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Abstract

In the last years a common notion of a Problem-Solving Method (PSM) emerged
from different knowledge engineering frameworks. As a generic description of
the dynamic behaviour of knowledge based systems PSMs are favored subjects
of reuse. Up to now, most investigations on the reuse of PSMs focus on static
features and methods as objects of reuse. By this, they ignore a lot of
information of how the PSM was developed that is, in principle, entailed in the
different parts of a conceptual model of a PSM.

In this paper the information of the different parts of PSMs is reconsidered from
a reuse process point of view. A framework for generalized problem-solving
methods is presented that describes the structure of a category of methods based
on family resemblances. These generalized methods can be used to structure
libraries of PSMs and - in the process of reuse - as a means to derive an
incarnation, i.e. a member of its family of PSMs.

For illustrating the ideas, the approach is applied to the task rsp. problem type of
parametric design.
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1 Introduction

Most current knowledge engineering frameworks consider a notion of a Problem-Solv-
ing Method (PSM) that converged from a number of different approaches (Generic
Tasks [Chandrasekaran, Johnson, and Smith, 1992], CommonKADS [Schreiber et al.,
1994], Method-to-Task Approach [Eriksson et al., 1995], Components of Expertise
[Steels, 1990], GDM [Terpstra et al., 1993], MIKE [Angele, Fensel, and Studer,
1996]). A PSM is a knowledge level description of a problem-oriented, but domain-
independent reasoning strategy. Augmented with domain-specific knowledge a PSM
can be reused across different applications. By reuse of PSMs, the development time
of knowledge based systems is shortened, the quality of the system is improved, the
maintenance is simplified, and the overall costs are reduced - computed against the
investment cost for systematic reuse. In this context it seems to be worth while investi-
gating systematic approaches to planned reuse.

Loosely speaking, reuse means finding an adequate component to a given task descrip-
tion out of a given set of reuse candidates. This leads to the following issues:

e determining what is a reuse candidate,
» organizing the set of reuse candidates (library, repository),


mailto:perkuhn@ailb.uni-karlsruhe.de

175

* describing the characteristics of tasks and components (indexing),
* supporting the lookup mechanism (retrieval),
¢ defining a metric for assessing the adaquacy of the found component(s).

Most current approaches take implicitly a notion of a PSM as a candidate for reuse as
granted. Based upon these prerequisites they attempt to characterize the functionality
of a PSM from a competence point of view. A suitable description of the competence
might be used for indexing and, by matching against the goals of a given task, also for
retrieval. But, instead of drawing conclusions from the competence (and further) infor-
mation for the structure of the library, the approaches treat the components as totally
isolated from each other.

In general, minor attention is paid to the relation between tasks, between PSMs and
between tasks and PSMs. Some taxonomies for tasks rsp. problem types have been
suggested (e.g. [Breuker and van de Velde, 1994]). With the assumption that a task
rsp. problem type in the taxonomy can be related to a limited number of PSMs, the
retrieval can be split up into two steps: First, determining the problem type, and sec-
ond, selecting a PSM from the (small) set of PSMs attached to the problem type. But
none of the suggested taxonomies can cope with the fact that there is no such thing as a
pure analytical or generative task. Every diagnosing task involves the aspect of genera-
ting a report to present the result of the analytical step. A configuration task cannot
ignore analytical knowledge to distinguish acceptable and not acceptable configura-
tions - besides the trivial task of unconstrained configuration. A comprehensive reuse
framework should be able to offer e.g. the PSM propose&revise for both tasks. Even,
it might be more straightforward to relate propose&revise to a generative task since
the effort spent on reusing might mirror the likeliness of the relation.

An approach that tries to capture the intertwining of tasks is that of a suite ([Breuker,
1994]). A suite relates the problem types of the above mentioned taxonomy to each
other. It prescribes a standard ordering by defining a successor relation between the
problem types that is assumed to be held for most applications. But, to be really useful
in a reuse framework a suite contains insufficient information. It is just one meta-level
structure for all tasks. The gain of information by using a suite is very small. The suite
fits every task and may be instantiated accordingly. But there is no support of how this
information narrows the range of applicable PSMs.

