View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Publikationsserver des Instituts fur Deutsche Sprache

Extreme Markup
Languages;

Proceedings of Extreme Markup Languages®

Master

Bibliogranh Author Index Topic Index Date Index Proceedings Home

Making CONCUR work

Mirco Hilbert
Oliver Schonefeld
Andreas Witt

Abstract

The SGML feature CONCUR allowed for a document to be simultaneously marked up in multiple
conflicting hierarchical tagsets but validated and interpreted in one tagset at a time. Alas, CONCUR was
rarely implemented, and XML does not address the problem of conflicting hierarchies at all. The MuLaX
document syntax is a non-XML syntax that enables multiply-encoded hierarchies by distinguishing
different “layers” in the hierarchy by adding a layer ID as a prefix to the element names. The IDs tie all
the elements in a single hierarchy together in an “annotation layer”. Extraction of a single annotation layer
results in a well-formed XML document, and each annotation layer may be associated with an XML
schema. The MuLaX processing model works on the nodes of one annotation layer at a time through
Xpath-like navigation. CONCUR lives!

Keywords: Concurrent Markup/Overlap

Table of Contents

Introduction

Multiple Hierarchies and CONCUR

The MuLaX Document Syntax

MuLaX and CONCUR

MuLaX and NamespacesMore aspects on the relation between multiple-annotated documents and
namespace techniques can be found in .
The MuLaX Processing Models

Features of the Processing Model
Structure of the Processing Model
Example

Multi-rooted Trees: An Alternative Model
Structure of the Processing Model
Implementation

Editor a

Editor b

Mirco Hilbert

Mirco Hilbert studied Computer Science and Language Technology at Bielefeld University. He is now a
member of the research unit for Applied and Computational Linguistics at the Justus-Liebig-University

https://core.ac.uk/display/83654065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Giellen. Parts of the paper deal with aspects of his Master's Thesis.
Oliver Schonefeld

Oliver Schonefeld studies Computer Science and Language Technology at Bielefeld University. Parts of
the paper deal with aspects of his Master's Thesis.

Andreas Witt
Since 1996, Andreas Witt has taught at Bielefeld University, Germany in the field of 'text technology'. His
research interests include the combination of computational linguistics and markup technologies, schema

languages, and corpus annotation.

XML Source PDF (for print) Author Package Typeset PDF

Making CONCUR work

Mirco Hilbert [Justus-Liebig-University Giefsen]
Oliver Schonefeld [Bielefeld University]
Andreas Witt [Bielefeld University]

Extreme Markup Languages 2005® (Montréal, Québec)
Copyright © 2005 Mirco Hilbert, Oliver Schonefeld, and Andreas Witt. Reproduced with permission.

Note: This paper contains W3C MathML, which is not equally well supported in all browsers. If you have
reason to think that mathematical expressions are not displaying properly, consult the PDF version (or try a
different browser).

Introduction

This paper describes ways to approach the functionality of the SGML-feature CONCUR. This work is
based on two Master's Theses. The origin of these theses was a paper originally given at Extreme Markup
Languages 2004 [Witt (2005)] , where it was argued that the redundant encoding of information in multiple
forms, as described by the TEI-Guidelines (see [ACH/ACL/ALLC (1994)] and [Barnard et al. (1995)]), has a lot
of advantages over other methods of encoding multiply structured text.

The multiple encoding of text allows to use all the available techniques and software products for XML
documents. The MuLaX-Format was developed as an integrated format for editing. This format is strongly
influenced by the SGML option CONCUR. The XML-conformance is achieved by the processing model:
The processing is conservative because the concurrent annotations are kept separately. In other words, a
non XML-syntax as a sequentialization of multiple incompatible hierarchies is used on the one hand, and
on the other hand, all the processing is done on (hierarchical/ XML conform) trees.

Multiple Hierarchies and CONCUR

Some papers presented at Extreme 2004 described several possibilities of encoding multiple hierarchies
with markup languages (e.g. [DeRose (2004)]). [Witt (2005)] argued that - from a practical point of view - the
technique of stand-off annotation is the best way for representating and storing documents with markup,
which is used for annotating information from different levels. This allows to separate the different
annotation layers. But it was also argued that stand-off annotation has several disadvantages:

¢ The layers, although separate, depend on each other. They can only be interpreted by reference to
the layer(s) they point to.

¢ Although all information is included, the information is difficult to access using generic methods. As
a consequence, standard parsing or editing software cannot be employed.

e Standard document grammars (e.g. the TEI Relax NG scheme, the XHTML-DTD, or the W3C
Schema for DocBook) can only be used for levels containing both, markup and textual data.

¢ Linking to a sub-element range, or to textual data not annotated at all is difficult. The pointing
mechanism defined by the TEI or by XPointer can be used, but requires another special software
solution.

All of these points are related to the process of document exchange because stand-off annotation requires
special purpose software. This contradicts the vision of a more sustainable storage of marked-up
documents. Therefore, it was argued that multi-hierarchically marked up documents should be stored in
different, separate, self contained XML-documents. It has been shown that if the textual data are exactly
the same in all of the separate documents, the very text can serve as an (implicit) link. So all of the
documents build a coherent unit.

As a simple example we use the following short dialogue between Peter and Paul, shown in Figure 1.
Figure 1

Peter: Hey Paul! Would you give me
Paul: the hammer?

Assuming the uttered texts as our primary data we can annotate the dialogue structure and the sentences of
this dialogue in two separate primary data identical XML documents, shown in Figures 2 and 3.

Figure 2: Separate annotation of the dialogue structure of the example dialogue 1

<?xml version="1.0"72>
<!DOCTYPE div SYSTEM "tei/dtd/teispok2.dtd">
<div type="dialog" org="uniform">
<u who="Peter">
Hey Paul!
Would you give me
</u>
<u who="Paul">
the hammer?
</u>
</div>

Figure 3: Separate annotation of the sentence text structure of the example dialogue 1

<?xml version="1.0"2>
<!DOCTYPE text SYSTEM "tei/dtd/teiana2.dtd">
<text>
<s>Hey Paul!</s>
<s>Would you give me
the hammer?</s>
</text>

In this example the hierarchical structures are overlapping in that respect that Paul in his utterance
completes the sentence begun by Peter.

