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Matthias Wildemeersch, Elena Rovenskaya, Leena Ilmola 

 

Abstract 

In the policy arena, there is high pressure to provide right and quick decisions for problems that 

are often poorly defined. There is thus an urgent need to support stakeholders in establishing a 

shared understanding of policy problems and to assist them in the design of potential solutions. 

Here we propose a methodology based on the construction and analysis of system maps, i.e., 

graphical representations of the complex interdependencies of all relevant factors that affect the 

problem under study. Owing to their collaborative design, system maps provide a transparent 

tool with broad stakeholder acceptance for analysis of ill-defined problems in a formal way. The 

construction of system maps involves expert elicitation to define system components, system 

boundaries, and interactions between system components, after which the dynamical system 

behavior can be approximated by means of system dynamics. Although there is great value in the 

construction of the system map to enhance the understanding of the problem scenario, we 

consider this to be an intermediate step. The final target is to assist decision-makers by 

constructing and analyzing system maps at each step of the decision-making process: i.e., from 

the understanding of the system behavior, through the definition of objectives and constraints, to 

the presentation of feasible solutions that are satisfactory over a range of different plausible 

scenarios. System maps provides us with an effective framework to collect information dispersed 

over experts, facilitate mediation, and analyze formally potential pathway solutions, meeting 

different criteria of optimality and robustness.  

1 Background 

Groups rather than individuals typically deal with important issues (DeSanctis and Gallupe, 

1987, Conradt and List, 2009). In the context of public policy, it is frequently unlikely that 

any individual will have all necessary information at his or her disposal to formulate a 

problem. We propose in this work a group decision support system for collective decision-

making that facilitates sharing of dispersed information and reconciliation of conflicting 

views. By pooling the biased and incomplete information of the group members, a group can 

create a more complete picture of the problem, which in turn can lead to better-informed 

A Collaborative Expert System for 

Group Decision Making in Public Policy 
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decision-making. The decision support tool brings about communication within the group, 

and this can have a powerful effect on the decision process and the quality of the outcome.  

Public policy problems often cannot be solved by traditional tools from operations research 

(OR). The reasons for this failure are threefold: the stringent requirements for available 

information and clarity of the goals (Head, 2008), the impossibility of capturing the multitude 

of views or value systems that prevail in social problems, and the ill-defined nature of the 

issues in the sense that they resist consistent problem formulation and clearly agreed solutions 

(Rittel and Webber, 1973). These so-called wicked problems have several recurrent 

characteristics, such as complex interdependencies, disagreement on the nature and the extent 

of the problem, high levels of uncertainty, and mathematical difficulties in describing 

concepts or verifying solutions. High levels of uncertainty and differing value frames 

contribute to opposing opinions and incompatible solution pathways. Owing to their cross-

cutting nature, ill-defined problems are inevitably connected to other problems, for instance in 

the case of environmental preservation and economic growth, and this interconnectedness 

encourages the study of tradeoffs and synergies. There are many examples of ill-defined 

problems in international policy, in problems of global change, and in socio-economic issues 

in healthcare or social welfare. Since the complexity of these issues goes beyond the capacity 

of a single person, a collaborative approach is required for the formulation of problem 

solutions through the consultation of policy-makers, experts, stakeholders, and citizens. The 

ill-defined issues that arise in public policy do not allow for trial-and-error approaches, since 

there is no public tolerance for the failure of a policy. Taking into account time constraints 

typically encountered in policy issues, this encourages the use of simple yet formal models 

that allow stakeholders and policy-makers to increase their understanding of the problem 

scenario and the consequences of policy solutions.  

Human decisions are typically based on a representation of reality consisting of the elements 

and relationships of the problem that seem to the decision-maker most relevant. These mental 

models differ substantially from person to person. The objective of the decision support tool 

that we consider here is to provide a methodology that translates the mental models of a group 

of experts into a single consensus model. Consensus in this context does not mean that all 

experts agree with the model, but that the produced framework is the best possible result that 

merges conflicting views. The resulting model is different from statistical models and 

mechanistic process-based models owing to the presence of intangible variables. The expert-

based decision models considered here are not meant to represent a reality, but intend to 

represent the mental models of a group of experts. 

All models are wrong. As Thomas Kuhn argued, the truth of a scientific model does not only 

depend on objective criteria, but also on the consensus within a scientific community. 
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Therefore, in the context of expert-based decision models, the focus is not on the veracity of 

the model, but rather on the usefulness of a model. The objective of models based on expert 

judgment is to produce results that are convincing, useful, and that inspire confidence. An 

expert-based model is convincing when it can reproduce simple intuitions of experts and 

historical facts. The model is useful if it can be applied beyond known scenarios and if it can 

be used to evaluate and propose new policies. Finally, it is key that expert-based models 

inspire confidence. Expert-based decision models have mainly been applied in the field of 

soft operations research (OR). Soft OR methods are participatory methods where a facilitator 

assists in the formulation and exploration of a problem as part of a decision-making process. 

