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Another View of the Maximum Principle for
Infinite-Horizon Optimal Control Problems in

Economics

Sergey M. Aseev∗ Vladimir M. Veliov†

Abstract

We present a recently developed complete version of the Pontryagin maximum prin-
ciple for a class of infinite-horizon optimal control problems arising in economics. The
peculiarity of the result is that the adjoint variable is explicitly specified by a formula
which resembles the Cauchy formula for solutions of linear differential systems. In cer-
tain situations this formula implies the “standard” transversality conditions at infinity.
Moreover, it can serve as their alternative. We provide examples demonstrating the ad-
vantage of the suggested version of the maximum principle. In particular, we consider
its applications to Halkin’s example, to Ramsey’s optimal growth model and to a basic
model of optimal extraction of a non-renewable resource. An economic interpretation
of the developed characterization of the adjoint variable is also presented.

Keywords: optimal control, infinite horizon, Pontryagin maximum principle, shadow
prices.

1 Introduction

The aim of this paper is to present some recent results by the authors, developing another
view of the Pontryagin optimality conditions for infinite-horizon optimal control problems,
especially with regard to the correct determination of the so-called “shadow prices function”.

Let G be a nonempty open convex subset of Rn and let

f : [0,∞)×G× Rm → Rn and f 0 : [0,∞)×G× Rm → R1

be given functions.
Consider the following optimal control problem (P ):

J(x(·), u(·)) =

∫ ∞
0

f 0(t, x(t), u(t)) dt→ max , (1)
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ẋ(t) = f(t, x(t), u(t)), x(0) = x0, (2)

u(t) ∈ U(t). (3)

Here x(t) = (x1(t), . . . , xn(t)) ∈ Rn can be interpreted as a vector of capital stocks and
u(t) = (u1(t), . . . , um(t)) ∈ Rm, as an investments vector at time t ≥ 0; x0 ∈ G is a fixed
initial state and U : [0,∞) ⇒ Rm is a multivalued mapping with nonempty values.

Infinite-horizon optimal control problems of type (P ) arise in many fields of economics,
in particular in problems of optimization of economic growth [14]. To the best of our knowl-
edge Ramsey [35] was the first who presented, in the 1920s, the problem of optimization of
economic growth as a variational problem of maximizing an integral functional on an infinite
time horizon. This line of research was continued by Cass [19], Koopmans [31], Shell [39],
Arrow and Kurz [3], and become the standard method of solving optimal economic growth
models. Nevertheless, the theory of first order necessary optimality conditions for infinite-
horizon problems is still less developed than that in the finite-horizon case.

It is well known, that the proper choice of the present value “shadow prices function”
ψ(·) along the optimal trajectory x∗(·) plays a crucial role in the identification of the cor-
responding optimal investment policy u∗(·) in problem (P ). Indeed, if such a function
ψ : [0,∞) 7→ Rn is known1, then the optimal investment policy u∗(·) can be determined by
maximization of the instantaneous net present value utility on the time interval [0,∞):

f 0(t, x∗(t), u∗(t)) + 〈ψ(t), f(t, x∗(t), u∗(t))〉
a.e.
= sup

u∈U(t)

{
f 0(t, x∗(t), u) + 〈ψ(t), f(t, x∗(t), u)〉

}
. (4)

Here the first term f 0(t, x∗(t), u∗(t)) in the left-hand side represents the present value utility
flow, while the second term 〈ψ(t), f(t, x∗(t), u∗(t))〉 is the present value increment of the
capital stock x∗(t) at instant t ≥ 0. Thus, one can say that (P ) is, in fact, a problem of
determining an appropriate function of shadow prices ψ(·).

Notice, that for the finite-horizon counterpart of problem (P ) the Pontryagin maximum
principle provides a unique function ψ(·) for which the maximum condition (4) holds.

Let us recall this classical result in optimal control theory [34]. Define the Hamilton-
Pontryagin function H : [0,∞)×G×Rm ×R1 ×Rn → R1 for problem (P ) in the standard
way:

H(t, x, u, ψ0, ψ) = ψ0f 0(t, x, u) + 〈ψ, f(t, x, u)〉,

t ∈ [0,∞), x ∈ G, u ∈ Rm, ψ0 ∈ R1, ψ ∈ Rn.

In the normal case, i.e. when ψ0 = 1, we will omit ψ0 and write simply H(t, x, u, ψ) instead
of H(t, x, u, 1, ψ).

Now, consider the following problem (PT ) on a fixed finite time interval [0, T ], T > 0:

JT (x(·), u(·)) =

∫ T

0

f 0(t, x(t), u(t)) dt→ max ,

ẋ(t) = f(t, x(t), u(t)), x(0) = x0,

u(t) ∈ U(t).

1Recall that in economics “shadow price” of capital is equal to the present discounted value of future
marginal products (see [14, Chapter 2]).
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Here all the data in problem (PT ) are the same as in (P ). The only difference is that the
problem (PT ) is considered on the finite time interval [0, T ]. Then the Pontryagin maximum
principle asserts that, on suitable regularity assumptions, for any optimal admissible pair
(xT (·), uT (·)) in problem (PT ) there is an absolutely continuous function (adjoint variable)
ψT : [0, T ] 7→ Rn for which the maximum condition (4) is fulfilled. This function ψT (·) is
defined uniquely as a solution of the normal form adjoint system

ψ̇(t) = −Hx(t, xT (t), uT (t), ψ(t)) (5)

with boundary condition
ψ(T ) = 0. (6)

Condition (6) is known in the optimal control theory as the transversalty condition for
free terminal state. This condition properly identifies the function ψT (·) among all functions
ψ(·) which satisfy together with (xT (·), uT (·)) the core conditions of the maximum principle:
adjoint system (5) and maximum condition (4) (with the subscript ∗ replaced with T ) .