Instead of one meta-level structure it would be reasonable to suggest several structures
for different task clusters or families. Each structure should handle a specific task type
and contain more information than a suite.

The next section discusses the role categories can play in the reuse process and intro-
duces the notion of family resemblances.

The following section shows how the relation between tasks can be exploited to derive
a structure for a category of PSMs based on family resemblances. To assess the rele-
vance of the features of a PSM for a family structure, this section reconsiders the moti-
vation of the different parts of the common notion of a PSM.

Section 4 illustrates the ideas with a case study for the task rsp. problem type of para-
metric design; section 5 concludes and discusses related and future work.
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2 Categories and Family Resemblances

Normally, only a few PSMs are really suitable to accomplish a given task. Even with
an exhaustive characterization of a PSM‘s competence the space of all reusable PSMs
has to be searched one way or the other. The retrieval process starts at one point and
repeats to look for the next candidate if the previous attempt failed - until success or
failure for the last candidate. Obviously, it is not reasonable to treat the space of all
PSMs as an unordered flat collection because then retrieval is linear search. In an ideal
reuse scenario the retrieval would start at one or possibly several entry points accor-
ding to the competence of the PSMs. A mismatch would then trigger continuing search
in the neighbourhood of the entry point. But for this, the notion of neighbourhoodness
of PSMs has to be established on some kind of similarity measure between PSMs. The
metric of similarity is based on some set of features and defined as the ratio of the
weighted sum of the common features by the weighted sum of the distinctive features
([Tversky, 1977]) - given suitable sets of features and weights.

A first idea to support browsing through the space of PSMs would be to categorize the
methods. Repeating this step results in a taxonomy of PSMs that can be used as a hier-
archical structure of a library. Taxonomies enable hierachical instead of linear search
but they are - as mentioned above - not suitable for categorizing PSMs with respect to
tasks the PSMs should accomplish. But there is a way to combine most of the advan-
tages of categories and to avoid the restrictions of strict taxonomies.

Classical theory of categorization
defines categories based on a)
necessary and sufficient conditi-
ons on a certain set of features: if
(and only if) an object has all the
features of a category, then it is a
member, i.e. if one feature is
missing, an object is definitely
not member of the category. As a
consequence there is a clear bor-
der and distinction between mem-
bers and non-members. So, in a
taxonomy it is not possible to
have two different categories, e.g.
one for PSMs for parametric
design tasks and one for PSMs for
diagnosis tasks, and an object,
e.g. the PSM propose&revise,
belonging to both of these catego-
ries (as shown in figure l.a). A Figure 1. Categories of PSMs based N
cognitive theory of categorization a) on necessary and sufficient conditions and
- S b) on family resemblances
weakens the membership defini-
tion via necessary and sufficient conditions and focusses on the structure of a category
according to the degree of similarity between objects ([Wittgenstein, 1953], [Rosch,
1975], [Lakoff, 1991]). In this framework a category is represented by one or several
prototypes. A prototype is a possibly virtual - in the sense of not necessarily existent -
object that unites all the features that are considered most prominent for this category.

PSMs for parametric design

Space
of PSMs

PSMs for

Entry points for PS‘Ms for . .
parametric design

diagnosis
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E.g. the prototype of the category “birds" is a two-feet flying, egg-laying animal of
certain size and shape. But of course, pinguins would be called birds although they do
not fly. And there is no reason to assume that the prototype has a real counterpart of
exactly the same size and shape. The prototype is just a projection of the condensed
experiences with objects that are considered members of the category and a con-
structed means to express its structure. The membership to a category is a gradual
property depending on the closeness to the prototype(s). If a category is so diverse that
it cannot be expressed by one prototype solely (e.g. the category “games*) the category
may be also represented by several prototypes. The underlying notion of the relation
between several prototypes and the closeness between a prototype and the elements of
acategory is termed family resemblances. In the following, some features of PSMs are
discussed to derive prototypical structures. These generalized prototypical PSMs can
then be used to describe a family of PSMs and as a means in the reuse process to come
to an incarnation of a member of this family.