The soft methods involve a group of decision-makers with conflicting views on the problem 

and different objectives and interests. In these ill-formulated problem scenarios, a part of the 

system will be difficult to quantify, for instance when social notions and subjective judgment 

form a critical part of the model (Munro et al., 2002). Soft OR methods have been developed 

more than thirty years ago, and to a certain extent these methods are able to address ill-

defined problems. Despite that, soft OR methods have never been recognized in the OR 

literature and suffer from the connotation of being imprecise and non-rigorous (Mingers, 

2011). As a consequence, soft OR methods do not inspire confidence, which reveals the need 

to develop new methods that can address the shortcomings of the prevalent soft OR methods.  

Many relevant problems feature characteristics that are not amenable for traditional OR 

techniques. Specifically, the application of known methods is problematic when groups of 

stakeholders are involved with different interests and values, when there is disagreement over 

the nature of the problem, reliable data is missing, or critical factors are intangible. Moreover, 

the problem definition may be changing continuously, the scientific knowledge to address 

them insufficient, and the proposed solutions might address symptoms rather than causes. 

These conditions are encountered in global problems related to climate change, population, 

and geopolitics, but also on a smaller scale in a business environment. Traditional OR usually 

works with a consensual group of decision makers with clear objectives that agrees on the 

nature of the problem. Moreover, variables can be quantified, and uncertainty about variables 

can be addressed with probabilistic methods. In reality, these criteria are often not met and 

soft methods are a vital part of the formulation and solution of ill-defined problems. First, by 

bringing experts together, soft OR helps to find agreement on the nature of the problem. 

Stakeholders increase their understanding about the scenario by doing simulations, and this 

incremental process leads to enhanced insight into the model, unanticipated consequences, 

formulation of objectives and constraints. While this can be a final goal on itself, the output of 

the soft OR phase can also be integrated into a traditional OR problem setting, for which the 

methods are widely recognized and that inspire confidence. The participatory process of co-
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design strengthens the transparency of traditional OR models, which is necessary in the 

presence of multiple stakeholders. In conclusion, we claim that in the considered problem 

scenarios soft OR and traditional OR are complementary and with this paper, we aim to 

bridge the expert-based models in soft OR to quantifiable problems in traditional OR.   

We advocate that system maps are the appropriate tool for the analysis of ill-defined 

problems. System maps provide a graphical representation of all factors that constitute an ill-

defined problem together with their interdependencies. System maps are typically applied to 

get a qualitative understanding of the indirect relationships and feedback loops between the 

problem factors. Here, we propose a new perspective on system maps that integrates all 

crucial steps of the decision-making process. We do not center on issues with a perceived lack 

of scientific knowledge, but rather on poorly scoped problems with diverging value 

frameworks. When time is unavailable to develop a well-grounded model, system maps are 

an excellent tool to work towards a common understanding of the problem and define 

solutions that are collectively supported. In fact, we propose to use system maps as the main 

machinery for (i) cooperation, dialogue, and mediation during the construction of the map, (ii) 

improvement of the understanding of the system behavior through numerical simulations, (iii) 

inclusion of pluralistic values for the definition of objectives, and (iv) suggestion of solutions 

that are broadly supported.  

2 Taxonomy of expert-based decision systems 

The terminology to describe soft OR methods and the corresponding graphical tools applied 

in literature is ambiguous.  Hence, we list here the main soft OR methodologies, which are 

also collectively called problem structuring methods (PSM), together with several graphical 

methods. In literature, different terminology can be found, usually with subtle differences 

between the different terms. We distinguish here between broad conceptual frameworks and 

narrowly defined methodologies.  

The main conceptual frameworks that facilitate collaboration and negotiation are listed below. 

A recurrent feature is that these frameworks do not go beyond a qualitative analysis of the 

problem scenario.  

• Soft systems methodology (SSM) is a sense-making framework that attempts to 

incorporate irrationality of agents as well as different value frames (Checkland and 

Holwell, 1997). Starting from a preliminary study of the problem scenario, a 

conceptual activity model is built that is later on used to guide a dialogue on desirable 

system outcomes between the involved stakeholders. 
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• Building on cognitive mapping, strategic options development and analysis (SODA) 

first tries to unite the perceptions of different people related to a particular problem 

scenario into a consensus group map, which is a subjective and abstract construct. 

This map is consequently used within the broader context of strategy design through 

group discussions.  

• Strategic choice analysis (SCA) is a participative methodology that offers a 

qualitative procedure for decision analysis (Friend and Hickling, 2005). By means of 

discussions between participants holding different views, a feasible set of solutions is 

created, individual decisions are compared, and finally a solution is selected out the 

solution set taking into account the identified uncertainties.   

There is a plethora of quantitative methods that can be classified according to different 

dimensions, for instance probabilistic versus deterministic models and dynamical versus static 

models. The most relevant methods used in literature are succinctly described below: 

• Bayesian networks (BNs) provide a graphical representation of probabilistic 

relationships between random variables by means of a directed acyclic graph. In case 

of discrete random variables, for instance hypotheses, the probability of a child node 

as a function of each possible combination of the parent nodes is typically listed in a 

table. The power of Bayesian networks lies in the potential for predictive as well as 

diagnostic inference. The required elicitation effort for BNs increases quickly with 

the network size. In order to capture dynamics, dynamic BNs are used that relate the 

network nodes over adjacent time steps. 

• Influence diagrams or decision networks are a generalization of BNs that are applied 

for decision-making problems under uncertainty.  

