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Abstract

A few years after the first observations of electromagnetic continuum (myria-
metric) radiation in the magnetosphere, the source of the radiation was identified
as strong electrostatic upper hybrid waves frequently seen just outside the plasma-
pause. However, the process converting the electrostatic waves into electromagnetic
radiation has still not been identified. Several mechanisms have been proposed, such
as linear mode conversion in a density gradient, weak turbulence coalescence with
low frequency electrostatic waves, coherent decay of the upper hybrid waves, and
radiation from collapsing, strongly nonlinear cavitons. Introducing the concept of
a phase space density of plasma waves, the efficiency of the linear mode conversion
can be accurately estimated. Similar concepts also allow the efficiency of the non-
linear mechanisms to be evaluated in a form that can be quantitatively compared
with observations.

1 Introduction

From observations [e.g., Kurth et al., 1979; Kurth, 1982; Etcheto et al., 1982] there is
rather convincing evidence that the source of magnetospheric continuum radiation are
strong electrostatic upper hybrid waves, which often are seen near the equatorial plasma-
pause. However, the mechanism converting these electrostatic waves into electromagnetic
radiation has not been identified.

It was early suggested that TMR may be produced by linear mode conversion [Jones,
1976], and this possibility has since received considerable attention [Jones, 1982, 1987b;
Jones et al., 1987; Budden and Jones, 1987a,b; Horne, 1988; 1990]. The efficiency of the
linear mode conversion was questioned by Melrose [1981], Barbosa [1982] and Rönnmark
[1989], and discrepancies between the beaming pattern predicted by this theory and ob-
servations were recently discussed by Morgan and Gurnett [1991]. Nonlinear conver-
sion mechanisms have also been proposed to explain the radiation. Melrose [1981] and
Rönnmark [1983] considered the coalescence of upper hybrid waves with low frequency
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electrostatic waves, and concluded that this could produce the radiation if the low fre-
quency waves were sufficiently common. However, there are no observations supporting
that an electrostatic instability generating the required low frequency waves is commonly
operating at the sources of myriametric radiation. The decay of upper hybrid waves into
low frequency waves and electromagnetic radiation was studied by Murtaza and Shukla
[1984] and Rönnmark [1985] under the assumption that the nonlinearities were weak. If,
on the other hand, the upper hybrid waves are sufficiently strong, they may form cigar–
shaped solitary waves, and the collapse of these solitary structures may also produce
myriametric radiation [Christiansen et al., 1984].

In this study, we will apply phase space methods to the generation of magnetospheric con-
tinuum radiation. The phase space representation introduced by Rönnmark and Larsson
[1988] provides new quantitative methods for the analysis of the generation and propa-
gation of waves in inhomogeneous space plasmas, and it allows us to compare the linear
mode conversion to the nonlinear decay mechanism.

2 Phase space description of plasma waves

Recently, there has been an increased interest in phase space descriptions of plasma waves
[McDonald and Kaufman, 1985; McDonald, 1988; Rönnmark and Larsson, 1988]. In
the review by Rönnmark [1990], these methods were discussed, and certain ambiguities
concerning the starting point for the theory were pointed out. These ambiguities were
resolved by Larsson [1989], who showed that in an inhomogeneous and nonstationary
medium we should use the vector potential A and relate it to the current density j by
admittance tensors Λ of the form shown below. In this section, I will briefly outline
the phase space methods described in greater detail by Biro and Rönnmark [1992] and
Rönnmark and Biro [1992].

In terms of the vector potential A describing the wave field, we define a phase space
amplitude Ã(k, ω, r, t) by the transformation

Ã(k, ω, r, t) =
∫ dr′dt′

π
√
L3T

A(r′, t′)e−
(r′−r)2

2L2 −
(t′−t)2

2T2 −ik·(r′−r)+iω(t′−t) . (2.1)

The wave field is here weighted by a Gaussian window, and the center of the window
is taken as the origin of a Fourier transformation. The function Ã will clearly depend
mainly on the behaviour of A in the vicinity of r and t, and it can thus be regarded as a
local Fourier transform of the wave field.