3 Families of PSMs

The notion of a PSM consists of a functional and operational specification. The
functional specification describes the competence of a PSM and its interface to the
environment. The operational specification comprises four main parts (s. figure 2):

* the decomposition of the task into several subtasks,

/ functional specification input precondition \
output postcondition

operational specification

g

decomposition

control flow

/

conceptl
method ontology

conceptm concept I J/
() Method C O Task ] goeert’ > pecision

—»  Data Flow rsp. Control Flow  — Decomposmon rsp. Ontological Relationships

Figure 2.  (Parts of the) Description of a PSM (cf. [Angele et al., 1996])
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* an inference structure for this level of decomposition, i.e. the data flow between
the subtasks,
* acontrol mechanism that constrains the order of accomplishing the subtasks in

order to meet the PSM ‘s competence with respect to the goals achievable by the
subtasks, and

* a method ontology that describes the concepts used by the method (and their
interrelationships).

Provided an adequate model of an application domain (domain ontology) and a suita-
ble mapping of the domain-specific concepts to the method-specific concepts, a PSM
can be reused across several domains and applications.

To be able to assess the relevance of the different features of a PSM for a notion of
similarity, first, the motivation that led to the different parts respectively is reconsid-

ered. Thereupon it is possible to elaborate their specific contribution to the conceptual
model of a PSM.

3.1  Reconsidering Task Structure Analysis

Understanding a PSM as a way to break down one complex task into several subtasks
is the knowledge engineering variant of the divide-and-conquer principle. In addition,
the special aim of a task structure analysis is to figure out what aspect of the problem
makes it a hard problem. Refining the goal of a task by several subgoals of its subtasks
reveals the simple and crucial parts of the problem. The crucial parts show that, where,
and what kinds of mostly heuristic, specific knowledge is necessary to make the whole
process computational tractable.

Obviously, the decomposition process can be repeated for every new subtask until
finally the tasks can be accomplished by elementary steps that can be written down
straightforward as inference actions. These are the leaves in the resulting tree consist-
ing of alternating levels of, on the one hand, matching alternative methods (or elemen-
tary inference actions) to tasks and, on the other hand, decomposing each method into
several subtasks (s. figure 3).

task
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Figure 3. Embedding the notion of PSM into the method-to-task paradigm (cf. [Angele et al.,
1996])

But these figures are a little bit misleading. It must be stressed that a PSM is only one
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step of decomposition; a PSM determines new subtasks and, by this, sets up new goals.
The decomposition does not constrain the way of how to achieve the new goals. So,
the part of the tree beneath a PSM should be treated separately from the PSM itself. Of
course, the complete specification of the dynamic part of a knowledge based system is
one instantiation of the tree after deciding for one of each alternative. Nevertheless, a
description of a conceptual model of a PSM as shown in figure 2 is set up on top of the
notion of subtasks rsp. their goals and does not look into the task internal details. Also,

from the reuse process point of view a PSM is primarily a means for one step of the top
down analysis.

Corrolary 1 - Task decomposition

A PSM is a way to decompose one task into several subtasks. The goal of the over-
all subtask is broken down by setting up new subgoals for the subtasks. A PSM
does not prescribe how these (sub-)goals have to be achieved.

The notion of a PSM does not restrict the way how the subgoals are related to each
other and to the goal of the overall task. Of course, if all subtasks are successfully
accomplished, the goal of the major task should have been met. But the subgoals may
depend on each other and be coherent. The subgoals need not to be mutually exclusive.
One goal may be subsumed by another - provided that the specific knowledge required
to achieve this goal is available. So, in the following the goals of a method‘s subtasks

should not be considered disjoint. At least for a subset of all possible inputs they may
overlap.

The following example is intended to illustrate this idea. If one task is to decide for the
next candidate (e.g an employee to be assigned to an office room) the method “select*
sets up two subtasks (in other cases, more and different subtasks would be possible).

