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Abstract
Estimation of distribution algorithms (EDA) are a major branch of evolutionary algo-
rithms (EA) with some unique advantages in principle. They are able to take advan-
tage of correlation structure to drive the search more efficiently, and they are able to
provide insights about the structure of the search space. However, model building
in high dimensions is extremely challenging and as a result existing EDAs may be-
come less attractive in large scale problems due to the associated large computational
requirements.

Large scale continuous global optimisation is key to many modern-day real-world
problems. Scaling up EAs to large scale problems has become one of the biggest chal-
lenges of the field.

This paper pins down some fundamental roots of the problem and makes a start at
developing a new and generic framework to yield effective and efficient EDA-type
algorithms for large scale continuous global optimisation problems. Our concept is to
introduce an ensemble of random projections to low dimensions of the set of fittest search
points as a basis for developing a new and generic divide-and-conquer methodology.
Our ideas are rooted in the theory of random projections developed in theoretical com-
puter science, and in developing and analysing our framework we exploit some recent
results in non-asymptotic random matrix theory.

MATLAB code is available from http://www.cs.bham.ac.uk/∼axk/rpm.zip
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Large scale optimisation, Estimation of distribution algorithms, Random projections,
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1 Introduction

Estimation of distribution algorithms (EDAs) are population-based stochastic black-
box optimisation methods that have been recognised as a major paradigm of Evolu-
tionary Computation (EC) (Larrañaga and Lozano, 2002). Unlike the majority of tra-
ditional EC approaches, which have no explicit mechanism to take advantage of any
correlation structure in the sample of high fitness individuals, EDAs guide the search
for the global optimum by estimating the distribution of the fittest sample and drawing

c©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx



A.Kabán, J. Bootkrajang, R.J. Durrant

new candidates from this distribution. One of the unique advantages stemming from
this approach is that the parameter estimates in EDA are often interpretable and may
shed light on the problem structure.

However, it has been widely observed that as the search space dimensionality in-
creases, model building becomes more difficult and declines in effectiveness (Omidvar
and Li, 2011; Dong et al., 2013). Indeed, attempts to use the full power of multivariate
model building, such as the Estimation of Multivariate Normal Algorithm (EMNA),
when the search space exceeds 50-100 dimensions have been scarce. The current prac-
tice of EDA most often resorts to independence models or models with some limited
dependency structure (Wang and Li, 2008; Bosman et al., 2013; Dong et al., 2013; Ros
and Hansen, 2008) in exchange for feasibility when the problem is high dimensional.
Some authors employ univariate heavy tail search distributions, for example (Wang
and Li, 2008) propose a univariate EDA (UMDAc) with Gaussian and Lévy search dis-
tribution for large scale EDA, and while this improves the exploration ability to some
extent, a univariate model unfortunately means that nonseparable problems cannot be
tackled adequately – a fact both proved theoretically (Mühlenbein and Mahnig, 1999;
Larrañaga and Lozano, 2002) and shown experimentally (Echegoyen et al., 2011).

More refined univariate methods are sep-CMA-ES (Ros and Hansen, 2008) and
the univariate version of AMaLGaM (Bosman, 2009); these only estimate the diagonal
entries of the sample covariance matrix to reduce the search cost of model building,
although in a different way than UMDAc does. By construction, these methods are
aimed at dealing with dimension-wise separable problems, and this serves as an ap-
proximation of nonseparable problems with few dependencies. In practice these in-
dependence factorisations turn out to be more effective than fully dependent models
in high dimensions (Ros and Hansen, 2008; Bosman, 2009), because estimating a reli-
able fully dependent model requires considerably larger population sizes, which then
consumes the budget of function evaluations rapidly – in addition to an increased per-
generation time and space complexity. In a different vein, L-CMA-ES (Knight and Lu-
nacek, 2007) addresses the latter issue and obtains savings in terms of the time and the
space complexity over the full-covariance CMA-ES by employing a limited memory
version. However this does not reduce (but slightly increase) the number of function
evaluations taken to reach a target value.

Large scale continuous optimisation problems are one of the most important con-
cerns in evolutionary computation research in general in the recent years because they
appear in many real-world problems (Tang et al., 2009; Molina et al., 2010; Omidvar
and Li, 2011) such as in data mining and bio-computing (Sun et al., 2012), robotics and
computational vision (Simonyan et al., 2014), to name just a few. There are competi-
tions organised each year at major conferences, notably CEC, to promote research in
this area. Indeed, many optimisation methods suffer from the curse of dimensionality
and deteriorate quickly when the search space dimension increases to the thousands.
The current target at these competitions is difficult nonseparable problems on 1000-
dimensional search spaces. The state-of-the-art best performers are EC methods that
use cooperative co-evolution (Yang et al., 2008a), multi-level co-evolution (Yang et al.,
2008b), and hybrid methods that include local searches (Molina et al., 2010). EDA ap-
proaches did not yet feature in these competitions.

Our motivation in this work is as follows. It is often infeasible to obtain the exact
solution to complicated high dimensional nonseparable problems. Hence, it is desir-
able to develop alternative approaches with differing search biases that are able to ob-
tain approximate solutions with a limited budget. By reducing the degrees of freedom
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in the parametrisation of the search distribution, the methods discussed above were
able to achieve a better scaling in terms of the search costs, and various ways of doing
this induce various different search biases – e.g. UMDAc has a bias for separable prob-
lems, EDA-MCC in Dong et al. (2013) a bias for block-diagonal dependency structures,
sep-CMA-ES has a bias for separable problems. Each method is more likely to succeed
on problems that are similar or not too different from their own search biases.

Now, what the mentioned methods have in common in their way to restrict the
covariance is a binary decision making step by which they will estimate certain depen-
dencies and neglect certain others. The EDA-type approach we develop in this paper
keeps with the general idea of reducing the degrees of freedom of the covariance, but
without making such binary decisions on any of the individual dependencies. Instead
of dependency selection we will use compression. More specifically, we will simply
work with a combination of compressed versions of EMNA’s full covariance estimate.
As we shall see, this avoids rank-deficiency and misestimation of the covariance when
the sample size is small, it is by construction invariant to rotations of the search space,
and from the perspective of optimisation it will create a different kind of search bias
by which separable problems are no longer necessarily the easy type but in turn some
of the more sophisticated nonseparable problems may become more manageable. Our
goal is to be able to find approximate solutions to difficult problems within a limited
budget of function evaluations, and we demonstrate the effectiveness of our approach
on the CEC’10 competition benchmark suite (Tang et al., 2009) that was designed with
this goal in mind, mimicking real-world scenarios. In addition, despite we build on
EMNA, the time complexity per generation of our method is only quadratic in the
problem dimension while EMNA’s is cubic. Moreover, our approach lends itself nat-
urally to parallel implementation, since using it the problem of estimating the search
distribution can be split over several cores.

Before introducing the details of our approach, the next section goes back to some
fundamental roots of the problem of model estimation in high-dimensional probability
spaces that motivated our approach. Section 3 introduces our new approach along
with an analysis of its working. In Section 4 we demonstrate that this approach is
competitive with the state-of-the-art with experiments on a battery of test functions,
and finally Section 5 concludes the paper. A preliminary version of this work appeared
in (Kabán et al., 2013).

2 On the challenges of model estimation in high dimensions

Let us examine a typical EDA optimisation scheme. Consider the multivariate Gaus-
sian search distribution. Let x∗ ∈ R

d denote the global optimum and let B(x∗, ǫ) be the
d-dimensional Euclidean ball with centre x∗ and radius ǫ . By definition,

Prx∼N (µ,Σ)[‖x − x∗‖ ≤ ǫ] =

∫

x∈B(x∗,ǫ)

N (x|µ,Σ)dx (1)

is the probability that a draw from the search distribution parametrised by µ and Σ falls
in the ǫ-neighbourhood of the global optimum.

In EMNA, the parameters µ ∈ R
d andΣ ∈ R

d×d aremaximum likelihood estimates
(MLE) from N ′ selected search points of the population. Hence Σ is a matrix valued
random variable – that is, a random matrix. There are analytic tools available from
Random Matrix Theory (RMT) to analyse random matrices, which were also used in
statistics to analyse covariance estimation problems (Vershynin, 2012b; Srivastava and
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Vershynin, 2013), and which previously have never been exploited in EDA optimisa-
tion.

We start by noting that the eigenvalues of the covariance estimate used in EDA
to generate the new generation of individuals play the role of some learning rates for
the optimisation process. This observation is certainly not new, the widely successful
Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) (Hansen, 2006) builds
on this observation also. Here we will use this observation to highlight what goes
wrong with EMNA in high dimensions, which then opens up new options to deal with
the problem with the use of new tools.

To see this, note that by the mean value theorem for multivariate definite integrals
(Apostol (1957), pp. 401), there exists a point in the ball of radius ǫ around x∗, such that
eq.(1) can be written as the following:

∃x̃ ∈ B(x∗, ǫ), s.t. Prx∼N (µ,Σ)[‖x − x∗‖ ≤ ǫ] = Volume(B(x∗, ǫ))N (x̃|µ,Σ) (2)

where B(x∗, ǫ) is the ball centered at x∗ with radius ǫ. Switching to the eigen-basis of
Σ, this further equals:

= Volume(B(x∗, ǫ))
d

∏

i=1

N (UT
i (x̃ − µ)|0, λi) (3)

where Ui denotes the i-th eigenvector of Σ and λi is its associated eigenvalue.
Now, we want our search strategy to maximise eq. (1) – i.e. the probability that the

multivariate Gaussian search distribution N (µ,Σ) reaches the global optimum. The
effect of the eigenvalue λi can be read off the partial derivative of the r.h.s. of eq.(3)
with respect to λi, which is:

δ

δλi
= Vol(B(x∗, ǫ))

d
∏

j 6=i

N (UT
j x̃|UT

j µ, λj)N(UT
i x̃|UT

i µ, λi)

(‖UT
i (x̃ − µ)‖2

λi
− 1

)

1

2λi
(4)

From eq. (4) we see that:

• if λi < ‖UT
i (x̃ − µ)‖2 then the probability in eq. (1) is an increasing function of λi

• if λi > ‖UT
i (x̃ − µ)‖2 then the probability in eq. (1) is a decreasing function of λi

and so the optimal value of the i-th eigenvalue of Σ is the squared length of the pro-
jection of x̃ − µ onto the corresponding eigendirection, i.e. λopt

i = ‖UT
i (x̃ − µ)‖2. In

other words, when ‖UT
i (x̃ − µ)‖2 > λi then the probability (1) of drawing a point in

the ǫ-neighbourhood of x∗ can be increased by increasing λi. On the other hand, when
‖UT

i (x̃ − µ)‖2 < λi then (1) can be increased by decreasing λi. Hence the eigenval-
ues of Σ play the role of learning rates in Gaussian EDA, and good estimates of these
eigenvalues are essential.

Unfortunately, as it is well known from RMT, in small sample conditions the
smallest eigenvalue is severely underestimated while the largest eigenvalue is overes-
timated. An example is shown in Figure 1, where we generated 100 points from a
100-dimensional Gaussian with identity covariance, yet the sample covariance of those
100 points has eigenvalues ranging all the way from close to 0 to around 4.

