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Abstract

For languages with (semi-) free word or-
der (such as German), labelling gramma-
tical functions on top of phrase-structural
constituent analyses is crucial for making
them interpretable. Unfortunately, most
statistical classifiers consider only local
information for function labelling and fail
to capture important restrictions on the
distribution of core argument functions
such as subject, object etc., namely that
there is at most one subject (etc.) per
clause. We augment a statistical classifier
with an integer linear program imposing
hard linguistic constraints on the solution
space output by the classifier, capturing
global distributional restrictions. We show
that this improves labelling quality, in par-
ticular for argument grammatical func-
tions, in an intrinsic evaluation, and, im-
portantly, grammar coverage for treebank-
based (Lexical-Functional) grammar ac-
quisition and parsing, in an extrinsic eval-
uation.

1 Introduction

Phrase or constituent structure is often regarded as
an analysis step guiding semantic interpretation,
while grammatical functions (i. e. subject, object,
modifier etc.) provide important information rele-
vant to determining predicate-argument structure.

In languages with restricted word order (e. g.
English), core grammatical functions can often
be recovered from configurational information in
constituent structure analyses. By contrast, sim-
ple constituent structures are not sufficient for less
configurational languages, which tend to encode
grammatical functions by morphological means

(Bresnan, 2001). Case features, for instance, can
be important indicators of grammatical functions.
Unfortunately, many of these languages (including
German) exhibit strong syncretism where morpho-
logical cues can be highly ambiguous with respect
to functional information.

Statistical classifiers have been successfully
used to label constituent structure parser output
with grammatical function information (Blaheta
and Charniak, 2000; Chrupała and Van Genabith,
2006). However, as these approaches tend to
use only limited and local context information
for learning and prediction, they often fail to en-
force simple yet important global linguistic con-
straints that exist for most languages, e. g. that
there will be at most one subject (object) per sen-
tence/clause.1

“Hard” linguistic constraints, such as these,
tend to affect mostly the “core grammatical func-
tions”, i. e. the argument functions (rather than
e. g. adjuncts) of a particular predicate. As these
functions constitute the core meaning of a sen-
tence (as in: who did what to whom), it is impor-
tant to get them right. We present a system that
adds grammatical function labels to constituent
parser output for German in a postprocessing step.
We combine a statistical classifier with an inte-
ger linear program (ILP) to model non-violable
global linguistic constraints, restricting the solu-
tion space of the classifier to those labellings that
comply with our set of global constraints. There
are, of course, many other ways of including func-
tional information into the output of a syntactic
parser. Klein and Manning (2003) show that merg-
ing some linguistically motivated function labels
with specific syntactic categories can improve the
performance of a PCFG model on Penn-II En-

1Coordinate subjects/objects form a constituent that func-
tions as a joint subject/object.
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glish data.2 Tsarfaty and Sim’aan (2008) present
a statistical model (Relational-Realizational Pars-
ing) that alternates between functional and config-
urational information for constituency tree pars-
ing and Hebrew data. Dependency parsers like
the MST parser (McDonald and Pereira, 2006) and
Malt parser (Nivre et al., 2007) use function labels
as core part of their underlying formalism. In this
paper, we focus on phrase structure parsing with
function labelling as a post-processing step.

Integer linear programs have already been suc-
cessfully used in related fields including semantic
role labelling (Punyakanok et al., 2004), relation
and entity classification (Roth and Yih, 2004), sen-
tence compression (Clarke and Lapata, 2008) and
dependency parsing (Martins et al., 2009). Early
work on function labelling for German (Brants et
al., 1997) reports 94.2% accuracy on gold data (a
very early version of the TiGer Treebank (Brants
et al., 2002)) using Markov models. Klenner
(2007) uses a system similar to – but more re-
stricted than – ours to label syntactic chunks de-
rived from the TiGer Treebank. His research fo-
cusses on the correct selection of predefined sub-
categorisation frames for a verb (see also Klenner
(2005)). By contrast, our research does not involve
subcategorisation frames as an external resource,
instead opting for a less knowledge-intensive ap-
proach. Klenner’s system was evaluated on gold
treebank data and used a small set of 7 dependency
labels. We show that an ILP-based approach can
be scaled to a large and comprehensive set of 42
labels, achieving 97.99% label accuracy on gold
standard trees. Furthermore, we apply the sys-
tem to automatically parsed data using a state-of-
the-art statistical phrase-structure parser with a la-
bel accuracy of 94.10%. In both cases, the ILP-
based approach improves the quality of argument
function labelling when compared with a non-ILP-
approach. Finally, we show that the approach
substantially improves the quality and coverage
(from 93.6% to 98.4%) of treebank-based Lexical-
Functional Grammars for German over previous
work in Rehbein and van Genabith (2009).