“Oracle™ has the goal to select always the

best next candidate, “random‘ only to

present one (arbitrarily selected) candi-

date (e.g. due to the alphabetical order of

their names). Obviously, the goal of “ora- @ @
cle* is subsumed by the goal of “random*

but the achievability of this goal depends

on whether the knowledge of the best Figure4. Decomposition with a coloured
next candidate is available. Actually, (optional) component

three different cases have to be distinguis-

hed: Methods for “oracle” know the answer for a) every question, b) some questions,
or ¢) no question. Le. they yield the best next candidate for a) every input, b) some
input, or ¢) no input. The cases a) and c) could be handled straightforward: In a) oracle
is the alternative that could be chosen to perform select, in ¢) random has to be taken.
But case b) requires some way to express that random has to cope with the input oracle
cannot handle. Both are subtasks of the same method and could not be considered
alternatives. Since an omniscent oracle will hardly ever been found in reality, case a)
will be ignored in the following. The other two cases are represented in figure 4: The
difference between them is described by a colour, but the similarity is captured by inte-

grating them into one common underlying structure. In the extreme case c) that no spe-
cific oracle knowledge is available it would be reasonable to be able to wipe out these
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nodes from the figures of the task decomposition tree. Therefore, they should be mar-
ked as optional components. In the reuse process the optional components can be
checked with respect to the necessary knowledge and be treated accordingly.

Corrolary 2 - Relations between subtasks, optional components

The goals of the subtasks of a PSM are not necessarily mutually exclusive. Some
subgoals may overlap, some subgoals may be subsumed by other subgoals. In case
of subsumption the subsumed goal should be marked as optional.

The relation between the optional subtasks and the specific knowledge they require is
documented best as a kind of inference structure.

3.2  Reconsidering Inference Structures

An inference structure describes the data flow between the subtasks that are the result
of the decomposition. The ways of the possible data flow is represented by directed
links between the subtasks; the structure of the data is specified as roles on the links (s.
figure 2). Roles contain the (derived) static knowledge of the inference structure. A
role may be a data interface between two subtasks or between a subtask and the
domain specific knowledge. In the latter case the role the domain knowledge plays in
the inference process is expressed in form of a mapping.

Inference structures can be seen in the reuse process twofold. On the one hand, as part
of a complete specification they are objects for reuse, on the other hand, as interpreta-
tion models they are means for reuse. In the context of a reuse process-oriented frame-
work the latter aspect is more attractive. As an interpretation model an inference
structure is used to check whether the necessary knowledge for each subtask is availa-
ble from the application domain rsp. whether any domain knowledge can be elicitated
and interpreted in a way that it can fill the role in the inference structure. Elicitating
and interpreting are highly creative acts but spending time and effort on them is rea-
sonable only to a certain extent. Finally, the interpretation model is judged binary eit-
her suitable or not. But taken the motivation of the task decomposition seriously there
is no reason to assume that the applicability of one subtask depends on the availability
of some specific knowledge other subtasks require. A really useful interpretation struc-
ture should separate these affairs. Then, the evaluation of the interpretation structure
does not yield a binary, but a gradually decision - depending on what different kinds of
knowledge are available.

Of course, some kinds of knowledge are
really necessary and are, as such, the cru-
cial features for a binary decision. But, in
the case that the goal of one subtask is
subsumed by or overlaps with goals of
other subtasks, it is sufficient that their
common goal can be achieved one way
or the other. If t_he goal of the coherent Figure 5. Inference struture with coloured
tasks can be achieved by some subset of (optional) components

them alone, the rest is optional. In the

following the relation between an optional role and the subtasks that use the know-
ledge of this role is defined and illustrated as a colour. The colouring of an inference

selected
component

oracle
knowled
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structure shows what kinds of knowledge are not binary decisive for the suitability of
the structure and what dependants of the role also can be wiped out if the knowledge is
not available. This way, this structure can be used to derive different incarnations that
are all members of the same family of PSMs.

