
IMT School for Advanced Studies
Computer Science and Engineering

Plan Synthesis in Explicit-input
Knowledge and Action Bases

Doctoral Dissertation of:
Michele Stawowy

December 2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IMT E-Theses

https://core.ac.uk/display/83644378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Publications
1. Stawowy, M. (2015).

Optimizations for decision making and planning in
description logic dynamic knowledge bases.
In Proceedings of the 28th International Workshop
on Description Logics

2. Calvanese, D., Montali, M., Patrizi, F., and Sta-
wowy, M. (2016).
Plan synthesis for knowledge and action bases.
In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence

ii

Abstract

In this Thesis we study plan synthesis for data-
centric domains, where the interest is not only upon
the actions the system performs to reach its desired
goal, but also on how the knowledge defining the
domain evolves with the aforementioned actions.

We first introduce a rich, dynamic framework
named Explicit-input Knowledge and Action Bases
(eKABs), where states are Description Logic (DL)
Knowledge Bases, whose extensional part is manip-
ulated by actions that possibly introduce new ob-
jects from an infinite domain. We show that plan
existence over eKABs is undecidable even under
severe restrictions.

We then focus on state-bounded eKABs, a class
for which plan existence is decidable, and provide
sound and complete plan synthesis algorithms, which
combine techniques based on standard planning,
DL query answering, and finite-state abstraction.
All results hold for any DL with decidable query
answering.

We finally show that for lightweight DLs, plan
synthesis can be compiled into standard planning,
and we provide two translations: translation to
STRIPS for a restricted version of lightweight DL
eKABs, and translation to ADL for full lightweight
DL eKABs. For the STRIPS setting, we provide an
additional technique to optimize Knowledge Base
satisfiability check inside the translation. We also
provide a technique showing how it is possible to
transform any full lightweight DL eKAB to an equiv-
alent restricted lightweight DL eKAB.

Contents

List of Acronyms vii

1 Introduction 1

2 Preliminaries 5
2.1 Description Logic 6

2.1.1 Interpretation of a Knowledge Base . 9
2.1.2 Query Answering 12

2.2 DL-Lite Family 16
2.2.1 First Order Rewritability 18

2.3 Planning . 22
2.3.1 STanford Research Institute Prob-

lem Solver 25
2.3.2 Action Description Language 27

2.4 Description Logic-based Dynamic Systems . 29

3 Explicit-input Knowledge
and Action Bases 33

iv

CONTENTS v

3.1 Parametric actions 35
3.2 Condition-Action Rules 37
3.3 Execution Semantics 38

4 Planning with eKABs:
Plan existence and Plan synthesis 43
4.1 Plan Existence 44
4.2 Plan Synthesis 56

4.2.1 Plan Synthesis for eKABs with Fi-
nite Domain 58

4.2.2 Plan Synthesis for State-Bounded eKABs 60
4.2.3 Plan Templates and Online Instan-

tiation 64

5 Plan Synthesis for Lightweight eKABs 69
5.1 Translation to STRIPS 70

5.1.1 Action Rewriting 79
5.2 Translation to ADL 83
5.3 From eKABs to reKABs 90

6 Proof of Concept 103
6.1 Robot on a Grid 104

7 Conclusions 111
7.1 Summary 111
7.2 Future Work 113

Bibliography 115

List of Acronyms

ADL Action Description Language 27

AI Artificial Intelligence . 22

CQ Conjunctive Query . 12

DL Description Logic . ii

DLDS Description Logic-based Dynamic System 2

ECQ Extended Conjunctive Query 14

eKAB Explicit-input Knowledge and Action Base ii

FO First Order . 2

FOL First-Order Predicate Logic . 5

KAB Knowledge and Action Base . 2

KB Knowledge Base . 2

vii

viii LIST OF ACRONYMS

PDDL Planning Domain Definition Language 25

reKAB Reduced Explicit-input Knowledge and Action
Base . 36

RDBMS Relational Database Management System. .18

SQL Structured Query Language . 18

STRIPS STanford Research Institute Problem Solver .4

TS Transition System. .38

UCQ Union of Conjunctive Queries12

Introduction 1

Classically, management of business processes always fo-
cused on workflows and the actions/interactions that take
part in them, an approach called process-centric. One
of the most prominent operations related to business pro-
cesses is planning [Ghallab et al., 2004b], namely finding
a sequence of operations/actions that allows to reach a
desired goal. Lately, such approach has been call into
question, as the sole focus on the workflow leaves out the
informational context in which the workflow is executed.

Recently, there has been an increasing interest in Artifact-
centric models for business processes [Bhattacharya et al.,
2007, Cohn and Hull, 2009], as they integrate static struc-

1

1. Introduction

tural knowledge (i.e. data related), with action-based
mechanisms in a seamless way, thus overcoming the limits
of the process-centric approach. Combining these two as-
pects into a single logical system is known to be difficult
and easily leading to undecidability, even for simple forms
of inference about system dynamics, when the logics used
are rather limited [Wolter and Zakharyaschev, 1999, Gab-
bay et al., 2003].

In this context, we can see the development of the
framework called Knowledge and Action Bases (KABs)
[Hariri et al., 2013], the later higher formalization of it
named Description Logic-based Dynamic Systems (DLDSs)
[Calvanese et al., 2013b], and the Golog-based work of
[Baader and Zarrieß, 2013]. These works all share the
same concept: handle the data-layer through a DL ontol-
ogy, while the process-layer, since DLs are only able to give
a static representation of the domain of interest, is defined
as actions that update the ontology. This is the so-called
“functional view of knowledge bases” [Levesque, 1984]: ac-
tions evolve the system by querying the current state using
logical inference (ask operation), and then using the de-
rived facts to assert new knowledge in the resulting state
(tell operation).

A prominent feature of KABs is that actions allow
one to incorporate into the Knowledge Base (KB) exter-
nal input provided by fresh objects taken from an infinite
domain. This gives rise, in general, to an infinite-state
system, in which reasoning is undecidable. Nevertheless,
decidability of verification of First Order (FO) temporal

2

properties has been obtained for KABs that are state-
bounded [Bagheri Hariri et al., 2013a, Bagheri Hariri et al.,
2014], i.e., in which the number of objects in each single
state is bounded a-priori, but is unbounded along single
runs, and in the whole system.

The main contribution of this Thesis is the study of
the problem of planning, specifically plan existence and
synthesis [Ghallab et al., 2004a, Cimatti et al., 2008],
for knowledge-intensive dynamic systems over infinite do-
mains. To achieve this goal, we first introduce a variation
of KABs, termed Explicit-input Knowledge and Action
Bases (eKABs), more suited for our purposes, in which the
input-related information for an action is made explicit in
its signature, and not hidden in its conditional effects. In
fact, eKABs can be considered as a concrete instantiation
of the more abstract framework of DLDS [Calvanese et al.,
2013c], and inherit its possibility of abstracting away the
specific DL formalism used to capture the underlying KB.

We show that, in line with previous work on planning
in rich settings [Erol et al., 1995], plan existence is unde-
cidable even for severely restricted eKABs. We thus focus
on a non-trivial subset of eKABs, namely state-bounded
eKABs, for which we prove that plan existence is decid-
able in PSpace data complexity, by combining techniques
based on standard planning, DL query answering, and
finite-state abstractions for DLDSs. After proving plan ex-
istence, we move on plan synthesis, and present a sound
and complete algorithm for state-bounded, DL agnostic
eKABs; more over, the returned plans represent templates

3

1. Introduction

for the original synthesis problem, defined over an eKAB
with an infinite domain.

We then concentrate on eKABs based on lightweight
DLs of the DL-Lite family [Calvanese et al., 2007b].In this
case, we demonstrate that plan synthesis can be tackled
by compilation into standard STanford Research Institute
Problem Solver (STRIPS) or Action Description Language
planning problems, which can then be processed by any
off-the-shelf planner. For the STRIPS setting, we also
show a special technique to insert consistency control of
the KB directly into the actions.

Our work is similar in spirit to the one by [Hoffmann
et al., 2009], as combining a rich knowledge-based setting
with the possibility of incorporating external input. How-
ever, to the best of our knowledge, our setting is the first
one where planning is decidable without severe restric-
tions, in particular on how the external input is handled.
These results are based on the following publications:

• Stawowy, M. (2015).
Optimizations for decision making and planning in
description logic dynamic knowledge bases.
In Proceedings of the 28th International Workshop
on Description Logics

• Calvanese, D., Montali, M., Patrizi, F., and Sta-
wowy, M. (2016).
Plan synthesis for knowledge and action bases.
In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence

4

Preliminaries 2

In this Chapter we introduce the main theoretical ele-
ments that constitute the base of this Thesis. As the main
subject is knowledge manipulation, we first deal with how
we intend to represent this knowledge; we need, of course,
a formal framework where we can express facts about the
modelled world of interest, and tools to work with them.

We start with Description Logic (Section 2.1), a very
famous branch of First-Order Predicate Logic (FOL), widely
used for its expressivity while still being decidable (in con-
trast with FOL, which is not), and comprised of many dif-
ferent dialects. Of these dialects, we focus on one of them,
namely the DL-Lite family (Section 2.2), appreciated for

5

2. Preliminaries

its balance between expressivity and computational prop-
erties.

Given an introduction to how we intend to represent
knowledge, we introduce the main aspects of Planning
(Section 2.3), a branch of Artificial Intelligence devoted to
the process of computationally find strategies or action se-
quences that satisfy a given goal as best as possible. We do
this as the thesis focuses on planning-oriented knowledge
manipulation, where we want to achieve a state where spe-
cific facts hold true. Many types of planning exist, mainly
related with how detailed is, and how many aspects we
consider into, the representation of our domain of interest;
of these, we have a look at Classical Planning, and two for-
malisms to represent a classical planning problem, namely
STanford Research Institute Problem Solver (Section 2.3.1)
and Action Description Language (Section 2.3.2).

2.1 Description Logic
Description Logic (DL) is a family of formal knowledge
representation languages widely used in ontological mod-
elling [Baader et al., 2003].

DLs can be seen as fragments of First-Order Predicate
Logic (FOL). It is well known that general FOL is un-
decidable, so research has focused on tailoring fragments
of it that are decidable, to such an extent that now de-
cidability is perceived as a necessary condition to call a
formalism a DL.

6

2.1. Description Logic

The DL semantic model represents the domain of in-
terest in terms of individuals coming from a (possibly) in-
finite domain, that participate to concepts and roles. This
representation is captured by a DL Knowledge Base (KB),
also often called ontology, which is based on a vocabulary
of concept, role, and individual names, and is composed of
two parts: a TBox, that represents the intentional knowl-
edge of the KB through universal assertions over concepts
and roles, and an ABox, that represents the extensional
knowledge of the KB through membership assertions (or
facts) about the participation of individuals to concepts
and roles. As stated before, there is not only just a single
Description Logic, but many DL languages which differ
in the type of assertions one is allowed to use in the KB;
the more assertions are allowed, the more expressive the
language becomes, as well as more complex. It is upon
the user choose the right DL for her intended application.

In the following, while not referring to any specific DL
language, we give a more formal definition of the syntax
and semantics of a generic DL KB, starting from the do-
main. Let ∆ be a countably infinite universe of individual
names (referred also as individuals or objects), acting as
standard names [Levesque and Lakemeyer, 2001]. The
ABox is a finite set of membership assertions, i.e., atomic
formulas of the form N(d) and P(d, d′), where N is a con-
cept name, P is a role name, and d, d′ are individual names;
with adom(A) we denote the set of objects from ∆ occur-
ring in A, e.g. d and d′.

For example, we can state that Mark is an engineer

7

2. Preliminaries

through the following assertion:

(2.1) Engineer(mark)

Depending on the language, also other types of assertions
could be present, such as equality assertions between indi-
viduals (e.g., d = d′).

The TBox instead contains axioms describing relation-
ships between concepts and roles, such as the general con-
cept inclusion axiom A ⊑ B (often called also subsumption
relation), which states that all the individuals related to
A belong also to the concept B. For example, we can use
the inclusion to model the fact that all engineers are em-
ployees through the axiom

(2.2) Engineer ⊑ Employee

Again, the general concept inclusion is only one of the
many available expressions in DLs; other notable expres-
sions are the negation ¬, intersection ⊓, existential quan-
tification over roles ∃.R, etc.

Example 1 We can model the different roles inside a
company, such as the hierarchy of the job types. For ex-
ample, we can state that all engineers and all designers
are employees, but one cannot be both:

Engineer ⊑ Employee
Designer ⊑ Employee
Designer ̸⊑ Engineer

8

2.1. Description Logic

Additionally, we can express the fact that employees
can be linked to a task, but engineers cannot be assigned
to assembling tasks:

∃hasTask ⊑ Employee
Engineer ̸⊑ ∀hasTask.AssemblyTask

We can also add statements regarding individuals, thus
defining the ABox:

Engineer(mark),Employee(david),AssemblyTask(task1), ...

In the rest of the Thesis, to maintain a clear separa-
tion between the intensional and the extensional levels, we
disallow nominals (concepts interpreted as singletons) in
the TBox T .

2.1.1 Interpretation of a Knowledge Base
The combination of TBox and ABox assertions describes
a particular situation in the modelled domain, although
this description is, intentionally, not fully specified. First
of all, there is no formal relationship between the symbols
used and the real objects that they represent. Secondly,
the information in a KB is typically implicit; for example,
given the previous statements 2.1 and 2.2, it is obvious
for us that Mark is also a human, but this is not explicitly
said in the KB, and we have to formally define how this
inference works. Lastly, DLs are designed with the so-
called open-world semantic, which allows DLs to deal with

9

2. Preliminaries

incomplete information. For example, if an individual’s
membership to a concept is neither stated in the ABox
nor excluded, then there are different possible (and valid)
interpretations, in contrast to the closed-world semantic,
where an individual would be assumed to not belong to a
concept if this is not explicitly asserted.

These points lead us to the notion of interpretation. In-
formally, an interpretation can be seen as potential “world”
in which all the KB assertions hold true. Formally, an in-
terpretation, normally denoted with I, consists of: i) a set
∆I called the interpretation domain and representing all
the individuals that exist in the “world” that I represents
(the domain ∆I is not required to be finite, but can also
be an infinite set); ii) an interpretation function ·I that
connects each individual name d to an element dI ∈ ∆I ,
each atomic concept A to a set AI ∈ ∆I (as opposed to the
domain itself, AI is allowed to be empty), each atomic role
R to a binary relation RI ∈ ∆I×∆I (also possibly empty).
The last part missing is to determine the interpretation of
complex concepts and roles (e.g., a negated concept ¬C,
or intersection C⊓D), and axioms (e.g., a general concept
inclusion axiom C ⊑ D). For complex terms, we follow
the principle of compositional semantics, and define them
starting from the semantics of its constituents. For exam-
ple, the term ¬C denotes the set of all those individuals
that are not contained in the extension of C, thus its in-
terpretation function is defined as (¬C)I = ∆I \ CI . The
term C ⊓ D denotes the concept formed by all individuals
that are simultaneously in C and D, thus the interpreta-

10

2.1. Description Logic

tion function is defined as (C⊓D)I = CI∩DI . For axioms,
instead, the interpretation function has to determine their
satisfaction, which means determine when an axiom α is
true (holds); for example, the general concept inclusion
C ⊑ D is satisfied by I, if every instance of C is also an
instance of D, which, formally, can be written as CI ⊆ DI .
If this is the case, we also say that I is a model of α (or
that I satisfies α), and write I |= α.

The interpretation I is a model of a given knowledge
base KB (alternatively, I satisfies KB, written I |= KB),
if it satisfies all the axioms of KB (I |= α for every
α ∈ KB). A knowledge base KB is called satisfiable (or
consistent) if it has at least a model. If no interpretation
I can satisfy the given KB, then the ontology is called
unsatisfiable (or inconsistent); in this case every axiom is
vacuously satisfied by all of the (none) interpretations that
models the KB.

Further, we say that ⟨T,A⟩ logically implies an ABox
assertion α, written ⟨T,A⟩ |= α, if every model of ⟨T,A⟩ is
also a model of α. Given two ABoxes A1, A2, and a bijec-
tion h : S1 → S2, where adom(A1) ⊆ S1 and adom(A2) ⊆
S2, A1 and A2 are said to be logically equivalent modulo
renaming h w.r.t. a TBox T , written A1

∼=h
T A2, if:

1. for each fact α1 in A1, ⟨T,A2⟩ |= h(α1);
2. for each fact α2 in A2, ⟨T,A1⟩ |= h−1(α2);

where h(α1) (resp. h−1(α2)) is a new assertion obtained
from α1 (resp., α2), by replacing each occurrence of an
object d ∈ S1 (resp., d ∈ S2) with h(d) (resp., h−1(d)).
We say that A1 and A2 are logically equivalent modulo

11

2. Preliminaries

renaming w.r.t. T , written A1
∼=T A2, if A1

∼=h
T A2 for

some bijection h. We omit T when clear from the context.

2.1.2 Query Answering
Knowledge Base Satisfiability is one of the most (if not
the most) important reasoning tasks offered by DLs that
require elaborate inferencing; many other tasks (such as
axiom entailment, concept satisfiability, and others) can
be reduced to Knowledge Base Satisfiability. A promi-
nent reasoning task extensively used, and not reducible to
Knowledge Base Satisfiability, is Query Answering, that
is the ability to query a KB and retrieve the desired data.
To perform this task we resort to a well known formalism
in the database community [Chandra and Merlin, 1977]:
Conjunctive Query (CQ) and Union of Conjunctive Queries
(UCQ). CQs and UCQs are a restricted form of first-order
queries, and they constitute an expressive query language
with capabilities that go beyond standard reasoning tasks
in DLs.

A CQ q over a KB is a FOL formula constructed from
atomic formulae and using only the conjunction and ex-
istential quantification operators, while disjunction, nega-
tion, or universal quantification operators are not allowed.
It has the following form:

−→x .∃−→y .ϕ1 ∧ ... ∧ ϕn

where −→x is a set of free variables (also called distinguished),
−→y is a set of existentially quantified variables (also called

12

2.1. Description Logic

non-distinguished), and ϕ an atomic formula of the type
C(z), R(z, z′) where C and P respectively denote a concept
and a role name occurring the KB, and z, z′ are individ-
ual names or variables in −→x or −→y . An UCQ q over a KB
is a FOL formula comprised of, as the name suggest, the
OR-union of CQs, and has the form:

∃−→y 1.conj(
−→x ,−→y 1) ∨ ... ∨ ∃−→y n.conj(

−→x ,−→y n)

where ∃−→y i.conj(
−→x ,−→y i) (for 1 ⩽ i ⩽ n) is a CQ as de-

tailed before, with the free variables −→x shared by each
CQ, and possibly different existential variables −→y i each.

Given the syntax of a (U)CQ q, we now define its se-
mantics, that is how the formula q is evaluated against a
KB in order to retrieve the desired data. (U)CQs employ
the so called certain answers model: a certain answer to q
over the KB ⟨T,A⟩ is a substitution ϑ of the free variables
−→x of q with individual names in A, such that qϑ evaluates
to true in every model I of the KB (denoted ⟨T,A⟩ |= qϑ).
The certain answers is then the set ans(q, T,A) of all valid
substitutions ϑ. If q has no free variables −→x , then it is a
boolean query and its certain answers are either the empty
substitution {} denoting true, or the empty set () denoting
false. Query Answering is thus the problem of finding all
certain answer answers.