The paper is structured as follows: Section 2
presents basic data demonstrating the challenges
presented by German word order and case syn-
cretism for the function labeller. Section 3 de-

2Table 6 shows that for our data a model with merged
category and function labels (but without hard constraints!)
performs slightly worse than the ILP approach developed in
this paper.

scribes the labeller including the feature model of
the classifier and the integer linear program used
to pick the correct labelling. The evaluation part
(Section 4) is split into an intrinsic evaluation mea-
suring the quality of the labelling directly using
the German TiGer Treebank (Brants et al., 2002),
and an extrinsic evaluation where we test the im-
pact of the constraint-based labelling on treebank-
based automatic LFG grammar acquisition.

2 Data

Unlike English, German exhibits a relatively free
word order, i. e. in main clauses, the verb occu-
pies second position (the last position in subor-
dinated clauses) and arguments and adjuncts can
be placed (fairly) freely. The grammatical func-
tion of a noun phrase is marked morphologically
on its constituting parts. Determiners, pronouns,
adjectives and nouns carry case markings and in
order to be well-formed, all parts of a noun phrase
have to agree on their case features. German uses
a nominative–accusative system to mark predicate
arguments. Subjects are marked with nominative
case, direct objects carry accusative case. Further-
more, indirect objects are mostly marked with da-
tive case and sometimes genitive case.

(1) Der Löwe
NOM
the lion

gibt

gives

dem Wolf
DAT
the wolf

einen Besen.
ACC
a broom

The lion gives a broom to the wolf.

(1) shows a sentence containing the ditransi-
tive verb geben (to give) with its three arguments.
Here, the subject is unambiguously marked with
nominative case (NOM), the indirect object with
dative case (DAT) and the direct object with ac-
cusative case (ACC). (2) shows possible word or-
ders for the arguments in this sentence.3

(2) Der Löwe gibt einen Besen dem Wolf.
Dem Wolf gibt der Löwe einen Besen.
Dem Wolf gibt einen Besen der Löwe.
Einen Besen gibt der Löwe dem Wolf.
Einen Besen gibt dem Wolf der Löwe.

Since all permutations of arguments are possi-
ble, there is no chance for a statistical classifier to
decide on the correct function of a noun phrase by
its position alone. Introducing adjuncts to this ex-
ample makes matters even worse.

3Note that although (apart from the position of the finite
verb) there are no syntactic restrictions on the word order,
there are restrictions pertaining to phonological or informa-
tion structure.
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Case information for a given noun phrase can
give a classifier some clue about the correct ar-
gument function, since functions are strongly re-
lated to case values. Unfortunately, the German
case system is complex (see Eisenberg (2006) for
a thorough description) and exhibits a high degree
of case syncretism. (3) shows a sentence where
both argument NPs are ambiguous between nom-
inative or accusative case. In such cases, addi-
tional semantic or contextual information is re-
quired for disambiguation. A statistical classifier
(with access to local information only) runs a high
risk of incorrectly classifying both NPs as sub-
jects, or both as direct objects or even as nominal
predicates (which are also required to carry nom-
inative case). This would leave us with uninter-
pretable results. Uninterpretability of this kind can
be avoided if we are able to constrain the number
of subjects and objects globally to one per clause.4

(3) Das Schaf
NOM/ACC
the sheep

sieht

sees

das Mädchen.
NOM/ACC
the girl

EITHER The sheep sees the girl
OR The girl sees the sheep.

3 Grammatical Function Labelling

Our function labeller was developed and tested on
the TiGer Treebank (Brants et al., 2002). The
TiGer Treebank is a phrase-structure and gram-
matical function annotated treebank with 50,000
newspaper sentences from the Frankfurter Rund-
schau (Release 2, July 2006). Its overall anno-
tation scheme is quite flat to account for the rel-
atively free word order of German and does not
allow for unary branching. The annotations use
non-projective trees modelling long distance de-
pendencies directly by crossing branches. Words
are lemmatised and part-of-speech tagged with the
Stuttgart-Tübingen Tag Set (STTS) (Schiller et al.,
1999) and contain morphological annotations (Re-
lease 2). TiGer uses 25 syntactic categories and a
set of 42 function labels to annotate the grammat-
ical function of a phrase.