Choosing the gauge φ = 0 and including nonlinear effects to lowest order, the evolution
of the vector potential is governed by the wave equation

ε0

[
∂2
tA(r, t) + c2∂r × ∂r ×A(r, t)

]
= j1(r, t) + j2(r, t) , (2.2)

where the linear current j1 can be written as

j1(r, t) =
∫
dr′ dt′ Λ1(r

′− r, t′− t,
r′+ r

2
,
t′ +t

2
) ·A(r′, t′) , (2.3)
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while the second order nonlinear current is

j2(r, t) =
∫
dr′ dt′ dr′′ dt′′ × (2.4)

×
[
A(r′, t′) ·Λ2(r

′−r, t′−t, r′′−r, t′′−t, (r+r
′+r
′′)

3
, (t+t′+t′′)

3
)·A(r′′, t′′)

]
.

We now apply the transformation defined by (2.1) to Equation (2.3). This results in an
exact equation for Ã, which we according to Biro and Rönnmark [1992] and Rönnmark
and Biro [1992] can write as

D(k, ω, r, t) exp
[
i
←

∂r ·
→

∂k −i
←

∂k ·(
→

∂r −ik)− (2.5)

i
←

∂t
→

∂ω +i
←

∂ω (
→

∂t +iω)
]
· Ã(k, ω, r, t) = J2(k, ω, r, t) .

The local dispersion tensor

D(k, ω, r, t) = ε0[ω
2 + (kk− k2)c2] +Λ1(k, ω, r, t) (2.6)

is defined by standard Fourier transforms with respect to the first pair of arguments.

The exact formula for the transformed nonlinear current J2 will not be given here since it
is rather complicated. However, it can be simplified if we assume that the medium is not
simultaneously strongly dispersive and strongly inhomogeneous. By this we mean that
we can find a length scale L such that the variation in the properties of the medium is
small when k changes by ∆k ∼ L−1 and r changes by ∆r ∼ L. For such a medium, we
can write the equation for J2 as

J2(k, ω, r, t) = 16π3L9/2T 3/2
∫ dk′dω′dk′′dω′′

(2π)8
e−L2(k−k

′−k
′′)2−T 2(ω−ω′−ω′′)2 ×

× Ã(k′, ω′, r, t) ·Λ2(k
′, ω′,k′′, ω′′, r, t) · Ã(k′′, ω′′, r, t) . (2.7)

The same assumptions also allow us to derive a kinetic equation for the wave density on
phase space. In a weakly inhomogeneous medium we expect Ã(k, ω, r, t) as a function
of ω to be sharply peaked at the frequencies Ωm = Ωm(k, r, t) that satisfy the lowest
order local dispersion relation detD′(k,Ωm, r, t) = 0 where D′ is the Hermitian part of
D. The field of each mode m also has a characteristic polarization in the direction of the
unit polarization vector am(k, r, t), and the assumption that the total field is essentially
a superposition of linear eigenmodes can thus be expressed as

Ã(k, ω, r, t) =
∑

m

Ãm(k, ω, r, t)am(k, r, t) . (2.8)

By integrating over frequencies around the peak at Ωm we define

Am(k, r, t) = (πT 2)1/4
∫
Ãm(k, ω, r, t) dω/2π . (2.9)

We also introduce the function Dm = D′m + iD′′m by

Dm(k,Ωm, r, t) = a
∗
m · [D′(k,Ωm, r, t) + iD′′(k,Ωm, r, t)] · am . (2.10)
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The wave density on (k, r) space in mode m can then be defined as

Nm(k, r, t) = h̄−1|Am|2∂Ωm
D′m (2.11)

= h̄−1A∗m(k, r, t) · ∂Ωm
D′(k,Ωm, r, t

′) ·Am(k, r, t) .

A kinetic equation for the wave density can be derived by retaining only first derivatives
in Equation (2.5), multiplying by Ã∗m, and integrating over ω. This procedure, which is
described in detail by Biro and Rönnmark [1992] and Rönnmark and Biro [1992] leads to

∂tNm + (∂kΩm) · ∂rNm − (∂rΩm) · ∂kNm = 2γmNm + Γ . (2.12)

The linear growth rate γm is determined from the imaginary part D′′m of Dm as

γm(k, r, t) = − D′′m
∂Ωm
D′m

, (2.13)

and the nonlinear term is found to be

Γ =
π

2

∫ dk′ dk′′

(2π)3
δ(k− k′ − k′′)δ(Ω− Ω′ − Ω′′)M(k,k′,k′′, r, t)×

×
[
Nm′(k

′, r, t)Nm′′(k
′′, r, t)−Nm(k, r, t)Nm′′(k

′′, r, t)−Nm(k, r, t)Nm′(k
′, r, t)