Example 2 Given the KB defined in Example 1, we can
query it in order to retrieve individuals hat respect specific
values. We could ask for all the employees that are as-
signed to a certain task and who are designers, obtaining

13

2. Preliminaries

the following CQ:
q = hasTask(x, task1) ∧ Designer(x)

Another type of query is the so-called Extended Con-
junctive Query (ECQ). ECQs are an extension of UCQs,
based upon the query language EQL-Lite(UCQ) [Calvanese
et al., 2007a], that is, the FOL query language whose
atoms are UCQs evaluated according to the certain answer
semantics explained above. An ECQ over a KB ⟨T,A⟩ is
a (possibly open) formula of the form 1:

Q −→ [q] | [x = y] | ¬Q | Q1 ∧Q2 | ∃x.Q
In the formula, we have that logical operators have the

usual meaning, the existential quatification ranges over el-
ements of the domain adom(A), [q] represents the certain
answers of the UCQ q over ⟨T,A⟩, while [x = y] denotes
the certain answers ans(x = y, T,A) (which is the set
{⟨x, y⟩ ∈ adom(A) | ⟨T,A⟩ |= (x = y)}). Given an ECQ
Q, we define a certain answer to Q over the KB ⟨T,A⟩ as a
substitution ϑ of the free variables −→x of Q with individual
names in A such that:

T,A, ϑ |= [q] if ⟨T,A⟩ |= qϑ
T,A, ϑ |= [x = y] if ⟨T,A⟩ |= (x = y)ϑ
T,A, ϑ |= ¬Q if T,A, ϑ ̸|= Q
T,A, ϑ |= Q1 ∧Q2 if T,A, ϑ |= Q1 and T,A, ϑ |= Q2

T,A, ϑ |= ∃x.Q if exists t ∈ adom(A) such that
T,A, ϑ[x/t] |= Q

1In this thesis we consider ECQs that are domain-independent
and ⟨T,A⟩-range restricted [Calvanese et al., 2007a].

14

2.1. Description Logic

where ϑ[x/t] denotes the substitution obtained from
ϑ by assigning to x the constant/term t; if x is already
present in ϑ, then its value is replaced by t, otherwise the
pair x/t is added to ϑ.

Given the definition of a single certain answer, we de-
fine the certain answers to Q over ⟨T,A⟩ (ans(Q,T,A))
as before, i.e., the set of all possible substitutions ϑ for
the free variables in Q so that ⟨T,A⟩ |= Qϑ. The certain
answers ans(Q,T,A) of an ECQ Q over ⟨T,A⟩ are ob-
tained by first computing, for each atomic ECQ [q], the
certain answers of q, and then composing the obtained an-
swers through the FOL constructs in Q. Hence [q] acts
as a minimal knowledge operator, and negation and quan-
tification applied over UCQs are interpreted epistemically
[Calvanese et al., 2007a]. Under this semantics, ECQs
are generic, in the sense of genericity in databases [Abite-
boul et al., 1995]: a query evaluated over two logically
equivalent ABoxes returns the same answer, modulo ob-
ject renaming.

Example 3 Given the KB defined in Example 1, we could
now ask if exists any employee that is assigned to a any
task and who is not an engineer, obtaining the following
ECQ:

q = ∃x.[∃y.hasTask(x, y)] ∧ ¬[Engineer(x)]

As customary, we consider DLs for which query an-
swering (and hence the standard reasoning tasks of KB
satisfiability and logical implication) is decidable.

15

2. Preliminaries

2.2 DL-Lite Family
Given the formal introduction to Description Logics in
Sec. 2.1, we now detail a specific subset denoted DL-
Lite [Calvanese et al., 2007b]. DL-Lite is a family of DL
dialects specifically designed for data-intensive scenarios,
where ontologies are used as a high-level, conceptual view
over large data repositories; typical scenarios for this are
those of Information and Data Integration Systems, the
Semantic Web, and ontology-based data access. Current
reasoners for expressive DLs, although having good per-
formances, are not able to deal with large amounts of
data (e.g., a large ABox), and are impractical for the
afore-mentioned situations. The DL-Lite family, on the
contrary, offers a low complexity of reasoning and of an-
swering complex queries (in particular w.r.t. data com-
plexity), while still being able to capture basic ontology
and conceptual data modelling languages (such as UML
class diagrams).

Of the whole DL-Lite family, we introduce one of its
most prominent member, DL-LiteA [Calvanese et al., 2009].
In DL-LiteA, concepts are differentiated in atomic, basic,
and general as detailed in the following grammar:

B −→ A | ∃Q basic concept
C −→ ⊤c | B | ¬B | ∃Q.C general concept

where: A is an atomic concept (i.e., a concept denoted by
a name), ∃Q (also called unqualified existential restriction
concept) is the concept that denotes the domain of a role

16

2.2. DL-Lite Family

Q (i.e., the set of individuals that Q relates to some in-
dividuals), ¬B is the negation of concept B, ∃Q.C (also
called qualified existential restriction concept) is the con-
cept that denotes the qualified domain of a role Q w.r.t.
the concept C (i.e., the set of individuals that Q relates to
some individuals in C), and ⊤c is the universal concept.
DL-LiteA roles are defined similarly:

Q −→ P | P− basic role
R −→ Q | ¬Q general role

where: P is an atomic role (i.e., a role denoted by a name),
P− is the inverse of the atomic role P, and ¬Q is the
negation of role Q.

Given the possible DL-LiteA expressions, we show now
what type of axioms are available in a DL-LiteA TBox:

B ⊑ C , Q ⊑ R inclusion assertions
(funct Q) functionality assertions

A functionality assertion states that the binary relation
represented by a role is a function.

A DL-LiteA ABox is of a set of membership assertions
of the following form:

A(d) P(d1, d2)

where: A is an atomic concept, P is an atomic role, d, d1,
d2 are individuals.

17

2. Preliminaries

2.2.1 First Order Rewritability
One of the most remarkable features that DL-LiteA of-
fers, is the so-called First Order Rewritability (or FOL-
rewritability). FOL-rewritability allows to reduce query
answering over a KB ⟨T,A⟩ to evaluating a FOL query
qrew as a standard Structured Query Language (SQL) query
over a relational database equivalent to A. This is done as
a two step process: in the first step, called query reformu-
lation, the query q is reformulated using the intensional
knowledge of the TBox, obtaining an UCQ qrew that can
be directly evaluated over the ABox; second, assuming
that the ABox is maintained by an Relational Database
Management System (RDBMS) in secondary storage, the
evaluation can be done using a standard SQL engine, thus
taking advantage of well established query optimization
strategies. Since the query reformulation does not depend
on the data but only on the TBox, and in the second step
the query qrew is evaluated against a relational database,
the whole query answering process is in AC0 in the size
of the data, i.e., the same complexity as the plain evalu-
ation of a conjunctive query over a relational database.
Also satisfiability checking of a KB can be reduced to
evaluating a special boolean FOL query QT

unsat through
FOL-rewritability.

Before defining FOL-rewritability, we have to intro-
duce the minimal modelDB(A) for a given ABoxA, which
is the interpretation ⟨∆DB(A), ·DB(A)⟩ defined as follows:

• ∆DB(A) is the non-empty set consisting of the union

18

2.2. DL-Lite Family

of the set of all individual constants occurring in A;

• aDB(A) = a for each object constant a;

• ADB(A) = {a|A(a) ∈ A} for each atomic concept A;

• PDB(A) = {(a1, a2|P(a1, a2) ∈ P} for each atomic
concept P;

Secondly, we introduce the NI-closure of T (denoted
by cln(T)), defined inductively as follows:

1. all functionality assertion in T are also in cln(T);

2. all negative inclusion assertion in T are also in cln(T);

3. if B1 ⊑ B2 is in T and B2 ⊑ ¬B3 or B3 ⊑ ¬B2 are in
cln(T), then also B1 ⊑ ¬B3 is in cln(T);

4. if Q1 ⊑ Q2 is in T and ∃Q2 ⊑ ¬B or B ⊑ ¬∃Q2 are
in cln(T), then also ∃Q1 ⊑ ¬B is in cln(T);

5. if Q1 ⊑ Q2 is in T and ∃Q2
− ⊑ ¬B or B ⊑ ¬∃Q2

−

are in cln(T), then also ∃Q1
− ⊑ ¬B is in cln(T);

6. if Q1 ⊑ Q2 is in T and Q2 ⊑ ¬Q3 or Q3 ⊑ ¬Q2 are
in cln(T), then also Q1 ⊑ ¬Q3 is in cln(T);

7. if one of the assertions ∃Q ⊑ ¬∃Q, ∃Q− ⊑ ¬∃Q−, or
Q ⊑ ¬Q is in cln(T), then all three such assertions
are in cln(T).

19

2. Preliminaries

We can now define the boolean UCQ with inequalities
QT

unsat, which allows to verify whether DB(A) is a model
of ⟨cln(T), A⟩ by simply evaluating QT

unsat over DB(A)
itself. A translation function δ is defined from assertions
in cln(T) to boolean CQs with inequalities, as follows:

δ((fuct P)) = ∃x, y1, y2.P(x, y1) ∧ P(x, y2) ∧ y1 ̸= y2

δ((fuct P−)) = ∃x1, x2, y.P(x1, y) ∧ P(x2, y) ∧ x1 ̸= x2

δ(B1 ⊑ ¬B2) = ∃x.γ1(B1, x) ∧ γ2(B2, x)

δ(Q1 ⊑ ¬Q2) = ∃x, y.ρ(Q1, x, y) ∧ ρ(Q2, x, y)

where in the last two equations:

γi(B, x) =


A(x) if B = A
∃yi.P(x, yi) if B = ∃P
∃yi.P(yi, x) if B = ∃P−

ρ(Q, x, y) =
{

P(x, y) if Q = P
P(y, x) if Q = P−

QT
unsat is then defined with the following steps (the symbol

⊥ indicates a predicate whose evaluation is false in every
interpretation):

1. QT
unsat := ⊥;

2. for each α ∈ cln(T) do: QT
unsat := QT

unsat ∪ {δ(α)}.
We report here the formal definitions of FOL-rewritability
taken directly from [Calvanese et al., 2009]:

Definition 2.2.1 Satisfiability in a DL L is FOL-rewritable,
if for every TBox T expressed in L, there exists a boolean

20

2.2. DL-Lite Family

FOL query QT
unsat, over the alphabet of T , such that for

every non-empty ABox A, the ontology ⟨T,A⟩ is satisfiable
if and only if QT

unsat evaluates to false in DB(A).

Definition 2.2.2 Answering UCQs in a DL L is FOL-
rewritable, if for every UCQ q and every TBox T expressed
over L, there exists a FOL query q′, over the alphabet of T ,
such that for every non-empty ABox A and every tuple of
constants a occurring in A, we have that a ∈ ans(q, T,A)
if and only if aDB(A) ∈ qDB(A).

The latter definition means that every UCQ Q ex-
pressed over a DL-LiteA TBox T can be effectively rewrit-
ten into a FOL query rew(Q,T) s.t., for every ABox A, the
certain answers ans(Q,T,A) can be computed by evaluat-
ing rew(Q,T) over A seen as a database under the closed-
world assumption.

FOL-rewritability extends also to answering ECQs over
a KB, as we detailed (in Section 2.1.2) that the certain
answers of an ECQ Q over ⟨T,A⟩ are obtained by first
computing the certain answers of the inner UCQs.

Example 4 Let us consider the KB in Example 1 (which
is expressible in DL-Lite, apart from the axiom Engineer ̸⊑
∀hasTask.AssemblyTask), and the query that request all the
employees:

Employee(x)
This query can be rewritten in order to consider the

contribution of the TBox axioms Engineer ⊑ Employee and

21

2. Preliminaries

Designer ⊑ Employee, becoming:
Employee(x) ∨ Engineer(x) ∨ Designer(x)

We can now instead build the query to check the satis-
fiability of an ABox w.r.t. the Tbox:

∃x.Engineer(x) ∧ Designer(x)
deriving from the only negative axiom left in the TBox
Designer ̸⊑ Engineer.

2.3 Planning
Automated planning and scheduling (usually denoted as
planning) is a branch of Artificial Intelligence (AI) [Ghal-
lab et al., 2004a] devoted to the process of computationally
find strategies or action sequences that satisfy a given goal
as best as possible.

Slightly more formally, given as input a description
of the domain of interest (typically given as the possible
initial state(s) of the domain), the set of executable ac-
tions, and the desired goal (usually given a set of final
states or a formula to satisfy), the planning problem is to
find a valid plan that leads to a state in which the goal is
met. The complexity of the planning problem is directly
related to how detailed (or, vice-versa, simplified) is the
representation we choose to use, such as:

• deterministic or non deterministic actions;
• full observability or partial observability of the states;
• modelling temporal aspects such as the duration of

actions;

22

2.3. Planning

• complex goals such as recurrent-goals or maximizing
a reward function;

• multi-agent environment;
• etc.
The chosen details identify several classes of planning

problems, among which Classical Planning Problem is the
simplest and, as it can be considered historically the first,
the most studied. In a Classical Planning Problem, the
domain of interest is represented using a directed transi-
tion system defined by a function-free first-order language
with finitely many predicate symbols and constant sym-
bols; states are sets of ground atoms that are considered
to be true, while edges represent the actions performed.
Here we see the first important assumption of classical
planning: the symbols used to represent a state are finite,
thus the transition system is finite as well. Note that such
transition system represents all the possible states and
evolutions of the domain of interest, without considering
any goal state, nor an eventual initial state representing
the current situation of the domain.

The transition system, though, is not given in its com-
plete form, as the explicit graph is exponential w.r.t. the
symbols available in the language, making it too cumber-
some to use and store. It is preferred to use a more com-
pact and practical way, by giving only the initial state and
actions as functions. An action is applicable to a state
when the action’s precondition is satisfied, i.e., some vari-
ables have certain values in the state. When applicable,
the action applies its effect to the state, i.e., it will change

23

2. Preliminaries

the values of certain (possibly different) state variables.
Other assumptions thus emerge: in a classical planning
problem there is a unique, fully-observable initial state,
and actions are deterministic (i.e. there is only one pos-
sible effect, and it’s certainly applied), durationless, and
sequential (i.e. only one action can be performed at a
time).

A classical planning domain is a triple D = ⟨S,A, ρ⟩,
where S is a finite set of states, A is a finite set of actions,
and ρ : S×A→ S is a transition function. Domain states
are propositional assignments, and actions are operators
that change them, according to ρ. A classical planning
problem is a triple P = ⟨D, s0, G⟩, where D is a planning
domain, s0 ∈ S is the initial state, and G ⊆ S is a set of
goal states.

A problem P induces a labelled graph G = ⟨S,E⟩,
where E contains a (labelled) edge s a→ s′ if and only if
s′ = ρ(s, a). Essentially, planning algorithms amount to
searching (in an effective way) a path in G from s0 to a goal
state. A plan for a planning domain is a finite sequence
π = a1 · · · an of actions in A. We call ρπ = s0

a1−→ s1
a2−→

· · · an−→ sn the run induced by π, where: s0, . . . , sn ∈ S,
for i = 0, . . . , n−1, si+1 = ρ(si, ai+1), and sn is the final
state of ρπ. A plan π is a solution to a planning problem
P if there exist a (unique) run ρπ, so that the final state
sn ∈ G.

24

2.3. Planning

2.3.1 STanford Research Institute Problem
Solver

To formally define a planning problem, we need a specific
language. In the case of classical planning, there are many
options, such as STRIPS, ADL, SAT, SAS, and few others.
Of the aforementioned languages, the STanford Research
Institute Problem Solver (STRIPS) [Ghallab et al., 2004a]
is the oldest and most famous; born as a problem-solving
program, its propositional version is widely used in the
planning community for its simplicity in describing plan-
ning problems. We will base our formalization upon the
so-called STRIPS-style planning adopted in Planning Do-
main Definition Language (PDDL)[Bacchus, 2000], which
is the standard de-facto in the planning community for
representing planning problems.

Notice that PDDL describes the world in a schematic
way relative to a set of objects (the domain), in order to
make the encoding small and easy to write. This schematic
input is then usually translated into (propositional) STRIPS
through grounding, i.e., by instantiating the variables in
all possible ways. In the following, we will equivalently
use the expressions “STRIPS-style” and “STRIPS”.

A STRIPS planning problem can be formalized as a
tuple ⟨C, C0,F ,A, φ, ψ⟩, where:

• C is a finite object domain;
• C0 ⊆ C is the set of initial objects;
• F is a finite set of fluents, i.e., predicates whose

extension can vary over time;

25

2. Preliminaries

• A is a finite set of STRIPS operators;
• φ is the initial state, i.e., a conjunction of ground

literals using predicates in F and objects in C0;
• ψ is the goal description, i.e., a closed FO formula

using predicates in F and objects in C0.
A state s is a set of ground literals, which represents the
things that are true in the considered state, while any
literal that is not included is considered false.

Each STRIPS operator in A is a tuple ⟨n, x⃗, ρ(x⃗), ε(x⃗)⟩,
where:

• n is the name;
• variables x⃗ are the parameters;
• ρ(x⃗) is the precondition, i.e., a FO formula over F ,

and whose terms are quantified variables, objects in
C0, and parameters x⃗;

• ε(x⃗) is the effect, i.e., a conjunction of (possibly
negated) literals over F and whose terms are objects
in C0, or parameters in x⃗.

Given an operator n, we call action a ground instance
of n (denoted nϑ), done by using a substitution function ϑ
to substitute all the variables x1, ..., xk in n with constant
symbol in C (e.g., ϑ = {x1 7→ a1, ..., xk 7→ ak}). An action
nϑ is said to be applicable to a state s if and only if the
precondition ρ(x⃗) is true in s under the given binding ϑ:

ρ(x⃗)+ϑ ⊆ s, ρ(x⃗)−ϑ ∩ s = ∅

where ρ(x⃗)+ϑ denotes the positive atoms in the grounded
preconditions, and ρ(x⃗)−ϑ denotes the negated atoms. If
nϑ is applicable to s, then the resulting state s′ is:

26

2.3. Planning

s′ = (s \ ε(x⃗)−ϑ) ∪ ε(x⃗)+ϑ

where ε(x⃗)+ϑ denotes the positive atoms in the effects,
and ε(x⃗)−ϑ denotes the negated atoms.

A planning problem ⟨C, C0,F ,A, φ, ψ⟩ induces a tran-
sition system Υ = (S,A, γ), where: S is the set of all
possible states, A is the set of actions, and γ is the state-
transition function (i.e., γ ⊆ S × A → S). The state-
transition function γ(s,nϑ) of an action nϑ performed in
the state s is defined as:

• If nϑ is applicable to s, then:
γ(s,nϑ) = (s \ ε(x⃗)−ϑ) ∪ ε(x⃗)+ϑ = s′

• If nϑ is not applicable to s, then γ(s,nϑ) is unde-
fined.

Finally, given the goal formula ψ, a state s is a goal
state if s satisfies ψ, i.e., ∃ϑ.s |= ψϑ.

2.3.2 Action Description Language
Another possible way to define a planning problem is to
use the Action Description Language (ADL) [Pednault,
1989]. ADL aims to be a more expressive and flexible
language than STRIPS, while still keeping the computa-
tion complexity manageable. In terms of computational
efficiency, it can be located between STRIPS and the Situ-
ation Calculus. Although any ADL problem can be trans-
lated into a STRIPS instance, the translation techniques

27

2. Preliminaries

are worst-case exponential (ADL is strictly more brief
than STRIPS). ADL planning is a PSPACE-complete
problem, with most of the algorithms being polynomial
in space even if the preconditions and effects are complex
formulae.