The extent of this misestimation is well understood in RMT, and indeed this theory
has given rise to new methods of covariance estimation (Marzetta et al., 2011; Durrant
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Figure 1: Eigenvalue misestimation from N ′ = 100 points in d = 100 dimensions. The
horisontal axis runs though the indices of the ordered list of eigenvalues, the vertical
axis shows the magnitude of each eigenvalue.

and Kabán, 2014) that are able to remedy the problem effectively even when Σ is singu-
lar, using an ensemble of random projections of the covariance estimate. In this work
we will make extensive use of these results.

These recent RMT-based covariance estimation methods have been found to have
certain advantages e.g. in comparison with the Ledoit-Wolf estimator (Marzetta et al.,
2011) in terms of approximating the true covariance; they also performed better in data
classification (Durrant and Kabán, 2014). Furthermore, these RMT-based methods do
not impose a pre-defined and possibly unjustified structural constraint such as sparsity,
diagonality, block-diagonal structure, or limited dependency structure. Instead the re-
duction of the degrees of freedom comes from exploiting randomised compressions of
the maximum likelihood covariance estimate. Moreover, for EDA-type search, these
new estimators also have computational advantages since we will only have to sam-
ple from a number of small dimensional multivariate Gaussians. Hence our approach
lends itself to parallel implementation that fits well with the algorithmic structure of
population-based search, and which could potentially be further exploited when the
problem scale requires it.

3 Approach

The main goal of this paper is to develop a new approach to large scale stochastic
optimisation in application to EDA which is effective and computationally efficient
in finding approximate solutions to difficult problems with limited search costs. The
term ‘difficult’ is of course relative; here we use it to refer to problems that cannot be
solved by existing specialised optimisation methods, and have not yet been solved to a
satisfactory extent by other existing heuristic optimisation methods either.

Building on recent results in other areas, our concept is to introduce an ensemble
of random projections that reduce the dimensionality of the fittest high dimensional
search points. Random projection (RP) is often termed as a non-adaptive dimensional-
ity reductionmethod since it projects the data in directions that are uniformly randomly
chosen independently of the data being projected – as opposed to e.g. PCA where the
projection directions are determined as a function of the data. Perhaps surprisingly
for common intuition, RPs enjoy nice theoretical properties, most notably a high prob-
ability guarantee of low distortion of the Euclidean geometry, and the reduced space
makes subsequent computations, estimation and sampling, easier. This approach will
provide us a basis for developing a new and generic divide-and-conquer methodology
rooted in the theory of RPs and exploiting recent advances of non-asymptotic Random
Matrix Theory and related fields.
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At a high level, the rationale is as follows:

1. Random matrices that satisfy the Johnson-Lindenstrauss Lemma (JLL) (Dasgupta,
1999) are approximate isometries. Hence, with appropriate choice of the target
dimension, important structure such as Euclidean distances and dot products are
approximately preserved in the reduced space. This makes it possible to capture
correlations between the d-dimensional search variables in the k ≪ d-dimensional
space.

2. In the low dimensional projection space the distribution of the projected points
becomes ‘more Gaussian’ as a consequence of the central limit theorem, in a sense
made precise in (Diaconis and Freedman, 1984). Also, both parameter estimation
and sampling become feasible and computationally affordable, so there is no need
to overly restrict the parametric form of the search distribution and its covariance
matrix.

3. There is a natural smoothing effect that emerges when appropriately combin-
ing the ensemble of estimates from several random subspaces (Mahoney, 2011;
Marzetta et al., 2011; Durrant and Kabán, 2014). This will ensure that the explo-
ration ability of the search distribution can be maintained even with small popula-
tion sizes.

Random projections have been used in approximation theory since the 1970s (Lorentz
et al., 1996). In computer science, information theory, signal processing and more re-
cently in machine learning, random matrices provide a mechanism for dimensionality
reduction while preserving the essential information in the data (Vempala, 2004). Com-
pared with other methods in that context, they lead to (1) faster algorithms that are (2)
simpler to analyse, (3) lend themselves to parallel implementation, and (4) exhibit ro-
bustness. The interested reader may refer to the recent review of Mahoney (2011). We
aim to exploit these characteristics for high dimensional optimisation.

3.1 New search operators for EDA

Let R ∈ R
k×d be a random matrix with entries drawn i.i.d. from a univariate Gaussian

N (0, σ2). When d is large, as a consequence of the measure concentration phenomenon
in high dimensions, the rows of this matrix are almost orthogonal and have Euclidean

norm close to their expected value which is σ
√

d (Dasgupta, 1999; Vempala, 2004). So if
we choose σ2 = 1/d then R well approximates an orthonormal matrix to project from
R

d to R
k where k may be chosen much lower than d.

Further let x0 ∈ R
d a point in the search space. Denote by SR

x0
the unique affine

subspace parallel to R that passes through x0. We define new search operators as fol-
lows:

Project: takes a (random) R ∈ R
k×d, an x0 ∈ R

d, and a sample Pfit = (xi ∈
R

d)i=1:N ′ , and projects Pfit onto SR
x0
, i.e. returns PR = (RT R(xi − x0) + x0)i=1:N ′ .

sEstimate: takes a sample PR that lives in a subspace SR
x0

and computes the maxi-

mum likelihood parameter estimates θ̂R (for Gaussian search distribution, θ̂R =

(µ̂R, Σ̂R)) of the search distribution DR which is w.r.t. the restriction of the
Lebesgue measure to the k-dimensional affine subspace SR

x0
.
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sSample: takes parameter estimates θ̂R obtained by sEstimate and returns a sample

of N points drawn i.i.d. from DR with parameters θ̂R. These points will live in a
k-dimensional affine subspace of the search space.

Combine: takes populations from several k-dimensional subspaces SRi
x0

, i = 1, ...,M
and returns a population that lives in the full search space R

d.

Using these operators, the high level outline of our meta-algorithm is as follows:

1. Initialise population P by generating N individuals uniformly randomly.

2. Let Pfit be the fittest N ′ < N individuals from P .

3. For i = 1, ...,M (M ≥ 1) randomly oriented (affine) k < d-dimensional subspaces
SRi

x0

(a) Project Pfit onto SRi
x0

(b) Produce N new individuals on the subspace SRi
x0

using the sequence
sEstimate; sSample.

4. Create the new population P using Combine.

5. If stopping criteria is met then Stop; else Goto 2.

We will instantiate this by taking the translation vector x0 of the consecutive set of
subspaces (in consecutive generations) to be the mean of Pfit in the previous genera-
tion. Further, in this work we instantiate the Combine operator as a scaled average of
the individuals produced on the individual subspaces. Note, this simple combination
scheme makes no appeal to fitness evaluation within subspaces.

The scaling just mentioned above is important. An orthogonal projection from R
d

to R
k shortens the lengths of vectors by a factor of

√

k/d and averaging M i.i.d. points

reduces their standard deviation by a factor of
√

M , hence a scaling factor of
√

(dM)/k
is needed to recover the original scale. This is the case when the entries of R were

drawn with variance σ2 = 1/d. With generic σ2 the appropriate scaling is
√

M/(kσ2).
We now present the specific steps of this algorithm.

3.2 Algorithm

Denote by Pfit = {x1, ..., xN ′} the set of N ′ selected fit individuals, and let N be the
population size.
The following is an instantiation of the module for creating the new generation (steps
3-4 of the above).

1. Inputs: Pfit,M, k (where M ≥ ⌈d/k⌉)

2. Estimate µ := mean(Pfit)

3. For i = 1, ...,M

(a) Generate a random projection matrix Ri.

(b) Project the centred points into k-dimensions:
Y

Ri := [Ri(xn − µ);n = 1, ..., N ′].

Evolutionary Computation Volume x, Number x 7
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Figure 2: Illustration of the use of random projections for sampling the new population.

(c) Estimate the k × k sample covariance ΣRi .

(d) Sample N new points yRi
1 , ..., yRi

N
iid∼ N (0,ΣRi).

4. Let the new population P :=
√

dM
k [ 1

M

∑M
i=1 RT

i yRi
1 , ..., 1

M

∑M
i=1 RT

i yRi

N ] + µ.

5. Output: P
Note that in practice the loop in step 3 of this algorithm can be split over multiple cores
since each random subspace is both generated, and sampled from, independently of all
the others.

The working of this method is illustrated in Figure 2 – of course with the caveat
that high dimensional geometry is hard to capture on a 2D figure – and should be read
as follows. In large scale problems in order to remain search-cost-effective we would
often like to work with a population size that is no larger than the problem dimen-
sionality (Dong et al., 2013), since a large population size would consume the search
budget rapidly. Then the number of fit points N ′ becomes smaller than the dimension
of the search space d, hence the fit individuals live in the N ′-dimensional subspace
of the search space determined by their span. The leftmost subplot illustrates a sit-
uation where some N ′ points live in a subspace (here 1D) of the overall space (here
2D). Hence, the maximum likelihood (ML) covariance estimate of the fit points is sin-
gular. Sampling points from a distribution with a singular covariance means that the
next generation is confined in the same subspace. The top subplot in the central col-
umn illustrates this. Now, to get round of this problem, univariate methods like UM-
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DAc impose a diagonality constraint, i.e. estimate only the variances. Hence the next
generation is allowed in the full search space, however any connection between the
orientation of the fitness density of the parent population and its estimate is lost as a
result of neglecting the correlations. This is seen in the second subplot in the central
column. The remaining figures show what happens when we use a random projection
ensemble. The upper subplot shows a case where the number of random subspaces is
the smallest that still spans the full search space, while the lower subplot shows a case
where a large number of random subspaces are used. In both cases, the fit points are
projected onto each of the random subspaces, and a new generation is sampled within
each subspace. The new individuals from these ‘multiple worlds’ are then averaged to
give the new generation shown on the rightmost subplots, together with the ML co-
variance estimate of this new population. We see that the new ML covariance estimate
tends to respect the orientation of the fitness density of the parent population while it
also eliminates degeneracy. It is also easy to picture that the probability recovering the
correct orientation gets higher as the number of random projections gets larger. This
is because the resulting outcome from a very small number of uniformly random di-
rections have a higher variability whereas this variation diminishes as we add more
random directions into the combination.

3.3 Analysis of the algorithm that creates new generations

To understand the effect of the algorithm in Sec. 3.2, we analyse it by examining
the new full-rank search distribution in the original search space which it implicitly
implements. We stress however that all estimation and sampling takes place in the
k−dimensional projected spaces SRi

µ , and it is this fact which will enable us to finesse
both the computational issues associated with sampling in the high-dimensional search
space as well as the degeneracy of the covariance estimate in the search space.

Fix the set of selected fit individuals Pfit, and denote by Σ the maximum likeli-
hood estimate of their sample covariance. This covariance estimate is never computed
explicitly throughout the algorithm, but it is useful for the theoretical analysis of this
section.

Now, it is straightforward to verify that, by construction, conditionally on the ma-
trices Ri, i = 1, ...,M , the new population, P , obtained by our algorithm in Sec. 3.2, is

distributed i.i.d. asN (µ, d
k [ 1

M

∑M
i=1 RT

i RiΣRT
i Ri]). However, while Σ is singular when

N ′ is smaller than d, the matrix d
k [ 1

M

∑M
i=1 RT

i RiΣRT
i Ri] is almost surely (a.s.) positive

definite provided M ≥ ⌈d/k⌉, and Ri are Gaussian with independent entries, or Haar
random matrices (i.e. matrices with orthonormal rows, drawn with a uniformly ran-
dom orientation). So with this minimum number of RPs we already avoid degeneracy
and the problem of getting stuck in a bad subspace as a result. However of course
in order to also recover the correct orientation of the covariance we will need to use
a large enough number of random projections so that the finite average gets close to
its infinite limit. Fortunately, the law of large numbers guarantees that this is feasible,
and the concentration of measure for sums of randommatrices lets us quantify the gap
between them. This analysis will be detailed in the next two subsections. The result-
ing full d-dimensional covariance matrix provides information about the correlations
between the original search variables, and may be used for learning about the problem
structure in the usual way as it is normally done in EDA.