Formally, a collection of implicitly linked documents with the same textual data can be transformed in a
data structure, best described as multiple trees which share the same leaves. In other words, several trees

span over the same text. Such a structure is sometimes called a multi-rooted tree.

However, for the creation and for an integrated processing of such document collections, a theoretical
approach and software solutions are necessary. [Witt et al. 2005] show a way to process and to unify these
documents. As a technique for editing such documents, an old SGML-technique can be applied: The
optional SGML-feature CONCUR YES.

The SGML standard [ISO 8879:1986] provides the optional feature CONCUR to annotate concurrent
hierarchical structures in one SGML document. Therefore, it allows to use more than one DTD in one
document at the same time. The elements are assigned to the DTD they belong to by preceding them with
the corresponding document type surrounded by round brackets, the so-called document type
specification. Elements that are equally defined in all applied DTDs can be used as shared elements
without any prefix.

One possible SGML CONCUR representation that combines both of the above annotations in one
document is shown in Figure 4.

Figure 4: The representation of the dialogue and the sentence text structure of the example dialogue 1 as a SGML
CONCUR document.

<!DOCTYPE div SYSTEM "tei/dtd/teispok2.dtd">
<!DOCTYPE text SYSTEM "tei/dtd/teiana2.dtd">
<(div)div type="dialog" org="uniform">
<(text) text>
<(div)u who="Peter">
<(text)s>Hey Paul!</ (text)s>
<(text)s>Would you give me
</ (div)u>
<(div)u who="Paul">
the hammer?</ (text) s>
</ (div)u>
</ (text) text>
</ (div)div>

As [DeRose (2004)] already pointed out, in CONCUR the several marked up hierarchies are completely
independent of each other and there is no possibility to constrain relationships across the applied DTDs.
Thus, when parsing CONCUR documents it is either possible to parse (and validate) each hierarchy
separately ignoring elements of other DTDs, or to parse them simultaneously, for example using a multiple
stack approach to check the wellformedness on each layer.

This independence of the marked up hierarchies has also some interesting side effects, as described in [Witt
(2002)] . The order of two (or more) tags at one position of the primary data is arbitrary. Even if two (or
more) elements of different DTDs span the same region, the order of their start and end tags is irrelevant as
in the following example:

<(div)u>< (text)s>Here you are.</ (text)s></(div)u>
<(text)s><(div)u>Here you are.</ (div)u></ (text)s>
<(div)u>< (text)s>Here you are.</ (div)u></ (text)s>

<(text)s><(div)u>Here you are.</ (text)s></(div)u>

Because of these and other disadvantages or problems Charles Goldfarb, the main developer of the SGML
standard, advised against using the CONCUR option already in 1990:

1 therefore recommend that CONCUR not be used to create multiple logical views of a document, such as
verse-oriented and speech-oriented views of poetry. ([Goldfarb (1990)])

Others do not share Goldfarb's critical position. Steven De Rose mentions that:

The main advantages of CONCUR are that it is part of SGML, and that it is quite legible and
maintainable. ([DeRose (2004)])

Sperberg-McQueen and Huitfeldt conlude an comparison of CONCUR and MECS by stating:

By using concur, the simplicity of interpretational rules found in MECS (and in the basic SGML model)
can be combined with a powerful language for expressing constraints on document structures (the DTD).
The theoretical and practical advantages outweigh the practical disadvantages and the humanities
computing community should begin serious experimentation concur. ([Sperberg-McQueen and Huitfeldt

(1998)])

The MuLaX Document Syntax

As mentioned above, the proposed solution dealing with multi-hierarchically structured documents is to
store each hierarchy in a separate XML document. The documents differ only in the markup (including the
values of attributes), the text content in all of these is identical. However, the main problem of this
approach is to keep these multiple documents consistent when editing the redundant stored primary data or
the annotations of one of the documents.

Thus, the purpose of this paper is not to propose yet another markup language to store and handle multi-

hierarchically structured data, trying to solve the overlapping problem. 1 MuLaX, standing for Multi-
Layered XML, is intended as a document format which merges a collection of several primary data
identical XML annotated documents into one document in a uniform way, which can easily be viewed and
edited by a human user. Accordingly, MuLaX appears as a temporary processing and storage format of a
source code editor which loads and stores sets of primary data identical XML documents. It is assumed
that annotators using this editor are familiar with XML and with using XML source code editors.
Therefore, not only the look and feel of the editor should be aligned to common XML editors, but also the
document syntax should be as easy to understand as XML for the human reader.

MuLaX and CONCUR

The MuLaX document syntax takes the syntax of SGML CONCUR as an example and is derived of it. In
the same way it has its origin in the syntax of XML and thus it is subjected to some restrictions in contrast
to SGML CONCUR. In order to distinguish the different annotation layers every tag is marked with a layer
ID as a prefix to the element names and refers to the annotation layer which it belongs to.

As an example an annotation of the dialogue and the sentence layer of the dialogue in Figure 1 using the
MuLaX document syntax is given in Figure 5. The similarity with CONCUR is unmistakable (see Figure
4).

Figure 5: The representation of the dialogue and the sentence text structure of the example dialogue 1 as a MuLaX
document.

<?mlx version="1.0" encoding="iso-8859-1"7?>
<!DOCTYPE (1)div SYSTEM "tei/dtd/teispok2.dtd">
<!DOCTYPE (2)text SYSTEM "tei/dtd/teiana2.dtd">
<(l)div type="dialog" org="uniform">
<(2) text>
<(l)u who="Peter">
<(2)s>Hey Paul!</(2)s>
<(2)s>Would you give me
</ (1)u>
<(1l)u who="Paul">
the hammer?</ (2) s>
</ (1)u>
</ (2) text>

</ (1l)div>

In order to describe the MuLaX document syntax we will use the terminology defined by the XML
Recommendation as much as possible. In addition we define the following terms:

Information
Layer 2

Annotation
Layer

An information layer is a term which is used more conceptually. It refers to a special
view on a document together with accessory meta information that can be represented
by structure information.

In contrast to an information layer an annotation layer is a technical term which refers
to the concrete syntactical realization of an information layer by annotations in a
document. Here it is possible that one annotation layer represents more than one
information layer at the same time.