We introduce the formal notion of ADL planning prob-
lem, by relying on and the ADL-fragment of standard
PDDL. An ADL planning problem [Drescher and Thielscher,
2008] is a tuple ⟨C, C0,F ,A, φ, ψ⟩, where:

• C is a finite object domain;
• C0 ⊆ C is the set of initial objects;
• F is a finite set of fluents, i.e., predicates whose

extension can vary over time;
• A is a finite set of ADL operators;
• φ is the initial state, i.e., a conjunction of ground

literals using predicates in F and objects in C0; and
• ψ is the goal description, i.e., a closed FO formula

using predicates in F and objects in C0.
Each ADL operator in A is a tuple ⟨n, x⃗, ρ(x⃗), ε(x⃗)⟩, where:

• n is the name;
• variables x⃗ are the parameters;
• ρ(x⃗) is the precondition, i.e., a FO formula over F ,

and whose terms are quantified variables, objects in
C0, and parameters x⃗;

• ε(x⃗) is the effect, i.e., the universal closure of a FO
conjunction built from admissible components, in-
ductively defined as follows:

– Fluent literals over F and whose terms are vari-
ables, objects in C0, or parameters in x⃗, are ad-

28

2.4. Description Logic-based Dynamic Systems

missible.
– If ϕ1(y⃗1) and ϕ2(y⃗2) are admissible, then ϕ1(y⃗1)∧
ϕ2(y⃗2) and ∀y⃗1.ϕ1(y⃗1) are also admissible.

– Let ϕ1(y⃗1) be a FO formula over F , whose
terms are quantified variables, objects in C0,
variables y⃗1, or parameters x⃗. If ϕ2(y⃗2) is ad-
missible and does not contain any occurrence
of → nor ∀, then ϕ1(y⃗1) → ϕ2(y⃗2) is also ad-
missible. This is used to tackle so-called ADL
conditional effects.

2.4 Description Logic-based Dynamic
Systems

Description Logic-based Dynamic Systems (DLDSs) [Cal-
vanese et al., 2013c] provide a general, abstract framework
to formally capture dynamic systems that operate over a
DL Knowledge Base, by evolving its extensional part in ac-
cordance with Levesque’s functional approach. The KB is
evolved by actions that query its content, and that use the
obtained certain answers, together with additional (possi-
bly fresh) input objects, to determine the facts holding
in the new state. The introduction of fresh objects is a
distinctive feature of DLDSs, and it is essential to tackle
(business) processes, whose instances typically results in
the on-the-fly creation of new objects and the establish-
ment of relationships among them.

Technically, a DLDS is a tuple S = ⟨T,A0,Λ⟩, where

29

2. Preliminaries

⟨T,A0⟩ is a DL KB, and Λ is a finite set of parametric
actions. We use AT to denote the set of all ABoxes con-
taining facts that are constructed by using concept and
role names in T , and objects in ∆. Each action in Λ has
the form ⟨π, τ⟩, where

• π : AT → 2P is a parameter selection function that,
given an ABox A, returns the finite set π(A) ⊆ P of
parameters of interest for τ in A;

• τ : AT × ∆P 7→ AT , is a (partial) effect function
that, given an ABox A and a parameter assignment
m : π(A) → ∆ (∆P denotes the set of such pa-
rameter assignments), returns (if defined) the ABox
A′ = τ(A,m), which: i) is consistent w.r.t. T , and
ii) contains only constants in adom(A) ∪ im(m). 2

In [Calvanese et al., 2013c], several decidability re-
sults related to verification and synthesis of DLDSs are
shown, under the hypothesis that the DLDS of interest
is generic and state-bounded. The first condition extends
the previously mentioned well-known notion of genericity
in databases to the case of dynamic systems. Specifically,
it intuitively states that the behavior of the DLDS is in-
variant under renaming of objects, i.e., only depends on
the classes and roles relating such objects, but not on the
objects themselves. In other words, if the current state is
replaced with a logically equivalent state, the system in-
duces evolutions that are pairwise identical modulo renam-
ing of the involved objects. The second condition requires

2We denote with dom(·)/im(·) the domain/image of a function.

30

2.4. Description Logic-based Dynamic Systems

that the number of objects in each single state generated
by the DLDS is bounded a-priori, but is still unbounded
along single runs and in the whole system.

31

Explicit-input Knowledge
and Action Bases 3

We present a model which is a variant of Knowledge and
Action Bases [Bagheri Hariri et al., 2013b]. In broad
terms, KABs concretize Description Logic-based Dynamic
Systems by introducing an action formalism for explicitly
describing updates over the DL Knowledge Base, as well
as condition-action rules declaratively describing when cer-
tain actions can be executed. KABs employ the TBox not
only for answering queries over the current state accord-
ing to the certain answer semantics, but also to check the
consistency of an action application (Section 2.1).

In their original form, KABs have two distinctive fea-

33

3. Explicit-input Knowledge
and Action Bases

tures that make them somehow unsuitable for planning.
On the one hand, they do not make any assumption re-
garding the frame problem, and how objects not affected
by an action have to be preserved. Specifically, they work
under the assumption of destructive assignment: at ev-
ery step, the entire ABox needs to be reconstructed, and
facts that are not explicitly (re)asserted are lost. On the
other hand, the introduction of new objects into the sys-
tem state is hidden inside the conditional effects of the
actions, following the paradigm of service calls that are
internally issued and resolved during the application of
an action.

To tackle the first issue, we build on the approach
by [Montali et al., 2014]. They provide a high-level sur-
face syntax for actions, which supports (conditional) ad-
ditions and deletions together with the frame assumption
that facts that are neither added nor deleted are implic-
itly maintained. To tackle the second issue, we extract
the input-related information from the conditional effects,
and make it explicit in the action signature. This is why
we call our formalism Explicit-input Knowledge and Action
Bases (eKABs).

We define eKABs parametrically with respect to a DL
L. An L-eKAB K is a tuple ⟨C, C0, T, A0,Λ,Γ⟩, where:

• C ⊆ ∆ is the (possibly infinite) object domain of K;
• C0 ⊂ C is a finite set of distinguished objects;
• T is an L-TBox;
• A0 is an L-ABox all of whose objects belong to C0;
• Λ is a finite set of parametric actions;

34

3.1. Parametric actions

• Γ is a finite set of condition-action rules.
When the specific DL L is irrelevant, we omit it.

3.1 Parametric actions
A parametric action α has the form a(p⃗) : {e1, . . . , en},
where: a is the action’s name, p⃗ are the input parame-
ters, and {e1, . . . , en} is the finite set of conditional effects.
Each effect ei has the form Qi ⇝ add F+

i ,del F−
i , where:

• Qi is the effect condition, i.e., an ECQ over ̉̃, whose
terms can be action parameters p⃗ (acting as vari-
ables), additional free variables x⃗i, or objects from
C0;

• F+
i and F−

i are two sets of atoms over the vocabu-
lary of T , with terms from p⃗ ∪ x⃗i ∪ C0.

Intuitively, an action is applied by grounding its pa-
rameters with objects in C. Its effects are then evaluated
in parallel, and its corresponding assertions instantiated
with all the answers extracted from conditions Qi. The
instantiated assertions are finally added to/removed from
the current ABox, giving priority to those that have to be
added.

Given an action α and a substitution θ assigning ob-
jects of C to p⃗, αθ denotes the action instance of α ob-
tained by assigning values to p⃗ according to θ. We write
α(p⃗) to explicitly name the input parameters of α. The

35

3. Explicit-input Knowledge
and Action Bases

ABox resulting from the application of an action instance
αθ on an ABox A, denoted do(αθ,A, T), is the ABox
(A \A−

αθ) ∪A
+
αθ, where:

• A+
αθ =

∪
i∈{1,...,n}

∪
σ∈ans(Qiθ,T,A) F

+
i σ;

• A−
αθ =

∪
i∈{1,...,n}

∪
σ∈ans(Qiθ,T,A) F

−
i σ.

Importantly, αθ is applicable to A only if the resulting
ABox do(αθ,A, T) is consistent with T . Like for standard
KABs, we limit the applicability of an action by accepting
only those actions that do not lead to an inconsistency.

We note that the problem of actions that lead to incon-
sistent states is a well know issue, and has been treated
in detail in Reasoning about Action in AI. When an ac-
tion cannot be executed because of the inconsistency gen-
erated by adding the effects to the current KB, we get
the so called “qualification problem” [Ginsberg and Smith,
1988]: we considered only the preconditions explicitly writ-
ten in the specification, while there is at least an implicit
one that we can derive from the axioms that would have
blocked the performing of the action. We address this
problem in a specific setting, namely DL-LiteA-Reduced
Explicit-input Knowledge and Action Bases (reKABs) (Sec-
tion 5.1.1), although it requires a deeper study in order
to solve the qualification problem in the generic case (as
we allow the use of very expressive TBox axioms), and
we leave it as a future development. We believe that we
could leverage the approach presented by [Calvanese et al.,
2013d] and [Calvanese et al., 2015], based on the notion

36

3.2. Condition-Action Rules

of repair, thus effectively equipping eKABs with the abil-
ity to deal with the resulting inconsistent KB instead of
simply ignoring it.

3.2 Condition-Action Rules
A condition-action rule γα for an action α has the form
Qα(x⃗) 7→ α(p⃗), where Qα is an ECQ mentioning only
objects from C0 and whose free variables x⃗ come from p⃗.
We assume that each action α in Λ has exactly one corre-
sponding condition-action rule γα in Γ (multiple rules can
be combined into a single disjunctive rule). The ECQ Qα

is used to constrain the set of action instances potentially
applicable to a certain Abox A. Specifically, let θ be a
parameter substitution for p⃗, and let θ[x⃗] denote the pa-
rameter substitution obtained by projecting θ on x⃗. Then,
θ is a K-legal parameter substitution in A for α, if:

• θ : p⃗→ C;
• θ[x⃗] ∈ ans(Qα, T, A);
• do(αθ,A, T) is T -consistent.

When this is the case, αθ is a K-legal action instance in A.
Any variable in p⃗\ x⃗ is also referred to as an external input
parameter of α. Note that, when present, such parameters
are not constrained by Qα and can be assigned to any
object, including fresh ones not occurring in adom(A).

This last point is an important feature of the proposed
framework, as it allows, given a state represented by a
KB, to introduce new individuals. This would allow to

37

3. Explicit-input Knowledge
and Action Bases

simulate, among others, the following scenarios:
• users input of new data, e.g., inserting the data of

new potential clients, not known before;
• augmentation of the possessed knowledge through

the creation of new primary keys to insert new tuples
inside a relationship.

3.3 Execution Semantics
The semantics of eKABs is defined in terms of a Transition
System (TS) with states and transitions labelled by ABoxes
and action instances, respectively [Calvanese et al., 2013c].
A TS Υ is a tuple ⟨C, T,Σ, s0, abox,→⟩, where:

• C is the object domain;
• T is a TBox;
• Σ is a (possibly infinite) set of states;
• s0 ∈ Σ is the initial state;
• abox is the labelling function, mapping states from

Σ into T -consistent ABoxes with terms from C only;
• → ⊆ Σ×L×Σ is a labelled transition relation, with
L the (possibly infinite) set of labels.

We write s l−→ s′ as a shortcut for ⟨s, l, s′⟩ ∈ →.
An eKAB K = ⟨C, C0, T, A0,Λ,Γ⟩ generates a TS ΥK =

⟨C, T,Σ, s0, abox,→⟩, where:
• abox is the identity function;
• s0 = A0;
• → ⊆ Σ × LK × Σ is a labelled transition relation

with LK the set of all possible action instances;

38

3.3. Execution Semantics

• Σ and → are defined by mutual induction as the
smallest sets s.t. if A ∈ Σ, then for every K-legal
action instance αθ in A, we have that do(αθ,A, T) ∈
Σ and A

αθ−→ do(αθ,A, T).
In general, ΥK is infinite, if C is so.

We close this section by showing that eKABs can be
seen as concrete models for generic DLDSs (Section 2.4).

Lemma 3.3.1 eKABs are generic DLDSs.

Proof 3.3.1 Consider an eKAB action α with its corre-
sponding condition-action rule Qα(x⃗) 7→ α(y⃗). This action
can be seen as a corresponding DLDS action ⟨γ, τ⟩, where:

• γ = |y⃗| is the constant parameter selection function
that returns the fixed number of parameters in α;

• given an ABox A and a parameter assignment m, the
effect function τ checks whether m restricted to x⃗ cor-
responds to one of the answers in ans(Qα(x⃗), T, A),
and, if so, produces a new ABox A′ according to the
specification of α (which guarantees that only objects
in adom(A) ∪ im(m) are used to produce A′).

Finally, genericity is directly obtained from the observation
that the evolution of an eKAB is completely driven by ECQ
query answering, which is generic.

Example 5 An eKAB K = ⟨C, C0, T, A0,Λ,Γ⟩ is used to
support decision making in a company, where employees
work on tasks. C contains infinitely many objects. T is
expressed in ALCQIH, and contains the following axioms:

39

3. Explicit-input Knowledge
and Action Bases

• Engineer ⊑ Employee and Technician ⊑ Employee
(engineers and technicians are employees);

• ∃worksOn− ⊑ Employee and ∃worksOn ⊑ Task (worksOn
role links employees to tasks),

• similar axioms can be used to express that worksIn
links employees to company branches;

• Employee ⊑ (= 1worksIn) (employees work in ex-
actly one one branch);

• hasResp ⊑ (≤ 1Employee) and hasResp ⊑ worksOn−
(a task may have at most one responsible, among the
employees associated to the task);

• ∃hasResp− ⊑ ¬Technician (technicians are not task
responsible).

As for the dynamic aspects, to model that a new engi-
neer can be hired in a branch provided that the planning
agent does not know whether there already exists an engi-
neer there, K contains the rule

Branch(b)∧¬[∃x.Engineer(x)∧worksIn(x, b)] 7→ hireEng(x, b)

where:

hireEng(e, b) : {true⇝ add {Engineer(e),worksIn(e, b)}}

A similar action HireTech(t, b) can be used to hire a tech-
nician. Rule

Task(t) ∧ Employee(e) 7→ makeResp(t, e)

40

3.3. Execution Semantics

states that an employee can be made responsible of a task,
where

makeResp(t, e) :
{

hasResp(t, p) ⇝ del{hasResp(t, p)}
true ⇝ add{hasResp(t, e)}

}
removes the previous task responsible, if any, and makes
the selected employee the new responsible. Finally, rule

Employee(e) 7→ Anonymize(e)

models that an employee can be anonymized, where action

Anonymize(e) : {worksIn(e, b)⇝ del{worksIn(e, b)}}

models anonymization by removing the explicit informa-
tion on the branch to which the selected employee belongs.

Note that there is a complex interplay between the
TBox and the dynamic component of K. E.g., the last
TBox axioms forbids to hire a technician and make it re-
sponsible for a task. However, notice that this is not ex-
plicitly forbidden in the condition-action rule that defines
the (potential) applicability of the makeResp action.

41

Planning with eKABs:
Plan existence and Plan synthesis 4

We can now define the problem of eKAB planning. Let K
be an Explicit-input Knowledge and Action Base and ΥK
its generated Transition System.

Following the definitions in Section 2.3, we say that
a plan for K is a finite sequence π = α1θ1 · · ·αnθn of
action instances over LK (we cannot use only actions, as
they are generic and need to be grounded). Moreover, a
plan π is executable on K if there exists a (unique) run
ρπ = A0

α1θ1−−−→ A1
α2θ2−−−→ · · · αnθn−−−→ An of K.

An eKAB planning problem is a pair ⟨K, G⟩, with K

43

4. Planning with eKABs:
Plan existence and Plan synthesis

an eKAB, and G the goal, a boolean ECQ mentioning
only objects from C0. A plan π for K achieves G, if
ans(G,An,) = true, for An the final state of the run ρπ.

Example 6 Given the eKAB in Example 5, a goal G
could express the intention to have an engineer and a tech-
nician working for a given task t, provided that, for privacy
reasons, it is not known to the planning agent whether the
two work in the same branch. Formally:

G = ∃e1, e2.Technician(e1)∧Engineer(e2)∧worksOn(e1, t)∧
worksOn(e2, t) ∧ ¬[∃b.worksIn(e1, b) ∧ worksIn(e2, b)

where negation is in fact interpreted epistemically, in
accordance with the semantics of ECQs.

4.1 Plan Existence
The initial step we take is to study plan existence, i.e.,
the problem of checking whether, for a planning problem
⟨K, G⟩, an executable plan π for K exists that achieves
G. The decidability of plan existence for eKABs strongly
depends on the cardinality of the object domain. We con-
sider both the cases of finite and infinite object domain,
and observing how this influences the complexity of the
framework. We start with the finite domain case, where
plan existence is decidable.

44

4.1. Plan Existence

Theorem 4.1.1 Let L be a DL for which answering ECQs1

is in coNP in data complexity. Then plan existence for L-
eKABs with a finite object domain is decidable in PSpace
in the size of the object domain.

Proof 4.1.1 Let K = ⟨C, C0, T, A0,Λ,Γ⟩ be an L-eKAB
with TS ΥK, and G a goal. The existence of a plan achiev-
ing G can be directly reformulated as the following reach-
ability problem: is it true that, in ΥK, the initial state A0

can reach a state A such that ans(G,A,) = true This prob-
lem is decidable, because since C is finite, so is the number
of states in ΥK. More specifically, such states contain facts
constructed by inserting objects from C into the extension
of concepts in T , and pairs of objects from C into the ex-
tension of roles in T . Hence, the number of states in ΥK
corresponds, in the worst case, to 2nc·|C|+nr·|C|2, where nc
and nr respectively denote the number of concept and role
names in the vocabulary of T . On the other hand, to solve
the reachability problem, ΥK can be constructed on-the-fly,
checking whether G holds in the currently constructed state
and, if this is not the case, guessing a successor state to
be explored. By the assumption on L, the goal check as
well as the construction of the successor are in coNP in

1For a significant class of Description Logics, UCQ-query an-
swering is known to be in coNP in data complexity [Glimm et al.,
2008, Ortiz et al., 2008, Calvanese et al., 2013a]. ECQs inherit this
result, since they simply combine the certain answers returned by the
embedded UCQs with the evaluation of the FOL operators present
in the query.

45

4. Planning with eKABs:
Plan existence and Plan synthesis

the size of C, since they respectively require to compute the
certain answers of G and those of the queries involved in
the application of the action used to generate the successor
state. As a consequence, we get that reachability can be
solved in PSpace in the size of C.

We remark that KB satisfiability checking is never
harder that query answering in DLs [Rudolph, 2011], thus,
although we need to perform the satisfiability check at ev-
ery step, the complexity is not affected by it.

When the object domain is infinite, instead, plan exis-
tence is undecidable even by considering severely limited
eKABs. The following result is not surprising, and is sim-
ilar in spirit to the undecidability result by [Erol et al.,
1995] in the classical planning setting but with an infi-
nite object domain. Also, a similar result was presented
in [Zarrieß and Claßen, 2015], in a knowledge-based set-
ting that is radically different from ours, since in their case
the TBox is considered only in the initial state, while sub-
sequent states may violate its assertions. This makes the
proof technique significantly more complex in our case.

Theorem 4.1.2 Plan existence for eKABs with an infi-
nite object domain is undecidable, even if the goal is a
ground CQ, and the input eKAB has: (i) an empty TBox;
(ii) actions/rules employing UCQs only.