Evolutionary Computation Volume x, Number x 9
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3.3.1 Infinitely many random projections

Recall that the random projections Ri are drawn i.i.d. Therefore, fixing Σ, by the law
of large numbers, the ensemble may be thought of as a finite approximation of the
following expectation:

1

M

M
∑

i=1

RT
i RiΣRT

i Ri −→
M→∞

ER[RT RΣRT R] (5)

and we can understand the effect of the RP-ensemble by computing this expectation.
For Haar random matrices, this expectation was computed in (Marzetta et al.,

2011).

Lemma 1. (Marzetta et al., 2011) Let R be a k× d Haar random matrix (i.e. having orthonor-
mal rows in a uniformly random orientation), k < d, and Σ a d × d fixed positive semi-definite
matrix. Then,

ER[RT RΣRT R] =
k

d

(

dk − 1

d2 − 1
Σ +

d − k

d2 − 1
Tr(Σ)Id

)

(6)

where Tr(·) denotes the trace of its argument, and Id is the d-dimensional identity
matrix.

Observe that the covariance estimate in Lemma 1 is k/d-times a convex combina-
tion of the maximum likelihood covariance estimate Σ and the spherical covariance es-

timate Tr(Σ)
d Id, since the combination coefficients sum to one: dk−1

d2−1 + d(d−k)
d2−1 = 1. Hence

this method interpolates between the unconstrained maximum likelihood covariance
as in EMNA and the spherically constrained estimate, and the balance between these
two components is controlled by the size of k relative to d. Observe also that the co-
efficient of the first term is dk−1

d2−1 = O(1/d) (for a constant k), while that of the second

term is d(d−k)
d2−1 = O(1). So for a constant k the higher the problem dimension is the less

weight is put on the full unconstrained maximum likelihood covariance estimate.
Now, from the observations we alreadymade at the beginning of Section 3.1, when

d is large we may obtain a similar effect from using Ri with i.i.d. Gaussian entries. The
following lemma computes the matrix expectation in eq. (5) under such Gaussian Ri,
which also turns out to have a closed form. In fact, this matrix expectation is available
in closed form for a much larger class of random matrices too (Kabán, 2014).

Lemma 2. Let R be a k × d random matrix, k < d, with entries drawn i.i.d. from N (0, σ2).
and Σ a d × d fixed positive semi-definite matrix. Then,

ER[RT RΣRT R] = σ4k((k + 1)Σ + Tr(Σ)Id) (7)

Before starting the proof, observe that for σ2 = 1/d we get ER[RT RΣRT R] =
k
d

(

k+1
d Σ + Tr(Σ)

d Id

)

, which is k/d-times a linear combination of the maximum like-

lihood covariance estimate and the spherical covariance estimate (now the coefficients
sum to 1 + (k + 1)/d), and again the coefficient of the first term is O(1/d) while that of
the second is O(1). The Gaussian Ri is more convenient to use since we do not need to
orthogonalise its rows, and for large d problems with small k indeed we experienced no
difference in their behaviour. However for experiments aimed at quantifying the effect
of k, the Haar matrices are more appropriate to use so that the interpolation effect is
captured precisely though the convex combination.
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Proof of Lemma 2. Make the eigendecomposition Σ = UΛUT , where UUT = Id. Then
we can rewrite:

E[RT RΣRT R] = E[RT RUΛUT RT R] (8)

= E[UUT RT RUΛUT RT RUUT ] (9)

Note the Gaussian distribution is rotation-invariant, so RU has the same distribution
as R. So we can absorb U into R and have the r.h.s. of eq.(9) further equals to:

E[URT RΛRT RUT ] = UE[RT RΛT RT R]UT (10)

Therefore it is enough to compute E[RT RΛRT R] with Λ being diagonal.
We will rewrite the expectation in eq. (10). Denote by ri the i-th column of R, and

by ρ the rank of Σ. Then we can rewrite:

ER[RT RΛRT R] =

ρ
∑

i=1

λi







E[(rT
1 ri)

2] . . . E[(rT
1 ri)(r

T
i rd)]

...
. . .

...
E[(rT

d ri)(r
T
i r1)] . . . E[(rT

d ri)
2]






(11)

We will first compute the diagonal elements of a generic term of the above sum.
These have the form E[(rT

j ri)
2]. We need to take separately the case when j = i and

when j 6= i.
Case j = i:

E[(rT
i ri)

2] = E











k
∑

j=1

r2
ji





2





=

k
∑

j=1

k
∑

j′=1

E[r2
jir

2
j′i]

=

k
∑

j=1

k
∑

j′=1
j′ 6=j

E[r2
ji]E[r2

j′i] +

k
∑

j=1

E[r4
ji]

= (k2 − k)σ4 + 3kσ4

= σ4k(k + 2) (12)

Case j 6= i:

E[(rT
i rj)

2] = E





(

k
∑

ℓ=1

rℓirℓj

)2


 =

k
∑

ℓ=1

k
∑

ℓ′=1

E[rℓirℓjrℓ′irℓ′j ]

=

k
∑

ℓ=1

k
∑

ℓ′=1
ℓ′ 6=ℓ

E[rℓi]E[rℓj ]E[rℓ′i]E[rℓ′j ] +

k
∑

ℓ=1

E[r2
ℓir

2
ℓj ]

= σ4k. (13)

Next, we compute the off-diagonal elements. These have the form E[(rT
j ri)(r

T
i rℓ)]
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with j 6= ℓ.

E[(rT
j ri)(r

T
i rℓ)] = E

[(

k
∑

m=1

rmirmj

) (

k
∑

m′=1

rm′irm′ℓ

)]

=

k
∑

m=1

k
∑

m′=1

E[rmirmjrm′irm′ℓ]

= 0 (14)

by the independence of the entries of R and the fact that they have zero mean. Indeed,
since j 6= ℓ, the product inside this expectation will always have at least one indepen-
dent entry of R on its own.

Hence we obtained that, for diagonal Λ, ER[RT RΛRT R] is a diagonal matrix and
in particular it follows that, if Σ is diagonalised as Σ = UΛUT , then U also diagonalises
ER[RT RΣRT R].

Now, by putting together equations (12), (13) and (14), after a little algebra we
obtain:

E[RT RΛRT R] = σ4k (Trace(Λ)Id + (k + 1)Λ) (15)

Finally bringing the orthogonal matrices U and UT back into the picture, we find that
in expectation we obtain a regularised version of the sample covariance estimate:

UE[RT RΛRT R]UT = E[RT RΣRT R] = σ4k (Trace(Σ)Id + (k + 1)Σ) (16)

which concludes the proof of Lemma 2. ¥

In consequence, in the limit of M → ∞ our new population P returned by the

Algorithm in Sec. 3.2 will be distributed i.i.d. as N
(

µ, Trace(Σ)
d Id + k+1

d Σ
)

. Of course,

when M is finite the covariance obtained will concentrate around its expectation hence
it will be close to the estimate computed above. This can be quantified precisely us-
ing matrix-valued tail bounds (Srivastava and Vershynin, 2013; Ahlswede and Winter,
2002).

3.3.2 Finitely many random projections

Here we bound the deviation of the assembled covariance with finite M from its expec-
tation computed above. This is summarised in the following result.

Theorem 1. Finite number of randomprojections. LetΣ be a positive semi-definite matrix
of size d × d and rank ρ, and Ri, i = 1, ...,M independent random projection matrices, each
having entries drawn iid fromN (0, 1/d), and denote by ‖ · ‖ = λmax(·) the spectral norm of its
argument. Then, ∀ǫ ∈ (0, 1),

Pr

{

‖ 1

M

M
∑

i=1

RT
i RiΣRT

i Ri − E[RT RΣRT R]‖ ≥ ǫ‖E[RT RΣRT R]‖
}

≤ 2d exp

{

−ǫ2M
1

3

‖E[RT RΣRT R]‖
4K̃

}

+ 4M exp

{

−M
1

3

2

}

(17)

where K̃ = ‖Σ‖
(

1
M1/6

(1 +
√

k
d ) + 1√

d

)2 (

1
M1/6

(
√

ρ
d +

√

k
d ) + 1√

d

)2

is bounded w.r.t. M .
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Proof of Theorem 1. We will use the following Ahlswede-Winter type result from
random matrix theory about sums of independent random matrices.

Theorem 2. Concentration of matrix sums (adapted from Ahlswede and Winter
(2002)) Let Xi, i = 1, ...,M be d × d independent random positive-semi-definite matrices sat-

isfying ‖Xi‖ ≤ 1 a.s. Let SM =
∑M

i=1 Xi, and Ω =
∑M

i=1 ‖E[Xi]‖. Then ∀ǫ ∈ (0, 1) we
have:

Pr (‖SM − E[SM ]‖ ≥ ǫΩ) ≤ 2d exp(−ǫ2Ω/4) (18)

The proof of Theorem 2 is given in the Appendix for completeness.
Observe, we do not have ‖RT

i RiΣRT
i Ri‖ bounded a.s. when Ri have Gaussian

entries, so we cannot apply this result directly. However, this condition can be satisfied
by exploiting concentration, as follows.

First, we note that this random variable has the same distribution as
‖RT

i RiΛRT
i Ri‖ where Λ is the diagonal matrix of eigenvalues of Σ. Here we used the

rotation invariance of the Gaussian. Now, let ρ be the rank of Σ and denote by Λ the
ρ × ρ sub-matrix of Λ that contains the non-zero diagonals, and by Ri the correspond-
ing k × ρ sub-matrix of Ri that are not wiped out by the zeros of Λ. Then we can write
‖RT

i RiΛRT
i Ri‖ = ‖RT

i RiΛRT
i Ri‖, and we can bound this with high probability (w.r.t.

the random draws of Ri):

‖RT
i RiΛRT

i Ri‖ ≤ ‖Σ‖ · ‖RT
i Ri‖ · ‖RT

i Ri‖ (19)

The following result bounds the largest singular value of a Gaussian matrix with i.i.d.
entries:

Lemma 3. Largest singular value of Gaussian matrices. ((Rudelson and Vershynin,
2010), Eq. (2.3)) Let A be an n × N matrix, n < N , with standard normal entries, and denote
by smin(A), smax(A) its least and greatest singular values. Then:

Pr{smax(A) ≤
√

N +
√

n + ǫ} ≥ 1 − e−ǫ2/2, ∀ǫ > 0 (20)

We apply this to both Ri and Ri. As these matrices have entries drawn i.i.d. from
N (0, 1/d), we have ∀η > 0,

‖RT
i RiΛRT

i Ri‖ ≤ ‖Σ‖ ·
(

1 +
√

k/d +
η√
d

)2 (

√

ρ/d +
√

k/d +
η√
d

)2

=: K(η)

with probability 1 − 2 exp(η2/2).
Now, let Xi(η) := RT

i RiΣRT
i Ri/K(η). Then we have:

‖Xi(η)‖ ≤ 1 w.p. 1 − 2 exp(−η2/2) (21)

Hence, by union bound, we have it uniformly for all i = 1, ...,M that ‖Xi(η)‖ ≤
1 w.p. 1 − 2M exp(−η2/2). This holds for any choice of η > 0, and we will eventu-
ally choose η to override the M factor as well as to (approximately) tighten the final
form of the deviation bound.