]
. (2.14)

The coupling coefficient M can be written as

M(k,k′,k′′, r, t) =
h̄|V (k,k′,k′′, r, t)|2

∂ΩD′m(Ω) ∂Ω′D′m′(Ω′) ∂Ω′′D′m′′(Ω′′)
, (2.15)

where V is related to the nonlinear admittance Λ2 as

V (k,k′,k′′, r, t) = a∗m(k, r, t)·
[
am′(k

′, r, t)·Λ2(k
′,Ω′,k′′,Ω′′, r, t)·am′′(k

′′, r, t)
]
, (2.16)

and Ω = Ωm(k), Ω′ = Ωm′(k
′), and Ω′′ = Ωm′′(k

′′).

The observable electric field spectral density may be calculated from the wave density as

G(ω, r, t) =
∫ dk

(2π)3
Qm(k, r, t)δ(ω − Ωm(k, r, t))Nm(k, r, t) , (2.17)

where the function Qm may depend on properties of the antenna as well as on the wave
mode. For an ideal omnidirectional dipole antenna, we have

Qm(k, r, t) = h̄
(ω2 + ∂2

t)

∂ΩD′m
≈ h̄ω2

∂ΩD′m
. (2.18)

In practice, we can always neglect the term ∂2
t compared to ω2 in this expression for Qm,

since we will assume ωT À 1. Relations similar to (2.17) were first introduced by Storey
and Lefeuvre [1974], and discussed in greater detail by Oscarsson and Rönnmark [1989].

We notice from Equation (2.12) that Hamilton’s equations of geometric optics, ṙ = ∂kΩ

and k̇ = −∂rΩ, define rays in phase space along which the wave density is conserved in
the absence of dissipation. The flow of N in phase space is always incompressible, and
many problems involving wave convection will thus appear much simpler when viewed
in phase space. To illustrate this, we will show that Equation (2.12) conveniently can
be taken as the starting point for a quantitative analysis of linear as well as nonlinear
conversion of upper hybrid waves into electromagnetic magnetospheric radiation.
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3 The model

The sources of magnetospheric continuum radiation are mainly located at the equatorial
plasmapause, and sometimes at the magnetopause. These source regions are characterized
by a density gradient approximately perpendicular to the constant magnetic field B0.
We will henceforth use a coordinate system with the z axis along B0 and assume that
the plasma density gradient is in the x direction and is characterized by a scale length
L = ne(x)|∂xne(x)|−1. In the model we consider, the wave density as well as the plasma
density is independent of y and z.

Electrostatic upper hybrid waves are driven unstable by hot electrons (thermal velocity
Vh ∼ 107 m/s, corresponding to 300 eV) with a loss cone distribution in the presence of
cool plasmaspheric particles (Vc ∼ 106 m/s, or 3 eV). These instabilities have been studied
by several authors such as Young et al. [1973], Rönnmark and Christiansen [1981], and
Kennel and Ashour–Abdalla [1982]. Rönnmark [1989] used the known properties of the
instability mechanism to model the wave density in k space at a point xI as

NU(k, xI) =

{
N̂ U , if |kz| ≤ kIz, k⊥ ∼ kI⊥

0, otherwise
(3.1)

The initial wave numbers characterizing the instability are taken to as kIz ∼ ωce/(2Vh)
and kI⊥ ∼ ω/Vc. Since we assume all functions to be independent of y, z, and t, we
will for notational convenience henceforth omit these coordinates from the formulas. The
constant N̂ U can be related to the observed spectral densities through Equation (2.17) as

GU(ω, xI) = QU

∫
NU(k, xI) δ(ω − ΩU(k, xI))

dk

(2π)3

=
QU

2π2

kIzkI⊥

|∂k⊥ΩU |
N̂ U (3.2)

Notice that since the delta function can be transformed as δ(ω − ΩU(k, xI)) ∼ δ(k⊥ −
kI⊥)|∂k⊥ΩU |−1, we need not specify the k⊥ dependence of N in detail. From equation

(3.2) we have

N̂ U =
2π2|∂k⊥ΩU |
QUkIzkI⊥

GU(ω, xI) (3.3)

and with this normalization we can use Equation (3.1) as input to a calculation of the
radiation emitted due to linear mode conversion.