Proof 4.1.2 The proof is via a reduction from the termi-
nation problem of Minsky 2-counter machines, well-known

46

4.1. Plan Existence

to be undecidable [Minsky, 1967]. The two-counter ma-
chine is simulated using two stacks, in turn represented
using a chain of objects. The chain contains a special ele-
ment that is used as a separator for the two stacks, so that
the semi-chain on the right (resp., left) of the separator
simulates the first (resp., second) stack. With this struc-
ture: i) increment of counter 1 is simulated by extending
the chain with a new object inserted at the extreme right;
ii) decrement of counter 1 is simulated by trimming the
chain on its extreme right; iii) zero testing of counter 1
is simulated by checking whether the extreme right of the
chain coincides with the separator. All these operations
can be implemented using UCQs (i.e., without using nega-
tion). In addition, the control states of the two-counter
machine are manipulated using simple effects that remove
the current state and insert the new one. The only chal-
lenging operation is increment, because there is no way
of ensuring that an inserted element is effectively new, or
coincides with an already existing one. To solve this is-
sue, we proceed as follows. First, we insert an “ok” flag
in the initial ABox. Whenever an increment operation
is executed, a special effect checks whether the chain now
contains a lasso. If this is the case, then it means that
the inserted object is not new, and that the increment has
not been properly executed. An error is then signalled by
removing the “ok”. With this formalization, we obtain that
the original two-counter machine halts if and only if there
exists a plan in the corresponding eKAB that achieves a
state containing the “ok” flag and the halting control state.

47

4. Planning with eKABs:
Plan existence and Plan synthesis

The presence of the flag witnesses that the halting state is
achieved without encountering increment errors.

Formally, a 2-counter machine C is a tuple ⟨S, s0, sf ,Π⟩,
where:

• S is a finite set of states,
• s0 ∈ S is the initial state,
• sf ∈ S is the final state, and
• Π a finite state of instructions.

Each instruction in Π is of one of the following two forms:
• ⟨s, c+, s′⟩, where s, s′ ∈ S and c ∈ {1, 2}, is an

increment instruction, which increments the value
of c by 1 and triggers a transition from s to s′.

• ⟨s, c−, s′, s′′⟩, where s, s′, s′′ ∈ S and c ∈ {1, 2},
is a conditional decrement intstruction, which tests
whether the value of c is zero; if so, it triggers a tran-
sition from s to s′′, if not, it decrements the value
of c by 1 and triggers a transition from s to s′.

We adopt the standard execution semantics for 2-counter
machines. In this setting, the halting problem asks whether
there exists a run of C that eventually leads to reach state
sf .

A 2-counter machine Π is encoded as a corresponding
eKAB KC =

⟨
TC , A0,C ,ΛC ,ΓC

⟩
whose runs all simulate the

single run of C. The TBox TC is empty (i.e., does not con-
tain any assertion), and provides the following vocabulary:

• Concept State keeps the program counter of C.
• Concepts Top1 and Top2 store the two objects that

are respectively at the top of the first and second
stack.

48

4.1. Plan Existence

• Concept Ok is used as a special flag, so that the pres-
ence of an object in Ok signals that the computation
is currently correct.

• Concept Win is used as a special flag, so that the
presence of an object in Win signals that the compu-
tation is correct, and led to the halting state.

• Role Next stores which objects come after each other
in the two stacks, where Next(o1, o2) indicates that
o2 immediately follows (resp., immediately precedes)
o1 in the first (resp., second) stack.

A0,C populates the two (initially empty) stacks with a
special “bottom” object bot, and initializes the state ac-
cording to C:

A0,C = {Top1(bot),Top2(bot),New(bot),State(s0),Ok(c0)}

It also signals that the computation is initially correct, by
introducing an arbitrary constant c0 in Ok.

Increment and decrement of the two counters are re-
constructed by using six dedicated actions in ΛC. Incre-
ment of counter 1 is modelled by an action with two pa-
rameters, where the first represent the new element to be
inserted into the first stack, while the second indicates the
new state. The action extends the first stack with the new
element, and updates the state:

inc1(tn, sn) :


Top1(to)⇝ del {Top1(to)},

add {Next(to, tn),Top1(tn)}
State(so)⇝ del {State(so)},

add {State(sn)}


49

4. Planning with eKABs:
Plan existence and Plan synthesis

Notice, however, that this formulation of inc1 is not
correct. In fact, due to the eKAB execution semantics,
there is no guarantee that the object assigned to the tn pa-
rameter is indeed new, or instead corresponds to an object
that is already part of one of the two stacks. Consequently,
depending on the actual object selected for tn, two situa-
tions may arise:

• tn is assigned to a new, fresh object. In this case,
inc1 correctly simulates the requested increment, and
the structure induced by Next continues to be a linear
chain.

• tn is assigned to an object that is already mentioned
in a Next fact. In this case, inc1 does not simulate a
proper increment, and the structure induced by Next
now contains a lasso.

Freshness of input parameters is simulated by adding an
additional effect that recognizes whether the structure in-
duced by Next is indeed a linear chain and, if not, signals
the problem by removing the Ok(c0) fact from the current
ABox. For the first counter, the presence of a lasso can be
detected by simply checking whether the top element has a
successor in the chain. Hence, the control effect εok,c1 for
the first counter has the following form:

Top1(x) ∧ ∃y.Next(x, y)⇝ del{Ok(c0)}

This control effect is inserted in the definition of inc1 as
well as that of the other actions. This is required be-
cause the presence of an error can be detected only after

50

4.1. Plan Existence

the action causing the error is applied, and consequently
the removal of the flag becomes responsibility of the next
action.

The condition-action rule for inc1 needs to ensure that:
i) inc1 can be applied only in those states foreseen by C
for the increment of counter 1; ii) the first parameter is
an external input; iii) the second parameter is bound to
the next state as foreseen by C. Specifically, we get:∨

⟨s,1+,s′⟩∈Π

State(s) ∧ y = s′ 7→ inc1(x, y)

Decrement of counter 1 is instead modeled by two dis-
tinct actions, respectively capturing the case where the
counter is 0 or not. In the zero case, we just need to
update the state with the given new state. This is done
through the following simple action:

decz1(sn) :


State(so)⇝ del {State(so)},

add {State(sn)}
εok,c1


The condition-action rule for decz1 needs to ensure

that: i) decz1 can be applied only in those states foreseen
by C for the decrement of counter 1, and only when counter
1 is zero; ii) the unique parameter is bound to the next state
as foreseen by C. Specifically, we get:

Top1(bot) ∧
∨

⟨s,1−,s′⟩∈Π

State(s) ∧ y = s′ 7→ decz1(y)

51

4. Planning with eKABs:
Plan existence and Plan synthesis

where zero testing is reconstructed by checking that the
special bot element is at the top of the first stack.

In the nonzero case, decrement is applied by removing
the element at the top of the first stack, i.e., the rightmost
element in the chain formed by Next. This is done as
follows:

decnz1(sn) :
Top1(to) ∧ Next(tn, to)⇝ del {Next(tn, to),Top1(to)},

add {Top1(tn)}
State(so)⇝ del {State(so)},add{State(sn)}

εok,c1


The condition-action rule for decnz1 needs to ensure

that: i) decnz1 can be applied only in those states foreseen
by C for the decrement of counter 1, and only when counter
1 is non-zero; ii) the unique parameter is bound to the next
state as foreseen by C. Specifically, we get:

∃o.Next(bot, o) ∧
∨

⟨s,1−,s′⟩∈Π

State(s) ∧ y = s′ 7→ decnz1(y)

where non-zero testing is reconstructed by checking that the
special bot element has at least one element on its right in
the chain, i.e., whether the first stack is non-empty.

Increment and decrement for counter 2 mirror the
three actions used for counter 1, but using Top2 in place
of Top1, and Next− in place of Next.

We finally introduce a special action raiseWin that
raises the Win flag when the computation reaches the halt-
ing state, i.e., State(sf) is contained in the current ABox,

52

4.1. Plan Existence

and at the same time the computation is still judged as
correct, i.e., Ok(c0) is contained in the current ABox. 2

The formalization of raiseWin together with its condition-
action rule is then as follows:

State(sf) ∧ Ok(c0) 7→ raiseWin()

raiseWin() : {true⇝ add{Win(co)}}

It is now easy to show that each run of KC simulates a
run of C, and that each run of C is simulated by infinitely
many runs in KC (each one differing from the others only
in terms of the actual objects inserted in the stacks, but
equivalent as far as the size of the stacks is concerned).
This, in turn, means that C halts if and only if the plan
existence problem for eKAB KC and the ground, atomic
goal Win(c0) has a positive answer. It is immediate to
check that KC and this goal satisfy the requirements of the
theorem.

This result can be further extended to an even more re-
strictive type of eKABs, where not only the TBox is empty
and actions/rules employ solely UCQs, but actions only
have a single, non-conditional effect of the type True ⇝
effects. This specific setting transforms eKABs to a STRIPS-
style planning domain which is still undecidable [Erol et al.,

2Notice that the very last action could set as the top element a
non-fresh individual. Anyway, this event doesnt’ affect the validity
of the evolution of the eKAB, as it is anyway the last step and no
further actions can be performed.

53

4. Planning with eKABs:
Plan existence and Plan synthesis

1995], as it has infinitely many costants (the domain is in-
finite), and allows delete effects. To achieve a decidable
setting while still preserving the infinite domain, we have
to even further restrict the framework to allow only addi-
tion effects in the actions[Erol et al., 1995].

Lemma 4.1.3 Plan existence for eKABs with an infinite
object domain is undecidable, even if the goal is a ground
CQ, and the input eKAB has: (i) an empty TBox; (ii) ac-
tions/rules employing UCQs only; (iii) actions only allow
one non-conditional effect.

These options are, of course, unsatisfactory in light
of the proposed goal to use eKABs for planning with
knowledge. On the other side, we also do not want to
fall back to resorting to a finite domain, as such setting
is trivial and doesn’t add anything to the well studied
area of planning. We thus attack undecidability by fo-
cusing on infinite-domain eKABs that are state-bounded
[Bagheri Hariri et al., 2013a, Calvanese et al., 2013c, Belar-
dinelli et al., 2014]. Specifically, an eKAB K is b-bounded
if its generated TS ΥK = ⟨T,Σ, s0, abox,→⟩ is so that for
every state s ∈ Σ, we have |adom(abox(s))| ≤ b, that
is, every state (or ABox) of ΥK contains at most b dis-
tinct objects. Note that a b-bounded eKAB still has, in
general, infinitely many states, as the domain C is still
infinite, from which one can obtain infinitely many dis-
tinct ABoxes, each containing a bounded number of ob-

54

4.1. Plan Existence

jects. This makes b-bounded eKABs an interesting and
non-trivial setting in which studying plan synthesys.

Following from the verification results by [Calvanese
et al., 2013c], we have that for state-bounded eKABs,
checking plan existence is not more difficult than in the
standard setting of propositional planning [Bylander, 1994].

Theorem 4.1.4 Plan existence over state b-bounded eKABs
is decidable in PSpace in the bound b.

We observe that while boundedness is undecidable in
general (by reduction to checking whether a Turing Ma-
chine uses a bounded number of cells on a given input),
checking whether an eKAB is bounded for a given bound is
decidable, as proven in [De Giacomo et al., 2014], although
in the Situation Calculus framework. The PSpace bound
on b holds as the complexity of KB satisfiability checking
(needed at every step of the computation) is ExpTime-
complete for the Description Logics considered, but data
complexity is coNP.

Proof 4.1.3 Let K = ⟨C, C0, T, A0,Λ,Γ⟩ be a b-bounded
eKAB such that C is infinite, and let G be a goal. It can
be easily shown that K is a state-bounded, generic DLDS
[Calvanese et al., 2013c]. Thanks to Theorem 2 by [Cal-
vanese et al., 2013c], this in turn means that verification
of the µDLp logic over K is decidable, and reducible to
standard model checking of propositional µ-calculus over

55

4. Planning with eKABs:
Plan existence and Plan synthesis

a finite-state transition system ΘK whose size is at most
exponential in b. Intuitively, µDLp is a first-order vari-
ant of µ-calculus in which states are queried using ECQs.
It is then immediate to check whether K achieves G by
model checking ΘK against the µDLp reachability property
ΦG = µZ.(G ∨ ⟨−⟩Z).

As for Theorem 4.1.1, to check ΦG the TS ΘK can be
constructed on-the-fly, using space that is polynomial in b.

4.2 Plan Synthesis
We now consider plan synthesis for eKABs. We first intro-
duce Algorithm 1, which is based on the schema of a basic,
depth-first progressive planning algorithm from Classical
Planning (Section 2.3), that synthesizes a plan through a
forward search on the induced graph.

The auxiliary functions initialState(Prob), goal(Prob),
holds(G, s), and successors(Prob, s) are self-explicative.
Note that the schema above abstracts from the specific in-
terpretation of states, that is, it is applicable no matter
how states and actions are represented, once the functions
above are instantiated on the case at hand. For instance,
for a classical planning problem P = ⟨D, s0, G⟩ with D =
⟨S,A, ρ⟩, we have initialState(P) = s0, goal(P) = G,
holds(G, s) = true iff s ∈ G, and successors(P, s) =
{⟨a, s′⟩ | s′ = ρ(s, a)}.

Next, we show how this schema can be lifted to handle
plan synthesis for eKABs. The lifting we propose results

56

4.2. Plan Synthesis

Algorithm 1: Forward planning algorithm schema
Function FindPlan

input : A planning problem Prob
output : A plan that solves Prob, or fail if there is

no solution
V := ∅ // Global set of visited states
return FwSearch(Prob,initialState(Prob),ϵ)

end
Function FwSearch

input : A planning problem Prob, the current state
s, the sequence π of actions that led to s

output : A plan that solves Prob, or fail if there is
no solution

if s ∈ V then
return fail // Loop!

end
V := V ∪ {s}
if holds(goal(Prob), s) then

return π
end
forall ⟨a, s′⟩ ∈ successors(Prob, s) do

πn := FwSearch(Prob, s′, π · a)
if πn ̸= fail then

return πn
end

end
return fail

end

57

4. Planning with eKABs:
Plan existence and Plan synthesis

in an algorithm that is correct, i.e., sound and complete,
in the following sense:

1. terminates,
2. preserves plan existence,
3. produces proper plans, i.e., if it does not fail, the

returned result corresponds to a proper solution to
the input planning problem, and

4. it finds plans that are representative of classes of
plans, i.e., the instances used in the plan can be
substituted with other “equivalent” ones, thus ob-
taining infinite valid plans.

As we can see from the point above, the definition of com-
plete differs from the classical one, but this is also an
intended consequence of working with a framework where
there could be possibly infinite plans.

We stress that, while we present the lifting on Algo-
rithm 1, the same approach applies to any other, possibly
optimized, algorithm. Indeed, the lifting strategy is ag-
nostic with respect to how the search space is traversed.

We now consider the two classes of eKABs for which
decidability of plan existence has been established in Sec-
tion 4.1.

4.2.1 Plan Synthesis for eKABs with Finite
Domain

This case differs from classical planning in that eKABs
have ABoxes as states, and they provide an implicit rep-
resentation of successor states in terms of actions and

58

4.2. Plan Synthesis

condition-action rules. The former aspect requires to re-
place propositional entailment with ECQ query answering
when checking whether the goal has been reached. The
latter requires to use do to compute a state’s successors.
Specifically, given an eKAB planning problem E = ⟨K, G⟩,
where K = ⟨C, C0, T, A0,Λ,Γ⟩, with finite C, Algorithm 1
can be instantiated as follows:

• initialState(E) = A0;
• goal(E) = G;
• holds(E , A) = ans(G,T,A);
• successors(E , A) returns the set of pairs ⟨αθ,A′⟩,

where:
– α ∈ Λ,
– θ is a K-legal parameter substitution in A for
α, and

– A′ = do(αθ,A, T).
We call the resulting algorithm FindPlan-eKabFD.

By this instantiation, the search space of FindPlan-eKabFD
is exactly ΥK, which is finite, so being the eKAB domain.
Thus, we have:

Theorem 4.2.1 FindPlan-eKabFD is correct.

Proof 4.2.1 FindPlan-eKabFD corresponds to a re-
cursive, depth-first visit of the TS ΥK, which is finite-state.
The visit positively terminates along a branch if the goal
query G holds in its last state, and negatively terminates
along a branch if the branch achieves an already visited

59

4. Planning with eKABs:
Plan existence and Plan synthesis

state (this automatically handles the case of loops), or if
the branch is a dead-end.

FindPlan-eKabFD can be directly implemented on
top of existing, off-the-shelf planners, provided that the
native goal check and successor generation are replaced
with ECQ-query answering and the computation of do.

4.2.2 Plan Synthesis for State-Bounded
eKABs

We now consider state-bounded eKABs over infinite ob-
ject domains. In this case, the search space is potentially
infinite, thus FindPlan-eKabFD is not readily applica-
ble, as termination is not guaranteed. To tackle this prob-
lem, instead of visiting the original, infinite, search space,
we work on a finite-state abstraction of the eKAB. We
first argue that the execution semantics of eKABs has two
properties:

• it is driven by ECQ-query answering, which is generic
(cf. Section 2.1.2);

• all allowed configurations of external input parame-
ters are considered when applying an action.

These imply that eKABs are generic DLDSs in the sense
of [Calvanese et al., 2013c], which, together with state-
boundedness, allows us to apply the same abstraction
technique used by [Calvanese et al., 2013c]. In particular,

60

4.2. Plan Synthesis

Algorithm 2: Plan synthesis for state-bounded
eKABs.

Function FindPlan-eKabSB
input : An eKAB planning problem E = ⟨K, G⟩,

where K = ⟨C, C0, T, A0,Λ,Γ⟩ is b-bounded
and C is infinite

output : A plan that solves E , or fail if there is no
solution

n := max{k | there is α ∈ Λ with k parameters}

pick Ĉ s.t.
{
C0 ⊆ Ĉ ⊂ C
|Ĉ| = b+ n+ |C0|

// Abstract

dom.
K̂ := ⟨Ĉ, C0, T, A0,Λ,Γ⟩
return FindPlan-eKabFD(⟨K̂, G⟩)

reachability is preserved if the infinite-state TS induced
by the input eKAB is shrunk into a finite-state TS over
a finite, but sufficiently large, object domain. We lever-
age this technique as the core of the FindPlan-eKabSB
procedure shown in Algorithm 2, which reduces the orig-
inal planning problem over an infinite search space to a
classical planning problem.

It can be checked that all correctness conditions are
satisfied: i) is a consequence of Theorem 4.2.1; ii) holds
because the finite-state abstraction preserves reachabil-
ity; iii) holds because the search space of the finite-state
abstraction is contained into that of the original eKAB.
Thus, we have:

61

4. Planning with eKABs:
Plan existence and Plan synthesis

Theorem 4.2.2 FindPlan-eKabSB is correct.

Proof 4.2.2 We separately consider the two conditions
for correctness.

As for the preservation of plan existence, we notice
that, by Lemma 3.3.1, the input eKAB K is a generic,
state-bounded DLDS. Hence, Theorem 2 in [Calvanese
et al., 2013c] applies to K, telling us that model checking
a µDLp property over K can be reduced to model checking
µDLp over a finite abstraction of K. This abstraction
is produced by considering the same DLDS, but with a
finite, sufficiently large domain. The required size of this
domain is exactly the one used in FindPlan-eKabSB to
pick the object domain Ĉ. Consequently, the application
of FindPlan-eKabFD to K̂ leads to generate the desired
abstraction. Since the existence of a plan achieving G can
be formulated in µDLp (cf. the proof of Theorem 4.1.4),
the result follows.