We now apply Theorem 2 conditionally on the event that ‖Xi(η)‖ ≤ 1,∀i =
1, ...,M , and use the bound on the probability that this condition fails. It is easy to
see that in our case Ω(η) = M

K(η)‖E[RT RΣRT R]‖ where R ∼ Ri, and E[SM (η)] =
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M · E[Xi(η)] = M
K(η)E[RT RΣRT R], and so we get:

Pr

{

‖ 1

K(η)

M
∑

i=1

RT
i RiΣRT

i Ri −
M

K(η)
E[RT RΣRT R]‖ ≥ ǫ

M

K(η)
‖E[RT RΣRT R]‖

}

= Pr

{

‖ 1

M

M
∑

i=1

RT
i RiΣRT

i Ri − E[RT RΣRT R]‖ ≥ ǫ‖E[RT RΣRT R]‖
}

≤ 2d exp

{

−ǫ2
M

4K(η)
‖E[RT RΣRT R]‖

}

+ 4M exp

{

−η2

2

}

Finally, we choose η = M1/6 and denote K̃ := M2/3K(M1/6), which yields the
statement of Theorem 1. ¥

This analysis shows that we can use a finite number of random subspaces since
we have control over the spectral distance between the resulting finite average of the
d-dimensional rank-k covariances and the infinite limit of this sum. Hence, we may
expect a similar behaviour from a finite ensemble, which is pleasing. The practical im-
plication, as we already mentioned earlier, is that an efficient parallel implementation
can be realised where the estimation and sampling within each subspace is run on a
separate core.

In closing, we should mention that, although we used the truncation method here
in this section, a more direct route might exist if the a.s. boundedness condition could
be relaxed in Theorem 2. In particular, we see from the proof (in Appendix) that some
suitable alternative to the Taylor expansion based inequality in eq. (24), along with the
finiteness condition on the variances of the matrix summands could possibly lead to a
variation of Theorem 2 to eliminate the boundedness condition.

The finite sample analysis in Theorem 1 is too crude to give us the minimum order
of M required for the matrix average to get close to its expectation with a given con-
fidence. If we disregard the truncation step, then by equating the r.h.s. of eq. (18) to

some given δ ∈ (0, 1) and solving forM would give usM = 4
ǫ2

K(η)
‖E[RT RΣRT R]‖ log 2d

δ , and

noting that K(η)
‖E[RT RΣRT R]‖ =

(
√

d+
√

k+η)2(
√

ρ+
√

k+η)2

k2+k(1+Tr(Σ)/‖Σ‖) = O(d), we get M ∈ O(d log(d)).

Otherwise a more careful choice for η, such as η = Mτ/4, with τ a small positive num-
ber bounded away from zero, would yield nearly the same order for M (raised to a
power just slightly larger than one). However, the log(d) oversampling factor is due to
the relatively general conditions in the Ahlshwede-Winter bound that we used, which
holds for sums of generic positive semidefinite matrices and does not exploit the Gaus-
sian (or sub-Gaussian) distribution of the entries of R. There are more refined analyses
of analogous problems (Vershynin, 2012a) that we believe to be possible to adapt to
our case to eliminate this log factor. Based on these considerations it is expected that
M = O(d) is required.

3.4 Computational complexity per generation

Accounting for the cost of M different k × d matrix multiplications on N ′ points, our
approach has time complexity (per generation) of O(M(k3 + N ′kd)). As already men-
tioned, the finite M implementation can be run in parallel on M separate cores, which
is an advantageous structural property of our algorithm that could be exploited to
gain further computational efficiency when needed. However, even on a single core,
and taking M = O(d) as discussed above, the complexity per generation becomes
O(dk3 + N ′kd2) ≪ O(d3) when k < N ′ ≪ d. In the experimental section we shall see
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that this is indeed a regime where the proposed method yields good performance also.
In contrast, other full-covariance EDA-type methods such as EMNA, ED-EDA (Dong
and Yao, 2008), and CMA-ES (Hansen, 2006) have a time complexity per generation of
O(d3).

In sum, the net effect of our RP-ensemble approach is to get samples from the
regularised covariance without ever computing the maximum likelihood estimate, and
without the need to explicitly sample from a d×d covariance which would be anO(d3)
operation.

3.5 Alternative random projections matrices

Our analysis in the previous sections focused on RP matrices with i.i.d. Gaussian en-
tries. These have the advantage of being full row rank a.s., and made our analysis in
Section 3.3.1 more straightforward, but there are several alternatives available in the
random projections literature that have a faster matrix-multiplication time, and still
have full rank with very high probability. Of these we mention two.

The following sparse RPmatrix proposed in (Achlioptas, 2003) is one of the earliest
sparse constructions that is still in wide use. The entries Rij are drawn i.i.d. as the
following:

Rij =











+
√

3 with probability 1/6,

−
√

3 with probability 1/6,

0 with probability 2/3.

and then normalised to have variance 1/d. Using these the matrix multiplications take
roughly 1/3 of the time that they do in the case of the Gaussian RP matrices.

Interesting to note, for this particular sparse RP, the limit at M → ∞ happens to
be exactly the same as that for the Gaussian RP (cf. Lemma 2 in Kabán (2014)) and one
can also obtain a similar concentration guarantee to that we gave for an ensemble of
Gaussian RP matrices in Theorem 1.

Finally, the RP matrix with coin-flip entries (Achlioptas, 2003) is also in use in the
random projections literature for its computational efficiency. The entries Rij are:

Rij =

{

+1 with probability 1/2,

−1 with probability 1/2.

and normalised to have variance 1/d. So multiplication with this matrix is efficient
since it only involves bit flipping.

Again, these binary RP matrices are full rank with high probability. However it
may be verified using Lemma 2 in (Kabán, 2014) that for this Binary RP ensemble the
limit at M → ∞ no longer coincides with that of the Gaussian and the Sparse RP en-
sembles. Instead, for certain Σ, the regularisation effect is diminished which, when
it happens, it can reduce the exploration ability of the search. Therefore we may ex-
pect the binary RP matrices to perform worse and we will use them mainly to see the
robustness of our algorithm to such deviations from the analysis presented earlier.

4 Experiments

To test the potential of our idea and the ability of our algorithm to find a near-optimal
solution in large-scale problem settings, we tested it on all multimodal functions of
the suite of benchmark test functions from the CEC’2010 competition on Large-Scale
Global Optimisation (Tang et al., 2009). There are 12 multimodal functions in this test
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suite, which were created from shifted and group-rotated versions of three multimodal
base functions, and in each case the search space is 1000-dimensional. The reason we
have chosen to focus on multimodal functions is that this is the category where our
methodology is expected to provide most benefits.

The testbed was designed to contain a couple of separable problems, and a suite of
problems with a varying degree of non-separability to give insights into the behaviour
and performance of optimisation methods.

A test function is called separable if its global optimum can be found by optimising
it in each of its arguments separately. Otherwise it is called nonseparable. A nonsepara-
ble function is calledm-nonseparable if at mostm of its arguments are not independent.
Finally, a nonseparable function is called fully nonseparable if any two of its arguments
are not independent.

The test functions in our study are listed below, and they are all minimisation
problems having their global optimal fitness value equal to zero:

1. Separable functions:

T1: Shifted Rastrigin’s function

T2: Shifted Ackley’s function

2. Partially-separable functions, having a small number of variables that are depen-
dent and all the remaining ones independent (m=50):

T3: Single-group shifted and m-rotated Rastrigin’s function

T4: Single-group shifted and m-rotated Ackley’s function

T5: Single-group shifted and m-dimensional Rosenbrock’s function

3. Partially-separable functions that consist of multiple independent sub-
components, each of which is m-nonseparable (m=50) – this category includes
two subtypes: d/(2m)-group m-nonseparable, and d/m-group m-nonseparable
functions:

T5: d/(2m)-group shifted and m-rotated Rastrigin’s function

T7: d/(2m)-group shifted and m-rotated Ackley’s function

T8: d/(2m)-group shifted and m-dimensional Rosenbrock’s function

T9: d/m-group shifted and m-rotated Rastrigin’s function

T10: d/m-group shifted and m-rotated Ackley’s function

T11: d/m-group shifted and m-dimensional Rosenbrock’s function

4. A fully nonseparable function:

T12: Rosenbrock’s function

See (Tang et al., 2009) for more extensive details on these functions.
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4.1 Performance results on the CEC’10 large scale optimisation competition
benchmark

We use a simple averaging combination of RP-EDAs as in the algorithm described in
Section 3.2. We allow a fixed budget of 6× 105 function evaluations, and use a popula-
tion size of N = 300, and the number of retained individuals being set to N ′ = 75. We
use truncation selection with elitism. We take the random subspace dimension to be
k = 3 and the number of subspaces is set to M = 1000. We should mention that we also
experimented with other parameter settings and observed the results are qualitatively
unchanged as long as we set k low enough to get reliable k × k covariance estimates
from N ′ points, and large enough to capture sufficient covariance structure. The num-
ber of random subspaces M must always be set above the minimum of Mmin ≥ ⌈d/k⌉
in order to cover the search space and it is preferable to set it larger so that the finite
average that appears in the analysis of covariance construction, eq. (5), gets closer to
the expectation and hence recovers the correct directions of the covariance. Note that
a larger M does not incur extra function evaluations, and increases the per-generation
time complexity only linearly. Of course, we do not claim optimality of the above pa-
rameter settings and indeed this may be problem dependent in principle. Guidelines
with more detailed discussion on how to set these parameters are given in Section 4.2.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
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RP−Ens k=3, M=1000, 6×105 f.ev

k=3, M=∞, 6×105 f.ev

CEC’10 winner, 6×105 f.ev

DECC−CG, 3×106 f.ev

MLCC, 3×106 f.ev

Figure 3: Comparison of our RP-Ensemble EDA algorithm with the CEC’10 large scale
optimisation competition winner (Molina et al., 2010) on 12 multimodal functions, after
6 × 105 function evaluations. Results of other state-of-the-art co-evolutionary based
methods, MLCC and DECC-CG are also shown for reference; the latter two are quoted
from (Molina et al., 2010) and use 3 × 106 function evaluations. All results represent
averages of the best fitness from 25 independent repetitions.

Figure 3 gives a visual summary of the results obtained in comparison with the
competition winner (Molina et al., 2010) – a fairly sophisticated memetic algorithm
based on local search chains – and two other state-of-the-art co-evolutionary methods
referenced on the competition’s page, namely DECC-CG (Yang et al., 2008a) andMLCC
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(Yang et al., 2008b). A statistical analysis and further comparisons will follow shortly
in Section 4.1.1. The bar chart in Figure 3 shows the average of the best fitness values
(in log scale) from 25 independent runs. We also included results from 25 independent
runs of the limiting version of our algorithm, i.e. k = 3,M = ∞, which we imple-
mented using the analytic expression computed in Sec. 3.3.1, eq. (16) (with sampling
done in the full d-dimensional space). The reason we included this is to assess how
our algorithm with a finite M deviates from it. For DECC-CG and MLCC we used the
results produced with 3 × 106 function evaluations quoted from Molina et al. (2010)
– that is a considerably larger budget than what we allowed for our method, as it is
interesting to see that our results still compare well to these also.