• Discrete event simulation (DES) is an event-based dynamical system model that has 

many industrial applications, for instance in supply chain management. The 

usefulness of the model extends also to decision-making, and DES allows us to make 

statistical estimates of queue lengths and waiting times under a set of alternative 

policy decisions. 

• System maps or causal loop diagrams are graphical models that visualize the causal 

relationships between different factors within a system. We prefer the term system 

maps, since they focus on the visual representation of a system rather than on the 

feedback loops that exist within the system, which can be very hard to disentangle in 

highly connected directed graphs. System maps provide a description of a system, its 

boundaries, the constituent system components, and the interactions that exist 

between these components. They typically consists both of hard (quantifiable) and 

soft (non quantifiable) variables. The soft variables or intangibles are often critical in 
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the system behavior. Numerical data is usually unavailable for the intangibles, but 

since they can significantly influence the system behavior, it is essential to include 

the soft variables in the system dynamics. System maps are built to enhance the 

understanding of the system behavior, in order to avoid unanticipated consequences 

and the policy resistance that can result from that. System dynamics (SD) is typically 

used to assist decision-makers in the design and analysis of policy options for the 

system described in the system map. SD is very useful for the study of complex 

systems, and allows the decision-maker to assess the system behavior under different 

conditions and strategic policies. 

As this work aims to connect conceptual frameworks with traditional OR techniques in the 

realm of public policy, we are mainly concerned about complex issues that deal with multiple 

views and intangible variables, while maintaining a formal approach that combines network 

dynamics with probabilistic methods. BNs mainly evolve around static inference problems 

and the elicitation requirements are infeasible for network sizes that usually appear in 

problem scenarios of public policy. DES handles in practice well-defined processes with a 

fairly narrow scope and has mainly been applied for industrial and production processes 

building on strong empirical basis. In view of the peculiarities of ill-defined problems, system 

dynamics over system maps is the appropriate tool that lends itself well for modeling 

continuous processes catered to strategic policy design. System maps allow for the integration 

of expert judgment and the blending of discrete and continuous processes, while 

incorporating the statistical details of multiple experts. Ultimately, system maps open new 

avenues to merge the mental models of experts and reach group consensus on the problem 

structure.  

3 Construction of a system map 

Expressing the problem scenario in a rigorous and manageable model is a challenging 

exercise. In view of the features of ill-defined policy problems, system maps can represent the 

problem formally and with some caution do not involve excessive elicitation efforts. The 

construction of a system map is a creative process of translating the ill-defined problem into a 

set of well-defined system components and interconnections (von Winterfeldt, 1980). 

Through this process, both objective (affected variables) and subjective (values and 

perspectives) factors are combined, and the resulting system map will subsequently facilitate 

the modeling and numerical analysis in the inference engine.  

System maps were originally designed as a qualitative model, and the description of the 

model itself was deemed to be useful to gain insight into the system behavior (Coyle, 2000). 
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Considering the quantification of qualitative models, it was argued that quantification could 

introduce so many uncertainties that the policy conclusions drawn from quantified models 

were potentially illusory. At the same time, there are many supporting arguments for a 

quantified analysis of system maps that claim that simulation or quantification nearly always 

adds value, even in face of possible uncertainties and the difficulties related to the 

quantification of soft variables (Homer et al., 2001). Interestingly, experimental studies have 

shown repeatedly that people perform poor mental simulations, even when they have 

complete knowledge of the system structure and when the structure is relatively simple. As a 

consequence, one cannot draw reliable conclusions from causal maps without simulation. 

System maps contain variables of different nature, soft variables and hard variables, and the 

meaningfulness of operations between these variables is often not obvious. Nonetheless, the 

quantification of the system behavior discloses trends and indirect effects that are not obvious 

by mere visual analysis of the system map. 

System maps are a suitable tool able to handle soft variables, uncertainties, and missing data. 

Current methods for the analysis of system maps are subject to different sources of 

uncertainty, which can be classified as parametric, structural, and experimental uncertainty. 

The dynamics that take place over the system map can be described and quantified by means 

of dynamical systems theory. Several key references in the field of system dynamics and soft 

systems methods are (Sterman, 2000, 2002, Jackson, 2006, Checkland, 1985, 2000). 

Although decisions in organizations or in the policy domain are predominantly made 

collectively, most decision support tools are still aimed at individuals. The proposed expert 

system based on system maps combines individual opinions, aggregates partial information, 

and gathers different perspectives, objectives, and preferences to reach a decision supported 

by the group. The resulting framework is co-owned and co-designed by the users, and the 

influence of a facilitator is minimized throughout the process. The proposed methodology 

allows users to be both co-located or at different locations.  