As for the generation of proper plans, it is sufficient
to observe that, since Ĉ ⊂ C, every run explored by
FindPlan-eKabFD over K̂ is actually also a run for
the original input eKAB K. Finally, the results returned
by FindPlan-eKabFD over K̂ are correct due to Theo-
rem 4.2.1.

Example 7 Consider again the eKAB K in Example 5,
together with goal G in Example 6. Notice that K is state-
bounded, as the only way to increase the number of objects
present in the system is by hiring someone, but the number

62

4.2. Plan Synthesis

of hirings is in turn bounded by the number of company
branches (which is fixed once and for all in the initial state)
as the rule that activates the action hireEng is:

Branch(b)∧¬[∃x.Engineer(x)∧worksIn(x, b)] 7→ hireEng(x, b)

Now assume that the initial state indicates the known
existence of a main and a subsidiary branch for the com-
pany, as well as the fact that task t has an assigned tech-
nician from the main branch:

A0 = {Branch(main),Branch(sub),Technician(123),
worksIn(123,main),worksOn(123, t)}

A possible plan leading from A0 to a state where G holds
is

π1 = hireEng(452, sub) makeResp(t, 452)
This plan achieves G by hiring an engineer in a different
branch from that of 123, with whom the engineer shares
task t. Observe, again, the interplay between the actions
and the TBox: while no action explicitly indicates that 452
works on task t, this is implicitly obtained from the fact
that such an engineer is made responsible for t.

Another, quite interesting plan achieving G is:

π2 = hireEng(521,main) makeResp(t, 521) Anonymize(521)

In this case, an engineer is hired in the same branch of tech-
nician 123, and made responsible for task t. These two ac-
tions do not suffice to achieve G, since the planning agent

63

4. Planning with eKABs:
Plan existence and Plan synthesis

knows that the two employees work in the same branch.
This knowledge is somehow “retracted” by anonymizing
the hired engineer: after the execution of Anonymize(521),
the planning agent still knows that 521 must work in some
branch (this is enforced by a dedicated TBox axiom), but
does not know which one (due to the open-world semantic,
in one model it could work in the main branch, while in
another it could be related to an unknown branch), thus
satisfying also the (epistemic) negative part of the goal.

4.2.3 Plan Templates and Online
Instantiation

FindPlan-eKabSB returns plans with ground actions
mentioning only objects in Ĉ, as those in C\Ĉ are not used
in K̂. Such plans can be regarded as templates from which
we can obtain regular plans for K. This is a consequence of
genericity, which yields that a plan keeps achieving a goal
even under consistent renaming of the objects it mentions.

To formalize this intuition, we recast the notion of
equality commitment [Calvanese et al., 2013c] in this set-
ting. Let B be a set of objects, and I a set of external
input parameters. An equality commitment H over a finite
set S ⊆ B ∪ I is a partition {H1, . . . , Hn} of S s.t. each
Hj contains at most one object from B. A substitution
θ : I → B is compatible with H if:

• for every pair of parameters i1, i2 ∈ I, we have that
i1θ = i2θ iff i1 and i2 belong to the same Hj ;

64

4.2. Plan Synthesis

• whenever Hj contains an object d ∈ B, then iθ = d
for every i ∈ Hj .

Intuitively, θ is compatible with H if it maps parameters
from the same class into the same object, and parameters
from different classes into distinct objects. Finally, given
a finite set B′ ⊂ B and a substitution θ : I → B, fix an
ordering O = ⟨d1, . . . , dn⟩ over the set Bcur = B′ ∪ im(θ)
of the objects that are either mentioned in B′ or assigned
to I by θ. The equality commitment H induced by θ over
B′ (under O) is the partition H = {H1, . . . , Hn}, s.t., for
j ∈ {1, . . . , n}:

• Hj contains dj iff dj ∈ B′, i.e., objects mentioned by
θ but not present in B′ are discarded;

• Hj contains i ∈ dom(θ) iff θ(i) = dj , i.e., all param-
eters mapped to the same, j-th object are included
in the j-th equivalence class.

Example 8 Let B = {d1 . . . , d5}, B′ = {d1, d2, d3}, I =
{i1, . . . , i4}, and θ : I → B, s.t.: θ(i1) = d1, θ(i2) =
θ(i3) = d5, θ(i4) = d4. The equality commitment induced
by θ over B ∪ {d4, d5} is H = {H1, . . . , H5}, where: H1 =
{d1, i1}, H2 = {d2},H3 = {d3},H4 = {i4},H5 = {i2, i3}.
Notice that Hi ⊆ B.

We can now state the following key result.

Lemma 4.2.3 Let K = ⟨C, C0, T, A0,Λ,Γ⟩ be an eKAB,
and A1, A

′
1 ABoxes over T , s.t. A1

∼=h
T A

′
1 for some object

65

4. Planning with eKABs:
Plan existence and Plan synthesis

renaming h. Let α(p⃗, i⃗) be an action in Λ with exter-
nal input parameters i⃗, and θ a K-legal substitution in
A1 for α. Let H be the equality commitment induced by
θ over adom(A1), and H ′ = h(H) the equality commit-
ment obtained from H by renaming each d ∈ adom(A1)
as h(d) ∈ adom(A2). If θ′ is a parameter substitution for
p⃗ and i⃗ compatible with H ′, then:

• θ′ is a K-legal parameter for α in A′
1;

• do(αθ,A1, T) ∼=h′
T do(αθ′, A′

1, T), where h′ extends
h as follows: for every parameter i of α s.t. θ(i) ̸∈
adom(A1), we have h′(θ(i)) = θ′(i).

Proof 4.2.3 The proof is directly obtained from the defi-
nition of do, and the fact that eKABs are generic.

Intuitively, Lemma 4.2.3 states that, modulo object
renaming consistent with a parameter substitution that
induces the same equality commitment, the same action
can be applied to two logically equivalent ABoxes. Fur-
thermore, such action induces the same update, modulo
renaming of the objects mentioned in the two ABoxes and
the involved parameters. In Algorithm 3, we exploit this
result to build, in an online fashion, a plan for K starting
from one for K̂. This provides the freedom of dynamically
choosing which actual objects to use when actions are exe-
cuted, provided that the choice induces the same equality
commitment induced by the parameter substitution in the
original plan. By Lemma 4.2.3, we obtain:

66

4.2. Plan Synthesis

Algorithm 3: Online instantiation of a plan tem-
plate.

Procedure onlineExec
input : An eKAB K = ⟨C, C0, T, A0,Λ,Γ⟩, and a

plan π = α1θ1 · · ·αmθm
Ao := A0 // old, effective state
An := A0 // current, effective state
h : C0 → C0 s.t. h(d) = d for each d ∈ C0
// cur. bijection

for k ∈ {1, . . . ,m} do
H := eq. commitment induced by
θi over adom(A)
pick θ′k that is compatible with h(H) // Agent
choice
A′

o := do(αiθk, Ao, T)
A′

n := do(αiθ
′
k, An, T)

hn : C0 ∪ adom(Ao) → C0 ∪ adom(An) s.t.
hn(d) = d, for d ∈ C0
hn(d) = h(d), for d ∈ adom(A′

o) ∩ adom(Ao)
hn(θk(i)) = θ′k(i), for i parameter of αk

s.t. θk(i) /∈ adom(Ao)
h := hn, Ao := A′

o, An := A′
n

end

Theorem 4.2.4 Let E = ⟨K, G⟩ be an eKAB planning
problem. If π is a plan that achieves G, then onlineExec(K, π)
is guaranteed to achieve G for each possible choice.

Proof 4.2.4 Each iteration in onlineExec obeys to the
assumption of Lemma 4.2.3. As a consequence, at each

67

4. Planning with eKABs:
Plan existence and Plan synthesis

iteration we have that A′
o
∼=hn

T A′
n. This also holds for the

last pair of ABoxes that, by definition, are both guaranteed
to satisfy G.

Example 9 Consider plan π2 of Example 7. This plan
can be lifted online by the planning agent as follows: when
hiring the engineer, the planning agent can freely inject a
fresh employee identifier in place of 521, provided that the
chosen identifier is then consistently used in the subsequent
actions. In other words, π2 acts as a footprint for the
infinite family of plans of the form

hireEng(Id,main) makeResp(t, Id) Anonymize(Id)

where Id is selected on-the-fly when the planning agent
executes hireEng, and is s.t. it is different from all the
objects present in A0 (this reconstructs the same equality
commitment as in the case of 521). All such infinite plans
are guaranteed to achieve G.

68

Plan Synthesis for Lightweight eKABs
5

Given the planning techniques devised in Section 4.2, we
now want to take a step further, and see if and how stan-
dard planning techniques, with no modifications, could be
applied to eKABs. This goal is interesting for different rea-
sons: under a theoretical point of view, this would allow to
apply to planning problems expressed through eKABs the
same optimizations (such as heuristic functions) that have
been widely studied in the planning community, while un-
der a practical point of view, it would mean to be able to
use off-the-shelf planners.

Closing the gap we just mentioned, requires a restric-

69

5. Plan Synthesis for Lightweight eKABs

tion in the DL chosen to express the eKAB. We con-
sider plan synthesis for state-bounded eKABs over the
lightweight DL DL-LiteA (see Section 2.2), and devise two
techniques to translate an eKAB planning problem into,
respectively, a STRIPS-style (Section 2.3.1) and an ADL
planning problem (Section 2.3.2).

5.1 Translation to STRIPS
The first translation we introduce aims at encoding an
eKAB planning problem into a corresponding STRIPS
planning problem. To do so, we have to define some limita-
tions to the expresivness of eKABs, as the original frame-
work cannot be matched to the expressivity of STRIPS.

The first main limitation is on the domain, as STRIPS
planning problems only deal with finite domains of indi-
viduals; this is easily overcome by considering only eKABs
that have either a finite domain or are state bounded, and
thus can be reduced to an equivalent finite domain eKAB
(Section 4.2.2).

Secondly, since in STRIPS, FOL formulae are directly
evaluated over FOL structures (without any form of onto-
logical reasoning), we have to suitably consider the con-
tribution of T . Indeed (see Section 3), T is used both
during query answering and to check whether the ABox
resulting from an action instance is T -consistent. This
restricts the choice of the DL languages we can use to rep-
resent the eKAB; it must be a lightweight DL Language

70

5.1. Translation to STRIPS

that allows somehow to compile away the TBox contribu-
tions. We tackle this problem by relying on DL-LiteA’s
FO rewritability of both ECQs and T -consistency checks
(see Section 2.2).

The last limitation we impose is on the definition of
actions and their related rules. Since in STRIPS actions
only have one non-conditional effect, which is instantiated
by considering only one of the possible substitutions com-
ing from the precondition, we now limit eKABs in the
following way:

• actions can only have one, non-conditional effect;
• the precondition of the effect must be the boolean

value true, meaning it is always activated.
In the following, we will refer to an eKAB that abides to
such limitations as a reKAB Kr.

We thus define a syntactic, modular translation pro-
cedure leKab2Strips that takes as input a DL-LiteA-
reKAB planning problem Er = ⟨Kr, G⟩ with
Kr = ⟨C, C0, T, A0,Λ,Γ⟩, and produces a corresponding
STRIPS planning problem PK = ⟨CK, C0,FK,AK, φK, ψG⟩.
Object domain. As in Section 4.2, if C is finite, so is
CK. If instead C is infinite but K is b-bounded, we fix CK
to contain C0 plus n+ b objects from C.
Fluents. FK is obtained by encoding concept and role
names in T into corresponding unary and binary fluents.
It also contains two special nullary fluents: ChkCons, dis-
tinguishing normal execution modality from check consis-
tency modality of PK, and Error, marking when the con-

71

5. Plan Synthesis for Lightweight eKABs

sistency check fails.

Operators. AK is obtained by transforming every action
in Λ, with its related condition-action rule in Γ, into a
STRIPS operator: The condition of the rule is used as
the precondition, while the single action’s effect defines the
effects in the STRIPS operator (since the effect’s condition
is the boolean value true, it is simply ignored).

To embed the T -consistency checks into STRIPS, we
force AK to alternate between two phases: the normal
execution modality, where a “normal” STRIPS operator
is applied, mirroring the execution of an action instance
of K; and the check consistency modality, where a spe-
cial STRIPS operator checks if the obtained state is T -
consistent. Alternation is realized by toggling the fluent
ChkCons, and activating Error when the consistency check
fails, thus blocking operator application.

We now detail how a “normal” action is translated.
Technically, consider an action α = a(p⃗) : {e1} in Λ and
its corresponding condition-action rule Qα(x⃗) 7→ a(p⃗) in Γ.
Let z⃗ = p⃗ \ x⃗. We produce a corresponding STRIPS oper-
ator a = ⟨ρα, εα⟩. Its precondition ρα corresponds to the
FO formula rew(Qα(x⃗), T) ∧ ¬ChkCons ∧ ¬Error, which
leaves the external input parameters z⃗ unconstrained . No-
tice how we embed the contribution T during query an-
swering by rewriting the condition ECQ (rew(Qα(x⃗), T)).

The operator effect εα is the FO conjunction of the
translation of e1 = true⇝ add F+

1 ,del F−
1 , which gener-

ates the following conjunct:

72

5.1. Translation to STRIPS

∧
Pj(p⃗,x⃗i)∈F+

1

Pj(p⃗, x⃗i) ∧
∧

Pk(p⃗,x⃗i)∈F−
1

¬Pk(p⃗, x⃗i) ∧ ChkCons

Finally, the special STRIPS operators used to check
T -consistency are:

• checkOk = ⟨ρchkOk, εchkOk⟩, where: ρchkOk = ChkCons∧
¬QT

unsat checks whether the check flag is on and if
is true, and check if the state is consistent (¬QT

unsat
has to be true); εchkOk = ¬ChkCons takes care of
toggling off the check flag. In other words, checkOk
activates its effects only if there are no inconsisten-
cies;

• checkNo = ⟨ρchkNo, εchkNo⟩, is almost the same as
checkOk, but activates its effects if there are no in-
consistencies, thus requiring to trigger the error flag.
The precondition and effects are, respectively, ρchkNo =
ChkCons ∧QT

unsat and εchkNo = ¬ChkCons ∧ Error.

Initial state specification. φK is by constructing the
conjunction of all facts contained inA0: φK =

∧
Pi (⃗o)∈A0

Pi(⃗o).
Goal description. The goal description ψG is obtained
from goal G in E as ψG = rew(G,T)∧¬ChkCons∧¬Error.

The two-fold contribution of T is taken care of, as in
the operators, by rewritingG (via rew(G,T)) and ensuring
that the ending state is T -consistent (by requiring the
absence of the consistency check and error flags in ψG).

We close by considering the following algorithm, called
FindPlan-leKabStrips:

73

5. Plan Synthesis for Lightweight eKABs

1. take as input a DL-LiteA-eKAB planning problem
E ;

2. translate E into an STRIPS planning problem using
leKab2Strips;

3. invoke an off-the-shelf STRIPS planner;
4. if the planner returns fail, return fail as well;
5. if the planner returns a plan π, filter away all check

operators from π, and return it as a result.

Theorem 5.1.1 FindPlan-leKabStrips is correct.

Proof 5.1.1 The proof is given in two steps. In the
first step, we show that, thanks to FO-rewritability, each
DL-LiteA-eKAB planning problem (of which reKABs are
a subset) can be transformed into an equivalent planning
problem whose DL-LiteA-eKAB has an empty TBox, and
employs standard FO query evaluation to progress the ABox.
In the second step, we show that such an “intermediate”
reKAB problem is correctly mirrored by the STRIPS trans-
lation obtained through FindPlan-leKabStrips.

Consider a DL-LiteA-eKAB planning problem E =
⟨K, G⟩ with K = ⟨C, C0, T, A0,Λ,Γ⟩. As pointed out before,
we assume T = Tp⊎Tn⊎Tf . We construct a corresponding
DL-LiteA-eKAB planning problem eKABprobr = ⟨Kr, Gr⟩
as follows. The eKAB Kr is obtained from K by rewriting
all ECQs, so as to compile away the positive assertions of
the TBox T . Specifically, Kr = ⟨C, C0, Tn ⊎ Tf , A0,Λr,Γr⟩,
where:

74

5.1. Translation to STRIPS

• For each action a(p⃗) : {e1, . . . , en} in Λ, Λr contains
a corresponding action ar(p⃗) : {er1, . . . , ern}, where
each effect ei of the form Qi(p⃗, x⃗i)⇝ add F+

i ,del F−
i

becomes a corresponding effect rew(Qi(p⃗, x⃗i), T) ⇝
add F+

i ,del F−
i .

• For each condition-action rule Qa(x⃗) 7→ a(y⃗) in Γ,
Γr contains a corresponding condition-action rule
rew(Qa(x⃗), T) 7→ ar(y⃗).

Similarly to the case of the eKAB, the goal Gr corre-
sponds to rew(G,T).

Let A be an ABox, and θ : y⃗ → C be a parameter
assignment for actions a(y⃗) and ar(y⃗). The following two
key properties hold:

1. a(y⃗)θ is a K-legal action instance in A if and only
if ar(y⃗)θ is a Kr-legal action instance in A.

2. If θ is a K-legal parameter substitution in A for
a(y⃗) (equivalently, θ is a Kr-legal parameter sub-
stitution in A for ar(y⃗)), then do(a(y⃗)θ,A, T) =
do(ar(y⃗)θ,A, ∅).

In fact, from FO-rewritability we directly have that θ[x⃗] ∈
ans(Qa, T, A) if and only if θ[x⃗] ∈ ans(rew(Qa, T), Tn ⊎
Tf , A) if and only if θ[x⃗] ∈ ans(rew(Qa, T), ∅, A) (re-
call that disjointness and functionality assertions do not
participate in query answering, but only matter for T -

75

5. Plan Synthesis for Lightweight eKABs

consistency). Furthermore, we have that

do(ar(y⃗)θ,A, Tn ⊎ Tf)
= do(ar(y⃗)θ,A, ∅)
= (A \

∪
i∈{1,...,n}

∪
σj∈ans(rew(A,T),∅,Qiθ)

F+
i σj)

∪
∪

i∈{1,...,n}
∪

σj∈ans(rew(A,T),∅,Qiθ)
F−
i σj

= (A \
∪

i∈{1,...,n}
∪

σj∈ans(A,T,Qiθ)
F+
i σj)

∪
∪

i∈{1,...,n}
∪

σj∈ans(A,T,Qiθ)
F−
i σj

= do(a(y⃗)θ,A, T)

Since T is a DL-LiteA TBox, we finally obtain that do(a(y⃗)θ,A, T)
is T -consistent if and only if it is (Tn ⊎ Tf)-consistent if
and only if do(ar(y⃗)θ,A, Tn ⊎ Tf) is (Tn ⊎ Tf)-consistent.
This concludes the proof of claims (1) and (2) above.

From such two claims, we directly obtain, by induction,
that K and Kr generate identical TSs, i.e., ΥK = ΥKr .
Hence, the two DL-LiteA-eKAB planning problems ⟨K, G⟩
and ⟨Kr, Gr⟩ are equivalent.

Let us now consider the translation of the planning
problem ⟨K, G⟩, with K a reKAB, into the correspond-
ing STRIPS planning PK = ⟨CK, C0,FK,AK, φK, ψG⟩, as
defined by FindPlan-leKabStrips. It is easy to see
that this translation is the same as the one obtained from
⟨Kr, Gr⟩.