If a MuLaX document is viewed as a set of interwoven XML documents one annotation layer corresponds
to exactly one XML document.

Annotation
Schema

An annotation schema defines elements, their relations and their possible attributes that
can be used on one annotation layer. An annotation schema can be implicitly existent or
explicitly declared. Implicit annotation schemes simply exist by the used vocabulary of
elements and attributes. In XML it is for example possible to generate a DTD for one or
a set of XML documents by the usage of DTD generators. Thus, an implicit annotation
schema becomes an explicit one.

An explicit annotation schema is declared by an annotation schema declaration at the
top of a MuLaX document. The advantage of an explicit annotation schema is that the
correct usage of annotations is provable by a validation process.

Which schema language is used for the annotation schema is not exactly regulated by the MuLaX
document syntax. Thus, all common schema languages are possible, e.g. DTDs, XML Schema, and Relax

NG.

Annotation
Schema
Declaration

An annotation schema declaration declares the explicit annotation schema that belongs
to one annotation layer. At the same time, it defines the annotation layer ID with which
the elements of its layer refer to their corresponding schema declaration. In the current
version the concrete syntax is not established for all possible schema languages.
However, for DTDs or DTD fragments the following syntax is proposed to declare the
annotation schema by a customized DOCTYPE declaration:

<!DOCTYPE (1l)div SYSTEM "dtd/teispok2.dtd">

Here the annotation layer with the ID 1 and the root element div is assigned to the
annotation schema that is stored in the local file dtd/teispok2.dtd. Of course, PUBLIC
identifiers are possible as well as internal DTDs and DTD subsets as in XML.

If there is no existing annotation schema declaration for one annotation layer, the
annotation schema is called "implicit" as mentioned above.

The inversion of the above mentioned merging view can now be formulated as a mandatory requirement
for every MuLaX document:

Wellformedness
Requirement Every projection of a well-formed MuLaX document onto one annotation

layer results in a well-formed XML document.

Therefore, a projection onto an annotation layer is defined by the following process:

1. Delete all annotations that do not belong to the own annotation layer, i.e. all tags with foreign
annotation layer ID prefixes, so called foreign tags, as well as possible existing foreign annotation
schema declarations.

2. Delete all annotation layer ID prefixes from all annotations of the own layer as well as the
annotation layer ID prefix declaration from a possible existing annotation schema declaration.

In our example document (Figure 5) the dialogue information layer is represented by the annotation layer
with the ID 1, the sentence layer takes the ID 2. Deleting for example all tags with the layer ID prefix (1)
it is imaginable that only the tags with the layer ID prefix (2) are left. We get a MuLaX document with
only one annotation layer. If we now delete these prefixes from the remaining tags we get a well-formed
XML document. Of course, the MuLaX declaration (in line 1) also must be changed to an equivalent XML
declaration.

The wellformedness requirement implies and imputes some further features of MuLaX documents. In
SGML CONCUR it is possible to use unmarked elements side by side with elements that are marked by a
document type specification. If there are elements defined with the same name in all used annotation
schemes these elements can be used without a document type specification in SGML CONCUR
documents, and so they are interpreted as belonging to all annotation layers. The MuLaX document syntax
is stricter in this respect. Here every element must be marked with an annotation layer ID prefix, which
clearly assigns it to one annotation layer. Moreover, each annotation layer must have its own root element.
So root elements may not be shared by more than one layer as it is possible in SGML CONCUR.

This restriction is an advantage for the processing model to be developed. Because unmarked elements
must either be multiply represented by an object for each annotation layer which also has to be
synchronized. Or they are represented by exactly one object, which increases the complexity of the model
because a shared element -- unless it is the root element -- has more than one parent element. Therefore,
by this restriction more simple processing models are possible for MuLaX documents.

Attributes are generally not marked with annotation layer ID prefixes, since they always belong to an
element. 3 Thus,

<div type="dialog">...</div>

and

<div rend="bold">...</div>

will be merged to

<(1l)div type="dialog"><(2)div rend="bold">...</(2)div></(1)div>
and not

<div (1)type="dialog" (2)rend="bold">...</div>

The latter would also be at odds with the stipulated absence of shared elements.

Comments and processing instructions are not yet provided by merging the XML documents. However,

they equally could be annotated using annotation layer ID prefixes. The syntax we would propose is

<!--(1lid) no comment -->

and
<?(lid)php echo "Hello world!"™ ?>

respectively, while 11id is the annotation layer ID.

Unlike SGML, in MuLaX the annotation layer declaration is optional. Hence, it is possible not to declare
the annotations of one or more layers. Moreover, it is also possible that their layer ID prefix has no schema
that it belongs to. MuLaX inherits this feature from XML. Since in MuLaX annotation layers with or
without a corresponding annotation schema can co-exist, two kinds of validity are defined: (1) the validity
on one annotation layer and (2) the universal validity.

The validity on one annotation layer is reduced to the validity in XML as follows:

Definition
1 A MuLaX document is called valid on one annotation layer iff there exists an explicit

annotation schema for this layer and the projection of the MuLaX document onto this
annotation layer is a valid XML document.

Universal validity is defined as follows:

Definition 2
A MuLaX document is called universally valid iff it is valid on every annotation layer.

For universally valid MuLaX documents it is especially guaranteed that a suitable annotation schema
declaration for each annotation layer exists.

MuL.aX and Namespaces 4

At first sight the concept of annotation layers in MuLaX and namespaces in XML seem to be very similar.
Both will distinguish and mark elements which belong to different annotation schemes. But since
documents, which use markup from different namespaces are still hierarchically structured XML
documents, the problem of overlapping structures persists.

One reason why we use the CONCUR syntax with parenthesised layer IDs to mark the different
annotation layers instead of an extended namespace approach is, that it should even be possible to merge
several XML documents, which may contain elements of different namespaces, to one MuLaX document.
Although this seems to contradict the information layer metaphor, some annotators may have plausible
reasons to mix annotations from different namespaces in one annotation layer and it would be an
unnecessary limitation if the MuLaX document syntax would forbid it. An approach automatically splitting
up XML documents using different namespaces may result in artificial annotation layers, disturbing the
semantically motivated information layer view. Additionally, an artificially generated root element needs to
be added in most cases, which has to be removed when restoring the original XML documents.