The objective of this section is to present a step-by-step procedure for the construction of a 

system map and to reduce the uncertainty from which the current methods suffer. The main 

challenges to establish a system map can be listed as follows: 

• Expert selection: The problems we are focusing on are too large in scope to be 

addressed by a single person. The aggregation of expert judgment is mandatory for 

informed analysis of the problem setting and the system behavior. A first important 

problem relates to the selection of the group of experts that will define the problem, 

in light of the risk of groupthink and confirmation bias. 
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• Elicitation of relevant system components and system boundaries: There are different 

strategies to distinguish between system and environment and define the system 

boundaries. In this respect, the definition of the system needs to balance the 

competitive requirements of complexity and tractability. The system needs to have a 

sufficient level of complexity to allow non-obvious insights, while the complexity in 

terms of number of state variables needs to be limited for reasons of feasibility 

(Ferrara et al., 2010). Although the construction of the system map may seem 

problem-specific, we present a method that addresses the following questions. How 

can data and expert elicitation best be exploited to define the system map? How 

should the expert surveys be designed to get optimal results, while minimizing the 

influence of the workshop facilitator on the definition of the system map? What is the 

approach to complement expert opinions with available data?  

• Estimation of the graph structure: The correlation between the system components 

translates the individual system components into a directed graph. A crucial aspect of 

the network construction is that only direct interactions between system components 

should be included.   

• Estimation of parameters with known graph structure: The weights of the links in the 

graph are estimated by a group of experts. Should expert opinions by aggregated or is 

it advisable to keep the full range of uncertainty?  With respect to aggregation 

methods, it is important to note that different aggregation schemes lead to 

qualitatively different results.  

• Complexity reduction: The reasons to reduce the system map complexity are mainly 

related to the expert elicitation effort and the human cognitive limitations to work 

with large networks. A first aspect of complexity relates to network size and 

structure. Are there methods to reduce the number of system components and links? 

A second aspect of complexity relates to node interactions. The relationships between 

the system components can be of different nature, and the question is if a single class 

of relations can be defined for all links between the system components. Are linear 

relations sufficient to define all links, or is there a need to define several classes of 

interactions? 

In the following sections, we will address step by step the main challenges listed above.  

3.1 Selecting the group of experts 

Expert elicitation is instrumental in the construction of a system map. Group decision-making 

has clearly a higher cost than individual decision-making, but as relevant knowledge in public 

policy scenarios is typically spread over a group of experts, the complexity of these problems 
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demands for higher levels of participation. In contrast with individual decision-making, the 

challenge of group negotiation is to provide a framework that facilitates the aggregation of 

unshared information and the reconciliation of conflicting interests. Although groups with 

distributed knowledge are expected to provide higher quality decisions, this is not always 

empirically justified. Groups can however outperform individuals when the distribution of 

knowledge is asymmetric, but the processing of the information is symmetric (Brodbeck et 

al., 2007). The group of experts needs to be selected based on the knowledge requirements of 

the problem scenario. During the expert selection stage, it is difficult to avoid the involvement 

of facilitator, and awareness is required that group selection can affect policy outcomes.  

The first fundamental question that arises in the group selection deals with the necessary 

number of experts in order to guarantee some pre-defined quality requirements. The wisdom 

of crowds is often used to elicit system components, interactions, and weights of the system 

map. With this technique, information is aggregated over experts, which yields good 

estimates when the assessment of the experts is unbiased and independent. These conditions 

are often not fulfilled in reality and require caution. It is not straightforward if more accurate 

estimates can be obtained if the number of experts is maximized. On the contrary, it is often 

possible to find a smaller and better-informed group that yields improved aggregated 

judgment. It can be shown that under certain technical conditions an optimal size of the crowd 

exists (Goldstein et al., 2014).  

For policy problems, the group of experts needs to cover all crucial areas that are related to 

the problem scenario, and often there is little overlap between the areas of expertise of the 

group members. This group composition requires combining unshared information so as to 

improve the quality of the group decision. Often unshared information is more significant 

than the commonly held information in achieving a collective decision (Stasser and Titus, 

1985). The effectiveness of the group builds on the transfer and integration of knowledge 

across experts. Through discussion, the partial and biased believes of the group members can 

be corrected to form a collective, unbiased representation of the system. In reality however, 

due to group cohesiveness individuals avoid to raising controversial issues. This desire to 

harmony is often referred to as groupthink and can lead to impaired decision-making. 

Confirmation bias is a cognitive bias that can explain the standing and lasting different 

opinions between groups (Tversky and Kahneman, 1973). The effects of groupthink and 

confirmation bias require a systematic reworking of the system map, by a systems analyst or 

workshop facilitator.  
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3.2 System components and system boundaries 

Once experts are selected, the constituent elements of the problem scenario can be identified. 

These system components can be variables that describe the state of the system, processes, 

decision alternatives, or discrete events. The procedure to identify system components can be 

divided in the following steps: 

i. The group experts collect the system components during a participative workshop. 

The co-location of experts is preferential during this phase of problem structuring, but 

experts can define the system components also individually. The scope of this 

exercise is primarily to find agreement on the extent of the problem scenario. 

ii. The workshop facilitator or linguist pre-processes the list of system components 

based on linguistic vicinity to avoid duplication of factors.  

iii. The experts perform a logical clustering of the pre-processed data based on semantic 

correlation. Specifically, system components are clustered visually based on their 

significance, and logical clusters are replaced by a single system component. This 

round of system dimension reduction needs to limit the dimension of the state space 

to 50 - 100 system components. This effort is necessary to ensure that the elicitation 

effort of the subsequent phases is manageable.  

iv. The experts scale the relevance of system components visually on a diagram. This 

scaling is done by placing the most important components in the center and placing 

less important components in the periphery of the diagram. This round of system 

dimension reduction prunes the least relevant system components and reduces the 

dimension of the state space preferentially to 30 - 50 elements. 

v. The experts define objectives and preferences for the problem scenario. This phase is 

essential to verify the extent of the problem scenario and delineate the system 

boundaries. Determining system boundaries is an iterative process that requires 

balancing the complexity-feasibility tradeoff. In essence, the group of experts verifies 

if the description of the system is appropriate for the purpose.  