4 Linear mode conversion

The efficiency of the linear mode conversion that can be expected from the model de-
scribed above was considered by Rönnmark [1989]. By integrating Hamilton’s equations
of geometric optics, ẋ = ∂kx

ΩU(kx, x) and k̇x = −∂xΩU(kx, x) we obtain the ray in (kx, x)
phase space shown in Figure 1. The density is assumed to decrease in the x direction,
and along the ray the values of ω, kz = kw, and ky = 0 are constant. The detailed shape
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Figure 1: The full line shows a sam-

ple upper hybrid ray in (x, kx) space.
Along the hatched part of the ray, the

electrostatic waves will grow, and at

x = xw, kx = 0 they may be con-

verted to electromagnetic radiation

and escape along the dashed ray.

of the ray will of course depend on the density profile, and also on the mixture of hot
and cold particles. Along the hatched section of the ray, around kI⊥, the waves will grow.
Neglecting possible damping and nonlinear effects along the rest of the ray, we then know
from Equation (2.12) that NU(k, x) will be constant along the ray. Following the ray in
the direction of decreasing kx, we eventually reach kx = 0 at the point x = xw where the
local plasma frequency equals the wave frequency, and here the upper hybrid waves may
be converted to radiation in the ordinary mode.

In the derivation of Equation (2.12) it was assumed that different wave modes could be
separated. However, there are degenerate points (kw, rw) where two modes have the same
frequency. In the case of interest for this study this means ΩU(kw, rw) = ΩO(kw, rw), and
this can happen when the frequency matches the local plasma frequency ωp(rw). The
coupling point is in k space located at k⊥ = 0 with the component parallel to B0 given by

kwc = ω
√
ωce/(ω + ωce). The linear mode conversion has been studied by, among others,

Mjølhus [1984] who calculated the coefficient for conversion from upper hybrid waves to
O mode radiation

T (k) = exp
{
−∆2

z(kz − kw)
2 −∆2

yk
2
y

}
, (4.1)

where

∆2
y = π

(
ωce

2ω

) 1
2 cL
ω
,
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∆2
z = 2

ω + ωce

ω
π
(
ωce

2ω

) 1
2 cL
ω
. (4.2)

Full wave calculations by Hansen et al. [1988] have confirmed that this expression is
accurate for L ≥ 4c/ω.

Phase space rays from the point (k, xI), where the waves are generated, will at some point
xw in space pass through the plane kx = 0. From Equation (4.1) we see that the radio
window is a transparent region in this plane and has the shape of an ellipse centered on
ky = 0 and kz = kw. Depending on the initial value of k, the ray may cut the (ky, kz) plane
more or less close to the center of the window, and the rate of conversion is determined
by this distance. Hence, the distribution of O waves generated by the conversion process
is

NO(k, xw) = T (k)NU(k, xw) . (4.3)

This radiation will propagate to larger x, as indicated by the dashed line in Figure 1, to
the point xo where the spectral density measured by a satellite is

GO(ω, xo) = QO

∫
NO(k, xo) δ(ω − ΩO(k, xo))

dk

(2π)3
. (4.4)

Since N according to Equation (2.12) is conserved along rays, we can use that
NU(kIx, xI) = NU(0, xw) and NO(0, xw) = NO(kox, xo), where we have suppressed the
constant arguments ky and kz. Using these relations we find

GO(ω, xo) = QO

∫
T (k)NU(k, xI) δ(ω − ΩO(k, xo))

dk

(2π)3

=
QO

|∂kx
ΩO|

∫
exp

[
−∆2

z(kz − kw)
2 −∆2

yk
2
y

]
N̂ U

dky dkz

(2π)3
(4.5)

≈
∣∣∣∣∣∣

∂k⊥ΩU

∂kx
ΩO

∣∣∣∣∣∣
GU(ω, xI)

4∆y∆zkIzkI⊥

.

Inserting reasonable parameter values as described by Rönnmark [1989] the result is that

GO ≤ 10−8GU . (4.6)

Since the typical observed spectral density of the continuum radiation is ∼
10−13 V2m−2Hz−1 and the very strongest upper hybrid waves reach 10−8 V2m−2Hz−1,
this conversion rate is at least three orders of magnitude too small.