Thus, we see that our simple RP-Ensemble based EDA algorithm is highly com-
petitive with the best state-of-the-art methods for large scale optimisation – and even
slightly outperforms the CEC’2010 competition winner on some of the functions on
this difficult benchmark. Furthermore, it is worth noticing that the performance with
M = 1000 is nearly indistinguishable from that with infinite M .

4.1.1 Statistical analysis and further comparisons with state of the art EDA-type
methods

In Tables 1-4 we provide a detailed statistical analysis of the results shown on Figure
3, and in addition to the competition winner and the high-ranking co-evolutionary
methods we also present further comparisons with recent and state-of-the-art EDA-
type methods: EDA-MCC (Dong et al., 2013), sep-CMA-ES (Ros and Hansen, 2008),
and also AMaLGaM-Univariate (Bosman, 2009) on function T12. For our method we
included results obtained with the alternative random projection matrices discussed in
Section 3.5.

We have chosen the particular EDA-type methods to compare with by the follow-
ing reasoning. EDA-MCC (Dong et al., 2013) was chosen because it is a recent method
specifically developed to scale up EDA to high dimensions. It assumes that the covari-
ance of the selected points has a block-diagonal structure, so depending on the block
size it interpolates between UMDAc and EMNA. At first sight this seems quite similar
to our approach since the blocks define subspaces of the search space – however, the
subspaces in EDA-MCC are axis-aligned and disjoint whereas in our approach they are
not. The implication of this difference is, cf. our analysis in the earlier sections, that
when we decrease the subspace dimension then our covariance becomes more spher-
ical while still avoiding the independence assumption of UMDAc. This results in a
better capability to escape unwanted early convergence, as we shall see shortly from
the experimental results. We used our own implementation of EDA-MCC since there
is no publicly available implementation. Since the guidelines on the parameter setting
of EDA-MCC are not prescriptive and were only tested up to 500 dimensions (Dong
et al., 2013), for our 1000-dimensional benchmark set we ran experiments with two dif-
ferent sensible parameter settings and choose the best of the two results to report. This
is to ensure we do not inadvertently disadvantage this method. Denoting the block
size of EDA-MCC by c, the two versions we have run were: N=300, c=20, and N=150,
c=100. In both cases we set the budget of maximum function evaluations equal to our
proposed RP-EDA-Ens, i.e. 6 × 105.

The sep-CMA-ES (Ros and Hansen, 2008) method was included in our comparison
because it is a variant of CMA-ES developed to handle high dimensional problems
and it currently represents the gold-standard for comparisons in new EDA research.
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Table 1: Comparison on separable functions. For each test function, the various meth-
ods being compared are in the rows. The symbols in the last column indicate if the
fitness value achieved by the method in that row is statistically significantly better (+)
or worse (-) than each of our four RP-Ensemble-EDA variant. These were determined
using a 2-tailed t-test with 95% confidence level. The symbols at the four different posi-
tions are comparisons with the four variants of our method in the same order as listed
in the first four rows for each function.

t-tests vs.
Func. Method max FE Mean Std g ∞ s b

T1 RP-Ens (g) k=3 M=1000 6e+05 784.21 76.017 ∅ +
RP-Ens k=3 M=∞ 6e+05 868.96 49.715 - ∅ - -
RP-Ens (s) k=3 M=1000 6e+05 760.74 50.835 + ∅ +
RP-Ens (b) k=3 M=1000 6e+05 818.36 40.7 + - ∅
CEC’10 Winner 6e+05 2670 163 - - - -
DECC-CG 3e+06 1310 32.6 - - - -
MLCC 3e+06 0.557 2.21 + + + +
sep-CMA-ES 3e+06 5677.9 476.52 - - - -
EDA-MCC c=20 N=300 6e+05 1237 1237 - - - -

T2 RP-Ens (g) k=3 M=1000 6e+05 2.5366e-13 4.8104e-15 ∅ + +
RP-Ens k=3 M=∞ 6e+05 2.5267e-13 3.743e-15 ∅ + +
RP-Ens (s) k=3 M=1000 6e+05 0.00013352 2.367e-06 - - ∅
RP-Ens (b) k=3 M=1000 6e+05 0.0001336 2.9135e-06 - - ∅
CEC’10 Winner 6e+05 3.84 0.213 - - - -
DECC-CG 3e+06 1.39 0.0973 - - - -
MLCC 3e+06 9.88e-13 3.7e-12 + +
sep-CMA-ES 3e+06 21.062 0.038944 - - - -
EDA-MCC c=100 N=1500 6e+05 0.2025 0.012411 - - - -

We used the MatLab implementation available from the authors1 with the diagonal
option, default parameter settings and random initialisation. We have run sep-CMA
to a maximum function evaluations equal to that used for our RP-EDA-Ens in the first
instance, i.e. 6 × 105, but for functions on which it did not outperform our methods
we have further run it to a maximum of 3 × 106 function evaluations and report the
latter result instead. This is to avoid having the limited budget as the major obstacle
for sep-CMA-ES.

Finally, the AMaLGaM-Univariate was chosen as a representative of AMaLGaM
(Bosman, 2009; Bosman et al., 2013) because it was previously demonstrated to work
up to 1000 dimensional problems in (Bosman, 2009), and among the twelve versions
of the AMaLGaM package this version was found by the authors to work best in high
dimensional problem solving (Bosman, 2009), with results comparable to sep-CMA-
ES. For this latter reason, and since the available software implementation of AMaL-
GaM that we used2 contains a pre-set list of test functions of which one (Rosenbrock)
is in common with our test suite (function T12), we have included a comparison with
AMaLGaM-Univariate on this function only. We tested several versions of AMaLGAM
on this function, and AMaLGaM-Univariate was indeed the variant that produced the

1https://www.lri.fr/∼hansen/cmaes.m
2http://homepages.cwi.nl/∼bosman/source code.php
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Table 2: Comparison on single-group nonseparable functions. See caption of Table 1.
t-tests vs.

Func. Method max FE Mean Std g ∞ s b

T3 RP-Ens (g) k=3 M=1000 6e+05 1.2397e+07 3.1864e+06 ∅
RP-Ens k=3 M=∞ 6e+05 1.3202e+07 3.1221e+06 ∅
RP-Ens (s) k=3 M=1000 6e+05 1.2675e+07 4.3228e+06 ∅
RP-Ens (b) k=3 M=1000 6e+05 1.2886e+07 4.3566e+06 ∅
CEC’10 Winner 6e+05 2.17e+08 8.56e+07 - - - -
DECC-CG 3e+06 2.63e+08 8.44e+07 - - - -
MLCC 3e+06 3.84e+08 6.93e+07 - - - -
sep-CMA-ES 3e+06 1.1867e+08 2.9231e+07 - - - -
EDA-MCC c=100 N=1500 6e+05 1.0161e+07 1.7962e+06 + + + +

T4 RP-Ens (g) k=3 M=1000 6e+05 117.78 17.151 ∅ + -
RP-Ens k=3 M=∞ 6e+05 5049 754.24 - ∅ - -
RP-Ens (s) k=3 M=1000 6e+05 121.32 11.349 + ∅ -
RP-Ens (b) k=3 M=1000 6e+05 82.249 2.1203 + + + ∅
CEC’10 Winner 6e+05 81400 2.84e+05
DECC-CG 3e+06 4.96e+06 8.02e+05 - - - -
MLCC 3e+06 1.62e+07 4.97e+06 - - - -
sep-CMA-ES 3e+06 6.5427e+06 3.762e+06 - - - -
EDA-MCC c=100 N=1500 6e+05 12.379 0.34627 + + + +

T5 RP-Ens (g) k=3 M=1000 6e+05 1.3429e+08 2.5957e+08 ∅
RP-Ens k=3 M=∞ 6e+05 1.216e+08 1.986e+08 ∅
RP-Ens (s) k=3 M=1000 6e+05 6.6642e+07 3.63e+07 ∅
RP-Ens (b) k=3 M=1000 6e+05 7.8953e+07 3.8096e+07 ∅
CEC’10 Winner 6e+05 6.13e+07 1.27e+08
DECC-CG 3e+06 6.44e+07 2.89e+07
MLCC 3e+06 4.38e+07 3.45e+07 + +
sep-CMA-ES 6e+05 7.8052e+06 1.6452e+06 + + + +
EDA-MCC c=100 N=1500 6e+05 1.9746e+11 4.2577e+11 - - - -

best results, which is in line with the authors’ own finding.
Tables 1-4 give for each of the 12 test functions, and each competing method, the

mean and the standard deviation of the best fitness achieved, as computed from 25
independent repetitions. To determine the statistical significance of the differences in
performance we performed 2-tailed t-tests for each competing method against each of
the four variants of our method. The symbols in the last column indicate whether the
fitness achieved by a competing method is statistically significantly better (+) (that is,
significantly lower, since we tackle minimisation problems) or worse (-) (i.e. higher)
than that of a variant of RP-Ensemble-EDA at the 95% confidence level. The symbol in
the first position is a comparison with RP-Ens-EDA that uses M=1000 Gaussian RP ma-
trices, the second symbol is a comparison with RP-Ens-EDA that uses infinitely many
Gaussian or sparse RP matrices (their infinite ensemble limits coincide cf. Lemma 2
in (Kabán, 2014)), the third symbol is a comparison with RP-Ens-EDA that uses 1000
sparse RP matrices and the last symbol is a comparison with RP-Ens-EDA that uses
1000 binary RP matrices. The symbol ’∅’ is placed where a comparison is not appli-
cable (the method on a row and column coincide). The absence of any symbol in any
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Table 3: Comparison on the d/(2m)-group nonseparable functions. See caption of Table
1.

t-tests vs.
Func. Method max FE Mean Std g ∞ s b

T6 RP-Ens (g) k=3 M=1000 6e+05 832.18 62.543 ∅ +
RP-Ens k=3 M=∞ 6e+05 900.08 79.14 - ∅ - -
RP-Ens (s) k=3 M=1000 6e+05 804.09 79.982 + ∅ +
RP-Ens (b) k=3 M=1000 6e+05 856.02 77.542 + - ∅
CEC’10 Winner 6e+05 3220 185 - - - -
DECC-CG 3e+06 10600 295 - - - -
MLCC 3e+06 3430 872 - - - -
sep-CMA-ES 3e+06 6279.5 251.42 - - - -
EDA-MCC c=20 N=300 6e+05 1376.1 1376.1 - - - -

T7 RP-Ens (g) k=3 M=1000 6e+05 41.664 8.7003 ∅ -
RP-Ens k=3 M=∞ 6e+05 30.093 7.9886 + ∅ + +
RP-Ens (s) k=3 M=1000 6e+05 40.36 10.973 - ∅
RP-Ens (b) k=3 M=1000 6e+05 43.469 8.6383 - ∅
CEC’10 Winner 6e+05 38.3 7.23 - +
DECC-CG 3e+06 23.4 1.78 + + + +
MLCC 3e+06 198 0.698 - - - -
sep-CMA-ES 3e+06 212.06 6.0235 - - - -
EDA-MCC c=100 N=1500 6e+05 14.658 0.45607 + + + +

T8 RP-Ens (g) k=3 M=1000 6e+05 1.4442e+06 53945 ∅ +
RP-Ens k=3 M=∞ 6e+05 1.4528e+06 69153 ∅
RP-Ens (s) k=3 M=1000 6e+05 1.4281e+06 59947 ∅ +
RP-Ens (b) k=3 M=1000 6e+05 1.4842e+06 49239 - - ∅
CEC’10 Winner 6e+05 4340 3210 + + + +
DECC-CG 3e+06 5120 3950 + + + +
MLCC 3e+06 2080 727 + + + +
sep-CMA-ES 6e+05 596.05 173.43 + + + +
EDA-MCC c=100 N=1500 6e+05 2.7149e+06 9.9543e+05 - - - -

of the four positions means that the associated comparison test detected no significant
difference at the 95% confidence level.