Both system components and system boundaries are now defined, but in order to allow for a 

quantitative analysis, a scale of measure still needs to be determined. Several approaches can 

be used to give meaningful values to the system components, which is particularly important 

for the intangible variables. The systems analyst can decide to establish specific measurement 

scales for all system components. The disadvantage of this approach is that operations, such 

as summations and products, are performed on variables with very different units, and the 

meaningfulness of these operations needs to be analyzed. Conversely, a common relative 

scale can be used with unitless variables, which solves the problem of operations with 

variables with different units. In this case, system components take values for instance over 
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the range [0, 100]. This approach enables an intuitive interpretation of the variation between 

different system components and lends itself better to accommodate intangible variables.  

3.3 Graph structure estimation 

The next step is to identify relationships between system components during individual 

sessions. In case data is available for all system components, the graph structure can be 

estimated based on the conditional independence between the system components through 

partial covariances (Hastie et al., 2009). A prudent approach is required in designing a 

procedure to construct a directed graph, because the number of connections is directly related 

to the elicitation effort for parameter estimation. The maximum number of connections 

increases with the square of the number of system components. Often it is difficult to 

distinguish between direct and indirect relationships between system components, and 

therefore it is sensible to impose a limit on the number of connections to a given budget, 

typically 10 percent of the maximum number of interconnections. To produce the 

interconnections map, the following procedure can be followed: 

i. A list of definitions of system components is provided, together with the budget of 

interconnections.  

ii. Select the most strongly connected pairs of system components, up to the limit of the 

interconnections budget.  

iii. A tally is made for all pairs and numbers are normalized by the maximum cited pair. 

The most selected interconnections are kept up the maximum available budget. 

iv. The system map can now be finalized by depicting system components together with 

the links.  

A similar approach has been followed in a recent report of the World Economic Forum 

(WEF), where an interconnections map of risks is provided, as well as a risk-trend 

interconnections map (WEF, 2016). The main shortcoming of their approach is that the 

respondents were provided with a list of system components and could not decide which risks 

were taken into consideration. We argue that the group of experts should determine both 

system components and graph structure.  

The resulting graph structure can be used to re-evaluate the system boundaries. In view of the 

verification, it is useful to classify the system components into endogenous, exogenous, and 

external state variables. The exogenous state variables represent constants and policy 

decisions, while endogenous variables are those system components that represent the system 

state. Endogenous variables change over time by interacting with each other and by the 

influence of exogenous variables. External variables are uncoupled from the connected part of 

the system map. These factors are considered insignificant for the purpose of the system and 
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can therefore be cancelled from the system map. Inspecting the link defined by the experts, it 

is necessary to reflect on the feedback loops and verify if some of the exogenous variables 

should be endogenous. A system component that is treated as exogenous is not subjective to 

any feedback from the system. It is important to stress that this is often the case for policy 

decisions. Although the policy decisions are influenced by the state of the system, they are 

taken at a certain point in time and remain constant afterwards. If extra system components 

and links are identified with potential policy implications, key participants of the workshop 

need to be consulted to judge the validity of the assumptions. 

The complexity resulting from the number of connections is the main hurdle to keep the 

expert elicitation manageable. The system map, consisting of system components, 

connections, and the results from the tally, can be represented by a weighted adjacency 

matrix, which allows to exploit techniques from network science to understand which nodes 

behave in a very similar way, which nodes are important, and sequentially, which nodes can 

be excluded from the analysis. The methods that can be used are principal component 

analysis, feature selection, community detection, and the relevance estimation of nodes by 

different centrality metrics.  

3.4 Parameter estimation with known graph structure 

The system map is now defined by its components and the relationships that exist between 

them, and expert opinion is now required to turn the graph into a weighted graph. This 

quantification step allows us to use the system map for dynamical analysis of the system 

behavior (cfr. Section 4). However, the cost-accuracy tradeoff is increasingly important with 

network size, and therefore some assumptions need to be adopted to ensure that the elicitation 

efforts remain achievable. Although relationships between system components can be highly 

non-linear, all graph links can be approximated by linear relationships in case we aim to 

capture local system behavior. Since the uncertainty in the description of the system behavior 

is vast, this approximation reaffirms that the system model should only be used over a 

relatively small time-horizon. In Section 4, it will be explained in greater detail that for each 

link a single weight needs to be estimated that expresses the strength of the correlation 

between the considered system components.  