A further main difference between annotation layers and namespaces is the possibility of multiply used
annotation schemes. Namespaces are always assigned to a definite namespace name, which, at least
conceptually, refers to an annotation schema or tagset where the elements are defined. In XML a
namespace name can only be used by exactly one namespace prefix. By way of contrast, in MuLaX an
annotation schema can be used by more than one annotation layer. Thus, alternative annotations using the

same tagset are possible. 2 Also using different DTD fragments, declared in the same DTD, i.e. using one
TEI subset for different views or purposes.

The MuL.aX Processing Models

The description of the processing models is mainly based on a model developed and described in [Hilbert
(2005)] . Moreover, aspects of the features and the characteristics of an alternative model are described.

Features of the Processing Model

The MuLaX processing model defines a hierarchical view on the MuLaX document based on one
annotation layer. Thus, a MuLaX document with n annotation layers corresponds to n instances of the
MuLaX processing model because for each annotation layer one model instance is needed. However, for
our purpose of the processing model, a user is acting only on one annotation layer at a time. Therefore,
only one model instance is needed at a time and the expenditure of synchronizing n model instances for
each MuLaX document is dropped.

This commitment results in the MuLaX processing model having a hierarchical data structure which is
analogue to the XML data structure of the projection of the actual annotation layer. In the MuLaX
processing model we therefore distinguish between the current annotation layer and the so-called foreign
annotation layers. The current annotation layer as the preferred layer in the MuLaX model stipulates the
hierarchical structure of the MuLaX model. Their elements are mapped onto elements in the MuLaX
model. In contrast the elements of the foreign annotation layers are treated as milestone elements and are
handled as child elements of the actual surrounding element of the current annotation layer.

Herein lies the primary difference and thus the substantial advantage of the MuLaX model compared to
milestones or other fragmenting techniques. With those a commitment to a primary annotation layer was to
be made already at the stage of designing a shared annotation schema and deciding on the specific
document structure, while in the MuLaX document syntax all annotation layers are treated equally. Hence,
it is possible not to select the currently interesting annotation layer before the stage of representing the
document by a processing model instance and to change the view on the document arbitrarily. Also the
author of a MuLaX document does not have the imposition to keep track of the correct and consistent
artificial linking of element fragments or milestones, or of constructing virtual elements using ID reference
techniques.

In some respects the processing model follows the ideas of the Just-In-Time-Trees (JITTs, [Durusau & Brook
O'Donnell (2002a)] , [Durusau & Brook O'Donnell (2002b)])

Structure of the Processing Model

With a basic idea of the concept of the MuLaX processing model we now want to look at its concrete
structure. Similar to the DOM the MuLaX processing model uses the node metaphor. Aside the MuLaX
model node, which forms the root of a MuLaX model instance, there are element nodes, attribute nodes,
text nodes and so-called foreign tag nodes. Comment and processing instruction nodes are not represented
in the current version of the model.

Except for the MuLaX model node every node has exactly one parent node which is either an element
node or the model node. Above and beyond that all nodes in a MuLaX model but the text nodes belong to
an annotation layer.

The MuLaX model has as its root exactly one MuLaXModel node which represents the whole MuLaX
document from the view point of the current annotation layer. It refers to the current annotation layer and
possesses a list of child nodes, which can consist of element nodes and foreign tag nodes. Since each
annotation layer has to have its own root element according to the MuLaX document syntax only one
element node is allowed in the list of child nodes which indeed may be surrounded by foreign tag nodes.

This can easily be understood considering our example MuLaX document. In the MuLaX model instance

with the dialogue layer (annotation layer 1) as the current annotation layer the div-element is the only
child of the MuLaXModel node. If we treat the sentence layer (annotation layer 2) as the current one, the
root element text is enclosed between the start and the end tag of a foreign layer. We will look at the
entire model representation of our example document later in more detail.

Text nodes are not permitted as child nodes of the MuLaXModel node, since these would be outside of the
root element node of the current annotation layer and thus also outside of the root element of the
projection of the MuLaX document onto this annotation layer. Thus, either this projection document would
not be a well-formed XML document or the demanded characteristic of primary data identity between the
individual annotation layers would be violated.

Asides from the above mentioned parent node a MulLaXElement node possesses a possibly empty list of
child nodes. Like its parent node an element node refers to the current annotation layer. The list of child
nodes again can contain further element nodes, text nodes, or foreign tag nodes. If the list is empty the
element node represents an empty element. Additionally, a MuLaXElement node has a name, which
corresponds to the generic identifier of the element, and a possibly empty list of attribute nodes. Similar to
the XML information set, the DOM, and other XML models, attribute nodes are not treated as child nodes
of an element node.

A MulLaXAttribute node possesses an element node as its parent node and refers to the current annotation
layer, too, whose reference it inherits from its parent node. Besides, it has a name and a value. The name
of the attribute node corresponds to the attribute name and the value to the value of the attribute, which
obeys the same restrictions as XML attribute values. Attribute types are not handled in this basic version
of the MuLaX model. The information missing for this purpose is not available until evaluating the
annotation schema and, thus, it should be supplemented in later versions of the MuLaX model.

A MulLaXText node is the only type of node which does not belong to any annotation layer. If required it
can be assigned to an artificial layer 0 in a concrete implementation of the model. The parent node of a
text node is always its superordinate element node of the current annotation layer. Thus, by changing the
current layer the parent node of each text node is changed. The value of a MuLaXText node contains the
appropriate primary data. Here as in the DOM no directly adjacent text nodes are allowed. Therefore,
there is at least the delimiter of an element node (a tag) or a foreign tag node between two text nodes.

In analogy to the kinds of tags in XML there are three different kinds of MuLaXForeignTag nodes: the
MuLaXForeignStartTag node, the MuLaXForeignEndTag node, and the MuLaXForeignEmptyTag node.
A foreign tag node always refers to its associated foreign annotation layer. Since a tag of a foreign
annotation layer is treated like a milestone element, a foreign tag node does not have any child nodes.
Possibly existing attributes in foreign start or empty tags are not represented in the current version of the
model. These can be supplemented in a later version if necessary.