This result motivated numerous attempts to extend the maximum principle for problem
(PT ) to the infinite-horizon problem (P), by involving “natural” counterparts of transversal-
ity condition (6), in particular of the form

lim
t→∞

ψ(t) = 0, (7)

or
lim
t→∞
〈ψ(t), x∗(t)〉 = 0. (8)

However, the positive results in this direction were obtained under additional conditions
(see [15, 24, 30, 32, 36, 38, 42]) that make them inapplicable to many particular economic
problems. Moreover, as it was pointed out by Halkin [26] by means of counterexamples,
although the state at infinity is not constrained in problem (P ), such problems could be
abnormal (that is, ψ0 = 0) and complementary conditions of the form (7) or (8) may fail to
be fulfilled for the “right” adjoint function for which the core conditions of the maximum
principle hold.

Notice, that additional characterization of the adjoint variable is critically important for
the efficient use of the maximum principle, because in the general case, without complemen-
tary conditions like asymptotic conditions (7) or (8), the set of extremals satisfying the core
conditions of the maximum principle may be “too wide.” Meanwhile, a number of known
examples (see [9, 18, 26, 32]) clearly demonstrate that complementary conditions for the
adjoint variables which differ from (7) and (8) have to be involved.

We should also mention another asymptotic condition on the adjoint variable of the form

lim
t→∞

H(t, x∗(t), ψ
0, ψ(t)) = 0, (9)

proved by Michel (see [32]) in the specific case when the problem (P ) is autonomous with
discounting, i.e. f(t, x, u) ≡ f(x, u), f 0(t, x, u) = e−ρtg(x, u), x ∈ G, u ∈ U(t) ≡ U , t ≥ 0,
the discount rate ρ is an arbitrary real number (not necessary positive), and the optimal
value of the functional is finite. Here H(t, x∗(t), ψ

0, ψ(t)) = supu∈U H(t, x∗(t), u, ψ
0, ψ(t)) is

the Hamiltonian. Condition (9) is similar to the transversality in time condition

H(T, xT (T ), ψ0, ψ(T )) = 0

3



which is well known for finite-horizon problems with free terminal time T > 0 (see [34]).
Let us return to conditions (5) and (6) for the adjoint variable in the finite-horizon

problem (PT ). It is easy to see, that due to the Cauchy formula for linear differential
systems (see [27]) the adjoint system (5) and the transversality condition (6) result in the
following representation:

ψ(t) = ZT (t)

∫ T

t

[ZT (s)]−1f 0
x(s, xT (s), uT (s)) ds, t ∈ [0, T ]. (10)

Here ZT (·) is the normalized at instant t = 0 fundamental matrix solution on [0, T ] of the
linear system

ż(t) = − [fx(t, xT (t), uT (t))]∗ z(t). (11)

This means that the columns of the matrix function ZT (·) are linearly independent solutions
of (11) on [0, T ] while ZT (0) = I, where I is the identity matrix.

The pointwise representation (10) suggests a “natural” candidate for appropriate adjoint
function ψ(·) in problem (P). Indeed, substituting (xT (·), uT (·)) with (x∗(·), u∗(·)) in (10)
and formally passing to the limit with T → +∞ (which can be justified under appropri-
ate conditions that guarantee convergence of the integral in the next line) we obtain the
expression

ψ(t) = Z∗(t)

∫ ∞
t

[Z∗(s)]
−1f 0

x(s, x∗(s), u∗(s)) ds, t ≥ 0, (12)

where now Z∗(·) is the normalized at instant t = 0 fundamental matrix solution of the linear
system

ż(t) = − [fx(t, x∗(t), u∗(t))]
∗ z(t), t ∈ [0,+∞).

Clearly, in the infinite-horizon case, formula (12) is a straightforward analog of the Cauchy
formula (10) for the adjoint function in problem (PT ). This explicit formula does not as-
sume or imply conditions (7) or (8), which may be inconsistent with the core conditions
of the maximum principle. However, for particular classes of problems it may imply (7)
and/or (8), as seen below in the paper. If the problem (P ) is autonomous with discounting
and the optimal value of the functional is finite then the explicit formula (12) can imply
also the asymptotic condition (9). It turns out that the Cauchy type formula (12) can be
justified as a part of necessary optimality condition for problem (P ) on mild regularity and
growth assumptions, and it can serve as an alternative to conditions (7) and (8). A series of
results in this direction was developed in the last years (see a brief bibliographical survey in
Appendix C).

In this paper we present the version of the maximum principle with an explicitly spec-
ified adjoint function ψ(·) by formula (12) developed recently by the authors in [10]–[12]
with a focus on its economic applications. An important feature of the result is that it is
proved under weak regularity assumptions. This makes possible to directly apply it to some
meaningful economic models. The admissible controls u(·) are not necessary bounded (even
in a local sense), and the functions f(·, ·, ·) and f 0(·, ·, ·) are not necessary continuous in
the variable u. Instead, we assume that the functions f(·, ·, ·), f 0(·, ·) and the multivalued
mapping U(·) are Lebesgue-Borel (LB) measurable in the variables (t, u), while their par-
tial derivatives fx(·, ·, u∗(·)) and f 0

x(·, ·, u∗(·)) are locally integrably bounded in a (t, x)-tube
around the graph of the reference optimal trajectory x∗(·). From practical point of view (es-
pecially in economics) considering LB-measurable data f(·, ·, ·) and f 0(·, ·, ·) is important,
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since it allows for discontinuity with respect to the control. Such a discontinuity appears, for
example, if fixed costs of the control are present whenever the control (i.e. maintenance) is
positive, which jump down to zero if zero control is applied. The unboundedness of admis-
sible controls u(·) allows one to treat some economic problems (such as problems of optimal
exploitation of renewable or non-renewable resources) in their most natural settings when
the rate of extraction of the resource satisfies only an integral constraint in an L-space.

Another useful feature of our main result is that it applies to problems with infinite
objective integral (1), where the notion of overtaking optimality is adopted.

The proof of the main result, presented in detail in [12], employs the needle variations
technique and makes a substantial use of the Yankov-von Neumann-Aumann selection the-
orem [29, Theorem 2.14].