Furthermore, the evolutions induced by Kr are obtained
by applying standard FO query evaluation, by considering
the underlying ABox as a database of facts, interpreted
with the closed-world assumption. Hence, query answering
for Kr is the same as that adopted by STRIPS for PK

76

5.1. Translation to STRIPS

(identical to PKr). Furthermore PK represents a direct
syntactic reformulation of Kr in STRIPS, with the only
key difference that Kr checks whether the ABox resulting
from the application of an action instance is (Tn ⊎ Tf)-
consistent, while PK simulates this check by introducing
the two-step approach discussed in the translation.

Let A be an ABox, and αθ be a Kr action instance,
with α = a(y⃗). Let D be the STRIPS representation of A
(i.e., the formula that corresponds to the conjunction of
facts in A), and ⟨a, y⃗, ρα(y⃗), εα(y⃗)⟩ the STRIPS operator
corresponding to α. We have three cases to discuss for θ.

If θ is not an answer to the guard of the condition-
action rule for α in A, then αθ is not applicable. In this
case, ρα(y⃗)θ does not hold in D, and hence the STRIPS
operator corresponding to α, grounded with θ, is not ap-
plicable in D neither.

If instead θ is an answer to the guard of the condition-
action rule for α in A, we have two sub-cases to discuss,
corresponding to the situation where do(αθ,A, ∅) is (Tn ⊎
Tf)-consistent, and that where it is not.

In the first sub-case, αθ is Kr-legal in A. In this situ-
ation, we have have that D′ is the STRIPS representation
of A′, where:

• A′ = do(αθ,A, ∅).
• D′ results from D by applying the sequence of the

STRIPS operator ⟨a, y⃗, ρα(y⃗), εα(y⃗)⟩ instantiated with
θ, followed by the application of the STRIPS opera-
tor ⟨checkOk, ∅, ρchk, εchk⟩, which has the only effect
of removing the check flag. In fact, thanks to the

77

5. Plan Synthesis for Lightweight eKABs

FO-rewritability of consistency check in DL-LiteA,
we have that QT

unsat holds in D′ if and only if A′ is
(Tn ⊎ Tf)-inconsistent.

Hence, the progression induced by αθ corresponds to that
induced by the sequence of the corresponding STRIPS op-
erator, followed by the check operator.

In the second sub-case, A′ = do(αθ,A, ∅) is (Tn ⊎
Tf)-inconsistent, and hence αθ is not is not applicable in
A. In STRIPS, instead, the operator ⟨a, y⃗, ρα(y⃗), εα(y⃗)⟩,
instantiated with θ, is applicable, and leads to a state D′

in which only the check operator ⟨checkNo, ∅, ρchk, εchk⟩
can be executed. Since D′ \ {ChkCons} corresponds to A′,
which is (Tn⊎Tf)-inconsistent, the application of the check
operator leads to introduce the error flag, i.e., leads to the
STRIPS state D′′ = (D′ \ {ChkCons}) ∪ {Error}. The
error flag is never removed, and therefore this spurious
path cannot lead to satisfy the desired STRIPS goal ψG =
Gr ∧ ¬ChkCons ∧ ¬Error.

By induction, we consequently obtain that non-spurious
runs induced by the STRIPS operators in PK exactly repli-
cate those in ΥKr , if one projects away the intermediate
check states (which do not affect the possibility to satisfy
the given goal).

78

5.1. Translation to STRIPS

5.1.1 Action Rewriting

We now devise a technique to remodel actions in order to
remove the need of the operators checkOk and checkNo.
We note that this is essentially a technical discussion, and
no correctness theorems are stated.

The technique builds upon the work presented in [Sta-
wowy, 2015], and, informally speaking, embeds the satis-
fiability check provided by QT

unsat inside the rules’ precon-
dition; it does so by analysing all possible inconsistencies
that could arise by performing the action related to the
rule, tailoring QT

unsat to consider only those specific cases,
and add the resulting control query Qcheck to the condi-
tion of the rule.

Before proceeding, though, we have to notice that the
aforementioned additional control query could be asked
to “judge” the contribution of any of the parameters used
in the effects; this could raise an invalid query in the
condition-action rule, as the parameters x⃗ available in the
rule are (possibly) a subset of the action’s parameters p⃗,
leaving out the external input parameters. In order to be
able to address them in the condition-action rule, we have
to translate the given reKAB K into an equivalent one
KDom where we modify the semantic of the actions in the
following way:

1. we introduce the special concept Domain in the KB,
and add to it all the individuals of the domain (if it is
finite, otherwise if is infinite but state-bounded, we
calculate the equivalent finite domain), thus giving

79

5. Plan Synthesis for Lightweight eKABs

a representation of the domain directly inside the
ABox. Such concept is immutable, thus cannot be
used in the definition of the effects;

2. we modify each condition-action rule γα to incor-
porate the external input parameters assignment of
the related action α. For each external input pext
in p⃗, we add to the condition of the rule the CQ
Domain(pext).

With this modifications, we effectively move the assign-
ment of the external input parameters into the condition-
action rule, and link them, as in the original reKAB K, to
a random value in the domain through its “image” Domain
in the ABox. We can thus conclude that the reKABs K
and KDom are equivalent (they generate the same TS),
and resume the building of Qcheck.

By definition, QT
unsat checks for all possible inconsis-

tencies by means of queries. When we perform an instan-
tiated action αϑ in state A and get the successor state
Anext, we can be sure that the only source of inconsis-
tencies comes from the set of instantiated positive effects
F+ϑ of the action α; this is easily proved by the fact that,
if we assume the state A to be consistent, then removing
statements from it (as the set of negative effects F− does),
does not alter its consistency. We thus concentrate on the
set F+, without any substitution ϑ, as the technique must
be applicable in every situation and for every substitution.

We consider the rule γ related to the action α, and
extend its condition’s ECQ by adding the query Qcheck,
which is created as follows (we add a step-by-step example

80

5.1. Translation to STRIPS

along). We consider QT
unsat to be saturated with respect

to the positive axioms of the TBox (we can achieve this
by applying the query reformulation to QT

unsat). For every
atomic effect (f+i , x⃗f+) ∈ F+ (e.g., A(y)):

1. check if the term f+i appears in any CQ qu in QT
unsat

(we denote with x⃗q the vector of existential variables
that appear in qu, as every CQ in QT

unsat is boolean).
E.g., we have qu = ∃x.A(x) ∧ B(x);

2. given qu, we proceed to unify f+i with one atom
in qu with the same term as f+i (it could be case of
functional axioms, where the related CQ qu contains
two atoms using the same term). E.g., qu[x/y] =
A(y) ∧ B(y);

3. we substitute f+i in qu with the vale true, as it is
the added effect and thus forcibly evaluates always
to true. E.g., qu[x/y] = true ∧ B(y);

4. we evaluate the contribution of the negative effects
F−. For every atomic effect (f−i , x⃗f−) ∈ F−, we
check if the term f− appears in any atom δ(x⃗q)[x⃗q/x⃗f+]
of qu (every CQ in QT

unsat contains at most two
atoms, plus an inequality in case of a functionality
assertion). In such case, we want to express the fact
that, when δ(x⃗q)[x⃗q/x⃗f+] = (f−i , x⃗f−), the negative
effect effectively remove the possibility of an incon-
sistency. We thus add the inequalities

∧
xq,i ̸= xf−,j

for xq,i ∈ x⃗q, xf+,j ∈ x⃗f+. E.g., if (f−i , x⃗f−) = B(z),
then qu[x/y] = true ∧ B(y) ∧ y ̸= z;

5. we evaluate the contribution of the remaining posi-
tive effects in F+. For every atomic effect (f ri , x⃗fr) ∈

81

5. Plan Synthesis for Lightweight eKABs

F+, we check if the term f r appears in any atom
δ(x⃗q)[x⃗q/x⃗f+] of qu (every CQ in QT

unsat contains
at most two atoms, plus inequalities in case of a
functionality assertion and negative effects). In such
case, we want to express the fact that, when δ(x⃗q)[x⃗q/x⃗f+] =
(f ri , x⃗fr), the addition of both effects generates an in-
consistency. We thus add the equality

∧
xq,i = xfr,j

for xq,i ∈ x⃗q, xfr,j ∈ x⃗fr. E.g., if (f ri , x⃗fr) = B(u),
then qu[x/y] = true ∧ B(y) ∧ y ̸= z ∧ y = u;

6. qu now effectively contains all the elements to block
possible inconsistencies related to the atomic effect
(f+i , x⃗f+). Since it is derived from QT

unsat, if it evalu-
ates to true, than it means that (f+i , x⃗f+) generates
an inconsistency. We thus add ¬qu to Qcheck.

Definition 5.1.1 Given an action α ∈ Λ and its corre-
sponding rule γ ∈ Γ (γ : Q 7→ α), we call extended rule
γext the rule defined as:

γext : Qext 7→ α
with Qext = Qrew ∧Qcheck, and Qcheck the ECQ obtained
by tailoring QT

unsat w.r.t. the positive effects F+.

The extended rules effectively catch possible inconsis-
tencies beforehand, and thus eliminating the need of the
check consistency modality (and its related predicates) in
the translation to STRIPS. The union of all extended
rules defines the set Γext.

82

5.2. Translation to ADL

5.2 Translation to ADL
Given the translation of a reKAB to a STRIPS planning
problem (Section 5.1), we now try to move onto a more ex-
pressive framework, and translate a full DL-LiteA-eKAB
into an ADL planning problem (Section 2.3.2).

Before showing the translation, we note that, unfor-
tunately, the possibility to embed the satisfiability check
directly into the rules’ conditions (Section 5.1.1) cannot
be applied to DL-LiteA-eKABs, due to the nature of ac-
tions’ effects. First, the embedding should take place in
the condition of the effect, as there could be many differ-
ent conditional effects in one action. Secondly, in a normal
eKAB, an effect works on a set of answers, provided by
the effect’s condition, which can contain variables not in
the parameters’ set; in a reKAB this doesn’t happen as
we impose the only effect not to have any condition, using
only a single substitution for the parameters. To show
how this affects the embedding of the satisfiability check,
we propose a simple example.

Example 10 Consider the following elements:
• a TBox T with the disjointness axiom A ̸⊑ B
• an ABox A with the assertions {P(a, b),P(b, c)}
• an action α with only two external input parameters

and with one effect
e : P(x, y)⇝ add{A(x),B(y)}

If we apply the embedding and extend the condition of the
effect, we would obtain:

83

5. Plan Synthesis for Lightweight eKABs

eext : P(x, y) ∧ ¬B(x) ∧ ¬A(y)⇝ add{A(x),B(y)}

Retrieving the certain answers of eext in the state A would
yield the tuples:

{(x 7→ a, y 7→ b), (x 7→ b, y 7→ c)}
and produce the state A′:

A′ = {P(a, b),P(b, c),A(a),B(b),A(b),B(c)}
which is clearly inconsistent.

The problem arises from the fact that the embedded
consistency check works on a single certain answer per
time, and fails at considering the combined effects of the
whole set. Although we cannot apply this technique in
eKABs, we gain in expressivity, thus balancing the loss.

We now define a syntactic, modular translation proce-
dure leKab2Adl that takes as input a DL-LiteA-eKAB
planning problem E = ⟨K, G⟩ with K = ⟨C, C0, T, A0,Λ,Γ⟩,
and produces a corresponding ADL planning problem PK =
⟨CK, C0,FK,AK, φK, ψG⟩.

Object domain. As in Section 4.2, if C is finite, so is
CK. If instead C is infinite but K is b-bounded, we fix CK
to contain C0 plus n+ b objects from C.

Fluents. FK is obtained by encoding concept and role
names in T into corresponding unary and binary fluents.
It also contains two special nullary fluents: ChkCons, dis-
tinguishing normal execution modality from check consis-
tency modality of PK, and Error, marking when the con-
sistency check fails.

84

5.2. Translation to ADL

Operators. AK is obtained by transforming every action
in Λ, with its condition-action rule in Γ, into an ADL
operator: each action’s effect produces a conditional effect
in the ADL operator, and the condition-action rule its
precondition.

As for the translation to STRIPS (Section 5.1), we em-
bed the TBox contribution by relying on DL-LiteA’s FO
rewritability of both ECQs and T -consistency checks (Sec-
tion 2.2). We force AK to alternate between two phases:
the normal execution modality, where a “normal” ADL
operator is applied, mirroring the execution of an action
instance of K; and the check consistency modality, where
a special ADL operator checks if the obtained state is T -
consistent. Alternation is realized by toggling the fluent
ChkCons, and activating Error when the consistency check
fails, thus blocking operator application.

Technically, consider an action α = a(p⃗) : {e1, . . . , en}
in Λ and its corresponding condition-action rule Qα(x⃗) 7→
a(p⃗) in Γ. Let z⃗ = p⃗\x⃗. We produce a corresponding ADL
operator ⟨a, p⃗, ρα(p⃗), εα(p⃗)⟩. Its precondition ρα(p⃗) corre-
sponds to the FO formula rew(Qα(x⃗), T) ∧ ¬ChkCons ∧
¬Error, which leaves the external input parameters z⃗ un-
constrained. The operator effect εα(p⃗) is the FO conjunc-
tion of the translation of e1, . . . , en. Each ei = Qi(p⃗, x⃗i)⇝
add F+

i ,del F−
i generates the following conjunct:

rew(Qi(p⃗, x⃗i), T) →
∧

Pj(p⃗,x⃗i)∈F+
i

Pj(p⃗, x⃗i) ∧
∧

Pk(p⃗,x⃗i)∈F−
i

¬Pk(p⃗, x⃗i) ∧ ChkCons

Finally, the special ADL operator used to check T -consistency

85

5. Plan Synthesis for Lightweight eKABs

is ⟨check, ∅, ρchk, εchk⟩, where ρchk = ChkCons just checks
whether the check flag is on, while εchk takes care of tog-
gling the check flag, as well as of triggering the error flag
if an inconsistency is detected:

εchk = ¬ChkCons ∧ (QT
unsat → Error)

Initial state specification. φK is by constructing the
conjunction of all facts contained inA0: φK =

∧
Pi (⃗o)∈A0

Pi(⃗o).
Goal description. The goal description ψG is obtained
from goal G in E as ψG = rew(G,T)∧¬ChkCons∧¬Error.

The two-fold contribution of T is taken care of, as in
the operators, by rewritingG (via rew(G,T)) and ensuring
that the ending state is T -consistent (by requiring the
absence of the consistency check and error flags in ψG).

Example 11 Consider an eKAB with the following TBox:
Engineer ⊑ Employee, Designer ⊑ Employee, ElectronicEng ⊑
Engineer, Designer ⊑ ¬Engineer
Γ contains the following rule γassignTest:

[Employee(x)] 7→ assignTest(x)
while the action assignTest is defined as:

assignTest(x) = {eassignTest(x)}
eassignTest(x) = true⇝ add{TestingAgent(x)}

We can rewrite Qα in order to compile away the TBox,
and transform γassignTest in:

[Employee(x)∨Engineer(x)∨Designer(x)∨ElectronicEng(x)] 7→
assignTest(x)

86

5.2. Translation to ADL

while the query QT
unsat is:

∃x.((Designer(x) ∧ Engineer(x))∨
(Designer(x) ∧ ElectronicEng(x)))

We show the translation to ADL through PDDL of the
action assignTest:
: action assignTest

: parameters (?x)
: precondition (and

(not(CheckConsistency)) (not (Inconsistent))
(or (Employee ?x) (Eng ?x) (ElectronicEng ?x))
))

: effect (and (CheckConsistency) (TestingAgent ?x))

We close by considering the following algorithm, called
FindPlan-leKabAdl:

1. take as input a DL-LiteA-eKAB planning problem
E ;

2. translate E into an ADL planning problem using
leKab2Adl;

3. invoke an off-the-shelf ADL planner;

4. if the planner returns fail, return fail as well;

5. if the planner returns a plan π, filter away all check
operators from π, and return it as a result.

Theorem 5.2.1 FindPlan-leKabAdl is correct.

87

5. Plan Synthesis for Lightweight eKABs

Proof 5.2.1 The proof is given in two steps. In the
first step, we show that, thanks to FO-rewritability, each
DL-LiteA-eKAB planning problem can be transformed into
an equivalent planning problem whose DL-LiteA-eKAB has
an empty TBox, and employs standard FO query evalua-
tion to progress the ABox. In the second step, we show that
such an “intermediate” problem is correctly mirrored by
the ADL translation obtained through FindPlan-leKabAdl.
The first step is already proven in Proof 5.1.1, so we con-
centrate only on the second step.

Given the eKAB Kr obtained from K by rewriting all
ECQs, so as to compile away the positive assertions of
the TBox T , the evolutions induced by Kr are obtained by
applying standard FO query evaluation, by considering the
underlying ABox as a database of facts, interpreted with
the closed-world assumption. Hence, query answering for
Kr is the same as that adopted by ADL for PK (identi-
cal to PKr). Furthermore PK represents a direct syntactic
reformulation of Kr in ADL, with the only key difference
that Kr checks whether the ABox resulting from the appli-
cation of an action instance is (Tn ⊎ Tf)-consistent, while
PK simulates this check by introducing the two-step ap-
proach discussed in the translation.

Let A be an ABox, and αθ be a Kr action instance, with
α = a(y⃗). Let D be the ADL representation of A (i.e., the
formula that corresponds to the conjunction of facts in A),
and ⟨a, y⃗, ρα(y⃗), εα(y⃗)⟩ the ADL operator corresponding to
α. We have three cases to discuss for θ.

If θ is not an answer to the guard of the condition-

88

5.2. Translation to ADL

action rule for α in A, then αθ is not applicable. In this
case, ρα(y⃗)θ does not hold in D, and hence the ADL oper-
ator corresponding to α, grounded with θ, is not applicable
in D neither.

If instead θ is an answer to the guard of the condition-
action rule for α in A, we have two sub-cases to discuss,
corresponding to the situation where do(αθ,A, ∅) is (Tn ⊎
Tf)-consistent, and that where it is not.

In the first sub-case, αθ is Kr-legal in A. In this situ-
ation, we have have that D′ is the ADL representation of
A′, where:

• A′ = do(αθ,A, ∅).
• D′ results from D by applying the sequence of the

ADL operator ⟨a, y⃗, ρα(y⃗), εα(y⃗)⟩ instantiated with
θ, followed by the application of the ADL operator
⟨check, ∅, ρchk, εchk⟩, which has the only effect of re-
moving the check flag. In fact, thanks to the FO-
rewritability of consistency check in DL-LiteA, we
have that QT

unsat holds in D′ if and only if A′ is
(Tn ⊎ Tf)-inconsistent.

Hence, the progression induced by αθ corresponds to that
induced by the sequence of the corresponding ADL operator,
followed by the check operator.

In the second sub-case, A′ = do(αθ,A, ∅) is (Tn ⊎
Tf)-inconsistent, and hence αθ is not is not applicable
in A. In ADL, instead, the operator ⟨a, y⃗, ρα(y⃗), εα(y⃗)⟩,
instantiated with θ, is applicable, and leads to a state D′

in which only the check operator ⟨check, ∅, ρchk, εchk⟩ can be
executed. Since D′\{ChkCons} corresponds to A′, which is

89

5. Plan Synthesis for Lightweight eKABs

(Tn⊎Tf)-inconsistent, the application of the check operator
leads to introduce the error flag, i.e., leads to the ADL
state D′′ = (D′ \ {ChkCons}) ∪ {Error}. The error flag
is never removed, and therefore this spurious path cannot
lead to satisfy the desired ADL goal ψG = Gr∧¬ChkCons∧
¬Error.