The function labeller consists of two main com-
ponents, a maximum entropy classifier and an in-
teger linear program. This basic architecture was
introduced by Punyakanok et al. (2004) for the
task of semantic role labelling and since then has
been applied to different NLP tasks without signif-
icant changes. In our case, its input is a bare tree

4Although the classifier may, of course, still identify the
wrong phrase as subject or object.

structure (as obtained by a standard phrase struc-
ture parser) and it outputs a tree structure where
every node is labelled with the grammatical rela-
tion it bears to its mother node. For each possi-
ble label and for each node, the classifier assigns
a probability that this node is labelled by this la-
bel. This results in a complete probability distri-
bution over all labels for each node. An integer
linear program then tries to find the optimal over-
all tree labelling by picking for each node the label
with the highest probability without violating any
of its constraints. These constraints implement lin-
guistic rules like the one-subject-per-sentence rule
mentioned above. They can also be used to cap-
ture treebank particulars, such as for example that
punctuation marks never receive a label.

3.1 The Feature Model
Maximum entropy classifiers have been used in a
wide range of applications in NLP for a long time
(Berger et al., 1996; Ratnaparkhi, 1998). They
usually give good results while at the same time
allowing for the inclusion of arbitrarily complex
features. They also have the advantage that they
directly output probability distributions over their
set of labels (unlike e. g. SVMs).

The classifier uses the following features:

• the lemma (if terminal node)
• the category (the POS for terminal nodes)
• the number of left/right sisters
• the category of the two left/right sisters
• the number of daughters
• the number of terminals covered
• the lemma of the left/right corner terminal
• the category of the left/right corner terminal
• the category of the mother node
• the category of the mother’s head node
• the lemma of the mother’s head node
• the category of the grandmother node
• the category of the grandmother’s head node
• the lemma of the grandmother’s head node
• the case features for noun phrases
• the category for PP objects
• the lemma for PP objects (if terminal node)

These features are also computed for the head
of the phrase, determined using a set of head-
finding rules in the style of Magerman (1995)
adapted to TiGer. For lemmatisation, we use Tree-
Tagger (Schmid, 1994) and case features of noun
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phrases are obtained from a full German morpho-
logical analyser based on (Schiller, 1994). If a
noun phrase consists of a single word (e. g. pro-
nouns, but also bare common nouns and proper
nouns), all case values output by the analyser are
used to reflect the case syncretism. For multi-word
noun phrases, the case feature is computed by tak-
ing the intersection of all case-bearing words in-
side the noun phrase, i. e. determiners, pronouns,
adjectives, common nouns and proper nouns. If,
for some reason (e.g., due to a bracketing error in
phrase structure parsing), the intersection turns out
to be empty, all four case values are assigned to the
phrase.5

3.2 Constrained Optimisation
In the second step, a binary integer linear pro-
gram is used to select those labels that optimise the
whole tree labelling. A linear program consists of
a linear objective function that is to be maximised
(or minimised) and a set of constraints which im-
pose conditions on the variables of the objective
function (see (Clarke and Lapata, 2008) for a short
but readable introduction). Although solving a lin-
ear program has polynomial complexity, requiring
the variables to be integral or binary makes find-
ing a solution exponentially hard in the worst case.
Fortunately, there are efficient algorithms which
are capable of handling a large number of vari-
ables and constraints in practical applications.6

For the function labeller, we define the set of
binary variables V = N × L to be the crossprod-
uct of the set of nodes N and the set of labels L.
Setting a variable xn,l to 1 means that node n is
labelled by label l. Every variable is weighted by
the probability wn,l = P (l|f(n)) which the clas-
sifier has assigned to this node-label combination.
The objective function that we seek to optimise is
defined as the sum over all weighted variables:

max
∑
n∈N

∑
l∈L

wn,lxn,l (4)

Since we want every node to receive exactly one
5We decided to train the classifier on automatically

assigned and possibly ambiguous morphological informa-
tion instead of on the hand-annotated and manually disam-
biguated morphological information provided by TiGer be-
cause we want the classifier to learn the German case syn-
cretism. This way, the classifier will perform better when pre-
sented with unseen data (e.g. from parser output) for which
no hand-annotated morphological information is available.