The paper is organized as follows. In Section 2 we give a strict formulation of the problem
and introduce the notion of optimality used in the paper. In Section 3 we formulate our
main result – the normal form version of the maximum principle for problem (P ) with the
adjoint variable ψ(·) specified explicitly by formula (12). Moreover, the economic meaning of
formula (12) is discussed in detail. Section 4 is devoted to illustrative examples. The paper
is supplied with Supplement consisting of Appendixes A, B, and C. We present one more
illustrative example (in Appendix A). Then we specialize the main result for several classes
of problems and give conditions under which the explicitly defined adjoint function satisfies
the asymptotic conditions (7) and (8) (in Appendix B), and provide a brief bibliographical
survey (in Appendix C).

2 Statement of the problem and preliminaries

The following assumption is standing throughout the paper and will not be explicitly men-
tioned in the text below.

Assumption (A0). For almost every t ∈ [0,∞) the derivatives fx(t, x, u) and f 0
x(t, x, u)

exist for all (x, u) ∈ G× Rm and the functions f(·, ·, ·), f 0(·, ·, ·), fx(·, ·, ·), and f 0
x(·, ·, ·) are

Lebesgue-Borel (LB) measurable in (t, u) for every x ∈ G, and continuous in x for almost
every t ∈ [0,∞) and every u ∈ Rm. The multivalued mapping U(·) is LB-measurable.

The LB-measurability in (t, u) [21, Definition 6.33] means that the functions (and the sets)
to which the property applies are measurable in the σ-algebra generated by the Cartesian
product of the Lebesgue σ-algebra on [0,∞) and the Borel σ-algebra on Rm. An important
property is that for any LB measurable function g : [0,∞)×Rm → Rn, the superposition t 7→
g(t, u(t)) with a Lebesgue measurable function u : [0,∞)→ Rm is Lebesgue measurable [21,
Proposition 6.34]. The LB-measurability of the multivalued mapping U(·) means that the
set graphU(·) = {(t, u) ∈ [0,∞)×Rm : u ∈ U(t)} is a LB-measurable subset of [0,∞)×Rm.

Remark 2.1. In some situations it is natural (and convenient) to consider problems (P )
with functions f(·, ·, ·) and f 0(·, ·, ·) which are defined only for (t, u) ∈ graphU(·), where
U(·) is a LB-measurable multivalued mapping. In this case the LB-measurability of f(·, ·, ·)
and f 0(·, ·, ·) in (t, u) means that these functions are measurable in the relative σ-algebra
in graphU(·) induced by the σ-algebra of all LB-measurable subsets of [0,∞) × Rm. It is
equivalent to the LB-measurability of functions f(·, ·, ·) and f 0(·, ·, ·) extended as arbitrary
constants from graphU(·) to [0,∞)× Rm for all x ∈ G.

We consider any Lebesgue measurable function u : [0,∞) 7→ Rm satisfying condition (3)
for all t ≥ 0 as a control. If u(·) is a control then the corresponding trajectory x(·) is a locally
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absolutely continuous solution of the initial value problem (2), which (if it exists) is defined
in G on some (maximal) finite or infinite time interval [0, τ), τ > 0. The local absolute
continuity of x(·) means that x(·) is absolutely continuous on any compact subinterval [0, T ]
of its domain of definition [0, τ).

By definition, a pair (x(·), u(·)), where u(·) is a control and x(·) is the corresponding
trajectory, is an admissible pair in problem (P ) if the trajectory x(·) is defined on the whole
time interval [0,∞) and the function t 7→ f 0(t, x(t), u(t)) is locally integrable on [0,∞) (i.e.
integrable on any finite time interval [0, T ], T > 0). Thus, for any admissible pair (x(·), u(·))
and any T > 0 the integral

JT (x(·), u(·)) :=

∫ T

0

f 0(t, x(t), u(t)) dt

is finite. If (x(·), u(·)) is an admissible pair we refer to u(·) as admissible control and to x(·)
as the corresponding admissible trajectory.

Now we recall two basic concepts of optimality used in the literature (see e.g. [18]).
In the first one, the integral in (1) is understood in improper sense, i.e. for an arbitrary

admissible pair (x(·), u(·)), by definition

J(x(·), u(·)) = lim
T→∞

∫ T

0

f 0(t, x(t), u(t)) dt,

if the limit exists.

Definition 2.2. An admissible pair (x∗(·), u∗(·)) is called strongly optimal in problem (P ) if
the corresponding integral in (1) converges (to a finite number) and for any other admissible
pair (x(·), u(·)) we have

J(x∗(·), u∗(·)) ≥ lim sup
T→∞

∫ T

0

f 0(t, x(t), u(t)) dt.

In the second definition, the integral in (1) is not necessary finite.

Definition 2.3. An admissible pair (x∗(·), u∗(·)) is called finitely optimal in problem (P )
if for any T > 0 this pair (restricted to [0, T ]) is optimal in the following optimal control
problem (QT ) with fixed initial and final states:

JT (x(·), u(·)) =

∫ T

0

f 0(t, x(t), u(t)) dt→ max ,

ẋ(t) = f(t, x(t), u(t)), x(0) = x0, x(T ) = x∗(T ),

u(t) ∈ U(t).

It is easy to see that the strong optimality implies the finite one.
The following weak regularity assumption plays a key role for the validity of the general

version of the Pontryagin maximum principle for a finitely optimal pair (x∗(·), u∗(·)) in
problem (P ) (similar assumptions for problems with finite time-horizons one can find in [20,
Chapter 5], [21, Hypothesises 22.25]).
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Assumption (A1). There exist a continuous function γ : [0,∞) 7→ (0,∞) and a locally
integrable function ϕ : [0,∞) 7→ R1, such that {x : ‖x − x∗(t)‖ ≤ γ(t)} ⊂ G for all t ≥ 0,
and for almost all t ∈ [0,∞) we have

max {x : ‖x−x∗(t)‖≤γ(t)}

{
‖fx(t, x, u∗(t))‖+ ‖f 0

x(t, x, u∗(t))‖
}
≤ ϕ(t). (13)

Notice, that if (x∗(·), u∗(·)) is an admissible pair and (A1) holds, then x∗(·) is a unique
trajectory that corresponds to u∗(·) (see [25, Chapter 1, Theorem 2]).