One thing we quickly notice from Tables 1-4 is that although some differences of
statistical significance have been detected in comparisons between some of the vari-
ants of our own method, these different variants behave very similarly when looked
through comparisons with other methods. A second striking observation that we
should make before delving into the details is the great diversity in the performance
behaviour among the competing methods versus ours – that is, on nearly each function
(except T6 and T9, on which our proposed RP-EDA-Ens methods are the overall win-
ners) there is at least one method that does better than ours and at least one that does
worse than ours, but the methods that outperform RP-EDA-Ens on one function lose
out on another function. This reflects a nice complementarity of the search biases of the
methods, so although for the purpose of our comparison all these methods are treated
as competitors, in reality in the toolbox of a practitioner they may be used to cooperate
in solving difficult problems.

Let us first look at the details of the comparisons between pairs of our own meth-
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Table 4: Comparison on the d/m-group nonseparable and fully nonseparable functions.
See caption of Table 1.

t-tests vs.
Func. Method max FE Mean Std g ∞ s b

T9 RP-Ens (g) k=3 M=1000 6e+05 807.11 49.957 ∅ + +
RP-Ens k=3 M=∞ 6e+05 880.23 62.453 - ∅ -
RP-Ens (s) k=3 M=1000 6e+05 811.45 56.551 + ∅ +
RP-Ens (b) k=3 M=1000 6e+05 852.96 59.161 - - ∅
CEC’10 Winner 6e+05 3190 146 - - - -
DECC-CG 3e+06 12200 897 - - - -
MLCC 3e+06 7110 1340 - - - -
sep-CMA-ES 3e+06 6763.5 275.75 - - - -
EDA-MCC c=20 N=300 6e+05 1474.8 1474.8 - - - -

T10 RP-Ens (g) k=3 M=1000 6e+05 90.481 17.178 ∅ - +
RP-Ens k=3 M=∞ 6e+05 72.997 20.589 + ∅ + +
RP-Ens (s) k=3 M=1000 6e+05 94.305 16.164 - ∅
RP-Ens (b) k=3 M=1000 6e+05 102.04 13.593 - - ∅
CEC’10 Winner 6e+05 102 14.2 - -
DECC-CG 3e+06 76.6 8.14 + + +
MLCC 3e+06 376 47.1 - - - -
sep-CMA-ES 3e+06 413.83 10.971 - - - -
EDA-MCC c=100 N=1500 6e+05 5.0668 0.70999 + + + +

T11 RP-Ens (g) k=3 M=1000 6e+05 54105 10877 ∅ - +
RP-Ens k=3 M=∞ 6e+05 40345 12018 + ∅ + +
RP-Ens (s) k=3 M=1000 6e+05 56828 14651 - ∅ +
RP-Ens (b) k=3 M=1000 6e+05 1.3655e+05 52065 - - - ∅
CEC’10 Winner 6e+05 5530 3940 + + + +
DECC-CG 3e+06 24600 10500 + + + +
MLCC 3e+06 7090 4770 + + + +
sep-CMA-ES 6e+05 1447.1 309.65 + + + +
EDA-MCC c=100 N=1500 6e+05 4.2507e+07 5.3257e+06 - - - -

T12 RP-Ens (g) k=3 M=1000 6e+05 1614.7 249.44 ∅ - +
RP-Ens k=3 M=∞ 6e+05 988.13 0.75027 + ∅ + +
RP-Ens (s) k=3 M=1000 6e+05 1626.2 237.59 - ∅ +
RP-Ens (b) k=3 M=1000 6e+05 4552.7 3204 - - - ∅
CEC’10 Winner 6e+05 1210 142 + - + +
DECC-CG 3e+06 4060 366 - - -
MLCC 3e+06 2050 180 - - - +
sep-CMA-ES 6e+05 1046.5 51.644 + - + +
sep-CMA-ES 3e+06 903.63 39.149 + + + +
EDA-MCC c=100 N=1500 6e+05 6.1795e+07 7.7141e+06 - - - -
AMaLGaM-Univ 6e+05 8.2448e+08 2.5912e+08 - - - -
AMaLGaM-Univ 3e+06 990.73 15.174 + + +

ods. That is, we look at the first four rows for each test function and follow the markers
in the last column (an anti-symmetric matrix of markers). We notice the following.
In the comparisons between the finite dimensional ensemble with Gaussian RPs ver-
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sus its limit of infinite ensemble, we see that on only four out of twelve functions the
infinite ensemble was significantly superior, and on another four functions the finite
ensemble performed better. No statistically significant differences were detected on the
remaining four functions. So we can conclude that our practical algorithm using a fi-
nite ensemble of just 1000 RPs is performing no worse that an infinite ensemble, and
we also see the gap between them is small in practice.

In the comparisons between the Gaussian vs sparse RP ensembles, both taken with
finite ensemble sizes, the 2-tailed t-test rejects the null of equal means only once out of
twelve functions – in practical terms the two different RP ensembles appear equivalent.
Indeed, apart from function T2, where in fact both algorithms got practically close to
the global optimum, no statistically significant difference was detected between these
two types of random projections. We have so far not identified any obvious reasons
for the statistical difference observed on T2, it does appear consistent in all repeated
runs. However it is more surprising to see the equivalent performance in all of the
11 other functions, given that in stochastic search algorithms like ours there are many
factors that may influence the dynamics. These results imply that taking advantage
of the computational efficiency offered by the sparse RP matrices essentially comes for
free.

The comparisons between the Gaussian and the binary finite ensemble turn out
favourable for the former on six of the functionswhereas the binary ensemblewins only
once. This was somewhat expected due to the reduced exploration capabilities of the
binary RP ensemble cf. the remarks we made in Section 3.5. In answer to the question
set out there, we should observe also that although these differences are statistically
significant, the actual fitness values achieved are rather close on average for the two
RP variants. By this we may conclude that our overall algorithm appears robust to
deviations from the conditions of our analysis presented earlier where we treated the
case of Gaussian R.

It may be also interesting to comment on the comparisons between the finite binary
RPs versus the infinite ensemble of (Gaussian or Sparse) RPs. Interestingly, despite the
analytical form of the infinite ensemble covariance with the Binary RPs is provably
different from that with the Gaussian or the Sparse RPs, for only five out of twelve
functions is the latter superior with statistical significance, while the binary ensemble
wins on one function. Four of those five functions coincide with those we observed in
the case of the Sparse RP ensemble.

Table 5 summarises the above findings for the comparisons between the variants
of our methods in terms of the overall number of test functions on which a variant
wins / loses against another method. All counts are out of the 12 overall test functions,
and only the differences that are significant with 95% confidence are counted. Based
on these results we may then conclude that our new algorithmic framework appears
to be quite robust and efficient, and is able to take advantage of speedups offered by
alternative RP matrices.

We now look at the comparisons between the previously existing methods and the
set of our own in the results given in Tables 1-4. On the separable functions MLCC
is the only one that is better or not statistically worse than ours. Of the single-group
nonseparable functions EDA-MCC performed better than our proposed methods on
T3 and T4 with all of the other competing methods being significantly worse than ours.
However, on T5 the EDA-MCC turns out to be significantly worse while sep-CMA-ES
outperforms our RP-EDA-Ens instead. MLCC is also better or not significantly worse
on this function.
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Table 5: Aggregated summary of comparisons among our own methods: Number of
test functions on which the methods in rows win : lose against the methods in the
columns. Only differences that are significant at the 95% confidence level are counted.
All counts are out of the total number of test functions i.e. 12.

#Wins : #Losses RP-Ens (g) RP-Ens (∞) RP-Ens (sp) RP-Ens (b)
RP-Ens (g) N/A 4 : 4 1 : 0 6 : 1
RP-Ens (∞) 4 : 4 N/A 5 : 4 5 : 3
RP-Ens (sp) 0 : 1 4 : 5 N/A 6 : 1
RP-Ens (b) 1 : 6 3 : 5 1 : 6 N/A

Table 6: Aggregated summary of comparison results from Tables 1-3-4: Number of test
functions on which our methods (rows) win : lose against other competing methods
(columns). Only differences that are significant with 95% confidence are counted. All
counts are out of the total number of test functions i.e. 12. We see for all of our variants
the number of wins obtained by our proposed methods is larger or equal than that of
the losses, and this is so in each individual comparison.

Our #wins : #losses CEC10 DECC-CG MLCC sep-CMA-ES EDA-MCC
RP-Ens (g) 6 : 3 7 : 4 7 : 3 8 : 4 8 : 4
RP-Ens (∞) 8 : 2 7 : 3 7 : 3 8 : 4 8 : 4
RP-Ens (sp) 5 : 3 7 : 4 7 : 5 8 : 4 8 : 4
RP-Ens (b) 5 : 4 6 : 4 6 : 6 8 : 4 8 : 4

On the d/(2m)-group m-nonseparable functions our approach is the overall win-
ner on T6, outperformed by DECC-GG and EDA-MCC on T7, and outperformed by
four competitors on T8.

Of the d/m-group nonseparable functions the algorithm we proposed is the over-
all winner on T9, then it is outperformed by EDA-MCC and partly by DECC-CG
on F10, and outperformed by four competitors on T11. Finally, on the nonseparable
function T12 sep-CMA-ES outperforms our algorithms, AMaLGaM-Univariate outper-
forms our finite-M variants only when given a larger budget of function evaluations,
and the CEC’10 winner also marginally (but with statistical significance) outperforms
our finite-M versions.

An aggregated summary of these findings in terms of the number of functions
(from the total of 12) on which our method wins / loses is provided in Table 6, for
each of the competing methods. Only the differences significant with 95% confidence
are counted. We see again that the version with binary RPs is the least effective, as
expected, but still the number of wins obtained by our proposed methods is larger or
equal than the number of losses in each individual comparison.