Depending on the size of the network and the total number of connections, there are different 

strategies to estimate the link weights. In case the number of network links is reasonably 

small, experts can be requested to estimate all link weights individually, or all links for which 

they are able to make an informed guess. In this case, experts do not need to be co-located, 

and the elicitation can be performed by means of a survey, customized software tool, etc. This 

approach provides the best results and allows us to include the opinion distribution in the 
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analysis of the system behavior. Instead of using the consensus value that follows from social 

choice theory, largely varying parameter values that correspond to opposing opinions can 

disclose potentially very different behavior. However, if the complexity reduction efforts in 

the former steps of the system map construction were not sufficient, it can be impractical to 

request the experts to estimate all link weights. In this case, the group can be subdivided 

according to thematic area, and link weights can be estimated in group by means of different 

well-known aggregation methods. In this case, sub-groups need to be co-located or a group 

needs to be formed in a distributed way making use of technologies commonly used today. 

When the link weight assessment is performed in group, the elicitation process requires also 

the presence of a moderator. Depending on the areas of expertise of the group members, 

different social decision scheme can be used, such as delegation, unanimity, majority, or 

plurality. There is a large body of literature on voting-based methods, and it has been shown 

that range voting, which selects the vote with the highest average, results in the smallest 

Bayesian regret. 

Ill-defined problems have to cope with so-called deep uncertainty, which refers to uncertainty 

that follows from disagreement between experts on the model structure, the type and weight 

of interactions, and the extent of the problem scenario. It is essential that any opportunity to 

reduce the inherent uncertainty of ill-defined problems be harnessed. It is therefore highly 

recommended to capitalize on available data to estimate the link strength for those 

interactions that can be quantified.  

3.5 Test cases on education and refugee crisis 

To illustrate the procedure, we show the system maps of two test cases that were developed in 

collaboration with the Finnish Prime Minister’s Office (PMO). The first policy problem on 

education was motivated by the deterioration of the PISA (programme for international 

student assessment) results in Finland. The second policy problem concerns the recent 

refugee crisis in Finland and the potential repercussions on employment, safety, education 

level, etc. The system map that has been produced during different workshop sessions is 

shown in Fig. 1.  
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Figure 1 - System map of the refugee problem scenario created during collaborative workshop sessions. 

4 Inference engine for analysis and policy design 

4.1 Analysis of a system map through system dynamics 

In this section, we establish an analytical model to describe the network dynamics and 

indicate how the uncertainty following from diverging expert opinions should be integrated in 

the framework. By complementing the qualitative system map with an analytical model, we 

allow experts and decision-makers to run simulations of the problem scenario and assess 

different futures according to different mental models and policy options. We call this 

quantitative model the inference engine, since it enables us to look at the consequences of 

policy options over all system components. 

When data is available for some of the system components, correlation-based metrics can 

disclose linear interactions between the system components, but they fail to infer nonlinear 

relationships. Network maximum correlation (NMC) has been proposed to identify nonlinear 

relationships within networks without knowing the shape of the underlying nonlinearity (Feizi 

et al., 2015). In the absence of closed solutions for nonlinear systems, simulation is a 

necessary tool to quantify system component values and understand the system behavior 

(Sterman, 2000). However, in order to control the model complexity, we assume that 

interactions between system components are locally described by linear functions. 

We consider a network consisting of n system components or nodes vi that are marked with a 

value xi. We further have a weighted adjacency matrix A = [aij ] that describes how changes 
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of system component values are driven by changes of the neighboring system components. 

We consider here the scenario where changes Δx(k) at time step k result in changes of the 

system component values at time step k + 1, but where Δx(k) does not have a persistent effect 

further in the future. Let uj(k) denote an identified policy option that directly affects node j at 

time k, and let us assume that the relation between changes in node i and the changes of its 

neighborhood happen in a linear fashion; then we can write  

Δ𝑥!(𝑘 + 1) =
!

𝑎!"Δ𝑥!(𝑘) + 𝑢!(𝑘), 

which can be formulated in matrix form as  

Δ𝐱(𝑘 + 1) = 𝐴Δ𝐱(𝑘) + 𝐮(𝑘). 

By iterating the recurrence relation, we get 

Δ𝐱(𝑛) = 𝐴!Δ𝐱(0) +
!!!

!!!

𝐴!!!!!𝐮(𝜏). 

Considering that Δ𝐱(0) = 0 and for constant input, we get 

Δ𝐱(𝑛) =
!!!

!!!

𝐴!!!!!𝐮 

which can be reformulated differently in case |𝜆!(𝐴)| < 1 (such that 𝐴! converges and 

(𝐼 − 𝐴) is invertible) as 

Δ𝐱(𝑛) = (𝐼 − 𝐴)!!(𝐼 − 𝐴!!!)𝐮, 

and the long-term effects can be written as 

Δ𝐱(∞) = (𝐼 − 𝐴)!!𝐮. 

In order to satisfy the condition that |𝜆!| < 1, we scale the weights of the matrix A with 

𝜌(𝐴) + 1, where  𝜌(𝐴) = 𝑚𝑎𝑥
!
{|𝜆!|}. By rescaling the system matrix such that all 

eigenvalues fall within the unit circle, we make sure that the system is stable. The stability 

assumption is restrictive, but valid for many realistic systems. For the aggregate differences 

of the feature values, we normalize with respect to the total aggregated input into the system 

Δ𝐱!"" =
!
!!! Δ𝐱(𝑘)
𝑁×𝑢!

. 