5 Nonlinear decay

The derivation presented by Rönnmark and Biro [1992] shows that the decay of upper
hybrid (U) waves into lower hybrid (L) waves and electromagnetic radiation with left–
handed or ordinary (O) polarization is described by the set of equations

dtNU(k, r, t) = 2γU(k)NU(k, r, t) − 2π
∫ dk′ dk′′

(2π)3
S(k,k′,k′′, r, t) ,
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dtNL(k
′, r, t) = 2γL(k

′)NL(k
′, r, t) + 2π

∫ dk dk′′

(2π)3
S(k,k′,k′′, r, t) , (5.1)

dtNO(k
′′, r, t) = 2γO(k

′′)NO(k
′′, r, t) + 2π

∫ dk dk′

(2π)3
S(k,k′,k′′, r, t) ,

where

S(k,k′,k′′, r, t) = δ(k− k′− k′′) δ(ΩU(k)−ΩL(k
′)−ΩO(k

′′))

M [NU(k)NO(k
′′) +NU(k)NL(k

′)−NL(k
′)NO(k

′′)] . (5.2)

In a stationary state (∂tN = 0) we neglect linear damping of the electromagnetic radiation
(γO = 0) and convective loss of the electrostatic waves (dtNU = dtNL = 0). We assume
that the upper hybrid waves are linearly unstable (γU > 0) and the lower hybrid waves are
damped (γL < 0). Electromagnetic radiation is lost by convection (dtNO ≈ ∂kΩO ·∂rNO).
With these assumptions, the set of equations describing the evolution of the wave densities
can be written

γUNU(k, r) = π
∫ dk′ dk′′

(2π)3
S , (5.3a)

γLNL(k
′, r) = −π

∫ dk dk′′

(2π)3
S , (5.3b)

∂k′′ΩO · ∂rNO(k
′′, r) = 2π

∫ dk, dk′

(2π)3
S . (5.3c)

As shown in Figure 2, rays of electromagnetic O mode waves will reach a satellite at
xo outside the plasmapause after reflection at a level xr where ω2 = ω2

p(xr) + k′′yz
2c2

with k′′yz
2 = k′′y

2 + k′′z
2. Within the shaded region in Figure 2, where the electrostatic

turbulence is in the right frequency range, the radiation will be amplified due to the
nonlinear interaction. The decay thus takes place within a layer of thickness xm − xr ≈
L(ω2

ce−k′′yz
2c2)ω−2

pe . Here, xm is the level where the upper hybrid frequency drops below the
wave frequency (ω2

p(xm)+ω2
ce = ω2). Each ray passes this layer twice, and the magnitude

of the group velocity can be estimated as

∂k′′x
Ω′′O ≈ c

√
1− (ωpe(x)/ω)2 ≈ c

ωp(xr)

ω
[(x− xr)/L]1/2 . (5.4)

By integrating Equation (5.3c), the density of electromagnetic O mode radiation seen by
a satellite at the point xo can be evaluated as

NO(k
′′, xo) = 4π

∫ xm

xr

dx
∫ dk dk′

(2π)3
S

∂k′′x
ΩO

. (5.5)

Assuming that the main x dependence of the integrand comes from the variation of the
group velocity we find

NO(k
′′, xo) = 8π

ωL
ω2

pec
[ω2

ce − k′′yz
2
c2]1/2

∫ dk dk′

(2π)3
S . (5.6)
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Figure 2: Near their reflection point, the O mode rays will pass through the layer of electrostatic

turbulence. Within the shaded region, the frequency of the electromagnetic wave is below the

upper hybrid frequency and the electrostatic waves can decay.

The electric field spectral density GO(ω, xo) of the radiation reaching the satellite outside
the plasmapause can according to Equation (2.17) be calculated from the wave density as

GO(ω, xo) = QO

∫ dk′′

(2π)3
δ(ω − Ω′′O)NO(k

′′, xo)

= 8πQO
ωL
ω2

pec

∫ dk dk′ dk′′

(2π)6

√
ω2

ce − k′′yz
2c2 δ(ω − Ω′′O) S (5.7)

≈ 4πQO
ωceL
ωpec2

∫ dk dk′ dk′′

(2π)6
δ(k′′⊥ −K⊥O(ω)) S .

Since NO(k
′′, xo), and hence S, is significant only for k′′yz ≤ ωce/c, the square root has

here been approximated by ωce/2 and taken out of the integral. The delta function in ω
has been transformed into a delta function in k′′⊥ using K⊥O(ω) which is the solution for
k⊥ of the dispersion equation with given kz and ω, that is D′O(K⊥O, kz, ω) = 0.