4.1.2 Fitness trajectories through the generations

In order to gain more insight into the behaviour of our RP-Ensemble based EDA algo-
rithm it is useful to inspect its convergence behaviour by looking at the evolution of the
best fitness across generations. This is plotted in Figures 4-5 comparatively for both the
Gaussian RP and the Sparse RP from (Achlioptas, 2003), for four very different settings
of the pair of parameters k and M : k = 3,M = 1000; k = 3,M = ∞; k = 3,M = ⌈d/k⌉;
k = 15,M = ⌈d/k⌉. The latter two use the minimum number of random subspaces that
cover the full search space a.s. (in case of the Gaussian RP) or with very high probabil-
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Figure 4: Convergence behaviour of our RP-Ensemble EDA methods on 1000-
dimensional multimodal test functions (functions T1-T6), for 4 different choices for the
parameter pair k and N . The continuous lines are results with Gaussian RPs, and the
dashed lines with the same markers are those with the analogous versions that used
the Sparse RP. We see in most cases the dashed lines are indistinguishable from the
continuous ones.

ity (in case of the Sparse RP). As before, we use population sizes of N = 300, N ′ = 75.
For each setting, the continuous lines indicate the algorithm with Gaussian RPs, and
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Figure 5: Convergence behaviour of our RP-Ensemble EDA methods on 1000-
dimensional multimodal test functions (functions T7-T12), for 4 different choices for
the pair of parameters k and N . The continuous lines are results with Gaussian RPs,
and the dashed lines with the same markers are those with the analogous versions that
used the Sparse RP. We see in most cases the dashed lines are indistinguishable from
the continuous ones.

the dashed lines with the same markers stand for the analogous versions that used the
Sparse RP. All results represent averages of the best fitness as obtained from 25 inde-
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pendent runs.
First of all, we see the behaviour of the two different RP matrices is nearly indis-

tinguishable even when the ensemble size is minimal. However, we also see that the
minimal M that barely spans the search space tends to be a poor choice relative to a
larger M , and since increasing M does not involve extra function evaluations we rec-
ommend using a larger value of M (of the order of d) in order to work in the regime
where the ensemble covariance is understood by the analytical treatment we presented
in the previous sections. A more systematic empirical study of the effects of the param-
eter choices will follow in the next subsection.

Furthermore, from Figures 4-5 we can see a clear tendency of our RP-Ensemble-
EDA algorithms to escape early convergence (that is known to be typical of both UM-
DAc and EMNA in high dimensions) and explore the search space. It is particularly
pleasing that the versions with finite number of random subspaces are also performing
well and as expected, a larger value of M gets the performance closer to that of the
idealised version with M = ∞.

4.2 Impact of the parameters and generic guidelines for setting the parameters

Some observations already emerged regarding the setting of M and k, and we saw the
rule-of-thumb parameter settings we used in the large 1000-dimensional experiments
(Section 4.1) turned out to perform well. Here we conduct a set of systematic exper-
iments with parameter values varied on a grid, and tested on four 100-dimensional
functions. Two of these functions are among the few re-scalable ones of the same
CEC’10 test suite that we used earlier – T2 (Ackley function, fully separable), and T12
(Rosenbrock, fully nonseparable) – and two others are toy-problems that will serve to
demonstrate certain characteristics of the behaviour of the method: the Sphere function

(f(x) = xT x), and the rotated Ellipse (f(x) = (Mx)T Λ(Mx),Λ = diagi(10
i−1

d−1 ), where
the rotation matrix M was uniformly randomly generated in each repeated run and
then fixed3) Throughout this section we have used a population size fixed to N = 300
and we focus to study the influence of k, M and the selection pressure τ = N/N ′.
We have set the maximum function evaluations to three millions – that is much larger
than previously – in order to count the number of fitness evaluations required to reach
various target values. For each combination of parameter values we performed 10 in-
dependent repetitions. We varied τ ∈ {1/4, 1/3, 1/2}, k ∈ {N ′/25, N ′/15, N ′/7.5, N ′/5}
(i.e. making sure that we always have at least 5k points to estimate a k × k covariance),
and M ∈ {50, 100, 500, 1000}.

Figures 6-7, 8-9, 10-11, and 12-13 show the average of the function evaluations
needed to reach two chosen target values for Sphere, Ackley, Ellipse, and Rosenbrock
respectively. If a target was not reached then the count appears as 3 × 106 (i.e. the
maximumnumber of function evaluations cutoff). There are also error bars on the black
markers on these surface plots that represent one standard deviation computed from
the 10 repeated runs, however these are rather small and hardly visible at the overall
scale. But the trend of the average search costs against the various parameter settings
is clearly visible. Two target values (chosen from powers of 10) are displayed for each
of these functions, of which one was chosen such that at least for half of the various
combinations of values for k and M the specified target was successfully reached, and
the second threshold value was a relatively larger one in order to see the influence of

3This differs from the literature standard where rotation is typically fixed to 45 degrees to have a maximal
departure from the coordinate axes. However, our proposed approach is by construction rotation-invariant,
hence at this point the angle of rotation makes no difference.
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Figure 6: Number of fitness evaluations taken to reach the threshold of 10−10 on the
Sphere function.
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Figure 7: Number of fitness evaluations taken to reach the threshold of 10−1 on the
Sphere function.

the parameter settings at two different stages of the optimisation. We will refer to this
latter target value as the ‘coarser target’.

We found, rather unsurprisingly, that the optimal parameter setting depends on
the problem in a complex way in the case of tight targets. However, interestingly this is
not much so for the coarser target. The latter is of interest in the practical cases where
a ‘quick and dirty’ solution is sought, i.e. when we seek an approximate solution to a
difficult problem with limited resources. Considering that evolutionary heuristics are
most often used in this latter role (He and Yao, 2003; Yu et al., 2012), it may be of interest
to look at the search costs involved at both scales.

We now go through the results obtained. We see in Figures 6-7 that for the Sphere
function the surface plots have nearly identical shapes for both target values, while of
course the search costs on the vertical axes differ. The unchanged behaviour is most
likely because at both coarse and fine-grained scales the fitness landscape has the same
spherical shape, which is easily modelled by our ensemble covariance with a low value
of k. So the search strategy of our approach works equally well on both scales here.
Looking at the three surface plots that correspond to different selection pressures τ , it
is easy to notice that the smaller value of τ = 1/4 required less search costs to reach
the target in comparison with the larger value of τ = 1/2. This observation is also
consistently valid for the other functions too. A larger value of τ means less selection
pressure, which leads to slower convergence. Now, for each individual τ value, the
associated surface plot indicates that a small k and (interestingly) a small M reaches
the target quicker in the case of the Sphere function. The small value of M works here,
but we need to keep in mind that our analysis in Section 3.3.2 gives little guarantee for
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Figure 8: Number of fitness evaluations taken to reach the threshold of 10−5 on the
Ackley function.
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Figure 9: Number of fitness evaluations taken to reach the threshold of 10−1 on the
Ackley function.
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Figure 10: Number of fitness evaluations taken to reach the threshold of 10−1 on Ellipse.
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Figure 11: Number of fitness evaluations taken to reach the threshold of 102 on Ellipse.
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Figure 12: Number of fitness evaluations taken to reach the threshold of 102 on Rosen-
brock function.
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Figure 13: Number of fitness evaluations taken to reach the threshold of 104 on Rosen-
brock function.

small values of M values in terms of recovering the correct direction of the covariance,
and indeed shortly we shall see examples where choosing M too small works poorly.

Next, the results on the Ackley function in Figures 8-9 display a striking similar-
ity with what we just saw in the case of the Sphere function. This is despite the fact
that Ackley is a multimodal function with several local optima. The reason that our
method has such similar behaviour on this function is most likely that the Ackley func-
tion has a spherical basin of attraction around its global optimum, and on a coarse scale
the Ackley function resembles a spherical shape. So we see that the close-to-spherical
covariance induced in our approach when k is small turns out advantageous again in
this case. Indeed, all of the observations we have made about the results on Sphere do
carry over on Ackley. We did not reach a target of 10−10 as we did on Sphere, but we
did reach below 10−5.

For the rotated Ellipse function, the picture looks very different, as expected. We
see on Figures 10-11 that small values of k and M all failed to reach the target of even
10−1. For this fitness landscape we need a higher value of M and k to have the flex-
ibility to model an elongated covariance, and to recover the correct direction of the
covariance (which is only guaranteed for a large M ) In turn what is interesting to note
is that the picture looks almost symmetric in k vs. M in Figure 10 – that is, a less elon-
gated covariance (due to small k) can still work on this Ellipse function provided that
we recover its orientation (due to larger enough M ). Since the time complexity per-
generation is only linear in M but cubic in k, it seems a good heuristic to increase M
first, and increase k only if the increased M did not deliver satisfactory performance.
Of course, a very ill-conditioned fitness function would be a very difficult problem for
our approach because we would need a large k close to d – in which case the averaging
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ensemble approach itself becomes no longer profitable. Possibly a weighted averaging
combination may be developed to handle this case. It is important to remember the
No-Free-Lunch theorem (Wolpert and Macready, 1997), which implies that no method
is best on all problems but each method works well on certain problems – i.e. the prob-
lems that match the method’s own search bias. In our case, we have just seen this at
work, where the Ackley function is an easy problem for our method whereas the El-
lipse is a difficult problem. In the next subsection we shall see that for the sep-CMA-ES
method the relative difficulty of these two functions is exactly the opposite of what was
true for our RP-EDA-Ensemble.

However, let us now look at the coarser target value for the same rotated Ellipse
function. It is interesting to observe in Figure 11 that the surface plots of the search
costs to reach the target value of 102 takes the same shape as those we have seen in the
case of Sphere and Ackley. This means that at a coarser scale our simple strategy still
works with the same profitable parameter values as before. Hence apparently when an
approximate solution is needed at low search costs then our method with the rule-of-
thumb parameter setting is appropriate to use.

Finally, we show similar results on the Rosenbrock function in Figures 12-13. The
search costs for the target value of 102 display rather complicated shapes – although we
do note the differences on the vertical axes are not particularly large. However, most
interestingly again when we inspect the surface plots of the search costs for the coarse
target of 104 we recognise the same shape that we have seen for all of the other three
functions before. This reinforces the conclusion we have reached above.

Based on these results we can set the following guidelines:

• A tight selection pressure, e.g. τ = 1/4 worked best in our experience. This may be
different from other approaches, e.g. EDA-MCC recommends τ = 1/2 since in that
approach a larger group size is important in order to avoid similarity with UM-
DAc. By contrast, the spherical component of our covariance favours exploration
and has a better chance to avoid early convergence – which may be the reason that
a higher selection pressure is more cost-efficient. However, we should also note
that the these differences when varying τ have not been massive and hence when
the budget of function evaluations is not particularly tight then a larger τ may be
justified especially if we want to increase k.

• Regarding the setting of M , there is no substantial cost to setting it to a higher
rather than a lower value. It does not incur any additional function evaluations
and it increases the per-generation time complexity only linearly. A large enough
M has the substantial benefit that we recover the orientation of the covariance from
the ensemble, and in many cases this reduces the required function evaluations to
reach tighter target values. Small values of M work well occasionally but can also
lead to poor performance in some cases. We recommend setting M of the order of
d.

• k is the parameter that controls the extent of regularisation. The smaller we choose
the value of k the closer to spherical is our ensemble covariance. A small k works
very well on functions with a spherical basin of attraction around the optimum,
and this also approximates other functions at a coarser scale. Therefore a small k
can be effective when the goal is to get a ‘quick and dirty’ approximate solution
with limited resources. On the other hand, when the goal is to reach a target very
close to the optimum and the fitness landscape is rather ill-conditioned then k
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would need to be large. In that case we need to weigh the benefits against the
much increased per-generation computation time (cubic in k). The practitioners
need to weigh these tradeoffs in making the appropriate choice for the problem at
hand.

Finally, a comment is in order about the population size N . Since the estimation step is
only required to estimate k × k covariances, N only needs to be large enough to have
of the order k (e.g. a minimum of 5×k) selected points in order to get sufficiently good
covariance estimates in the k-dimensional space.