Remark 2.4. Assumption (A1) is automatically fulfilled under the usual regularity con-
ditions that u∗(·) ∈ L∞loc[0,∞), U(t) ≡ U , t ≥ 0, the functions fx(·, ·, ·) and f 0

x(·, ·, ·) are
measurable in t, continuous in (x, u), and locally bounded. Here the local boundedness
of these functions of t, x and u (take φ(·, ·, ·) as a representative) means that for every
T > 0, every compact D ⊂ G and every bounded set V ⊂ U there exists M such that
‖φ(t, x, u)‖ ≤M for almost all t ∈ [0, T ], and all x ∈ D and u ∈ V .

If Assumption (A1) is fulfilled, then any finitely optimal admissible pair (x∗(·), u∗(·))
satisfies the following general version of the maximum principle, which is proved in [26]
under the standard regularity conditions. Namely, the proof given in [26] is valid if u∗(·) ∈
L∞loc[0,∞), U(t) ≡ U , t ≥ 0, and the functions f(·, ·, ·), f 0(·, ·, ·), fx(·, ·, ·) and f 0

x(·, ·, ·) are
measurable in t, continuous in (x, u), and locally bounded.

Theorem 2.5. Let (x∗(·), u∗(·)) be a finitely optimal admissible pair in problem (P ) and
let (A1) be fulfilled. Then there is a non-vanishing pair of adjoint variables (ψ0, ψ(·)), with
ψ0 ≥ 0 and a locally absolutely continuous ψ(·) : [0,∞)→ Rn, such that the core conditions
of the maximum principle hold, i.e.

(i) ψ(·) is a solution to the adjoint system

ψ̇(t) = −Hx(t, x∗(t), u∗(t), ψ
0, ψ(t));

(ii) the maximum condition takes place:

H(t, x∗(t), u∗(t), ψ
0, ψ(t))

a.e.
= sup

u∈U(t)

H(t, x∗(t), u, ψ
0, ψ(t)).

The main points in the proof of this theorem are essentially the same as in Halkin’s
original result (see [26, Theorem 4.2]). The needed elaboration is given in [12].

The following concept of optimality appears to be the most useful among the numerous
alternative definitions proposed in the context of economics. It takes intermediate place
between finite optimality and strong optimality (see [18]).

Definition 2.6. The admissible pair (x∗(·), u∗(·)) is called weakly overtaking optimal if for
arbitrary ε > 0, T > 0 and any other admissible pair (x(·), u(·)) there is a T ′ > T such that∫ T ′

0

f 0(t, x∗(t), u∗(t)) dt ≥
∫ T ′

0

f 0(t, x(t), u(t)) dt− ε.

In the next section we show that the concept of weak overtaking optimality provides a
reasonable compromise between the concepts of strong optimality (Definition 2.2) and finite
optimality (Definition 2.3). On the one hand, this concept of optimality is general enough
(although a local generalization is possible [12]) and applicable even in case of infinite optimal
utility value; on the other hand, it still admits the development of complete versions of the
maximum principle.
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3 Maximum principle with explicitly specified adjoint

variable

In this section we present the main result and discuss in detail the economic meaning of
formula (12).

3.1 The main result

The following growth assumption for an admissible pair (x∗(·), u∗(·)) was introduced in [11]
as an extension of the so-called dominating discount condition, see [5, 7, 8, 9, 10, 13].

Assumption (A2): There exist a number β > 0 and an integrable function λ : [0,∞) 7→
R1 such that for every ζ ∈ G with ‖ζ − x0‖ < β equation (2) with u(·) = u∗(·) and initial
condition x(0) = ζ (instead of x(0) = x0) has a solution x(ζ; ·) in G on [0,∞), and

max x∈[x(ζ;t),x∗(t)]

∣∣∣〈f 0
x(t, x, u∗(t)), x(ζ; t)− x∗(t)〉

∣∣∣ a.e.

≤ ‖ζ − x0‖λ(t).

Here [x(ζ; t), x∗(t)] is the line segment between the points x(ζ; t) and x∗(t).

Observe that according to the Lipschitz dependence of the solution x(ζ; t) on the initial
condition ζ, we have an inequality ‖x(ζ; t)−x∗(t)‖ ≤ l(t)‖ζ −x0‖, where l(·) is independent
of ζ. The function λ(·) incorporates the growth of this Lipschitz constant and the growth of
the derivative of the objective integrand around the reference pair. The real assumption is
actually that λ(·) is integrable.

Notice, that the constant β > 0 and the integrable function λ(·) may depend on the
reference admissible pair (x∗(·), u∗(·)) in (A2). In some cases Assumption (A2) can be a
priory justified for all optimal (or even for all admissible) pairs (x∗(·), u∗(·)) in (P ) together
with their own constants β and functions λ(·) (see the examples in Section 4).

The following auxiliary result (see [12, Lemma 3.2]) implies that the integral in (12) is
finite.

Lemma 3.1. Let (A1) and (A2) be satisfied. Then the following estimation holds:∥∥∥ [Z∗(t)]
−1 f 0

x(t, x∗(t), u∗(t))
∥∥∥ ≤ √nλ(t) for a.e. t ≥ 0. (14)

Due to Lemma 3.1 and the integrability of λ(·), the function ψ : [0,∞)→ Rn defined by
formula (12) is locally absolutely continuous. By a direct differentiation we verify that the
so defined function ψ(·) satisfies on [0,∞) the adjoint system

ψ̇(t) = −Hx(t, x∗(t), u∗(t), ψ(t)).

The next version of the Pontryagin maximum principle for the infinite-horizon problem
(P ) is the main result in this paper.