Using Equation (5.3a), the spectral density of the upper hybrid waves can be expressed
as

GU(ω, xr) = QU

∫
NU(k, xr)δ(ω − ΩU)

dk

(2π)3
(5.8)

=
πQU

γU

∫ dk dk′ dk′′

(2π)6
δ(ω − ΩU)S ,
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which implies

∫ dk dk′ dk′′

(2π)6
δ(k⊥ −K⊥U(ω))S ≈

γU |∂kΩU |
πQU

GU(ω, xr) . (5.9)

Recalling the resonance condition δ(k− k′− k′′) contained in S we conclude that δ(k′′⊥−
K⊥O) = δ(k⊥ − k′⊥ − K⊥O) is essentially the same as δ(k⊥ − K⊥U), and hence we can
substitute (5.9) for the last integral in (5.7) to find

GO(ω, xo) ≈ 4
QOωce

QUωpe

γUL|∂kΩU |
c2

GU(ω, xr)

≈ 4
ω2

ce

ω2

γULVc

c2
GU(ω, xr) (5.10)

∼ 5× 10−5GU(ω, xr) .

In the last step we have also used the estimate |∂kΩU | ∼ Vc ωce/ω for the group veloc-
ity of the upper hybrid waves, and the parameter values Vc = 106 m/s, γU = 10−3ω,
ω/ωce = 5, and L = 100c/ω. This result indicates that nonlinear conversion can produce
magnetospheric continuum radiation with a spectral density of 10−13V2 m−2 Hz−1 when
GU ∼ 10−8V2 m−2 Hz−1.

Several simplifying assumptions have been introduced above, in order to obtain a solution
by simple, analytical methods. We have assumed a homogeneous magnetic field, and the
only inhomogeneity in the plasma is a density gradient perpendicular to Bo. This prevents
us from discussing the spatial distribution of the radiation in the magnetosphere and
other details, but it should not affect the efficiency estimates much. Another important
simplification is the assumption of a steady state. For consistency, this requires that the
coupling is strong enough to allow the upper hybrid instability to saturate nonlinearly
at a level corresponding to less than 10−8V2 m−2 Hz−1. A preliminary estimate based
on the coupling coefficient found by Rönnmark [1985] and a reasonable model for the
distribution NU indicates that the stationary state described by (5.1) can be maintained
at the observed spectral density.

6 Conclusions

As was first shown by Rönnmark [1989], the efficiency of linear mode conversion is three
orders of magnitude too small to explain the observed levels of continuum radiation. This
result was noted by Horne [1990], but he did not explain the difference between his results
and ours. Horne used a sophisticated ray tracing program to integrate the dissipation of
the upper hybrid waves along the rays, and assumed that ‘wave growth (or damping)
corresponds to an increase (or decrease) in wave amplitude.’ This last sentence (quoted
from p. 3928 in Horne [1990]) looks almost self–evident, and yet it contains the error
that causes the discrepancy. The quoted sentence implies that wave amplitude should be
constant along rays in the absence of dissipative growth or damping, but by considering
for example a radiating antenna in vacuum we immediately see that this is wrong—the
amplitude decreases in proportion to the distance from the antenna. The assumption that
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wave amplitude is conserved along rays seems to be implicit in many ray tracing studies,
but it should clearly be replaced by conservation of wave density in phase space.

The efficiency of the nonlinear conversion of upper hybrid waves to electromagnetic ra-
diation is estimated from the set of nonlinear Equations (5.1). These equations are at
first sight very similar to those normally found in weak turbulence theory. However, the
wave density N (k, r, t) appearing in (5.1) is unambiguously defined as a function on phase
space, and it can via the transformation (2.1) be calculated from an arbitrary wave field
by a well specified procedure. We can hence be confident that convective effects are prop-
erly described, and by integrating (5.3c) along the rays we find a stationary solution to
the set of nonlinear equations. Measured frequency spectra can be used as normalizing
input, and the predicted spectral densities are consistent with observations.

The results presented in this study illustrate that phase space methods provide a concep-
tually and computationally simple description of the nonlinear as well as linear conversion
processes. The efficiencies of these mechanisms can be quantitatively estimated, and the
results are obtained in the form of spectral densities that directly can be compared to
measured frequency spectra.
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