPC solution
is better at exploiting the trade-off between different traffic
conditions, and is able to trade consistency for performance
and viceversa. FIFO and STATIC are the best at transfering
the VM images, while PRIO is unable to handle this part of
the traffic (vm σµ , vm σλ , vm µ , vmλ ).
D. Experiment 2

Scenario: In this second scenario we show long periods of
stable traffic levels inter-spreaded with abrupt changes with
resulting high and low network load. This could for example
correspond to an application switching between different
operating modes — e.g., computing statistics and applying
changes to the data. In contrast to the previous experiment,
the overload in this scenario is less extreme. Here, the con-
tribution to the contention is more uniform across the traffic
types. The simulation experiment is run for total duration of
two hours, and the total available bandwidth to the system C
is 100 Mbps. Application traffic arrives at an average rate of
71 Mbps, Replication service operations to be replicated at
22 Mbps, and VM image copies are again initiated every 10
minutes with an image size of 375 MB. The various policies
are configured as for the previous experiment. The STATIC
shares are equal to the traffic rates, as if the operator could
perfectly know the traffic composition. For the MPC we use
the penalties (qa, qr, qvm, qn) = (104, 2 ·103, 3 ·104, 1) and
(ra, rr, rvm) = (5 · 106, 5 · 106, 5 · 106), while the prediction
horizon is again Hp = 30. In this case we used the local
linear traffic model described by Equation (5), but as in the
previous case we found that this choice did not affect the

TABLE II
STATISTICS FOR EXPERIMENT 2

Application MPC FIFO STATIC PRIO
App µ [MB] 32 386 306 0.33
App λ 0.95 [MB] 100 1089 1083 1.03

Replication
Rep µ [MB] 222 23 18 86
Rep λ 0.95 [MB] 681 223 84 401

VM image
vm σµ [sec] 939 369 642 1231
vm σλ [sec] 1720 643 975 3019
vm µ [sec] 680 75 374 1003
vm λ [sec] 1460 79 429 2748
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Fig. 4. Results from experiment 2. Figures as in Figure 3.
performance of the MPC controller by much.

Results: The results from this experiment are summarised
in Figure 4 and Table II. The second plot in Figure 4
shows the waiting time for the read requests, while the
third plot shows the DRO. Both FIFO and STATIC sacri-
fice the Application’s performance in favour of significant
Replication service traffic. As a result, both of these methods
persistently achieve the lowest disaster recovery overhead. In
this scenario the Application traffic generally does not exceed
the capacity C. As a result the PRIO method almost fully
accommodates the Application across the entire observed
time period. However, the PRIO method results in a very
high DRO, which recovers only when the Application traffic
is significantly below the system capacity, with significant
lag.

In the observed scenario, the MPC method is able to main-
tain a negligible Application performance degradation under
periods of overload. The MPC solution’s ability to balance
the two objectives is made clear by the small sacrifice in Ap-
plication performance for a significant reduction of disaster



recovery overhead. This specific ability to negligibly sacrifice
Application performance also contributes to accelerating the
recovery of the momentary disaster recovery overhead once
the system return to an aggregate stable load, proportionally
regardless to the composition of the load. Table II confirms
these results.
E. Summary of findings

The primary objective of this evaluation is to determine the
effectiveness of a dynamic solution to cope with the different
type of traffic combinations and changes that happens in a
real DC. The second aim of the experimental analysis is to
determine how our MPC solution fits as a means to this end.

After trying a multitude of workloads, we can conclude
that some of these workloads highlight features and weak-
nesses of all the different traffic scheduling solution that
we have described. The FIFO solution has proven to be
effective at accommodating all applications needs for streams
when underloaded, and indiscriminately penalising when
overloaded. In particular, in the scenarios we have rendered,
a large portion of the traffic is Application traffic, which
makes FIFO unsuitable since the end users suffer from
buffering thus inhibiting the end-to-end performance of the
Application. On the other hand, with FIFO, the replication
traffic and the VM image traffic are able to indiscriminately
gain access to the shared resource and are therefore served
with a reasonable and fair delay which is in line with queu-
ing theory findings [7]. Furthermore, the STATIC solution
manages to isolate the VM image traffic and guarantee that
the images are transferred timely, but is sensitive to any
changes in the other traffic streams. Its evident inability
to accommodate the individual objectives of the tenants
make FIFO unsuitable for this system. The PRIO solution is
inherently the most successful in terms of accommodating
Application performance, but fails at accommodating the
other tenant’s objectives. In most of the scenarios we have
run, it performs well for the Replication service traffic but
fails at containing and recovering the momentary disaster
recovery overhead in a timely manner.

From the experiments above, we can conclude that our
dynamic method is the best to achieve a desirable balance
between Application performance and disaster fault tolerance
readiness in an intermittently overloaded system. Further-
more, the MPC method is able to capture the trade-off
between delivering acceptable Application performance and
accommodating the Replication service. The MPC solution
is able to maintain the most consistent performance over
periods with persistent overload, and is quickly able to
indiscriminately recover once the system return to a stable
state. Additionally, the MPC is able to persistently balance
the two objectives according to the proportions specified in
the objective function.

VI. CONCLUSION AND FUTURE WORK

In this paper we design an MPC controller to determine
the amount of bandwidth to be allocated to different streams
in a cloud computing infrastructure. Our investigation starts
from the detection of an inherent trade-off between data

consistency in case of disasters and performance delivered
by applications to end users.

In fact, the outgoing bandwidth in the data center is used
concurrently both to replicate the changes operated by the
users in the secondary backup, targeting consistency, and
to respond to the user requests, targeting performance. The
available outgoing bandwidth is however limited. So, while
there is a desire to serve the user requests timely, it is also
important to ensure that the amount of data loss in case of
a disaster is limited.

We have developed a dynamic solution for this problem, in
the form of an MPC controller, that we compared to the static
solutions that are currently the best practice. The result of
our investigation is that a dynamic solution is more flexible
and it is capable of exploiting the mentioned trade-off.
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