Theorem 3.2. Let (x∗(·), u∗(·)) be a weakly overtaking optimal pair in problem (P ). Assume
that the regularity Assumption (A1) and the growth Assumption (A2) are satisfied. Then the
vector function ψ : [0,∞) 7→ Rn defined by (12) is (locally) absolutely continuous and satisfies
the core conditions of the normal form maximum principle, i.e.
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(i) ψ(·) is a solution to the adjoint system

ψ̇(t) = −Hx(t, x∗(t), u∗(t), ψ(t)), (15)

(ii) the maximum condition takes place:

H(t, x∗(t), u∗(t), ψ(t))
a.e.
= sup

u∈U(t)

H(t, x∗(t), u, ψ(t)). (16)

The rather technical proof is presented in detail in [12]. It employs a modification of
the needle variations technique and makes a substantial use of the Yankov-von Neumann-
Aumann selection theorem [29, Theorem 2.14].

Notice, that the convergence of the integral in (12) apparently implies that the adjoint
function ψ(·) defined in (12) satisfies the asymptotic relation

lim
t→+∞

[Z∗(t)]
−1 ψ(t) = 0. (17)

Even more, it is straightforward to prove that on the assumptions of Theorem 3.2, the
function ψ(·) defined by (12) is the only solution of the adjoint equation (15) that satisfies
(17). Indeed, if ψ(·) and ψ̃(·) are two solutions of (15) satisfying (17) then

d

dt
(ψ(t)− ψ̃(t)) = − [fx(t, x∗(t), u∗(t))]

∗ (ψ(t)− ψ̃(t)).

From this for every t ≥ 0 we get

ψ(0)− ψ̃(0) = [Z∗(t)]
−1 (ψ(t)− ψ̃(t)).

Since the right-hand side converges to zero with t→ +∞, we obtain that ψ(0)− ψ̃(0) = 0,
which implies that ψ(·) = ψ̃(·).

It is easy to see that on the assumptions of Theorem 3.2 together with the additional
assumption that ‖Z∗(t)‖ ≤ c for some constant c ≥ 0 and all sufficiently large t, the formula
(12) immediately implies the “standard” asymptotic condition (7). In Appendix B we con-
sider also some other situations when the formula (12) implies the “standard” asymptotic
conditions (7) and (8). In Subsection 3.2 we establish a link between (12) and (9).

3.2 Economic interpretations

In this subsection we discuss economic interpretations of the adjoint variable ψ(·) provided
by formula (12), in view of Theorem 3.2 and in comparison with the dynamic programming
principle.

First, notice that the traditional interpretation of the components of the adjoint vector
ψ(t), t ≥ 0, as present value shadow prices of the corresponding components (types) of the
optimal capital stock x∗(t) is based on the identification of the net present value of the
capital stock vector x∗(t) with the value V (t, x∗(t)) of the optimal value function V (·, ·), and
subsequent use of the dynamic programming method (see [23] and [1, Chapter 7]). We recall
this standard construction in optimal control theory.

Consider the following family of optimal control problems, {(P (τ, ζ))}τ≥0,ζ∈G:

Jτ (x(·), u(·)) =

∫ ∞
τ

f 0(s, x(s), u(s)) ds→ max ,
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ẋ(t) = f(t, x(t), u(t)), x(τ) = ζ, u(t) ∈ U(t).

Here, the initial time τ ≥ 0 and the initial state ζ ∈ G are considered as parameters.
Admissible pairs (x(·), u(·)) in problem (P (τ, ζ)) are defined as in problem (P ), but with
initial data (τ, ζ) at the place of (0, x0). Thus, P (0, x0) is identical with (P ).

Let us assume for now, that problem (P (τ, ζ)) has a strongly optimal solution for any
(τ, ζ) ∈ [0,∞)×G. Then we can define the corresponding optimal value function V (·, ·) of
variables τ ∈ [0,∞] and ζ ∈ G as follows:

V (τ, ζ) = sup
(x(·),u(·))

Jτ (x(·), u(·)). (18)

Here the maximum is taken with respect to all admissible pairs (x(·), u(·)) in (P (τ, ζ)).
Let (x∗(·), u∗(·)) be a strongly optimal pair in (P ). If the function V (·, ·) is twice contin-

uously differentiable in some open neighborhood of graphx∗(·) then, applying the dynamic
programming approach, it is not difficult to show that all conditions of the maximum princi-
ple (Theorem 2.5) hold in the normal form (ψ0 = 1) with adjoint variable ψ(·) defined along
the optimal trajectory x∗(·) as

ψ(t) =
∂V (t, x∗(t))

∂x
, t ≥ 0. (19)

Due to the definition of the value function V (·, ·), one can identify the present value of
the capital vector ζ ∈ G at time τ ≥ 0 with V (τ, ζ). Then due to (19), at each instant t ≥ 0
the components of ψ(t) can be interpreted as the current value marginal prices (also called
shadow prices) of the corresponding components of the capital vector x∗(t). This observation
gives an economic meaning of the relations of the maximum principle.

Notice, that the optimal value function V (·, ·) is not necessarily differentiable. However,
the differentiability of V (t, ·) at x∗(t), t ≥ 0, is of critical importance for the interpretation of
the vector ψ(t) that appears in the maximum principle (Theorem 2.5) as a vector of marginal
prices. Indeed, ψ(t) being the marginal price vector at x∗(t) means that V (t, x∗(t) + ∆x) =
V (t, x∗(t))+〈ψ(t), ∆x〉+o(‖∆x‖) for every increment vector ∆x, where o(‖∆x‖)/‖∆x‖ → 0
with ∆x→ 0; this implies (Frechét) differentiability of V (t, ·) at x∗(t).

It turns out that on the assumptions of Theorem 3.2 the adjoint variable ψ(·) defined by
formula (12) can be interpreted as a function of integrated intertemporal prices, without any
a priory assumptions on the optimal value function V (·, ·). We explain this interpretation
in the next paragraphs.