6See lpsolve (http://lpsolve.sourceforge.net/) or GLPK
(http://www.gnu.org/software/glpk/glpk.html) for open-
source implementations

label, we add a constraint that for every node n,
exactly one of its variables is set to 1.∑

l∈L

xn,l = 1 (5)

Up to now, the whole system is doing exactly
the same as an ordinary classifier that always takes
the most probable label for each node. We will
now add additional global and local linguistic con-
straints.7

The first and most important constraint restricts
the number of each argument function (as opposed
to modifier functions) to at most one per clause.
Let D ⊂ N × N be the direct dominance rela-
tion between the nodes of the current tree. For ev-
ery node n with category S (sentence) or VP (verb
phrase), at most one of its daughters is allowed
to be labelled SB (subject). The single-subject-
function condition is defined as:

cat(n) ∈ {S, V P} −→
∑

〈n,m〉∈D

xm,SB ≤ 1 (6)

Identical constraints are added for labels OA,
OA2, DA, OG, OP, PD, OC, EP.8

We add further constraints to capture the follow-
ing linguistic restrictions:

• Of all daughters of a phrase, only one is allowed
to be labelled HD (head).∑

〈n,m〉∈D

xm,HD ≤ 1 (7)

• If a noun phrase carries no case feature for nom-
inative case, it cannot be labelled SB, PD or EP.

case(n) 6= nom −→
∑

l∈{SB,PD,EP}

xn,l = 0

(8)
• If a noun phrase carries no case feature for ac-

cusative case, it cannot be labelled OA or OA2.
• If a noun phrase carries no case feature for da-

tive case, it cannot be labelled DA.
• If a noun phrase carries no case feature for gen-

itive case, it cannot be labelled OG or AG9.
7Note that some of these constraints are language specific

in that they represent linguistic facts about German and do
not necessarily hold for other languages. Furthermore, the
constraints are treebank specific to a certain degree in that
they use a TiGer-specific set of labels and are conditioned on
TiGer-specific configurations and categories.

8SB = subject, OA = accusative object, OA2 = sec-
ond accusative object, DA = dative, OG = genitive object,
OP = prepositional object, PD = predicate, OC = clausal ob-
ject, EP = expletive es

9AG = genitive adjunct
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Unlike Klenner (2007), we do not use prede-
fined subcategorization frames, instead letting the
statistical model choose arguments.

In TiGer, sentences whose main verbs are
formed from auxiliary-participle combinations,
are annotated by embedding the participle under
an extra VP node and non-subject arguments are
sisters to the participle. Therefore we add an ex-
tension of the constraint in (6) to the constraint set
in order to also include the daughters of an embed-
ded VP node in such a case.

Because of the particulars of the annotation
scheme of TiGer, we can decide some labels in
advance. As mentioned before, punctuation does
not get a label in TiGer. We set the label for those
nodes to −− (no label). Other examples are:

• If a node’s category is PTKVZ (separated verb
particle), it is labeled SVP (separable verb par-
ticle).

cat(n) = PTKV Z −→ xn,SV P = 1 (9)

• If a node’s category is APPR, APPRART,
APPO or APZR (prepositions), it is labeled AC
(adpositional case marker).

• All daughters of an MTA node (multi-token
adjective) are labeled ADC (adjective compo-
nent).

These constraints are conditioned on part-of-
speech tags and require high POS-tagging accu-
racy (when dealing with raw text).

Due to the constraints imposed on the classifi-
cation, the function labeller can no longer assign
two subjects to the same S node. Faced with two
nodes whose most probable label is SB, it has to
decide on one of them taking the next best label for
the other. This way, it outputs the optimal solution
with respect to the set of constraints. Note that this
requires the feature model not only to rank the cor-
rect label highest but also to provide a reasonable
ranking of the other labels as well.

4 Evaluation

We conducted a number of experiments using
1,866 sentences of the TiGer Dependency Bank
(Forst et al., 2004) as our test set. The TiGerDB is
a part of the TiGer Treebank semi-automatically
converted into a dependency representation. We
use the manually labelled TiGer trees correspond-
ing to the sentences in the TiGerDB for assessing
the labelling quality in the intrinsic evaluation, and

the dependencies from TiGerDB for assessing the
quality and coverage of the automatically acquired
LFG resources in the extrinsic evaluation.