Corrolary 3 - Coloured inference structures

An inference structure describes the data flow between the subtasks (that are the
result of the decomposition) via roles. The coherence between optional tasks and
the specific knowledge they require is defined by a colour. All nodes of the same

colour can be deleted from the structure if the specific knowledge role cannot be
filled.

The information that was collected up to this point to characterize a family of PSMs
can be condensed to a notion of a coloured inference structure including a specifica-
tion of the goals of the subtasks. The information of the decomposition is an intrinsic
feature of the inference structure. Most part of this information can already be speci-
fied by a new version of the language KARL ([Angele et al., 1996]). The revised ver-
sion of KARL allows to describe PSMs on a formal and conceptual level, especially
goals and competences can be expressed by pre- and postconditions. But, up to now
there is no way to treat the different parts separately and, by this, to really support the
reuse process. For illustration purposes an alternative is preferred: Another way to
express the characteristics of a PSM is a graph grammar rule (s. figure 5, cf. GDM
[Terpstra et al., 1993]): A method is rewritten by its inference structure. Missing optio-
nal knowledge leads to deleting all same coloured parts of the inference structure. But
it should be noted that it is a misinterpretation to treat a task-decomposition tree only
as the result of recursive applications of grammar rules, i.e. as a word of the language
accepted by the grammar. A method can be seen as a rule, but the selection of a PSM
to a given task involves some aspects that cannot be expressed if hidden in rewriting.
The matching of a PSM‘s competence against the goal of a task may reveal (hidden)
assumptions of the PSM, e.g. the single-fault-assumption or the assumption of acyclic
revise rules ([Benjamins, Fensel, and Straatman, 1996]). Assumptions trigger different
processes of checking properties of the domain knowledge or reformulating the task
([Fensel and Schoenegge, 1997]). Afterwards, if the method-to-task adaptation did not
run into a dead end, plugging in the method enables a new rewriting step. A PSM
grammar cannot separate the different aspects, it ignores the essence of a PSM. But it
is a useful instrument to reconstruct the development process.

Most of the issues discussed up to this point can be easily transferred to the notion of a
method ontology. The concepts and relations may be also optional and coloured
according to the colours of the roles (and vice versa). Further, it would be interesting
to compare the relation between method and subtask ontologies (cf. [Studer et al.,
1996]) to the expressiveness of the graph grammar rules for the methods. Since this
paper attempts to present a coherent view of the especially dynamic part of a PSM, the
aspect of method ontologies is not elaborated any further. Instead a brief sketch of how
control knowledge can be characterized is presented.

3.3  Reconsidering Control Knowledge

The last aspect of a PSM that has not been considered yet is the ordering of the sub-
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tasks. The control knowledge specifies when each subtask may be accomplished -
dependent on the goals of other subtasks. Thinking in the paradigm of e.g. Structured
Analysis control flow may expressed in terms of sequence, alternative, and iteration.

If there is a reason to stick to this paradigm and to the assumption of a single processor
system the control can be illustrated by flow diagrams (s. figure 2). Then, the control
knowledge of a generalized PSM with optional components can be described

* by enumerating all control flows for all possible incarnations or
* by using coloured flow diagrams similar to coloured inference structures.

Leaving the paradigm and relaxing the single processor assumption opens new ways to
describe control knowledge.

Once again, the motivation of the task decomposition helps to introduce a wide notion
of control knowledge. The initial state before task decomposition consists of a problem
to be solved. Unfortunately, the solution of the problem is not obvious. The only way
to solve the problem in one step would be to ask an oracle that always yields the cor-
rect solution. This is the first trivial model a knowledge engineer might have about the
problem solving process. The aim of decomposition is to set up subgoals that could be
achieved with less miraculous knowledge. The knowledge engineer attempts to break
down the goal to be able to cope with - at least some of - the subgoals. The degree of
how well understood a subtask is might affect organizational models especially how
the subtasks could/should be distributed between a human expert and the system. A
very critical but incomplete understood task e.g. deciding what to do next in an emer-
gency case of a nuclear plant should rest with a human expert as long as possible.