It is relevant to note that the relation with time is weakly defined, mainly due to the scaling 

imposed by the stability requirement. During the workshops, the facilitator needs to clarify 
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that a link weight with value 10 does not relate to a 10-fold increase of the destination node in 

a single time step.  

The uncertainty that originates from differing views on the model is typically called deep 

uncertainty. Under conditions of deep uncertainty, we can get a better view on the range of 

plausible futures through individual expert opinions. Instead, when aggregated metrics, 

expected values, of consensus values are used for the link weights, the resulting model does 

not allow exploring different potential pathways according to the mental models of the 

experts. A model based on aggregate metrics can yield good results when the problem 

scenario is not contentious, or in case accurate estimates exist of the model parameters. 

However, in the context of ill-defined problems it is highly recommended to account for deep 

uncertainty and use the diverging opinions in a robust decision-making framework. The 

analysis of multiple pathways facilitates dialogue between experts and decision-makers and 

can result in the selection of a consensual policy option. The final goal of the inference engine 

is to support decision-making while accounting for the multiplicity of plausible futures. By 

incorporating explicitly multiple views on the problem scenario, system maps can be very 

helpful to find a consensus on the action to be taken. In this context, notice that the analytical 

model is not a representation of reality, but a useful aid to link policy decisions to 

consequences under diverging expert opinions.  

In general, the expected value of the system dynamics is different from the dynamics of the 

expected system, which can be expressed as 

			 E[ fi(x(k),u(k),A)]≠ fi(x(k),u(k),E[A]) , 

where fi(.) represents the function representing the system dynamics. For the system described 

here, fi(.) is a linear function such that we get an equality  

			 E[ fi(x(k),u(k),A)]= fi(x(k),u(k),E[A]) . 

It is however not clear if the dynamics of the expected system provide any meaningful 

insight. Through all methods of aggregation, the expected system provides results that 

exclude extreme expert judgments, even though very thoughtful. By running simulations over 

system models corresponding to contrasting expert views, different pathways can be 

distinguished and studied. Instead of focusing on optimality, ill-defined problems 

predominantly focus on robustness of the proposed solutions by assessing how many of the 

plausible pathways yield desirable outcomes under a given policy option. The policy option 

should be chosen that provides desirable outcomes over the largest possible subset of expert 

opinions. The reliability of the chosen policy can be expressed in terms of the ratio of the 
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subspace cardinality of the parameters that yields desirable outcomes over the entire 

parameter-subspace cardinality.  

4.2 Validation of the system map 

A model is always wrong and cannot be verified nor validated (Sterman, 2000). Still, it is 

essential to perform a set of tests that improve the quality of the model and can make it 

convincing and useful. Validation in the strict sense of proving the validity and accuracy of 

the inference engine is not applicable in this context. The system map is built on expert 

knowledge, and is not verifiably wrong, meaning that there is no formal way to validate 

expert judgment. Instead of a proper validation process, a sensitivity analysis can be 

performed with respect to the system boundaries, system links, and if aggregation is 

performed, with respect to the aggregation rule. The validation process as defined here is a 

sanity test for the overall system behavior, and the system analyst can adjust the system map 

in order to rule out obvious errors that went unnoticed. During validation, it is advisable to 

compare the system behavior with historical data where possible. For problem scenarios in 

public policy, data can be typically be found for certain subsets of the system map and the 

meaningfulness of the inference engine should be verified for these subsets. The following 

steps can be followed for system map validation:  

i. Boundary adequacy can be tested both by including and excluding system 

components and analyzing the sensitivity of the crucial state variables of the problem 

scenario. In case additional system components have significant effects on the system 

behavior, the system boundaries need to be re-evaluated. 

ii. The structural adequacy relies heavily on the foreseen link budget. The sensitivity 

with respect to the number of node interactions can disclose if the increase or 

reduction of the link budget results in qualitatively different results. Quantitative 

differences and varying speed of the system response are less relevant in this context.  

In addition, the structural assessment requires also to verify if the system behavior is 

conform physical laws, such as conservation laws.  

iii. The parametric adequacy of the model makes use of historical data for subsets of the 

system map to verify contentious opinions and outliers. 

iv. The susceptibility of the model response with respect to model assumptions needs to 

be analyzed. Model assumptions can relate to the functional relationships between the 

system components, the imposed stability of the system, etc.  

v. The focus of the sensitivity analysis is on tests that reveal the limitations of the 

model. Model limitations can apply to the time horizon over which the model can be 

used, the awareness of outliers in expert opinions, etc.  
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4.3 Preference elicitation and problem formalization 

In public policy, it is essential to have a good understanding of the public value framework. 

The elicitation of public values can be performed in expert groups, but also by means of 

public involvement in focus groups of layman (Keeney et al., 1990). The elicitation process 

consists of two sequential phases: (i) identification of the objectives and criteria to be met, 

and (ii) collection of the weights corresponding to all criteria. The first phase is performed in 

expert workshops during the construction of the system map, since the objectives help to 

elucidate the system boundaries. Usually, competitive system objectives are defined taking 

into account multiple perspectives within society. For the weighting of preferences, several 

methods are commonly used such as cardinal ranking, nominal ranking, and interval selection 

(Wang et al., 2009, Triantaphyllou, 2013), but the entire weight space can also be explored 

(Lahdelma and Salminen, 2001). The robustness of these weighting methods needs to be 

carefully assessed (Danielson and Ekenberg, 2016).  Building on techniques from multi-

objective decision analysis, the criteria and preferences are merged in an objective function. 