In order to test on real parser output, the test
set was parsed with the Berkeley Parser (Petrov et
al., 2006) trained on 48k sentences of the TiGer
corpus (Table 1), excluding the test set. Since the
Berkeley Parser assumes projective structures, the
training data and test data were made projective by
raising non-projective nodes in the tree (Kübler,
2005).

precision 83.60 recall 82.81
f-score 83.20 tagging acc. 97.97

Table 1: evalb unlabelled parsing scores on test set for Berke-
ley Parser trained on 48,000 sentences (sentence length≤ 40)

The maximum entropy classifier of the func-
tion labeller was trained on 46,473 sentences of
the TiGer Treebank (excluding the test set) which
yields about 1.2 million nodes as training samples.
For training the Maximum Entropy Model, we
used the BLMVM algorithm (Benson and More,
2001) with a width factor of 1.0 (Kazama and Tsu-
jii, 2005) implemented in an open-source C++ li-
brary from Tsujii Laboratory.10 The integer linear
program was solved with the simplex algorithm in
combination with a branch-and-bound method us-
ing the freely available GLPK.11

4.1 Intrinsic Evaluation
In the intrinsic evaluation, we measured the qual-
ity of the labelling itself. We used the node
span evaluation method of (Blaheta and Char-
niak, 2000) which takes only those nodes into ac-
count which have been recognised correctly by the
parser, i.e. if there are two nodes in the parse and
the reference treebank tree which cover the same
word span. Unlike Blaheta and Charniak (2000)
however, we do not require the two nodes to carry
the same syntactic category label.12

Table 2 shows the results of the node span eval-
uation. The labeller achieves close to 98% label
accuracy on gold treebank trees which shows that
the feature model captures the differences between
the individual labels well. Results on parser output
are about 4 percentage points (absolute) lower as
parsing errors can distort local context features for
the classifier even if the node itself has been parsed

10http://www-tsujii.is.s.u-tokyo.ac.jp/∼tsuruoka/maxent/
11http://www.gnu.org/software/glpk/glpk.html
12We also excluded the root node, all punctuation marks

and both nodes in unary branching sub-trees from evaluation.

1091



correctly. The addition of the ILP constraints im-
proves results only slightly since the constraints
affect only (a small number of) argument labels
while the evaluation considers all 40 labels occur-
ring in the test set. Since the constraints restrict the
selection of certain labels, a less probable label has
to be picked by the labeller if the most probable
is not available. If the classifier is ranking labels
sensibly, the correct label should emerge. How-
ever, with an incorrect ranking, the ILP constraints
might also introduce new errors.

label accuracy error red.
without constraints

gold 44689/45691 = 97.81% –
parser 40578/43140 = 94.06% –

with constraints
gold 44773/45691 = 97.99%* 8.21%
parser 40593/43140 = 94.10% 0.68%

Table 2: label accuracy and error reduction (all labels) for
node span evaluation, * statistically significant, sign test, α =
0.01 (Koo and Collins, 2005)

As the main target of the constraint set are argu-
ment functions, we also tested the quality of argu-
ment labels. Table 3 shows the node span evalua-
tion in terms of precision, recall and f-score for ar-
gument functions only, with clear statistically sig-
nificant improvements.

prec. rec. f-score
without constraints

gold standard 92.41 91.86 92.13
parser output 88.14 86.43 87.28

with constraints
gold standard 94.31 92.76 93.53*
parser output 89.51 86.73 88.09*

Table 3: node span results for the test set, argument functions
only (SB, EP, PD, OA, OA2, DA, OG, OP, OC), * statistically
significant, sign test, α = 0.01 (Koo and Collins, 2005)

For comparison and to establish a highly com-
petitive baseline, we use the best-scoring system
in (Chrupała and Van Genabith, 2006), trained and
tested on exactly the same data sets. This purely
statistical labeller achieves accuracy of 96.44%
(gold) and 92.81% (parser) for all labels, and f-
scores of 89.88% (gold) and 84.98% (parser) for
argument labels. Tables 2 and 3 show that our sys-
tem (with and even without ILP constraints) com-
prehensively outperforms all corresponding base-
line scores.