4.3 Scalability experiments

Our final set of experiments measures the search costs (number of function evaluations)
to reach a specified target value as the problem dimension varies, and compares these
with the search costs of sep-CMA-ES.

We use the same four functions as in the previous section, namely Sphere, Ackley,
rotated Ellipse, and Rosenbrock. We fix the value to reach (VTR) to 10−5, and vary the
dimensionality in d ∈ [50, 1000]. We count the number of fitness evaluations needed for
our proposed RP-Ensemble-EDA to reach the VTR.We also repeated the experiment for
three other choices of VTR: 10−2, 102 and 103 in order to make sure that the conclusions
will not be specific to a particular choice of the VTR. In all of these experiments we use
the rule-of-thumb parameter setting based on the observations made in the previous
subsection, i.e. we have set k = 3, N = 300, N ′ = N/4 = 75,M = 2 × D, and we use
Gaussian RPs. We set the maximum fitness evaluations to 3 × 106, so the algorithm
stops either upon reaching the VTR or when the maximum function evaluations have
been exhausted.

The results are displayed in the log-log plots in Figure 14. The figure shows the
average number of function evaluations as computed from the successful runs out of
10 independent repetitions for each problem dimension. When none of the 10 repeated
runs have reached the pre-specified VTR then we see missing data in these plots.

From Figure 14 we observe that a linear fit matches tightly the obtained scalability
measurements on the log-log plots (shown in dashed lines). The slope of these lines
signify the degree of the polynomial that describes the scaling of our algorithm. The
line that corresponds to linear scaling (slope = 1) is also superimposed on these plots
for visual comparison (dotted line).

From this figure we see that our proposed algorithm displays a close to linear
dependence of the search costs (number of function evaluations to reach a VTR) as
the problem dimension varies. More precisely, the scaling is sub-linear in the majority
of the cases tested (slope of the best fitting line on the log-log plot is smaller than 1):
in all experiments with Sphere, and Ackley, as well as in the two larger VTR values for
Ellipse. In the remaining cases the scaling is slightly superlinear but still very close to
linear (the slopes are 1.08, and 1.09 on the two smaller VTR values for Ellipse, and 1.21
for Rosenbrock).

These results match the best scaling known for sep-CMA-ES (Ros and Hansen,
2008), and considering that the volume of the search space grows exponentially with
the dimension, this is indeed as good as one can hope for. It might be worth noting also
that a larger VTR can sometimes be reached with very few costs, e.g. this is what we
see on the Ackley function. Hence we see once again that the proposed method is most
profitable for quickly finding approximate solutions.

Figure 15 gives a detailed comparison with sep-CMA-ES, using a comparison pro-
tocol similar to that previously utilised in (Bosman, 2009). As we shall see, our pro-
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Figure 14: Scalability experiments: Number of function evaluations taken by successful
runs of our RP-Ensemble to reach a pre-specified value to reach (VTR) as the problem
dimensionality is varied in d ∈ [50, 1000]. The markers represent averages computed
from 10 independent repetitions, the dashed lines show the best linear fit on these mea-
surements on the log-log scale, and the dotted line corresponds to linear scaling (slope
= 1). The parameter settings were k = 3, N = 300, N ′ = 75,M = 2 × d, and the
maximum allowed function evaluations was set to 3 × 106.

posed RP-Ens-EDA and sep-CMA-ES present comparable scaling efficiency overall,
but have very different search biases and perform well in different situations. We com-
pare the average numbers of function evaluations used by our method to reach various
pre-specified VTR against those required by sep-CMA-ES to reach the same VTR. We
included a wider range of VTRs here, equally spaced in the interval [10−10, 106] for a
better visibility of the behaviour of the two methods comparatively. The four different
problem dimensions (d ∈ {50, 100, 500, 1000}) are depicted with different markers on
these plots. We can summarise the following observations and conclusions from these
results:

• Our method gains advantage in higher dimensions, whereas sep-CMA-ES scales
better in lower dimensions. We see that in 1000 dimensions our RP-Ens-EDA con-
sistently scales better on three out of the four functions tested (Sphere, Ackley, and
Rosenbrock), and partly also on Ellipse. In 500 dimensions our method scales no
worse on two out of four functions (Sphere and Ackley), also partly on Ellipse, and
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Figure 15: Average number of function evaluations of our RP-Ensemble (using the same
parameter setting as in Figure 14) versus sep-CMA-ES (with its default parameters), for
33 target values (equally spaced on log10 scale) in the range [10−10, 106]. The markers
represent different dimensionality: d=50: x, d=100: o, d=500: ⋄, d=1000: ¤.

it scales worse on one function (Rosenbrock). In 100 and 50 dimensions RP-Ens-
EDA only scales better on one function (Ackley) while sep-CMA-ES scales better
on the remaining three.

• Our method scales better than sep-CMA-ES for larger VTR and loses from its ef-
ficiency in fine-grained search, whereas the efficiency of sep-CMA-ES is about the
same at all scales. This is particularly visible on Ellipse but also shows up on
Sphere.

• The difficult / easy function types are different for these two methods. Clearly,
Ackley is easier than Ellipse for our method, whereas it is the other way around
for sep-CMA-ES.

From these results we may then conclude that our approach addresses the need to
have simpler models for efficiently finding approximate solutions in high dimensional
problems. The model simplicity allows a more accurate means of estimation and more
efficient sampling in order to be able to go to higher dimensionality problem solving
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without discarding all the dependencies. Of course, there is no free lunch, and we are
not able to solve all problems by our proposed method either. However, our means
to scalability is that we made estimating a high dimensional general covariance matrix
tractable with a small population. We achieved this by means of compression and av-
eraging instead of inclusion / omission of individual dependencies as other heuristics
do. This difference turned out to induce a search bias that behaves quite differently
from that of existing approaches and it effectively allows us to find approximate so-
lutions to high dimensional complicated problems with a limited budget, whereas the
finer grained search remains in need of greater search costs.

5 Outlook and future work

We presented a new methodology for designing and developing EDA-type methods
for large scale optimisation. Our approach is to employ multiple random projections of
the fit individuals, and carry out the estimation and sampling operations in low dimen-
sional spaces, where these are both efficient and reliable – as opposed to working in the
original high dimensional space. We carried out some theoretical analysis that shows
the effect of our divide-and-conquer methodology can be re-assembled and understood
in the full high-dimensional search space. Finally, we presented empirical results using
a simple instantiation of our proposed methodology, which demonstrated its effective-
ness. On a battery of 12 multimodal test functions from the large scale CEC’10 compe-
tition we obtained results that are competitive to the best state-of-the-art. We believe
these results may give a new perspective to research on EDA-type model building opti-
misation algorithms, and future work is aimed at better understanding and exploiting
its potential. In particular, the observed complementarity of the search biases induced
in our approach and those of other state of the art EDA type methods suggests that
combining their strengths would be a worthwhile avenue for further work.
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6 Appendix

Ahlswede-Winter type bounds (Ahlswede and Winter, 2002), are generalisations of
Chernoff bounds to matrix valued random variables. These bounds deal with random
matrices whose entries are not independent, and obtain concentration results for the
sum of multiple independent copies of such matrices. Just like for Chernoff bounds,
there are several versions in use, and we give some details of the proof for the ver-
sion that we employed for completeness, i.e. Theorem 2. The interested reader is also
referred to the unpublished notes of Vershynin (2011).
Definitions. A symmetric matrix A is called positive semi definite (p.s.d.) if all of its
eigenvalues are non-negative. The notation ‘<’ stands for the p.s.d ordering – that is,
A < B means that A − B is p.s.d.
The spectral norm of a symmetric matrix A is defined as ‖A‖ = maxi |λi(A)| where
λi(A) is the i-th eigenvalue of A.

Proof of Theorem 2.
Themain ingredient of the proof is the Ahlswede-Winter inequality, whichwe state

below without proof, which can be found in Ahlswede and Winter (2002) (Appendix,
Theorem 18). It employs the Golden-Thompson inequality from matrix algebra.

Theorem 3 (Ahlswede-Winter inequality). Let Xi, i = 1, ...,M be d × d independent

random symmetric matrices, and let SM =
∑M

i=1 Xi. Then ∀ξ > 0,∀t > 0,

Pr{‖SM‖ ≥ t} ≤ 2d · exp(−ξt)

M
∏

i=1

‖E[exp(ξXi)]‖ (22)

Define Zi = Xi − E[Xi], and apply the Ahlswede-Winter inequality to Zi, i =
1, ...,M we have ∀t > 0,

Pr{‖SM − E[SM ]‖ ≥ t} ≤ 2d · exp(−ξt)

M
∏

i=1

‖E[exp(ξZi)]‖ (23)

To bound the matrix norm in the r.h.s, note that for any ξ ∈ [0, 1],

exp(ξZi) 4 I + ξZi + ξ2Z2
i (24)

This holds because ey ≤ 1 + ξy + ξ2y2 holds ∀y ∈ [−1, 1], and all the eigenvalues of Zi

are in [−1, 1]. The latter can be seen by noting that E[Xi] < 0 so Zi = Xi − E[Xi] 4 Xi,
hence ‖Zi‖ ≤ ‖Xi‖ ≤ 1. Now, taking expectation on both sides of eq. (24), and noting
that E[Zi] = 0, gives:

E[exp(ξZi)] 4 I + ξ2E[Z2
i ] 4 exp(ξ2E[Z2

i ]) (25)

where the last inequality holds because 1+y ≤ ey,∀y ∈ R. From eq. (25) it follows that:

‖E[exp(ξZi)]‖ ≤ ‖ exp(ξ2E[Z2
i ])‖ = exp(ξ2‖E[Z2

i ]‖) (26)

We estimate the variance E[Z2
i ]:

E[Z2
i ] = E[(Xi − E[Xi])

2] = E[X2
i ] − (E[Xi])

2 (27)

4 E[X2
i ] (28)

4 E[‖Xi‖ · Xi] (29)

4 E[Xi] (30)
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where eq. (28) follows because E[Xi]
2 < 0, and for eq. (30) we used that ‖Xi‖ ≤ 1.

Hence,
‖E[Z2

i ]‖ ≤ ‖E[Xi]‖ (31)

Using this and eq. (26), the matrix norm we need for the r.h.s. of eq. (23) is bounded as:

‖E[exp(ξZi)]‖ ≤ exp(ξ2‖E[Xi]‖) (32)

Plugging this into the Ahlswede-Winter inequality we get:

Pr{‖SM − E[SM ]‖ ≥ t} ≤ 2d · exp(−ξt)

M
∏

i=1

exp(ξ2‖E[Xi]‖) (33)

= 2d · exp(−ξt + ξ2
M
∑

i=1

‖E[Xi]‖) (34)

= 2d · exp(−ξt + ξ2Ω) (35)

Since this holds for any ξ ∈ [0, 1], we minimise the r.h.s. to tighten the bound. Minimi-
sation yields ξ = t/(2Ω), and this value will need to be in [0, 1] in order to have:

Pr{‖SM − E[SM ]‖ ≥ t} ≤ 2d · exp

(

− t2

4Ω

)

(36)

Putting t := ǫΩ corresponds to ξ = ǫ/2, which is indeed in [0, 1] as required, and yields
the form stated in Theorem 2. ¥
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