In order to represent the interrelation of a foreign start tag and a foreign end tag node these can optionally
be provided with a reference to its corresponding foreign tag node. This reference is optional for the
reason, since it is not demanded from a MuLaX parser to implement this feature. However, without any
reference between foreign start and foreign end tag nodes, these may occur indiscriminately in principle
anywhere in the model without any connection to each other. This means that there is no possibility to
check whether the elements of a foreign layer are properly nested, even whether there is a corresponding
foreign end tag to each foreign start tag at all. If a MuLaX parser implements these cross references
between corresponding foreign tag nodes, its operating expense is much greater, indeed, but it thereby has
the possibility to check the well-formedness on all annotation layers as well as to indicate to the user the
relationship between foreign tags selected in a MuLaX editor.

Example

We would now like to look at our example document given above in Figure 5 in more detail. This consists
of two annotation layers and can be represented by two different MuLaX models depending on which

view on the document one has and which annotation layer one selects as the current one.

Figure 6: MuLaX model for annotation layer 1 of the example dialogue. To order to simplify matters, the parent and child
relations are displayed as arrows in direction to the parent nodes

[Link to open this graphic in a separate page]

Model
layer-1D: 1
attribute
Attribute Attribute [*"* Element
layer-1D: 1 layer-10: 1 layer-ID: 1
name: type name: org name: div
value: dialog value: uniform
attribute attributz
ForeignStartTag Attribute Element Attribute Element ForeignEndTag
layer4D: 2 layer-ID: 1 layer-ID: 1 layer-ID: 1 layer-ID: 1 layer-D: 2
name: text name: who name: u name: who name: u name: text
value: Peter value: Paul]
ForeignStartTag Text ForeignEndTag ForeignStartTag Text Text ForeignEndTag
layer-IC: 2 layer-ID: 0 layer-ID: 2 layer-10: 2 layer-IC: 0 layer-1C: 0 layer-ID: 2
nams: s name: #axt name: s name: s name: #ext name: #axt namea: s
valua Hey Paull value: Would you give me wvalue: the hammear?

In the Figure 6 the MuLaX model is displayed from the view of annotation layer 1, the dialogue layer of
the example dialogue. Every element of the current annotation layer, in this case the elements with the
names div and u, are represented as MuLaXElement nodes. The tags < (2) text> and < (2) s> are
"degraded" to MuLaXForeignStartTag nodes, </ (2) text> and </ (2) s> accordingly to
MuLaXForeignEndTag nodes. These are understood in each case as child nodes of the actually
surrounding element node of the current annotation layer. The text nodes are also in a child relationship to
the element nodes of the current layer.

Figure 7 displays the MuLaX model based on annotation layer 2, the sentence layer.

Figure 7: MuLaX model for annotation layer 2 of the example dialogue. In order to simplify matters, the parent and child
relations are displayed as arrows in direction to the parent nodes.

Model
layer-ID: 2
3
ForeignStartTag Element ForeignEndTag
layerdD: 1 layer-ID: 2 layer-1D: 1
name: div name: text name: div

4

ForeignStartTag Element Element ForeignEndTag
layer-1D: 1 layer-1D: 2 layer-ID: 2 layer-ID: 1
name: u name: s name: s name: u
A)
Text Text ForeignEndTag ForeignStartTag Text

layer-1D: D layer-10: O layer-1D: 1 layer-D: 1 layer-10: O

name: #ext name: #text name: u name: u name: #ext

value: Hey Paull valuez: Would you give me wvalue: the hammer?

[Link to open this graphic in a separate page]

Here the elements text and s of annotation layer 2 are represented as MuLaXElement nodes. All other
tags of the foreign annotation layer 1 are represented as appropriate foreign tag nodes and are
subordinated to their surrounding element nodes of the current layer. Since in this case the root element of
the current annotation layer is not the outermost element of the MuLaX document, it is not the only child
node of the MuLaXModel node, but it is surrounded by the two foreign tag nodes of the root element of
the foreign annotation layer. Furthermore, it becomes obvious here that corresponding foreign tag nodes do
not always have to be on the same level of the MuLaX model tree. For example, for the first u element of
the foreign annotation layer its ForeignStartTag node is subordinated to the text element on the second
level of the tree, but its corresponding ForeignEndTag node is one level below subordinated to the second
s element. For the second u element it is the other way round.

The relations between the corresponding foreign tag nodes, optionally representable in the MuLaX model,
are not displayed in the two figures. How these are realized in a concrete implementation is a matter of
design and therefore it is not explicitly specified by the MuLaX model. Extended path expressions similar
to XPath are conceivable, for example. Thus, the ForeignStartTag node of the first u element then has a
property correspEndTagNode with the value / (2) text/ (2) s/ (1) u and its corresponding
ForeignEndTagNode has the property correspstartTagNode with the value / (2) text/ (1) u. These two
path expressions are unambiguous, since in the first case the first s element does not have a (1) u child
node and below the second s element there is exactly one (1)u node, which is a foreign tag node at the
same time. If some nodes may be not clearly locatable, the path expressions can be stated more precisely
by augmenting the node names with indices ¢, which indicate the exact position of the node in the current
branch of the tree, as it is even customary in XPath. In the first case the path expression can be made more
precisely: / (2) text[11/(2)s[2]1/(1)ul1]. Since foreign tag nodes can only occur as leaf nodes in a
MuLaX model tree, the layer ID prefixes may also be omitted up to the latter.

It is important to note that these path expressions are not an instrument to give unique indications about
the position of an element within a MuLaX document. They always depend on the current selected
annotation layer and thus on the concrete MuLaX model instance. For example, the first u element of
annotation layer 1 is accessible through the path expression / (1) div/ (1)u[1] in the MuLaX model of
annotation layer 1. But in the MuLaX model of annotation layer 2 it is represented by two foreign tag
nodes with the path expressions / (2) text/ (1)u(1l] and / (2) text/(2)s/ (1)ull].

A further possibility to express the relation between two foreign tag nodes in the MuLaX model is to
augment each ForeignTag node with an automatically generated ID and to use an ID reference mechanism.
In the concrete implementation of the MuLaX model in Java, object references are used as a further
possibility.