By induction, we consequently obtain that non-spurious
runs induced by the ADL operators in PK exactly replicate
those in ΥKr , if one projects away the intermediate check
states (which do not affect the possibility to satisfy the
given goal).

5.3 From eKABs to reKABs
In Section 5.1 we shown a translation from reKABs, a
subset of eKABs, to STRIPS, while in 5.2 we translated
eKABs to ADL. In Figure 5.1 we depict the inter-relationships
existing among these different way to represent a plan-
ning domain; the full arrows correspond to the transla-
tions provided in the previous sections. It is well know
that it is possible to translate an ADL planning problem
to a STRIPS one [Gazen and Knoblock, 1997], and we are
thus interested to close the same gap also between eKABs
and reKABs.

The method to translate an eKAB in a reKAB lever-
ages on the work done in [Abdulla et al., 2016], which
is about transforming actions with bulk effects (i.e., the
action generates a set of instantiated effects all applied

90

5.3. From eKABs to reKABs

eKAB

reKAB

reKABDom

ADL

STRIPS

Figure 5.1: Translations map

at the same time) in a database context, in a sequence
of action with only a single effect. To achieve the same
result, we need to consider an action α(p⃗) together with
its related condition-action rule γ, and decompose them
into a set of reKAB actions and rules that reproduces the
execution semantic of γ and α.

We now describe and formally define how we model
the various phases of the execution semantic, detailing as
well the special concepts and roles we introduce for the
purpose.

1. Action Lock
in this phase we select the action α we want to perform,
and set a lock in order that no other action can start
its execution. We introduce the concept HasLock that is
used to represent which action is being performed at the
moment (e.g. HasLock(α)).
Rule:

91

5. Plan Synthesis for Lightweight eKABs

rule-performα : ¬∃x.HasLock(x) ∧ ∃x⃗Q(x⃗) 7→ lockα;
Action:
performα : true⇝ add{HasLock(α),RetrieveParametersPhase(α)}

2. Condition-action Rule Parameters Retrieval
In this phase we execute the query Q(x⃗) in the condition-
action rule γ, and save the answer used to ground part of
the parameters p⃗ of the action α (the external parameters
y⃗ = p⃗ \ x⃗ are taken care by the next phase). The answer
is saved inside the set of special concepts Parameteriα, one
for every parameter in x⃗.
We use the concept RetrieveParametersPhase to recognize
this phase.
Rule:
rule-setParametersα : HasLock(α)∧RetrieveParametersPhase(α)∧
Q(x⃗) 7→ setParametersα(x⃗)
Action:
setParametersα(x⃗) : true⇝
del{RetrieveParametersPhase(α)}
add{

∧
xi∈x⃗ Parameteriα(xi),RetrieveExtInputPhase(α)}

3. External Input Parameters Retrieval
We set a value for the external parameters input y⃗. The
external input parameters are saved inside the set of spe-
cial concepts ExtInputiα, one for every parameter in y⃗.
We use the concept RetrieveExtInputPhase to recognize this
phase. We also create a lock for each effect in the form of
the role HasLockEff, where the domain is an action name;
since the next phase is the retrieval of the answers for each

92

5.3. From eKABs to reKABs

effect’s condition, we add the lock HasLockEff(α, effect1)
in order to start from the first one.
Rule:
rule-retrieveExtα : HasLock(α) ∧ RetrieveExtInputPhase(α)
7→ retrieveExtα(y⃗, ansId)
Action:
retrieveExtα(y⃗, ansId) : true⇝
del{RetrieveExtInputPhase(α)}
add{

∧
yi∈y⃗ ExtInputiα(yi),RetrieveAnswersPhase(α),

HasLockEff(α, effect1),NewAnsId(ansId)}

4. Effects’ Answers Retrieval
We retrieve and save each certain answer for each effect’s
condition query Qeff1(p⃗, z⃗1), where z⃗1 are the additional
free variable appearing in Qeff1 . Since DLs don’t support
n-ary predicates (we would need one to save the whole
answer with only an assertion), we need to resort to reifi-
cation: we decompose the needed n-ary (with n = |p⃗∪ z⃗1|)
predicate into n binary predicates (i.e., roles) of the type
AnsDelvari

α−effJ, where the first term is the unique identifier
of the answer, while the second is used to sore the value
to which the variable vari is mapped to.

To identify the answers, we have to be sure that each
ID used is unique: we introduce for this purpose the
disjoint concepts NewAnsId and OldAnsIds (NewAnsId ̸⊑
OldAnsIds). NewAnsId stores the ID we can use to save
the next answer, while OldAnsIds is used to track the IDs
that have already being used.
We use the concept RetrieveAnswersPhase to recognize this

93

5. Plan Synthesis for Lightweight eKABs

phase. We introduce 3 rules and 3 actions, dedicated, re-
spectively, to: retrieve an answer for a given effect, switch
from an effect to the next one, switch from the last effect
to the next phase.

Rule (presented for the first effect):
rule-addAnsEff1α : HasLock(α)∧RetrieveAnswersPhase(α)∧
HasLockEff(α, effect1)∧Qeff1(p⃗, z⃗1)∧

∧
xi∈x⃗ Parameteriα(xi)

¬∃ansIdTemp.
∧

1..n AnsDelvari
α−eff1(ansIdTemp, vari) ∧

NewAnsId(ansId) 7→ addAnsEff1α(p⃗, z⃗1, andId, andIdNew)
with var1, ..., varn the variables appearing in Qeff1.

Action (presented for the first effect):
addAnsEff1α(p⃗, z⃗1, andId, andIdNew) : true⇝
del{RetrieveExtInputPhase(α),NewAnsId(ansId)}
add{AnsDelvari

α−eff1(ansId, vari),OldAnsIds(ansId),
NewAnsId(ansIdNew)}
Rule (presented for the switch between the first and second
effect):
rule-fromEff1toEff2α : HasLock(α) ∧
RetrieveAnswersPhase(α) ∧ HasLockEff(α, effect1) ∧
∀vari∈p⃗∪z⃗1(Qeff1(p⃗, z⃗1) ∧

∧
xi∈x⃗ Parameteriα(xi)) →

(∃ansId.AnsDelvari
α−eff1(ansId, vari))

7→ fromEff1toEff2α
Action (presented for the switch between the first and sec-
ond effect):
fromEff1toEff2α : true⇝
del{HasLockEff(α, effect1)}
add{HasLockEff(α, effect2)}

94

5.3. From eKABs to reKABs

Rule:
rule-fromEffNtoDelα : HasLock(α)∧RetrieveAnswersPhase(α)∧
HasLockEff(α, effectN) ∧ NewAnsId(ansId) ∧
∀vari∈p⃗∪z⃗n(QeffN(p⃗, z⃗n) ∧

∧
xi∈x⃗ Parameteriα(xi)) →

(∃ansId.AnsDelvari
α−effN(ansId, vari))

7→ fromEffNtoDelα(ansId)
Action:
fromEffNtoDelα(ansId) : true⇝
del{HasLockEff(α, effectN),RetrieveAnswersPhase(α),
NewAnsId(ansId)}
add{DeletePhase(α),HasLockEff(α, effect1)}

5. Delete Effects
In this phase we apply the deletion effects for each effect
in α. We do so by cycling through all the saved answers in
each AnsDelvari

α−effJ, apply the proper variable substitutions
to the deletion effects, and move the answer to the concept
AnsAddvari

α−effJ.
We use the concept DeletePhase to recognize this phase.
We introduce 3 rules and 3 actions, dedicated, respectively,
to: delete an atomic effect for a given effect, switch from
an effect to the next one, switch from the last effect to the
next phase.
Rule (presented for the first effect):
rule-delEff1α : HasLock(α) ∧ DeletePhase(α)
∧ HasLockEff(α, effect1) ∧

∧
i ExtInput − iα(extInpi)

∧
∧

vari∈−→var AnsDelvari
α−eff1(ansId, vari) 7→ delEff1α(−→var, ansId)

with −→var the variables appearing in the answer AnsDelvari
α−eff1

with id ansId.

95

5. Plan Synthesis for Lightweight eKABs

Action (presented for the first effect):
delEff1α(−→var, ansId) : true⇝
del{F−

1 (p⃗),
∧

vari∈−→var AnsDelvari
α−eff1(ansId, vari),

OldAnsIds(ansId)}
add{AnsAddvari

α−eff1(ansId, vari)}
Rule (presented for the switch between the first and sec-
ond effect):
rule-fromDelEff1toDelEff2α : HasLock(α)∧DeletePhase(α)∧
HasLockEff(α, effect1)∧¬∃ansId, var1.AnsDelvar1

α−eff1(ansId, var1)
7→ fromDelEff1toDelEff2α
Action (presented for the switch between the first and sec-
ond effect):
fromDelEff1toDelEff2α : true⇝
del{HasLockEff(α, effect1)}
add{HasLockEff(α, effect2)}
Rule:
rule-fromDelEffNtoAddα : HasLock(α) ∧ DeletePhase(α) ∧
HasLockEff(α, effectN)∧¬∃ansId, var1.AnsDelvar1

α−effn(ansId, var1)
7→ fromDelEffNtoAddα
Action:
fromDelEffNtoAddα : true⇝
del{HasLockEff(α, effectN),DeletePhase(α)}
add{AddPhase(α)}
6. Add Effects
In this phase we apply the add effects for each effect in α.
We do so by cycling through all the saved answers in each
AnsAddvari

α−effJ, apply the proper variable substitutions to
the add effects, and erase the answer.

96

5.3. From eKABs to reKABs

We use the concept AddPhase to recognize this phase. We
introduce 3 rules and 3 actions, dedicated, respectively,
to: add an atomic effect for a given effect, switch from an
effect to the next one, switch from the last effect to the
next phase.
Rule (presented for the first effect):
rule-addEff1α : HasLock(α) ∧ AddPhase(α)
∧ HasLockEff(α, effect1) ∧

∧
1..n ExtInput − iα(extInpi)

∧
∧

vari∈−→var AnsAddvari
α−eff1(ansId, vari) 7→ addEff1α(−→var, ansId)

with −→var the variables appearing in the answer AnsAddvari
α−eff1

with id ansId.
Action (presented for the first effect):
addEff1α(−→var, ansId) : true⇝
del{

∧
vari∈−→var AnsAddvari

α−eff1(ansId, vari),
OldAnsIds(ansId)}
add{F+

1 (p⃗)}
Rule (presented for the switch between the first and sec-
ond effect):
rule-fromAddEff1toAddEff2α : HasLock(α)∧AddPhase(α)∧
HasLockEff(α, effect1)∧¬∃ansId, var1.AnsAddvar1

α−eff1(ansId, var1)
7→ fromAddEff1toAddEff2α
Action (presented for the switch between the first and sec-
ond effect):
fromAddEff1toAddEff2α : true⇝
del{HasLockEff(α, effect1)}
add{HasLockEff(α, effect2)}
Rule:
rule-fromAddEffNtoCleanα : HasLock(α) ∧ AddPhase(α) ∧

97

5. Plan Synthesis for Lightweight eKABs

HasLockEff(α, effectN) ∧
¬∃ansId, var1.AnsAddvar1

α−effN(ansId, var1)
7→ fromAddEffNtoCleanα

Action:
fromAddEffNtoCleanα : true⇝
del{HasLockEff(α, effectN),AddPhase(α)}
add{CleanPhase(α)}

7. Clean Up
This phase is used to empty the special concepts and roles
used during the previous phases, in order to leave a clean
state, ready to perform another action.
We use the concept CleanUpPhase to recognize this phase.

Rule:
rule-cleanα : HasLock(α) ∧ CleanPhase(α) ∧∧

extInpi∈
−−−−→
extInp

ExtInputiα(extInpi) 7→ cleanα(
−−−−→
extInp)

Action:
cleanα(

−−−−→
extInp) : true⇝

del{
∧

extInpi∈
−−−−→
extInp

ExtInputiα(extInpi),
CleanPhase(α),HasLock(α)}
add{}

The last element to be able to translate an eKAB into
a reKAB, is, given planning problem ⟨K, G⟩, creating the
proper goal query Gr. We have to be sure that, given the
translation αr of an action α, in the transition system ΥKr

the goal is not met in the middle of the execution of αr,
but only at the very end. We achieve this by setting the

98

5.3. From eKABs to reKABs

goal Gr as:
Gr = G ∧ ¬∃x.HasLock(x)

Given the translation of a generic action and its re-
lated condition-action rule, we now state two theorems
and sketch their proofs: such theorems are necessary to
asses the correctness of the translation of a lightweight
DL, state-bounded eKAB into a reKAB.

Theorem 5.3.1 Given a lightweight DL, state-bounded
eKAB K, the resulting reKAB Kr obtained by the transla-
tion of K is still state-bounded.

Proof 5.3.1 (Sketch) Given the initial state-bounded
eKAB, we have that the translation introduces actions with
external parameters, and thus the possibility that these
actions, if repeated infinitely many times, break the state-
boundedness.

The actions that present external input parameters are
the one related to the retrieval and storage of query an-
swers for the effects’ condition; more precisely the ad-
ditional external parameter is the individual used as a
unique ID to store the answer. The interested actions are:
retrieveExtα(y⃗, ansId), and addAnsEffIα(p⃗, z⃗1, andId,
andIdNew) (with I denoting the i-th effect in the action)

As the original eKAB is state-bounded (meaning in
each state at most b individuals are present), and that the
number of concepts and roles is constant, we can calculate,
for each condition query, the maximum number maxAns of
possible answers returned. Having maxAns, we can extend

99

5. Plan Synthesis for Lightweight eKABs

the bound of the original eKAB, in order to assure that
there are enough distinct individuals that could be used as
IDs for the answers storage.

Theorem 5.3.2 Given a lightweight DL, state-bounded
eKAB K, and the resulting reKAB Kr obtained by the
translation of K, we have that, for every plan πr obtained
for Kr, it exists an equivalent plan π for K obtained by
removing spurious actions from πr.

Proof 5.3.2 (Sketch) We prove the theorem by showing
two points:

• given a state A (both K and Kr share the same TBox,
and states are ABoxes), an action α (and its related
rule γ) can be performed in A with the parameter
substitution ϑ and creating the state Anext, if and
only if also the translation αr of α for Kr can be
performed as well in A with the same substitution ϑ
and reaching at the end the same state Anext.

• when the goal Gr is met, then also G is met.
The first point can be proved by using contradiction.

Assume that an action α can be performed in A with substi-
tution ϑ, obtaining state Anext, while the combined actions
of αr cannot. This can have the following reasons:

1. αr cannot be performed;
2. αr cannot retrieve the same parameters substitution

ϑ;
3. αr cannot retrieve the same answers for the effects;
4. αr removes or add different assertions.

100

5.3. From eKABs to reKABs

The first case we can simply check that the rule rule-performα

simply checks if no other action is being performed (which
is not the case), and see if the condition q(x⃗) of the rule γ
returns any answer. If this is not the case, then even the
original action α couldn’t be performed, raising a contra-
diction.

Also the other points follow a similar pattern, showing
that the various elements of αr simply reproduce the be-
haviour of α one step at a time. With the last phase of
clean up, αr removes all additional elements that have been
used to regulate the different phases, effectively leaving the
final state reached by αr the same as α.

The point about the goal is easily proved by looking at
how the different phases of αr are defined: the only time
when the concept HasLock is empty is at the beginning (in
the state A), and at the end (state Anext). In all the inter-
mediate states is always present the assertion HasLock(α),
thus making the goal query Gr automatically false.

101

Proof of Concept 6

Given the translation methods proposed in Chapter 5, we
now try to asses their usability under a practical point of
view. Of the two methods, we concentrate on the most ex-
pressive one, namely the translation of an eKAB planning
problem to an ADL one (Section 5.2).

The test consists in running an example and measure
its scalability. Unfortunately, the example is not taken
from any standard planning benchmark (e.g., from the
ICAPS challenges1), although it is frequently used in the
literature. Also, the example does not use the full expres-
sive power of eKABs, but nonetheless shows how a plan-

1http://www.icaps-conference.org/

103

http://www.icaps-conference.org/

6. Proof of Concept

ning problem can be modelled and performs. Additionally,
our goal is to give a generic implementation, avoiding us-
ing specific optimizations (such as manually fine tuning
the resulting translations) which would alter significantly
the performance.

6.1 Robot on a Grid
The example is about a robot positioned on a grid, with
the caveat that the robot does not know its exact position.
Goal of the robot is to reach a specific cell, and to do so it
needs first to derive exactly the cell it is in. Such example
represent a classical planning problem under uncertainty,
as the robot does not have enough knowledge to assert its
exact position, unless it starts exploring the grid.

The grid is represented in Fig. 6.1, and consists of m
columns and n rows. When the robot is sure about its
position, we say that the robot is in column i and/or row
j. When the absolute position hasn’t been yet determined,
we use a relative one, such as “left of line i”, to indicate
that the robot could be in any column from 0 to i (same
for the rows). The relative positions available are: Left
Of (LO), Right Of (RO), Above Of (AO), Below Of (BO).
The robot can freely move on the grid in the 4 directions
(up, down, left, and right), and the only feedback it has is
when it hits the border of the grid.

To represent the described setting through an eKAB,
we introduce the following concepts: i) we represent each

104

6.1. Robot on a Grid

0 1 2 3 4 5 m

Col0 Col1 Col2 Col3 Col4 ...
0

1

2

3

4

n

Row0

Row1

Row2

Row3

...

Figure 6.1: Grid representation

column and row with concepts Coli (0 ≤ i < m) and
Rowj (0 ≤ j < n), respectively; ii) relative positions are
modelled by the concepts LOi (0 < i ≤ m, as the robot
cannot be on the left of column 0), ROi (0 ≤ i < m), AOj
(0 ≤ j < n), BOj (0 < j ≤ n);

We also model the inferences the robot can apply given
his knowledge. First of all, if the robot knows to be at the
right of a certain column (e.g., RO2(robot)), then it can
infer also that it is on the right of all previous columns
(e.g., RO1(robot) and RO0(robot)); we model this through
general inclusion axioms of the type ROi ⊑ ROi − 1, for
0 < i < m. The same goes for all the other relative po-
sitions. We give a visual representation of the concepts
about columns in Figure 6.2 (the rows hierarchy is equiv-

105

6. Proof of Concept

Columns

Col0 Coli Colm RO0

RO1

ROi

ROm− 1

LOm

LOm− 1

LOi

LO1

Figure 6.2: Columns hierarchy

alent).
The robot also knows that it cannot be on the right

and on the left of the same line i; this is modelled through
disjoint axioms of the type ROi ⊑ ¬LOi, for 0 < i < m.
Same goes for the concepts AO and BO.