Let (x(·), u(·)) be an admissible pair (not necessary optimal) in (P ), for which Assumption
(A1) is fulfilled (with (x(·), u(·)) at the place of (x∗(·), u∗(·)); see also Remark 2.4). Let us
fix an arbitrary s > 0. Due to the theorems on continuous dependence and differentiability
of solutions of the Cauchy problem with respect to the initial conditions (see [2, §2.5.5. and
§2.5.6.]), for any τ ∈ [0, s) there is an open neighborhood Vs(τ) ⊂ G of x(τ) such that for
any τ ∈ [0, s) and ζ ∈ V(τ) the solution x(τ, ζ; ·) of the Cauchy problem

ẋ(t) = f(t, x(t), u(t)), x(τ) = ζ

exists on [τ, s], lies in G, and the function x(τ, ·; s) : V(τ) → Rn is continuously (Frechét)
differentiable. Moreover, the following equality holds:

xζ(τ, x(τ); s) =
[
Z(τ)[Z(s)]−1

]∗
, (20)
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where Z(t) (consistently with our previous notations) is the fundamental matrix solution
normalized at t = 0 of the linear differential equation

ż(t) = −[fx(t, x(t), u(t))]∗z(t),

so that
[
Z(τ)[Z(s)]−1

]∗
is the state transition (Cauchy) matrix of the linearized system

ẏ(t) = fx(t, x(t), u(t))y.

Now let us define the intertemporal utility function π(τ, ·; s) on V(τ) by the equality

π(τ, ζ, s) = f 0(s, x(τ, ζ; s), u(s)), ζ ∈ V(τ). (21)

Substantially, π(τ, ζ, s) is the intertemporal value gained at instant s by the capital stock
ζ at instant τ after transition of the system from the state ζ to the state x(τ, ζ; s) via the
reference control u(·) on the time interval [τ, s].

Due to (20), the properties of f 0(·, ·, ·) and the identity x(τ, x(τ), s) = x(s), the function
π(τ, ·, s) defined by (21) is differentiable at x(τ) and by the chain rule

πζ(τ, x(τ), s) =
[ [
f 0
x(s, x(s), u(s))

]∗
xζ(τ, x(τ); s))

]∗
=

[ [
f 0
x(s, x(s), u(s))

]∗ [
Z(τ)[Z(s)]−1

]∗ ]∗
= Z(τ)[Z(s)]−1f 0

x(s, x(s), u(s)). (22)

Thus the vector πζ(τ, x(τ), s) can be interpreted as the corresponding intertemporal price
vector of the capital stock x(τ).

Notice that s > 0 was arbitrarily chosen, therefore the function (t, s) 7→ πζ(t, x(t), s)
is defined for all s > 0 and t ∈ [0, s). Moreover, the representation (22) implies that this
function is Lebesgue measurable. Thus we can define the function

µ(t) =

∫ ∞
t

πζ(t, x(t), s) ds, t ≥ 0, (23)

provided that the above integral converges for any t ≥ 0. Thus, the integrated intertemopral
prices function µ(·) is defined by (23) along any (not necessary optimal) admissible trajectory
x(·) in (P ). Notice, that only Assumption (A1) and convergence of the improper integral
in (23) are needed to define the integrated intertemopral prices function µ(·). No smoothness,
Lipschitzness, continuity, and even finiteness assumptions on the corresponding optimal value
function V (·, ·) in a neighborhood of the reference admissible trajectory x(·) are required.

Now, let (x∗(·), u∗(·)) be a weakly overtaking optimal admissible pair in (P ) and let
Assumption (A1) be satisfied for this pair. The matrix function Z(·) and the function µ(·)
associated with the pair (x∗(·), u∗(·)) will be denoted by Z∗(·) and µ∗(·), correspondingly.
From (22) and (23) we obtain that

µ∗(t) = Z∗(t)

∫ ∞
t

[Z∗(s)]
−1f 0

x(s, x∗(s), u∗(s)) ds, t ≥ 0. (24)

If the above integral is finite for every t ≥ 0, then µ∗(·) coincides with the function ψ(·)
defined in (12), which appears in the formulation of Theorem 3.2. Observe, that if also
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Assumption (A2) is fulfilled for the pair (x∗(·), u∗(·)), then due to Lemma 3.1 the improper
integral in (24) converges for any t ≥ 0, thus µ∗(·) = ψ(·) is well-defined on [0,∞). Hence,
we obtain that on Assumptions (A1) and (A2), the adjoint variable ψ(·) that appears in
Theorem 3.2 coincides with the integrated intertemopral prices function µ∗(·).

Assumption (A2) is sufficient, but not necessary for finiteness of the integral in (24)
for all t ≥ 0. Given also that the function µ∗(·) has the economic meaning of integrated
intertemporal prices function, it is natural to ask whether Assumption (A2) in Theorem 3.2
could not be relaxed to condition of converges of the improper integral in (12) or (24). The
answer to this question is negative, as shown in Appendix A. It could happen (if (A2) fails)
that for a unique strongly optimal admissible pair (x∗(·), u∗(·)) in problem (P ) Assumption
(A1) is satisfied, the corresponding improper integral in (12) converges absolutely, and the
general maximum principle (Theorem 2.5) holds in the normal form with adjoint variable ψ(·)
which is not equal to the integrated intertemporal prices function µ(·), although function µ(·)
is well defined by equality (24). Thus, in general the adjoint variable ψ(·) that appears in the
normal form conditions of the general maximum principle (Theorem 2.5) could be something
different from the integrated intertemporal prices function µ(·), while under conditions of
Theorem 3.2 both these functions coincide. Assumption (A2) is not only needed to ensure
finiteness of µ∗(·) via Lemma 3.1; it is also essential for the proof of Theorem 3.2.

Consider now a weakly overtaking optimal admissible pair (x∗(·), u∗(·)) in (P ) for which
the assumptions of Theorem 3.2 (i.e. Assumptions (A1) and (A2)) are satisfied, and in
addition, J(x∗(·), u∗(·)) in (1) is finite. In this case the assertion of Theorem 3.2 can be
strengthened.