Multi-rooted Trees: An Alternative Model

Currently, an alternative data model for processing MuLaX documents is being developed. In contrast to
the other approach a document is represented as a linear structure of element and text items. Additionally,
a hierarchical DOM-like node structure will exist for each annotation layer. The other model is only
capable of holding one hierarchical structure for all annotation layers using elements and foreign elements.
If one wants to focus on a different annotation layer as primary layer a "structural recalculation" is needed.
This is exactly what happens when multi-hierarchically structured data are processed by an JITTs-like
approach. The new approach tries to avoid this computationally expensive operation. This can be
achieved, since the hierarchical information for all layers is part of the model and will be kept in sync with
the linear representation.

The datamodel implementation provides a function for giving access to the hierarchical structure of each
annotation layer (e.g. doc->GetRootForAnnotationLayer(1)). The hierarchical structure will be
implemented as a subset of the DOM-API [DOM] specified by the W3C and will allow to traverse and
manipulate the structure.

Structure of the Processing Model

As described above, the model consists of two parts: a linear structure and a hierarchical structure for each
annotation layer. We distinguish between the terms item and node. Items are entities used in the linear part
of the model, nodes are part of the hierarchical part.

The linear structure is an array of text, start tag, end tag and empty tag items. Each item stores an offset
and a length. The offset is the offset in bytes from the beginning of the annotated document. The /ength is
the length in bytes of the character sequence for a given item. The array storing the items is ordered by the
item's offset. Additionally, element items may also store attributes in an array of attribute items.

The hierarchical structure is a tree structure of element and fext nodes. An element node is connected to
it's start and end item in the linear representation. For empty elements the start and end item are the same.
Text nodes are connected to at least one text item. They may be connected to more text items, because a
different annotation layer may slice a text item of another annotation layer:

<l== ... ==

<(1l)u who="Peter">
<(2)s>Would you give me

</ (1)u>

<(1l)u who="Paul">
the hammer?</ (2)s>

</ (1)u>

<l== .. ==

The s element in annotation layer 2 is sliced by the two u elements in layer 1. In this case, the s node in
tree structure would be connected to the two text segments "Would you give me" and the "the hammer?".

Implementation
Editor a

One example implementation of the MuLaX model shows how it is qualified as a fundament to develop a
powerful editor for multiple XML-structured data. Hereby, the text editor infrastructure, which is provided

by the Eclipse framework [Object Technology International, Inc. (2003)] , is used to realize the editor as an
Eclipse plug-in in Java. Thus, the MuLaX model is implemented by an object oriented approach.

By extending the abstract class AbstractDecoratedTextEditor, which Eclipse provides in the package
org.eclipse.ui.texteditor, all basic features of common source code editors are already available. The
plug-in structure of the editor can be divided into the following packages:

mulaxe.editors
The package "editors" implements the essential structure of the editor and registers

and configures its implemented editor characteristics.

mulaxe.actions
The package "actions" implements the application specific user actions to work with

the editor, e.g. a function changing the current annotation layer view.

mulaxe.views
The package "views" contains the implementation of an interactive document

structure overview, where the tree structure of the current selected MuLaX model
instance is shown in the so-called OutlinePage. The outline tree nodes are bound to
the corresponding source text segments shown in the editor and can be used to
navigate in the MuLaX document.

mulaxe.mulax
The packages "mulax" implements the MuLaX processing model and, therefore, can

be seen as the core of the MuLaX editor.

In Figure 8 the class hierarchy and associations of the classes are shown as a UML diagram. The class
AbstractMuLaXNode implements the basic structure of a MuLaX tree node with all attributes and
methods all node types have in common. The MuLaX model instance for the current annotation layer is
constructed by a MuLaXParser object, which is called by the MuLaXModelProvider, which operates as an
interface that provides the desired model instances for the current MuLaX document.

Figure 8: The UML class and association diagram of the Java package mulaxe.mulax which includes the implementation of
the MuLaX processing model. The object attributes are hidden for lack of space.

o MuLaXModelProvider o de::mircohilbert::eclipse::mulaxe::views::I0utlineTreeNode G AnnotationLayerHierarchy

Qﬁ NO_CHILDREN: |QutlineT reeNode
@ getAnnotationLayerlD(): int

< addLayer(): AnnotationLayer
@ getModel(): MuLaXModel @ getChildren(): IOutlineTreeNode(] < addLayer(AnnotationLayer): AnnotationLayer
@ initModel(IDocument): MuLaXModel @ getLength(): int ¢» setCurrentAnnotationLayer(AnnotationLayer): boolean
@ updateModel(IDocument): MuLaXMadel @ getName(): String @ getCumentAnnotationLayer(): AnnotationLayer
‘ | ‘ @ getOffset(): int @ layerlterator(): Iterator
@ getParent(}: 10utlineTreeNode @ foreignLayerlterator(): lterator
‘ | “use, mstamlLle» ,]\ ‘
} \]|/ 1_ ___________ é _____ wse» | ‘ «access, use, instantiaten
‘ G MuLaXParser Gﬁ' AbstractMuLaXNode Q AnnotationLayer |<— -
} @ init(IDocument): AnnotationLayerHierarchy @ getParent(): I0utlineTreeNode ~ fLayer <» getlD{): int
‘ @ parse({IDocument, AnnotationLayerHierarchy): MuLaxModel d getChildren(): 10utlineTreeNode[] % <» getLayerPrefix(): String
‘ @ getAnnotationLayer(): AnnotationLayer 0.1 @ toString(): String
‘ cusSeR @ getAnnotationLayerlD(): int (’,ﬂ AnnotationLayer()
‘ ‘ @ getName(): String (,c AnnotationLayeriint)
‘ ‘ @ getOffset(): int
‘ ‘ «BCCESS, User @ getlengin(): int
‘ ‘ @ toString(): String
\ \
o A
VR | | | |
0 MuLaXModel 0 MuLaXElementNode 0 MuLaXAttributeNode @ MuLaXForeignTagNode 0 MuLaXTextNode

@ getChildren(): 10utlineT reeNode[] @ getChildren(): I0utlineTreeNode[] @ getChildren(): IOutlineTreeNode[] @ getChildren(): I0OutlineTreeNade[] @ getChildren(): I0utlineT reeNode(]
<» setChildren{AbstractMulaXNode[]) ¢» selChildren(AbstractMulaXNode[]) @ getValue(): String @ getValue(): String

@ gelAttributes(): AbstractMuLaxXNode[]

<» selAttributes(MuLaXAttributeNode{])

[[I
0 MuLaXForeignStartTagNode G MuLaXForeignEndTagNode 0 MuLaXForeignEmptyTagNode
@ getCorrespondingEndTagNode(): MuLaXForeignEndTagNode @ getCorrespondingStartTagNode(): MuLaxForeignStartTagNode
< setCorrespondingEndTagNode({MuLaXForeignEndTagNode) ¢» selCorrespondingStartTagNode(MuLaXForeignStartTaghode)

[Link to open this graphic in a separate page]

As the wellformedness check and the validation of a MuLaX document can easily be done using native
XML techniques, while acting on projection documents as described in “The MulLaX Document Syntax”.
The main task of the MuLaX parser is to construct a hierarchical view of the current annotation layer to be
shown in the OutlinePage.