Last, we can model the fact that, when the robot is
on the right of line i, and on the left on line i+ 1, then it
can infer that it is certainly in column i. We resort to a
type of axiom available in the dialect DL-LiteHorn:

ROi ⊓ LOi + 1 ⊑ Coli for 0 ≤ i ≤ m

The complete list of TBox axioms is:
ROi ⊑ ROi − 1 for 0 < i < m
LOi ⊑ LOi + 1, for 0 < i < m
AOj ⊑ AOj − 1 for 0 < j < n
BOj ⊑ BOj + 1, for 0 < j < n
ROi ⊑ ¬LOi for 0 < i < m

106

6.1. Robot on a Grid

AOj ⊑ ¬BOj for 0 < j < n
ROi ⊓ LOi + 1 ⊑ Coli for 0 ≤ i < m
AOj ⊓ BOj + 1 ⊑ Rowj for 0 ≤ j < n

The initial ABox A0 contains simply the fact that the
robot is know to be inside the grid:
A0 = {RO0(robot), LOm(robot),AO0(robot),BOn(robot)}

We now focus on the actions (and the related rules)
that govern the robot’s knowledge. They are quite self-
explanatory, as the effects of the rules update the knowl-
edge of the robot in accordance to its (relative and/or
absolute) position:
ruleRight : Columns(x) 7→ moveRight(x)
moveRight(x) : {eRO0, ..., eLO1, ..., eCol0, ...}
eROi : K(ROi(x))⇝ add{ROi + 1(x)} for 0 ≤ i < m
eLOi : K(LOi(x)) ⇝ add{LOi + 1(x)},del{LOi(x)} for
0 < i ≤ m
eColi : K(Coli(x))⇝ add{Coli+1(x)},del{Coli(x)} for 0 ≤
i < m

ruleLeft : Columns(x) 7→ moveLeft(x)
moveLeft(x) : {eRO1, ..., eLO1, ..., eCol1, ...}
eLOi : K(LOi(x))⇝ add{LOi − 1(x)} for 0 < i ≤ m+ 1
eROi : K(ROi(x)) ⇝ add{ROi − 1(x)},del{ROi(x)} for
0 < i ≤ m
eColi : K(Coli(x))⇝ add{Coli−1(x)},del{Coli(x)} for 0 <
i ≤ m

ruleUp : Rows(x) 7→ moveUp(x)

107

6. Proof of Concept

moveUp(x) : {eAO0, ..., eBO1, ..., eRow0, ...}
eAOi : K(AOi(x))⇝ add{AOi + 1(x)} for 0 ≤ i < n
eBOi : K(BOi(x)) ⇝ add{BOi + 1(x)},del{BOi(x)} for
0 < i ≤ n
eRowi : K(Rowi(x)) ⇝ add{Rowi+1(x)},del{Rowi(x)} for
0 ≤ i < n

ruleDown : Rows(x) 7→ moveDown(x)
moveDown(x) : {eAO1, ..., eBO1, ..., eRow1, ...}
eBOi : K(BOi(x))⇝ add{BOi − 1(x)} for 0 < i ≤ n+ 1
eAOi : K(AOi(x)) ⇝ add{AOi − 1(x)},del{AOi(x)} for
0 < i ≤ n
eRowi : K(Coli(x)) ⇝ add{Rowi−1(x)},del{Rowi(x)} for
0 < i ≤ n

Unfortunately, although DL-LiteHorn axioms are FOL-
rewritable, the current available tools do not support them.
To overcome this, we introduce an additional effects of the
type:
esure i : K(ROi(x) ∧ LOi + 1(x)) ⇝ add{Coli+1(x)} for
0 ≤ i < m
for each action. We also have to make sure that the initial
ABox is saturated under the axioms ROi ⊓ LOi + 1 ⊑ Coli.
To simplify things, we consider only initial ABoxes in
which all the membership axioms that could be derived
from the axioms ROi ⊓ LOi + 1 ⊑ Coli are explicitly in-
cluded in the ABox.

The goal we want to reach is to have the robot in
a specific cell, e.g., G = Col3(robot) ∧ Row4(robot). We
now have all the elements to evaluate how the translation

108

6.1. Robot on a Grid

Grid Size Time (s)
3x3 0.43
4x4 0.50
5x5 3.51
6x6 61.22
7x7 >1800

Table 6.1: Solving times for the robot problem

of such eKAB planning problem to an ADL one (and its
resolution through an off-the-shelf planner) performs.

Having defined the eKAB planning problem, we trans-
lated it, and fed it to an ADL planner (we used Fast Down-
ward 2) ran over a machine equipped with an Intel Core
i7-4600U CPU and 16 GB of RAM. The goal was to run
the example multiple times, and increase the grid size ev-
ery time while noting down how the timings for finding a
plan get affected, considering a 30 minutes time-out. We
report the results in Table 6.1.

Unfortunately, already with a grid size of 7x7, the plan-
ner reaches the time-out limit (it solved the problem in
around 2.210 seconds), which is clearly not an acceptable
result. This can be traced down to the structure of the
planning problem and how the planner deals with its trans-
lation to ADL. eKABs are a very expressive framework,
and, as we can see from this example, we can easily define
actions with multiple effects, and queries that uses quan-

2http://www.fast-downward.org/

109

http://www.fast-downward.org/

6. Proof of Concept

tification, negation, etc. The planner translates this set-
ting to a STRIPS one, generating a problem exponential
in size, which, consequently, burdens the planner execu-
tion. This problem is not peculiar to the chosen planner:
almost every major planner adopts this technique to deal
with ADL planning problems.

Of course, it would be possible to tailor the planning
domain and generate a more efficient encoding, but this
can be done either manually (which defies the scope of our
work), or by studying generic optimizations (which is left
as future work).

110

Conclusions 7

7.1 Summary

This Thesis addressed the problem of plan synthesis over
rich dynamic data-centric systems. We presented a frame-
work named Explicit-input Knowledge and Action Base
(eKAB) (Chapter 3), where data is taken care by a full-
fledged Description Logic Knowledge Base, while a set of
actions governs its evolution by adding or removing as-
sertions. The expressive power and reasoning services of
DLs are very helpful to describe and manage the domain
knowledge, but constitute a difficult environment to deal
with when it comes to the dynamics of the processes.

111

7. Conclusions

Additionally, as the actions have the possibility to in-
troduce new instances, leads to a framework where check-
ing plan existence is undecidable even under severe restric-
tions on the eKAB of interest. Nonetheless, we demon-
strated that, under the state-boundedness assumption for
eKABs, plan existence is PSpace in data complexity (Sec-
tion 4.1). In this setting, we presented sound, complete
and terminating algorithms for plan synthesis by fusing
together classic planning algorithms with DL reasoning
services (Section 4.2).

We then focused our attention on eKABs equipped
with a lightweight DL of the DL-Lite family, and proposed
a technique to compile plan synthesis for state-bounded,
lightweight Reduced Explicit-input Knowledge and Action
Bases (reKABs) into a standard STRIPS planning prob-
lem (Section 2.3.1), and for state-bounded, lightweight
eKABs into a standard ADL planning problem (Section
2.3.2). More over, in the case of reKABs, we provided a
technique to embed the consistency check of the generated
ABoxes directly into the condition of the actions. These
techniques allow to transform an highly expressive DL-
based setting into standard planning, where the reasoning
services (namely, consistency check and query answering)
contribution is embedded into the translation, and plan-
ning tools and optimizations can be seamlessly applied to
the problem.

To test the feasibility of our proposal for knowledge-
intensive planning, we ran an empirical evaluation of the
framework (Chapter 6), where we considered two different

112

7.2. Future Work

examples, translated them into ADL planning problems
written in PDDL, and fed them as input to an off-the-shelf
planner. Unsurprisingly, performances of the resolution of
vanilla translations are poor; to the best of our knowledge,
planners that support ADL planning problems, transform
them into equivalent STRIPS problem, an operation that
is worst-case exponential. We have to remark, though,
that the work of this Thesis was aimed at providing the
theoretical foundation for plan synthesis in eKABs and
the possibility to reduce it to standard planning; we con-
sider possible optimizations (such as the use of heuristics,
and other well know planning optimization techniques) as
future work.

7.2 Future Work
Data-intensive dynamic systems are an open and vibrant
research topic, and the ideas and contributions about this
topic proposed in this Thesis can be refined and extended.
Here follow some considerations on possible future work.

First of all, the plan synthesis process for DL-agnostic
eKABs can be improved by adopting better algorithms,
both adapting existing ones and creating novel ones (as
we are dealing with a non-standard planning setting). In
this respect, a promising line of research is to combine
our approach with that of [Fan et al., 2012]. There, the
authors study a knowledge-intensive variant of Golog op-
erating over an infinite object domain, and where incom-

113

7. Conclusions

plete knowledge is captured using proper KBs instead of
DLs. In particular, they propose a semi-decidable tech-
nique to handle progression and query evaluation. In spite
of the key differences between that approach and ours,
their approach is reminiscent to the abstraction technique
we adopt towards decidability. We intend to leverage this
similarity with the aim of understanding if, and how, the
optimization strategies proposed in [Fan et al., 2012] can
be lifted to our setting.

Another line of work is, of course, improve the perfor-
mance of plan synthesis for the translations into STRIPS
and ADL planning problems: this can be done by explor-
ing few ways, such as implementation of heuristics that
take advantage of the structured knowledge inside the
eKABs, and improve the translation procedures by op-
timizing the generated elements (most of all, the queries
that govern the actions).

114

Bibliography

[Abdulla et al., 2016] Abdulla, P. A., Aiswarya, C., Atig,
M. F., Montali, M., and Rezine, O. (2016).

Recency-bounded verification of dynamic database-
driven systems (extended version).

CoRR, abs/1604.03413.

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and
Vianu, V. (1995).

Foundations of Databases.
Addison Wesley Publ. Co.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuin-
ness, D., Nardi, D., and Patel-Schneider, P. F., edi-
tors (2003).

The Description Logic Handbook: Theory, Implementa-
tion and Applications.

Cambridge University Press.

[Baader and Zarrieß, 2013] Baader, F. and Zarrieß, B.
(2013).

115

Bibliography

Verification of Golog programs over description logic
actions.

Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 8152 LNAI:181–196.

[Bacchus, 2000] Bacchus, F. (2000).
Subset of PDDL for the AIPS 2000 Planning Competi-

tion.
[Bagheri Hariri et al., 2013a] Bagheri Hariri, B., Cal-

vanese, D., De Giacomo, G., Deutsch, A., and Mon-
tali, M. (2013a).

Verification of relational data-centric dynamic systems
with external services.

In Proc. of PODS 2013, pages 163–174.
[Bagheri Hariri et al., 2014] Bagheri Hariri, B., Cal-

vanese, D., Deutsch, A., and Montali, M. (2014).
State-boundedness in data-aware dynamic systems.
In Proc. of KR 2014. AAAI Press.

[Bagheri Hariri et al., 2013b] Bagheri Hariri, B., Cal-
vanese, D., Montali, M., De Giacomo, G., De Masel-
lis, R., and Felli, P. (2013b).

Description logic Knowledge and Action Bases.
J. of Artificial Intelligence Research, 46:651–686.

[Belardinelli et al., 2014] Belardinelli, F., Lomuscio, A.,
and Patrizi, F. (2014).

Verification of agent-based artifact systems.
J. of Artificial Intelligence Research, 51:333–376.

116

Bibliography

[Bhattacharya et al., 2007] Bhattacharya, K., Gerede, C.,
and Hull, R. (2007).

Towards formal analysis of artifact-centric business pro-
cess models.

Business Process Management, pages 288–304.

[Bylander, 1994] Bylander, T. (1994).
The computational complexity of propositional

STRIPS planning.
Artificial Intelligence, 69(1–2):165–204.

[Calvanese et al., 2009] Calvanese, D., De Giacomo, G.,
Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., and Rosati, R. (2009).

Ontologies and databases: The DL-Lite approach.
In Tessaris, S. and Franconi, E., editors, RW 2009 Tuto-

rial Lectures, volume 5689 of LNCS, pages 255–356.
Springer.

[Calvanese et al., 2007a] Calvanese, D., De Giacomo, G.,
Lembo, D., Lenzerini, M., and Rosati, R. (2007a).

EQL-Lite: Effective first-order query processing in de-
scription logics.

In Proc. of IJCAI 2007, pages 274–279.

[Calvanese et al., 2007b] Calvanese, D., De Giacomo, G.,
Lembo, D., Lenzerini, M., and Rosati, R. (2007b).

Tractable reasoning and efficient query answering in de-
scription logics: The DL-Lite family.

J. of Automated Reasoning, 39(3):385–429.

117

Bibliography

[Calvanese et al., 2013a] Calvanese, D., De Giacomo, G.,
Lembo, D., Lenzerini, M., and Rosati, R. (2013a).

Data complexity of query answering in description log-
ics.

Artificial Intelligence, 195:335–360.

[Calvanese et al., 2013b] Calvanese, D., De Giacomo, G.,
Montali, M., and Patrizi, F. (2013b).

Verification and Synthesis in Description Logic Based
Dynamic Systems, volume 7994 of Lecture Notes in
Computer Science.

Springer Berlin Heidelberg, Berlin, Heidelberg.

[Calvanese et al., 2013c] Calvanese, D., De Giacomo, G.,
Montali, M., and Patrizi, F. (2013c).

Verification and synthesis in description logic based dy-
namic systems.

In Proc. of RR 2013, volume 7994 of LNCS, pages 50–
64. Springer.

[Calvanese et al., 2013d] Calvanese, D., Kharlamov, E.,
Montali, M., Santoso, A., and Zheleznyakov, D.
(2013d).

Verification of inconsistency-aware knowledge and ac-
tion bases.

In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, IJCAI ’13,
pages 810–816. AAAI Press.

[Calvanese et al., 2016] Calvanese, D., Montali, M., Pa-
trizi, F., and Stawowy, M. (2016).

118

Bibliography

Plan synthesis for knowledge and action bases.
In Proceedings of the 25th International Joint Confer-

ence on Artificial Intelligence.

[Calvanese et al., 2015] Calvanese, D., Montali, M., and
Santoso, A. (2015).

Verification of generalized inconsistency-aware knowl-
edge and action bases (extended version).

CoRR, abs/1504.08108.

[Chandra and Merlin, 1977] Chandra, A. K. and Merlin,
P. M. (1977).

Optimal implementation of conjunctive queries in rela-
tional data bases.

In Proceedings of the ninth annual ACM symposium on
Theory of computing, pages 77–90. ACM.

[Cimatti et al., 2008] Cimatti, A., Pistore, M., and
Traverso, P. (2008).

Automated planning.
In Handbook of Knowledge Representation, volume 3 of

Foundations of Artificial Intelligence, pages 841–867.
Elsevier.

[Cohn and Hull, 2009] Cohn, D. and Hull, R. (2009).
Business artifacts: A data-centric approach to modeling

business operations and processes.
IEEE Data Eng. Bull, 32(3):3–9.

[De Giacomo et al., 2014] De Giacomo, G., Lespérance,
Y., Patrizi, F., and Vassos, S. (2014).

119

Bibliography

Progression and verification of situation calculus agents
with bounded beliefs.

In Proc. ofAAMAS’14.

[Drescher and Thielscher, 2008] Drescher, C. and
Thielscher, M. (2008).

A fluent calculus semantics for ADL with plan con-
straints.

In Proc. of JELIA 2008, volume 5293 of LNCS, pages
140–152. Springer.

[Erol et al., 1995] Erol, K., Nau, D. S., and Subrahma-
nian, V. S. (1995).

Complexity, decidability and undecidability results for
domain-independent planning.

Artificial Intelligence, 76(1–2):75–88.

[Fan et al., 2012] Fan, Y., Cai, M., Li, N., and Liu, Y.
(2012).

A first-order interpreter for knowledge-based golog with
sensing based on exact progression and limited rea-
soning.

In Proc. of AAAI 2012. AAAI Press.

[Gabbay et al., 2003] Gabbay, D., Kurusz, A., Wolter, F.,
and Zakharyaschev, M. (2003).

Many-dimensional Modal Logics: Theory and Applica-
tions.

[Gazen and Knoblock, 1997] Gazen, B. C. and Knoblock,
C. A. (1997).

120

Bibliography

Combining the Expressivity of UCPOP with the Effi-
ciency of Graphplan.

Proc. 4Th European Conference on Planning, pages
221—-233.

[Ghallab et al., 2004a] Ghallab, M., Nau, D. S., and
Traverso, P. (2004a).

Automated planning – Theory and Practice.
Elsevier.

[Ghallab et al., 2004b] Ghallab, M., Nau, D. S., and
Traverso, P. (2004b).

Automated planning - theory and practice.
Elsevier.

[Ginsberg and Smith, 1988] Ginsberg, M. L. and Smith,
D. E. (1988).

Reasoning about action ii: The qualification problem.
Artif. Intell., 35(3):311–342.

[Glimm et al., 2008] Glimm, B., Lutz, C., Horrocks, I.,
and Sattler, U. (2008).

Conjunctive query answering for the description logic
SHIQ.

J. of Artificial Intelligence Research, 31:151–198.

[Hariri et al., 2013] Hariri, B. B., Calvanese, D., Montali,
M., De Giacomo, G., Masellis, R. D., and Felli, P.
(2013).

Description Logic Knowledge and Action Bases.
J. Artif. Intell. Res. (JAIR), 46:651–686.

121

Bibliography

[Hoffmann et al., 2009] Hoffmann, J., Bertoli, P.,
Helmert, M., and Pistore, M. (2009).

Message-based web service composition, integrity con-
straints, and planning under uncertainty: A new
connection.

J. of Artificial Intelligence Research, 35:49–117.
[Levesque, 1984] Levesque, H. J. (1984).

Foundations of a Functional Approach to Knowledge
Representation.

Artif. Intell., 23(2):155–212.
[Levesque and Lakemeyer, 2001] Levesque, H. J. and

Lakemeyer, G. (2001).
The Logic of Knowledge Bases.
The MIT Press.

[Minsky, 1967] Minsky, M. L. (1967).
Computation: Finite and Infinite Machines.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[Montali et al., 2014] Montali, M., Calvanese, D., and De
Giacomo, G. (2014).

Verification of Data-Aware Commitment-Based Multia-
gent System.

(Aamas):157–164.
[Ortiz et al., 2008] Ortiz, M., Calvanese, D., and Eiter, T.

(2008).
Data complexity of query answering in expressive de-

scription logics via tableaux.
J. of Automated Reasoning, 41(1):61–98.

122

Bibliography

[Pednault, 1989] Pednault, E. P. D. (1989).
Adl: Exploring the middle ground between strips and

the situation calculus.
In Proceedings of the First International Conference on

Principles of Knowledge Representation and Reason-
ing, pages 324–332, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

[Rudolph, 2011] Rudolph, S. (2011).
Foundations of description logics.

[Stawowy, 2015] Stawowy, M. (2015).
Optimizations for decision making and planning in de-

scription logic dynamic knowledge bases.
In Proceedings of the 28th International Workshop on

Description Logics.
[Wolter and Zakharyaschev, 1999] Wolter, F. and Za-

kharyaschev, M. (1999).
Temporalizing description logic.
In Gabbay, D. and de Rijke, M., editors, Fron-

tiers of Combining Systems, pages 379–402. Studies
Press/Wiley.

[Zarrieß and Claßen, 2015] Zarrieß, B. and Claßen, J.
(2015).

Verification of knowledge-based programs over descrip-
tion logic actions.

In Proc. of IJCAI’15.

123

	List of Acronyms
	Introduction
	Preliminaries
	Description Logic
	Interpretation of a Knowledge Base
	Query Answering

	DL-Lite Family
	First Order Rewritability

	Planning
	STanford Research Institute Problem Solver
	Action Description Language

	Description Logic-based Dynamic Systems

	Explicit-input Knowledge and Action Bases
	Parametric actions
	Condition-Action Rules
	Execution Semantics

	Planning with eKABs:Plan existence and Plan synthesis
	Plan Existence
	Plan Synthesis
	Plan Synthesis for eKABs with Finite Domain
	Plan Synthesis for State-Bounded eKABs
	Plan Templates and Online Instantiation

	Plan Synthesis for Lightweight eKABs
	Translation to STRIPS
	Action Rewriting

	Translation to ADL
	From eKABs to reKABs

	Proof of Concept
	Robot on a Grid

	Conclusions
	Summary
	Future Work

	Bibliography