Due to (A2), there is an open neighborhood Ω of the set graphx∗(·) such that the integral
below converges for any (τ, ζ) ∈ Ω and, hence, the following conditional value function
W (·, ·) : Ω 7→ R1 is well defined:

W (τ, ζ) =

∫ ∞
τ

π(τ, ζ; s) ds, (τ, ζ) ∈ Ω.

Notice, that the optimal value function V (·, ·) (see (18)) is not necessarily defined in this
case. Substantially, the value W (τ, ζ), (τ, ζ) ∈ Ω, has economic meaning of integrated
intertemporal value of the capital vector ζ at time τ (under the condition that the given
investment plan u∗(·) is realized for initial capital vector ζ at initial instant τ on the whole
infinite time interval [τ,∞)).

The following result strengthens the assertion of Theorem 3.2 on the additional assump-
tion of convergence of the improper integral in (1).

Theorem 3.3. Let (x∗(·), u∗(·)) be a locally weakly overtaking optimal pair in problem (P )
for which Assumptions (A1) and (A2) are fulfilled, and suppose that the integral in (1)
converges to the finite value J(x∗(·), u∗(·)). Then

(i) for any t ≥ 0 the partial (Frechét) derivative Wx(t, x∗(t)) exists. Moreover, the vector
function ψ(·) : [0,∞) 7→ Rn defined by the equality

ψ(t) = Wx(t, x∗(t)), t ≥ 0,

is locally absolutely continuous and satisfies the core conditions (15) and (16) of the
maximum principle in the normal form for problem (P );
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(ii) the partial derivative Wt(t, x∗(t)) exists for a.e. t ≥ 0, and

Wt(t, x∗(t)) + sup
u∈U(t)

{
〈Wx(t, x∗(t)), f(t, x∗(t), u)〉+ f 0(t, x∗(t), u)

} a.e.
= 0.

The proof of Theorem 3.3, given in [4, Section 2], is based on the theorem on differentia-
bility of solutions of the Cauchy problem with respect to the initial conditions, Theorem 3.2,
and the fact that under the conditions of Theorem 3.3 we have Wx(t, x∗(t)) ≡ µ(t), t ≥ 0,
(see (23)) and equality (24) takes place.

Substantially, assertion (i) of Theorem 3.3 is a reformulation of Theorem 3.2 in the eco-
nomic terms of function W (·, ·) under additional assumption of convergence of J(x∗(·), u∗(·)).
However, assertion (ii) is a complementary fact. In particular, this assertion allows to link
the adjoint variable ψ(·) that appears in Theorem 3.3 with Michel’s asymptotic condition (9).

Corollary 3.4. Assume that the assumptions of Theorem 3.3 are fulfilled and that prob-
lem (P ) is autonomous with exponential discounting, i.e. f(t, x, u) ≡ f(x, u), f 0(t, x, u) ≡
e−ρtg(x, u) and U(t) ≡ U for all t ≥ 0, x ∈ G, u ∈ Rm, where ρ ∈ R1 is not necessarily
positive. Then the following stationarity condition holds:

H(t, x∗(t), u∗(t), ψ(t))
a.e.
= ρ

∫ ∞
t

e−ρsg(x∗(s), u∗(s)) ds, t ≥ 0. (25)

Proof. Indeed, for all t ≥ 0 we have

W (t, x∗(t)) = e−ρt
∫ ∞
t

e−ρ(s−t)g(x∗(s), u∗(s)) ds = e−ρtW (0, x∗(t)).

Hence,

Wt(t, x∗(t)) = −ρe−ρtW (0, x∗(t)) = −ρ
∫ ∞
t

e−ρsg(x∗(s), u∗(s)) ds, t ≥ 0.

By virtue of assertions (i) and (ii) of Theorem 3.3, this implies (25).

Finally, note that if problem (P ) is autonomous with discounting, and the usual
regularity assumptions concerning the weakly overtaking optimal control u∗(·), and
functions f(·, ·) and g(·, ·) hold (see Remark 2.4), then the core conditions (15)
and (16) of the normal form maximum principle imply that the function h(·): h(t) =
H(t, x∗(t), ψ(t)) = supu∈U H(t, x∗(t), u, ψ(t)), t ≥ 0, is locally absolutely continuous and

ḣ(t)
a.e.
= ∂H(t, x∗(t), ψ(t))/∂t = −ρg(x∗(t), u∗(t)), t ≥ 0 (see [34, Chapter 2]). Since the

functional J(x∗(·), u∗(·)) converges in Theorem 3.3, we obtain that conditions (9) and (25)
are equivalent in this case.

4 Examples

Example 1 (Halkin’s example). We start with application of Theorem 3.2 to the original
Halkin’s example [26, Section 5].

Consider the following problem (P1):

J(x(·), u(·)) =

∫ ∞
0

(1− x(t))u(t) dt→ max , (26)

13



ẋ(t) = (1− x(t))u(t), x(0) = 0,

u(t) ∈ [0, 1].

This example is interesting, since it shows that the standard asymptotic conditions (7)
and (8) are inconsistent with the core condition (i) and (ii) of the maximum principle (see
Theorem 2.5), while the asymptotic condition (9) is not productive in this case. Let us
clarify this statement.

For any T > 0 and for an arbitrary admissible pair (x(·), u(·)) we have

JT (x(·), u(·)) =

∫ T

0

ẋ(t) dt = x(T ) = 1− e−
∫ T
0 u(t) dt . (27)

This implies that an admissible pair (x∗(·), u∗(·)) is weakly overtaking optimal (also strongly
optimal)2 if and only if

∫∞
0
u∗(t) dt = +∞. Also note that x∗(t)→ 1 with t→ +∞.