Thus, the parsing strategy is similar to parsing XML using a simple push down automaton approach which
cooperates with a tokenizer which will differentiate between current and foreign tags. Current ones are
used as in XML to detect the boundary of one element node, and foreign ones are simply subordinated as
foreign tag nodes to the surrounding current element node. If the correlation of corresponding foreign tags
should be detected by the parser, the parsing strategy can be extended using not only one pushdown stack
for the current layer but one for each layer. Thus, the different layers can be parsed simultanously.

The following Figures 9 and 10 show the current basic version of the editor in action. In the first figure the
dialogue layer (layer 1) is selected as the current one (compare the structure view at the left hand side with
the MuLaX model instance in Figure 6). By selecting the second s foreign start tag in the outline page, in
the editor the range to its corresponding end tag is shown by the blue bar at the left border of the editor
frame. Additionally, the corresponding text region is marked.

Figure 9: A screenshot of the MuLaX editor MuLaXE. In this figure the view is displayed if annotation layer 1 is selected
as the current one.

& Resource - dialog.mix - Eclipse Platform o =
File Edit Mavigate Search Project Run MulaXE Window Help

il = Q|4 % e 7 | 25 Resource
't Navigator 23 =8 ""{dialng.mlxﬁ B
- 1<{1l)div type="dialog" org="uniform"> -
2 “<(2)text>
e G B 0 E 3 <{1)u who="Peter"=>
= 4 <i{2)s>Hey Paul!l</{2)s>
= l=F MulLaX-Test 3 m::uld you give me
= : B </ (1yu>
3| ¢ ct
pels 7 <{1)u who="Paul">
: the hammer?</(2)s>
M test. mix 9 </ (1)u>
1@ </f(2)text>
n = 11 </ (1) diw>
- & »div
q:tEIt
A td"
= a5
= Text
<f=5
= Text
K Ta"
= Text
<t =S =
w
text
< « I |

[Link to open this graphic in a separate page]

In the second figure the sentence layer (layer 2) is the current one (here the structure view corresponds to
the model instance displayed in Figure 7). Here, the whole element region is marked by selecting the s
element in the outline page.

Figure 10: A screenshot of the MuLaX editor MuLaXE. In this figure the view is displayed if annotation layer 2 is selected
as the current one.

& Resource - dialog.mix - Eclipse Platform o =
File Edit Mavigate Search Project Run MulaXE Window Help

E4 s | = Qe | | e O [| Resource
't Navigator 23 =8 I“"1‘_(|:|iaI::|g|.rnI:-: =3 B
- 1<{1l)div type="dialog" org="uniform">
2 <(2)text>
L oo e e =n n
¢@® R BE {}-:b 43- {I]EEQTE}HZ?E;UT!-';'(2‘15:-
=~ == MulLax-Test 5 <(21s>Would you give me
lpmject g ‘:.;f:i-}l..llul-ll'll:l= "Paul "> -
& the hammer?</(2)s>
M test. mix 9 </ (1)u>
10 <f(2)text>
n = H 11 </{1)div>
< =div
= § ptext
< =l
-4
= Text
~ P
= Text
=f =l
= al
= Text
<f=U
AR « Ay

[Link to open this graphic in a separate page]

Editor b

The alternative data model and editor application will be developed using C++ and the portable
wxWidgets library. The software will be available on Windows, Linux and possibly Max OS X. Porting to
different Unix flavors should not be too complicated. Using C++ allows the editor to be fast and small.
There is no need for a Java runtime environment or the Eclipse platform to be installed.

The editor will feature the usual editing options like redo, undo, cut, copy, and paste. The user will be able
to specify an annotation schema for each annotation layer, e.g. DTD or XML-Schema. The editor will
assist the user by providing automatic validation, context sensitive completion of elements, and syntax

highlighting.

A plug-in interface for annotation schema implementations and import and export filters are planned and

will allow users to extend the editor.

Figure 11: The UML class and association diagram of the alternative processing model.

4 MultiLayerDocument AnnotationSchema

’
_{Enrr‘der‘ed} r J"\
Fy

1 1 g..1

y

DocumentElement AnnotationLayer

‘fl}‘ 1 root

arent
Vi1
Tag &2 Text Node [€L1dren
) z‘r\
1..%
1
1 1 1

= Attribute [«

[Link to open this graphic in a separate page]

Figure 11 shows the UML class and association diagram of the alternative data model implementation. The
MultiLayerDocument class is a container for the linear and the hierarchical structures. The linear structure
is an array of type DocumentElement. This abstract class is the generalization for the 7ext and abstract Tag
classes. StartTag, EndTag and EmptyTag are the concrete classes implementing tags. All but the EndTag
may carry Attributes. The linear structure is modified depending on the actions the user performs in the
editor.

The AnnotationLayer class implements the annotation layers. The hierarchical structure is made up from
Node objects. The abstract class Node is the generalization for the classes ElementNode and TextNode.
Both classes link onto the appropriate object in the linear structure. Each AnnotationLayer may link onto
an AnnotationSchema, which is an implementation of an annotation scheme (e.g. DTD, Schema,
RelaxNG). The hierarchical structure will be build by processing the linear structure while the user is not
typing. Currently the editor is in development and not all features have been implemented, yet.

Figure 12: A screenshot of the prototype of the alternative editor imple mentation.