Generalizing this szenario of two agents to a multi-agent szenario enables constella-
tions in which each subtask has its own agent. Of course, the agents need a way to
communicate with each other e.g. via a blackboard. But on top of the constellation
control knowledge can be easily specified without the restrictions of structured analy-
sis. Every agent just has to know what kinds of knowledge it expects from which (data
delivering) predecessor and what conditions must hold on this input. Then, an agent
can start accomplishing its task immediately when the expected input is provided and
satisfies the constraints.

Corrolary 4 - Control knowledge

Control knowledge has to specify what constraints have to be satisfied by the input
a subtasks expects from its (data delivering) predecessors. Subtasks can be accom-

plished as soon as the complete expected input is provided that satisfies the con-
straints.

By this, this framework also captures parallel - possibly competing - subtasks that will
become even more important in the near future. Nevertheless, coming back from inter-
net visions downto earth, if agent-oriented specifying of control is not wanted, the fra-
mework can be used at least as a means to derive a control flow specification in the
mentioned terms: Starting with the “last® subtask that delivers the output of the
method the control flow specification may be constructed backwards - by iteratively
comparing what a subtask expects with what its predecessors can provide it with.
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4 One Family of PSMs for the Task Type Parametric Design

In the following the ideas of the last two sections are illustrated with an example. A
simplified version of the task type parametric design (cf. [Motta and Zdrahal, 1996])
sets up a goal for the framework. Then different subgoals and the relation to each other
are discussed and result in a description of a simple family structure.

The similarity of names for the subtasks to subtask names of well-known PSMs is
purely arbitrary. They are not intended to suggest a 1:1-mapping of the family struc-
ture to existing PSMs. But they may indicate a way of how a similar incarnation of the
family structure can be derived.

4.1 Parametric Design

The task type of parametric design works with a system model that describes the struc-
ture of the system to be designed with a number of parameters. Designing means that a
value has to be assigned to every parameter from its specific range.

SYSTEM
PARAMETER;: { RANGE,}

PARAMETER,; { RANGE, )

If there is no restriction of what a correct (or good) design is, then the values can be
arbitrarily taken from the respective ranges. But normally designs are least distin-
guished between correct and incorrect assignments. Initially well-chosen values enable
a straightforward search for a correct assignment. Sometimes, a subset of the parame-
ters can be made responsible for the failure and, sometimes, the reason why a design is
incorrect can be explained and named. The reason becomes particularly useful if it can
be connected to a way how to improve the assignment at least locally. But this local
change may effect that the assignment is still incorrect due to other reasons.

4.2  Subtasks and the Family Structure

The overall goal of a parametric design task is to find an assignment that maps each
parameter to a value out of its range. If only a subset of possible assignments are valid
assignments the validity must be checked, e.g. with a boolean function that yields
TRUE if the assignment is valid and FALSE otherwise. So, constrained parametric
design has to find a valid assignment with respect to this test. Of course, normally, a
design is assessed according to a quality metric and the goal is to find the best possible
design. But for simplification reasons this aspect is not considered any further.

Based on this framework, the task can at least be split up into two subtasks: One that
has the goal to find a possibly partial assignment and the other one has the goal to
decide whether this assignment is valid or not. The subtasks do not restrict the degree
of freedom whether the first task has to generate a complete assignment or whether it
starts with a subset of the parameters that is extended after a successful test. This deci-
sion can be seen as part of the control knowledge that is not discussed in detail. To
briefly sketch the idea, the successing task has to specify whether it expects an assign-
ment for one, several or all parameters.
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This first vague approximation of a “method* is shown in figure 6 as uncoloured
objects.

ic_desion:
(partial) (extended)

ropose .
assignment assignment

propose
knowled

€

valid
assignment

violated partial
assignment

binary test
knowledge

Figure 6. Family structure of the category of PSMs for the task type parametric design

Instead of generating arbitrary assignments and searching the space of all possible
assignments unsystematically, knowledge about good (initial) values for at least some
of the parameters would improve the search. Of course, only an oracle could always
offer valid assignments but starting with presumably good values lowers the average
search time. The goal of this task of proposing “good* values is somehow subsumed
by the goal of “generate”. Even less efficient “generate® will deliver the same values -
but after some failed iterations of generating and testing. So, it is not really necessary
to have propose knowledge for every parameter because “generate can help in that
situation as a backup or default subtask. Presumably in most cases there is propose
knowledge only for a subset of the parameters so that a partial assignment has to be
extended by arbitrary generated values for the rest of the parameters.