The node span evaluation defines a correct la-
belling by taking only those nodes (in parser out-
put) into account that have a corresponding node
in the reference tree. However, as this restricts at-

tention to correctly parsed nodes, the results are
somewhat over-optimistic. Table 4 provides the
results obtained from an evalb evaluation of the
same data sets.13 The gold standard scores are
high confirming our previous findings about the
performance of the function labeller. However,
the results on parser output are much worse. The
evaluation scores are now taking the parsing qual-
ity into account (Table 1). The considerable drop
in quality between gold trees and parser output
clearly shows that a good parse tree is an impor-
tant prerequisite for reasonable function labelling.
This is in accordance with previous findings by
Punyakanok et al. (2008) who emphasise the im-
portance of syntactic parsing for the closely re-
lated task of semantic role labelling.

prec. rec. f-score
without constraints

gold standard 95.94 95.94 95.94
parser output 76.27 75.55 75.91

with constraints
gold standard 96.21 96.21 96.21
parser output 76.36 75.64 76.00

Table 4: evalb results for the test set

4.1.1 Subcategorisation Frames
Early on in the paper we mention that, unlike e. g.
Klenner (2007), we did not include predefined
subcategorisation frames into the constraint set,
but rather let the joint statistical and ILP models
decide on the correct type of arguments assigned
to a verb. The assumption is that if one uses prede-
fined subcategorisation frames which fix the num-
ber and type of arguments for a verb, one runs the
risk of excluding correct labellings due to missing
subcat frames, unless a very comprehensive and
high quality subcat lexicon resource is available.

In order to test this assumption, we run an addi-
tional experiment with about 10,000 verb frames
for 4,508 verbs, which were automatically ex-
tracted from our training section. Following Klen-
ner (2007), for each verb and for each subcat frame
for this verb attested at least once in the training
data, we introduce a new binary variable fn to
the ILP model representing the n-th frame (for the
verb) weighted by its frequency.

We add an ILP constraint requiring exactly one
of the frames to be set to one (each verb has to have
a subcat frame) and replace the ILP constraint in
(6) by:

13Function labels were merged with the category symbols.
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∑
〈n,m〉∈D

xm,SB −
∑

SB∈fi

fi = 0 (10)

This constraint requires the number of subjects
in a phrase to be equal to the number of selected14

verb frames that require a subject. As each verb
is constrained to “select” exactly one subcat frame
(see additional ILP constraint above), there is at
most one subject per phrase, if the frame in ques-
tion requires a subject. If the selected frame does
not require a subject, then the constraint blocks the
assignment of subjects for the entire phrase. The
same was done for the other argument functions
and as before we included an extension of this con-
straint to cover embedded VPs. For unseen verbs
(i.e. verbs not attested in the training set) we keep
the original constraints as a back-off.

prec. rec. f-score
all labels (cmp. Table 2)

gold standard 97.24 97.24 97.24
parser output 93.43 93.43 93.43
argument functions only (cmp. Table 3)

gold standard 91.36 90.12 90.74
parser output 86.64 84.38 85.49

Table 5: node span results for the test set using constraints
with automatically extracted subcat frames

Table 5 shows the results of the test set node
span evaluation when using the ILP system en-
hanced with subcat frames. Compared to Tables 2
and 3, the results are clearly inferior, and particu-
larly so for argument grammatical functions. This
seems to confirm our assumption that, given our
data, letting the joint statistical and ILP model de-
cide argument functions is superior to an approach
that involves subcat frames. However, and impor-
tantly, our results do not rule out that a more com-
prehensive subcat frame resource may in fact re-
sult in improvements.

4.2 Extrinsic Evaluation
Over the last number of years, treebank-based
deep grammar acquisition has emerged as an
attractive alternative to hand-crafting resources
within the HPSG, CCG and LFG paradigms
(Miyao et al., 2003; Clark and Hockenmaier,
2002; Cahill et al., 2004). While most of the ini-
tial development work focussed on English, more
recently efforts have branched to other languages.
Below we concentrate on LFG.

14The variable representing this frame has been set to 1.