Editor

File Edit \iew Layers Help

b & B 9@ @& [Hh X O

Mew Open Save Undo Fedo Copy Cut FPaste

Layer
(1) Layer 1
(2) Layer 2

<({1)div twyvpe="dialog" org="uniform":>
(2 text>

<({1liun who="Peter"=>
=({2)s*Hey Paull!</(2)s=>

=/ (1)u=
<(1li1u who="Paul"=>

1
2
3
4
5 <(21a*Would »ou give me
&
7
]

the Hammer?</(2)s=>
: 9 </ (1lu>
Layer Structure : 10 </ (2)text>
e iy 11 </ {1)div=>
| = 12
#text

L{u}

#text

Line: 8, Column: 19

[Link to open this graphic in a separate page]

Notes

1. With the Layered Markup and Annotation Language (LMNL, |Tennison and Piez (2002)]) a
general multi-purpose markup language exists. The set of structures which can be modelled
with LMNL is a superset of the set of structures which can be modelled with CONCUR.

2. A similar concept was introduced by [Bayerl et al. 2003] under the name Annotation Level.

3. This is one of the differences between annotation layers and namespaces.

4. More aspects on the relation between multiple-annotated documents and namespace
techniques can be found in [Witt (2005)] .

5. We would have the same difficulties in SGML CONCUR since the document type
specifications correspond to the declared document types defined by the used DTDs.

6. More precisely these indices are an abbreviated form of an XPath predicate, which uses the
XPath function position (). The full predicate notation for / (2) text[1] is

/ (2) text [position() = 1].The annotation layer may also be represented by an additional
function: /text[annotationLayer () = '2' and position() = 1].

Acknowledgments

We would like to thank the members of the collaborative research group on linguistic modelling of
information, funded be the DFG, and Vivian Raithel and Thorsten Trippel.

Bibliography

[ACH/ACL/ALLC (1994)] Association for Computers and the Humanities, Association for
Computational Linguistics, and Association for Literary and Linguistic Computing. 1994. Guidelines for
Electronic Text Encoding and Interchange (TEI P3). Ed. C. M. Sperberg-McQueen and Lou Burnard.
Chicago, Oxford: Text Encoding Initiative, 1994.

[Barnard et al. (1995)] Barnard, David; Burnard, Lou; Gaspart, Jean-Pierre; Price, Lynne A.; Sperberg-
McQueen, C. M.; Varile, Giovanni Battista. "Hierarchical Encoding of Text: Technical Problems and
SGML Solutions." The Text Encoding Initiative: Background and Contents, Guest Editors Nancy Ide and
Jean Véronis = Computers and the Humanities 29/3 (1995) 211-231.

[Bayerl et al. 2003] Bayerl, Petra Saskia, Harald Liingen, Daniela Goecke, Andreas Witt, and Daniel
Naber: Methods for the semantic analysis of document markup. In: Roisin, C., E. Munson and C.

Vanoirbeek (Ed.): Proceedings of the ACM Symposium on Document Engineering (DocEng 2003). pp. 161
- 170

[DeRose (2004)] Steven DeRose. Markup overlap: a review and a horse. Paper presented at Extreme
Markup Languages 2004, August, Montreal, Quebec. August 2004.

[DOM] Arnaud Le Hors, Philippe Le Hégaret, Gavin Nicol, Lauren Wood, Mike Champion, Steve Byrne
(Ed.,2005). Document Object Model Core.http://www.w3.0org/TR/2004/REC-DOM-Level-3-Core-
20040407/core.html

[Durusau & Brook O'Donnell (2002a)] Patrick Durusau and Matthew Brook O'Donnell. "Coming down
from the trees: Next step in the evolution of markup?" Late breaking paper presented at Extreme Markup,
Montreal, 2002.

[Durusau & Brook O'Donnell (2002b)] Patrick Durusau and Matthew Brook O'Donnell. "Concurrent
Markup for XML Documents." Presented at XML Europe 2002. http://www.idealliance.org/papers/xmle02
/dx xmle02/papers/03-03-07/03-03-07.html

[Goldfarb (1990)] Charles F. Goldfarb (1990). The SGML handbook. Oxford: Clarendon Press.

[Hilbert (2005)] Hilbert, Mirco (2005). MuLaX - ein Modell zur Verarbeitung mehrfach
XML-strukturierter Daten. Diploma Thesis, Universitdt Bielefeld. http://www.Mirco-Hilbert.de/MuLaX/

[ISO 8879:1986] ISO 8879:1986. Information processing - Text office systems - Standard Generalized
Markup Language (SGML).

[Object Technology International, Inc. (2003)] Object Technology International, Inc. (Ed.,2003).
Eclipse Platform Technical Overview (Eclipse White Paper), IBM Corporation et al.
http://www.eclipse.org

[Sperberg-McQueen and Huitfeldt (1998)] Sperberg-McQueen, C. M. and Claus Huitfeldt (1998).

Concurrent Document Hierarchies in MECS and SGML, ALLC-ACHO98, Joint Conference of the ALLC
and ACH, Debrecen, Hungary

[Tennison and Piez (2002)] Tennison, Jeni and W. Piez (2002) The Layered Markup and Annotation
Language. LMNL-ORG. http://www.lmnl.net

[Witt (2002)] Andreas Witt (2002). Multiple Informationsstrukturierung mit Auszeichnungssprachen.
Dissertation. Universitét Bielefeld.

[Witt (2005)] Andreas Witt (2005). Multiple Hierarchies: New Aspects of an Old Solution. In: Stefanie
Dipper, Michael Gotze, and Manfred Stede (eds.). 2005. "Heterogeneity in Focus: Creating and and Using
Linguistic Databases", volume 2 of "Interdisciplinary Studies on Information Structure (ISIS), Working
Papers of the SFB 632". University of Potsdam, Germany. (Corrected reprint of an Extreme Markup 2004
paper) http://www.stb632.uni-potsdam.de/isis.php

[Witt et al. 2005] Andreas Witt, Daniela Goecke, Felix Sasaki, and Harald Liingen (2005). Unification of
XML Documents with Concurrent Markup Literary and Linguistic Computing, 20:1 103-116.
http://www.w3.0rg/TR/2004/REC-DOM-Level-3-Core-20040407/core.html

Making CONCUR work

Mirco Hilbert [Justus-Liebig-University Gief3en]
Oliver Schonefeld [Bielefeld University]
Andreas Witt [Bielefeld University]