The relation of this goal to propose knowledge and the optionality of this coherent area
is shown by light grey colouring of the nodes in the left upper corner of figure 6.

More sophisticated test knowledge may also yield a subset of the parameters that is
responsible for the violation. Then, the violation can be repaired locally, i.e. only val-
ues of some parameters of this subset have to be exchanged. This specific knowledge
and the dependent nodes of the structure are marked with dark grey in figure 6.

If there is no special knowledge of how this could be done, again arbitrary partial
assignments for this subset of parameters can be generated and tested until the partial
assignment does not cause the violation any more (if possible). Although this local
repair helps to avoid testing a lot of assignments it does not guarantee that the resulting
assignment is valid. It may be invalid due to other conditions so the test has to follow
once again. The same holds even if some special revise knowledge is available that
tells how to fix a violated constraint. Since this goal is subsumed by the rest of this
exchange:
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partial
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fixed partial
assignment

generate

constraint
knowledge
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violated partial
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Figure 7. Family structure of the category of PSMs for the (sub-)task type exchange

structure the subtask and the required knowledge are marked as optional and coloured
middle grey (cf. figure 7).

In this family the subtask “test” mostly determines the control flow. If it expects a
complete model, then possibly the two preceding subtasks “propose* and “‘generate*
have to be repeated until all parameters have assigned values, otherwise a subset of
assigned parameters from one of them once accomplished may be sufficient (Complete
vs. Extend Model Then Revise, [Motta and Zdrahal, 1996]). The “generate* subtask
only has to be performed if the subtask “test** demands an assignment for some para-
meter the “propose* task does not have the knowledge about good values for.

4.3  Using the Family Structure to Derive PSMs

The resulting structure represents one family of PSMs for parametric design tasks. As
mentioned above there is no need that a counterpart PSM exists in reality. But it can be
used to partially structure the library and as a means to derive different incarnations.

Retrieving a component from the library is separated into two steps. First, one or more
family structures are selected from the library out of a limited number of “reference
structures* according to the competence. And second, each selected structure is used to
browse through the category it describes. The first step is not the subject of this paper
but could be briefly sketched as matching the competence against the task goal. For the
described parametric design family it is necessary that the central concept of the task is
a system model that can be described by parameters. If the central activity is assigning
“correct” values to the parameters, then this family is a possible candidate for the next
step. Then the colouring of the family structure can be used as the underlying principle
for a questionnaire. The uncoloured roles are necessary features - if they cannot be fil-
led, the structure is excluded from further consideration. The coloured roles mirror the
family structure of the category, they are useful but not necessary features. If these
roles cannot be filled, all nodes of the same colour can be wiped out. Otherwise the
process continues with refining the structures. But in any case, the structure is a means
to navigate through the space of PSMs.
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Depending on the availability of the above described roles it seems to be straightfor-

ward to derive incarnations of the family that are very close rsp. can be refined to well-
known PSMs:

» if none of the optional roles is available, the structure is reduced to almost gen-
erate&test (cf. figure 8),

extended
assignment

F =T

nary test
knowledge!

vali
assignment
v

violated paru:
assignment

Figure 8. Instantiating the family structure to the PSM generate&test

+ if all optional roles are available, the structure strongly resembles pro-
pose&revise.

The insight that the two methods are very closely related to each other (according to
family resemblances) is strongly supported by the mincer metaphor that showed how
one could be transformed into the other (cf. [Fensel and Straatman, 1996]).

Table 1 summarizes the scope of the family described by figure 6 and figure 7. Every
(optional) role triggers a question, the dependencies between roles trigger follow-up
questions. Further roles independent from the two shown in the table would spawn up
further dimensions.