Lexical-Functional Grammar (Bresnan, 2001)
is a constraint-based theory of grammar with min-
imally two levels of representation: c(onstituent)-
structure and f(unctional)-structure. C-structure
(CFG trees) captures language specific surface
configurations such as word order and the hier-
archical grouping of words into phrases, while
f-structure represents more abstract (and some-
what more language independent) grammatical re-
lations (essentially bilexical labelled dependencies
with some morphological and semantic informa-
tion, approximating to basic predicate-argument
structures) in the form of attribute-value struc-
tures. F-structures are defined in terms of equa-
tions annotated to nodes in c-structure trees (gram-
mar rules). Treebank-based LFG acquisition was
originally developed for English (Cahill, 2004;
Cahill et al., 2008) and is based on an f-structure
annotation algorithm that annotates c-structure
trees (from a treebank or parser output) with
f-structure equations, which are read off of the tree
and passed on to a constraint solver producing an
f-structure for the given sentence. The English
annotation algorithm (for Penn-II treebank-style
trees) relies heavily on configurational and catego-
rial information, translating this into grammatical
functional information (subject, object etc.) rep-
resented at f-structure. LFG is “functional” in the
mathematical sense, in that argument grammatical
functions have to be single valued (there cannot be
two or more subjects etc. in the same clause). In
fact, if two or more values are assigned to a single
argument grammatical function in a local tree, the
LFG constraint solver will produce a clash (i. e.
it will fail to produce an f-structure) and the sen-
tence will be considered ungrammatical (in other
words, the corresponding c-structure tree will be
uninterpretable).

Rehbein (2009) and Rehbein and van Genabith
(2009) develop an f-structure annotation algorithm
for German based on the TiGer treebank resource.
Unlike the English annotation algorithm and be-
cause of the language-particular properties of Ger-
man (see Section 2), the German annotation al-
gorithm cannot rely on c-structure configurational
information, but instead heavily uses TiGer func-
tion labels in the treebank. Learning function la-
bels is therefore crucial to the German LFG an-
notation algorithm, in particular when parsing raw
text. Because of the strong case syncretism in Ger-
man, traditional classification models using local
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information only run the risk of predicting mul-
tiple occurences of the same function (subject,
object etc.) at the same level, causing feature
clashes in the constraint solver with no f-structure
being produced. Rehbein (2009) and Rehbein
and van Genabith (2009) identify this as a major
problem resulting in a considerable loss in cov-
erage of the German annotation algorithm com-
pared to English, in particular for parsing raw text,
where TiGer function labels have to be supplied by
a machine-learning-based method and where the
coverage of the LFG annotation algorithm drops
to 93.62% with corresponding drops in recall and
f-scores for the f-structure evaluations (Table 6).

Below we test whether the coverage problems
caused by incorrect multiple assignments of gram-
matical functions can be addressed using the com-
bination of classifier with ILP constraints devel-
oped in this paper. We report experiments where
automatically parsed and labelled data are handed
over to an LFG f-structure computation algorithm.
The f-structures produced are converted into a
dependency triple representation (Crouch et al.,
2002) and evaluated against TiGerDB.

cov. prec. rec. f-score
upper bound 99.14 85.63 82.58 84.07

without constraints
gold 95.82 84.71 76.68 80.49
parser 93.41 79.70 70.38 74.75

with constraints
gold 99.30 84.62 82.15 83.37
parser 98.39 79.43 75.60 77.47

Rehbein 2009
parser 93.62 79.20 68.86 73.67

Table 6: f-structure evaluation results for the test set against
TigerDB

Table 6 shows the results of the f-structure
evaluation against TiGerDB, with 84.07% f-score
upper-bound results for the f-structure annotation
algorithm on the original TiGer treebank trees
with hand-annotated function labels. Using the
function labeller without ILP constraints results in
drastic drops in coverage (between 4.5% and 6.5%
points absolute) and hence recall (6% and 12%)
and f-score (3.5% and 9.5%) for both gold trees
and parser output (compared to upper bounds).
By contrast, with ILP constraints, the loss in cov-
erage observed above almost completely disap-
pears and recall and f-scores improve by between
4.4% and 5.5% (recall) and 3% (f-score) abso-
lute (over without ILP constraints). For compar-
ison, we repeated the experiment using the best-

scoring method of Rehbein (2009). Rehbein trains
the Berkeley Parser to learn an extended category
set, merging TiGer function labels with syntactic
categories, where the parser outputs fully-labelled
trees. The results show that this approach suf-
fers from the same drop in coverage as the classi-
fier without ILP constraints, with recall about 7%
and f-score about 4% (absolute) lower than for the
classifier with ILP constraints.