The inference engine can generate and visualize both the aggregated utility and the individual 

objectives, which is very helpful for decision-makers to understand the tradeoffs and 

synergies that result from chosen policy options.  

4.4 Design of realistic policies 

Some solutions that result from the optimization exercise can be unworkable. As an example, 

there are cases where optimal control solutions suggest bang-bang control policies, i.e., 

policies where the control only takes the extreme values within the set of admissible controls. 

Although there are methods to circumvent this particular control structure, in general we need 

to evaluate if the obtained adaptive control policy is practically useful and meaningful to 

implement.   

If reliable probabilistic information is available about the different potential models, the 

policy option should be selected that maximizes expected utility. However, under conditions 

of deep uncertainty, a strategy is required that performs reasonably well across the range of 

plausible futures defined by experts (Lempert, 2002, Lempert et al., 2006). Stated differently, 

a robustness criterion is needed that allows us to make a comparative analysis of the available 

policy options. Robust decision-making can help decision-makers to formulate solutions in 

the absence of information about the likelihood of the model parameters, which is standard 

for system maps and the corresponding ill-defined problems. By evaluating the range of 

pathways, sub-optimal solutions can be identified that satisfy a minimum performance in the 

largest possible subset of expert opinions. This approach allows us to discover the policy 

options that yield acceptable performance over most of the future pathways. What 
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distinguishes system maps described in this work from traditional robust decision-making, is 

that the uncertainty is not defined by a set of possible probability distributions of the system 

parameters, but instead by diverging expert opinions for which no likelihood information is 

available.  

4.5 Use case and benchmark exercise 

In the refugee problem scenario, we study now the preferential areas of policy action. Policy 

actions need to address the following objectives that have been identified by the group of 

experts: (i) reduce fear amongst Finnish population, (ii) control the refugee flow, (iii) manage 

expectations of asylum seekers, (iv) preserve Finnish economy under migration pressure, and 

(v) avoid collapse of Finnish society.   

As a benchmark exercise, we aim to make a comparative study of the expected system 

dynamics versus the dynamics of different plausible systems. The sensitivity of the system 

outcomes as a function of the adopted aggregation rule can provide insight into the most 

informative aggregation methods. By taking values from the empirical distribution of link 

weights, plausible models are constructed and different pathways can be explored under 

different realistic policy options. In view of the large uncertainties present in the system 

maps, the emphasis is not on optimization, but rather on the selection of robust policy 

solutions. 

5 Closing comments 

We proposed a methodology to develop an expert system addressing public policy issues 

within a group setting. The expert system builds on a system map in combination with an 

inference engine. The system map is defined during participative workshops and consists of 

all essential factors and the interconnections between these factors that affect the problem 

scenario. The inference engine can simulate future pathways and allows us to select solutions 

that are robust over the largest possible set of expert opinions. The robust solution includes 

and weighs multiple priorities of the decision-makers, according to their conflicting value 

frameworks . 

When aggregation rules are used for link weights, system maps represents the average 

perception of the problem scenario and its meaningfulness can be questioned in view of 

conflicting opinions. Other issues with aggregation rules relate to group bias and groupthink. 

We therefore recommend using the full set of expert opinions and include in the analysis the 

notion of robustness by providing policy options that yield acceptable performance over the 

uncertainty domain.  
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Although we use a quantitative model to describe the system dynamics, we need to recognize 

that the system map and its dynamics are fully based on expert judgment and on a set of 

restrictive assumptions (e.g., linearity). The trajectories of the system components very often 

do not have a direct physical interpretation, and therefore the quantitative model still leads 

only to qualitative results. This means that the interpretation of numerical values is usually 

done in a comparative way. Ultimately, we account for uncertainty by gathering expert 

opinions in a robust decision-making context, but also here a prudent approach is necessary. 

Group selection has a crucial impact on the quality and range of collected opinions, and there 

are no formal ways to determine the completeness of the collected uncertainty set. The 

proposed policy options are therefore only robust with respect to the set of opinions 

developed in the considered group of experts.    
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6 Lexicon of system maps 

System: A system is a closed set of state variables that all together represent the behavior of a 

system. We call the state variables here the system components, and these system components 

are augmented with interrelationships between them. The system components, system links, 

and the interaction rules between connected system components determine the behavior of the 

system under study.  

System component: System components are the features, factors, or state variables that 

determine the evolution of the system over time. System components can be classified 

according to endogenous and exogenous variables, where the exogenous system components 

can in some cases be used as policies or control variables. System components can also be 

classified along another dimension, more specifically we can distinguish between measurable 

and intangible state variables. Intangible system components frequently appear in ill-defined 

problems and typically can be expressed by means of a common relative measurement scale.  

System links: System links represent a relationship between system components and are 

represented by edges in the graph structure. The system links in system maps as described in 

this paper are marked with a weight, where the of the link strength is informed by data or 

expert judgment.  

System boundaries: The system boundaries separate the system from the environment, 

which can affect the overall system behavior by means of exogenous effects or inputs. 
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