Is knowledge | binary decision?
of this special No Yes — | constraint
kind availa- d knowledge?
ble? No Yes— revise knowledge?
No Yes
! !
unconstrained propose propose propose
Yes — | propose (&generate) (&generate) (&generate)
propose (&generate) &test &exchange &revise
knowledge? unconstrained generate generate generate
No — generate &test &exchange &revise

Table 1. Underlying structure for questionnaire (“—* means follow-up question rsp. decision
for row or column, shading means already documented PSM)

By representing the structure of a family of PSMs explicitly a questionnaire can easily
be derived. Furthermore, by making explicitly the dependencies between the optional
roles e.g. in a table similarity between two members can be expressed: Neighbours in
the table are very closely related to each other, greater distances express a lower simi-
larity measure.
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5 Conclusion, Related and Future Work

The presented framework is one of the few approaches to tackle the problem of the
relation between the subtasks of specific task rsp. problem types. Based on a non-clas-
sical notion of categorization a way to structure a family of PSMs is suggested. The
description of this family structure is grounded on the well-established, but slightly
reconsidered notion of a PSM. The paper aimed to shift the focus from a product-ori-
ented to a process-oriented view on the reuse of PSMs. For this, generalized PSMs
incorporate more information than only the binary distinction whether a PSM is suita-
ble or not. By deriving an incarnation of the family this artefact is configured accor-
ding to the specific circumstances.

Other approaches that investigate the relation between tasks discuss taxonomies, task-
decomposition methods, or suites.

Taxonomies (e.g. [Breuker and van de Velde, 1994]) would be ideal for hierarchical
search but they cannot cope with the fact that there are no clear borders between cate-
gories of PSMs for different task types.

Task-decomposition methods ([Benjamins, 1993]) try to cover a space of PSMs for
one task but they suffer from the same disadvantages as taxonomies. They are not able
to express the specific difference between the decomposition of the method and the
sophisticated selection and adaptation process before plugging in a method.

The deficiencies of the notion of a suite ([Breuker, 1994]) are already discussed above.
Although this idea is applied to specific task types ([Benjamins, 1995]) the benefits of
a suite remain unclear. Neither the way how to use a suite, nor the way how to exploit
the result is documented.

But there is some other work that already use an implicit notion of a family structure.

In the context of the CommonKADS approach a collection of questions rsp. question-
naires about task features is discussed ([Aamodt et al., 1993]) to support the selection
of a method for an identified task type. GDM proposes a set of rewrite rules. The con-
figuration of a PSM depends on the selection and application of some of the GDM
rules ([Terpstra et al., 1993]). Although, at first glance, these are different issues there
is a strong relation between the selection of rules in GDM and the ordering of questi-
ons about the task features: Both check some properties of the task rsp. problem type
and yield a similar result, namely a PSM. The rule selection and the question ordering
look also very similar to wiping out coloured nodes in this approach but GDM and
CommonKADS use the common underlying structure of similar family members only
implicitly. An explicit representation of the family structure enables a systematic
approach to construct questionnaires and to guide the application of grammar rules.

Some new results on automated configuration of PSMs also take some kind of family
structure for granted. In this framework, PSMs are derived from more common but
task specific parametrized structures ([ten Teije, 1997]). One structure is examined in
detail for diagnosis. With specific values for the parameters this structure is instanti-
ated to a PSM. Some parameters may obtain the empty set as value with the conse-
quence that they can be ignored. This resembles the optional components in the
approach discussed in this paper, but the relation to the other subtasks and the embed-
ding in an incremental reuse process is not considered.

In the future the relation of family structures to parameters (in the configuration-of-
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PMSs-as-parametric-design-paradigm [ten Teije et al., 1996]) and to assumptions (cf.
[Benjamins, Fensel, and Straatman, 1996]) will be investigated. Furthermore the speci-
fication of control knowledge has to be elaborated. For this, more family structures of
different task types have to be developped and specified formally - currently the task
types diagnosis and assessment are investigated. Most insights are then expected from
using the family structures in real life reuse applications.
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