Table 7 shows the dramatic effect of the ILP
constraints on the number of sentences in the test
set that have multiple argument functions of the
same type within the same clause. With ILP con-
straints, the problem disappears and therefore, less
feature-clashes occur during f-structure computa-
tion.

no constraints constraints
gold 185 0
parser 212 0

Table 7: Number of sentences in the test set with doubly an-
notated argument functions

In order to assess whether ILP constraints help
with coverage only or whether they affect the qual-
ity of the f-structures as well, we repeat the experi-
ment in Table 6, however this time evaluating only
on those sentences that receive an f-structure, ig-
noring the rest. Table 8 shows that the impact of
ILP constraints on quality is much less dramatic
than on coverage, with only very small variations
in precison, recall and f-scores across the board,
and small increases over Rehbein (2009).

cov. prec. rec. f-score
no constr. 93.41 79.70 77.89 78.79
constraints 98.39 79.43 77.85 78.64
Rehbein 93.62 79.20 76.43 77.79

Table 8: f-structure evaluation results for parser output ex-
cluding sentences without f-structures

Early work on automatic LFG acquisition and
parsing for German is presented in Cahill et al.
(2003) and Cahill (2004), adapting the English
Annotation Algorithm to an earlier and smaller
version of the TiGer treebank (without morpho-
logical information) and training a parser to learn
merged Tiger function-category labels, and report-
ing 95.75% coverage and an f-score of 74.56%
f-structure quality against 2,000 gold treebank
trees automatically converted into f-structures.
Rehbein (2009) uses the larger Release 2 of the
treebank (with morphological information) report-
ing 77.79% f-score and coverage of 93.62% (Ta-
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ble 8) against the dependencies in the TiGerDB
test set. The only rule-based approach to German
LFG-parsing we are aware of is the hand-crafted
German grammar in the ParGram Project (Butt
et al., 2002). Forst (2007) reports 83.01% de-
pendency f-score evaluated against a set of 1,497
sentences of the TiGerDB. It is very difficult to
compare results across the board, as individual pa-
pers use (i) different versions of the treebank, (ii)
different (sections of) gold-standards to evaluate
against (gold TiGer trees in TigerDB, the depen-
dency representations provided by TigerDB, auto-
matically generated gold-standards etc.) and (iii)
different label/grammatical function sets. Further-
more, (iv) coverage differs drastically (with the
hand-crafted LFG resources achieving about 80%
full f-structures) and finally, (v) some of the gram-
mars evaluated having been used in the generation
of the gold standards, possibly introducing a bias
towards these resources: the German hand-crafted
LFG was used to produce TiGerDB (Forst et al.,
2004). In order to put the results into some per-
spective, Table 9 shows an evaluation of our re-
sources against a set of automatically generated
gold standard f-structures produced by using the
f-structure annotation algorithm on the original
hand-labelled TiGer gold trees in the section cor-
responding to TiGerDB: without ILP constraints
we achieve a dependency f-score of 84.35%, with
ILP constraints 87.23% and 98.89% coverage.

cov. prec. rec. f-score
without constraints

gold 95.24 97.76 90.93 94.22
parser 93.35 88.71 80.40 84.35

with constraints
gold 99.30 97.66 97.33 97.50
parser 98.89 88.37 86.12 87.23

Table 9: f-structure evaluation results for the test set against
automatically generated goldstandard (1,850 sentences)

5 Conclusion

In this paper, we addressed the problem of assign-
ing grammatical functions to constituent struc-
tures. We have proposed an approach to grammat-
ical function labelling that combines the flexibil-
ity of a statistical classifier with linguistic expert
knowledge in the form of hard constraints imple-
mented by an integer linear program. These con-
straints restrict the solution space of the classifier
by blocking those solutions that cannot be correct.
One of the strengths of an integer linear program

is the unlimited context it can take into account
by optimising over the entire structure, providing
an elegant way of supporting classifiers with ex-
plicit linguistic knowledge while at the same time
keeping feature models small and comprehensi-
ble. Most of the constraints are direct formaliza-
tions of linguistic generalizations for German. Our
approach should generalise to other languages for
which linguistic expertise is available.

We evaluated our system on the TiGer corpus
and the TiGerDB and gave results on gold stan-
dard trees and parser output. We also applied
the German f-structure annotation algorithm to
the automatically labelled data and evaluated the
system by measuring the quality of the resulting
f-structures. We found that by using the con-
straint set, the function labeller ensures the inter-
pretability and thus the usefulness of the syntac-
tic structure for a subsequently applied processing
step. In our f-structure evaluation, that means, the
f-structure computation algorithm is able to pro-
duce an f-structure for almost all sentences.
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