According to Halkin’s Theorem 2.5, any optimal admissible pair (x∗(·), u∗(·)) satisfies, to-
gether with the adjoint function ψ(·), the adjoint equation in (i) and the maximum condition
in (ii), which read in the particular case as

ψ̇(t) = (ψ(t) + ψ0)u∗(t), (28)

(1− x∗(t))(ψ(t) + ψ0)u∗(t)
a.e.
= max u∈[0,1]{(1− x∗(t))(ψ(t) + ψ0)u} (29)

with some ψ0 ≥ 0. From the adjoint equation (28) we obtain that

ψ(t) = (ψ(0) + ψ0) e
∫ t
0 u∗(s) ds − ψ0.

Thus, for all t ≥ 0 and u ∈ [0, 1] we have

H(t, x∗(t), u, ψ
0, ψ(t)) = (1− x∗(t))(ψ(t) + ψ0)u = (ψ0 + ψ(0))u.

Since from (29) we have (ψ0 + ψ(0))u∗(t)
a.e.
= max u∈[0,1](ψ

0 + ψ(0))u, and any strongly
optimal control u∗(·) is not identically zero, we must have ψ0 + ψ(0) ≥ 0. If ψ0 + ψ(0) = 0
then without loss of generality we can set ψ0 = 1 and ψ(0) = −1. Then both conditions (7)
and (8) are obviously violated. If ψ0 + ψ(0) > 0 then ψ(t) → +∞ with t → +∞ and
again both conditions (7) and (8) are violated. Thus, for arbitrary optimal admissible pair
(x∗(·), u∗(·)) both conditions (7) and (8) are inconsistent with the core conditions of the
maximum principle.

Notice, that due to [32] the asymptotic condition for the Hamiltonian (9) is a necessary
optimality condition in Halkin’s example. However, this condition does not give us any
useful information in this case. Indeed, due to our analysis above this condition holds only
in the case when ψ0 + ψ(0) = 0 or equivalently ψ0 = 1 and ψ(0) = −1. But in this case the
core conditions (i) and (ii) of the maximum principle and condition (9) hold trivially along
any admissible pair and hence they do not provide any useful information.

Now, we are going to apply Theorem 3.2 with G = R1. Let us fix an arbitrary admissible
pair (x∗(·), u∗(·)). Assumptions (A0) and (A1) are obviously fulfilled; see Remark 2.4. In
order to check Assumption (A2) we notice that

x(ζ; t) = 1− (1− ζ)e−
∫ t
0 u∗(s) ds and f 0

x(t, x, u∗(t)) = −u∗(t) for all t ≥ 0.

2We mention that in this example every admissible control is obviously finitely optimal. Thus the concept
of finite optimality is too week here.
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Hence,

max x∈[x(ζ;t),x∗(t)]

∣∣∣〈f 0
x(t, x, u∗(t)), x(ζ; t)− x∗(t)〉

∣∣∣ a.e.= |ζ − x0|λ(t),

where
λ(t) = u∗(t)e

−
∫ t
0 u∗(s) ds for all t ≥ 0.

The function λ(·) is integrable on [0,∞). Hence, condition (A2) is also satisfied and we can
apply Theorem 3.2.

We remind that due to the explicit formula x∗(t) = 1− e−
∫ t
0 u∗(s) ds, t ≥ 0, the maximum

condition (29) in the normal case ψ0 = 1 has the form

(1 + ψ(0))u∗(t)
a.e.
= max u∈[0,1]

{
(1 + ψ(0))u

}
. (30)

Formula (12) for the adjoint variable gives

ψ(t) = e
∫ t
0 u∗(s) ds

∫ ∞
t

e−
∫ s
0 u∗(τ) dτ (−u∗(s))ds

= e
∫ t
0 u∗(s) ds

[
lim
T→∞

e−
∫ T
0 u∗(s) ds − e−

∫ t
0 u∗(s) ds

]
, t ≥ 0.

Now, we consider two cases. If
∫∞

0
u∗(t) dt =∞ (that is, u∗(·) is optimal), then ψ(t) = −1

for all t ≥ 0, thus the maximum condition (30) is apparently satisfied. If
∫∞

0
u∗(t) dt is finite

(that is, u∗(·) is not optimal), then ψ(t) > −1 for all t ≥ 0 and (30) implies that u∗(t) = 1
for almost every t ≥ 0, which contradicts the assumption

∫∞
0
u∗(t) dt <∞.

Summarizing, Theorem 3.2 provides a complete characterization of all optimal controls
in (P1), while the core conditions of the maximum principle are inconsistent with the stan-
dard asymptotic conditions (7) and (8), while the asymptotic condition (9) is uninformative
(satisfied by any admissible control) in Halkin’s example.

Example 2 (Ramsey’s model). This example demonstrates the applicability of Theo-
rem 3.2 to the Ramsey model of optimal economic growth (see [14, Chapter 2]). This model
is the most important theoretical construct in modern growth theory. It was first developed
by Ramsey [35] in 1928 and then adapted by Cass [19] and Koopmans [31] in the 1960th. It
is known also in the literature as the Ramsey-Cass-Koopmans model. Here, for simplicity
of presentation we restrict our consideration to the canonical setting of the model with the
Cobb-Douglas technology and the isoelastic utility. For the case of the general neoclassical
production function see [17].

Consider a closed aggregated economy that at each instant of time t ≥ 0 produces a single
homogeneous product Y (t) > 0 in accordance with the Cobb-Douglas production function
(see [14, Chapter 1]):

Y (t) = AK(t)αL(t)1−α. (31)

Here A > 0 is the technological coefficient, 0 < α < 1 is the output elasticity of capital,
K(t) > 0 and L(t) > 0 are the capital stock and the labour force available at instant t ≥ 0
respectively.

In the closed economy, at each instant t ≥ 0, a part I(t) = u(t)Y (t), u(t) ∈ [0, 1), of
the final product is invested, while the remaining (nonvanishing) part C(t) = (1− u(t))Y (t)
is consumed. Therefore, the capital dynamics can be described by the following differential
equation:

K̇(t) = u(t)Y (t)− δ̃K, K(0) = K0 > 0, (32)
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where δ̃ > 0 is the capital depreciation rate.
Assume, that the labor resource L(·) satisfies the exponential growth condition, i.e.,

L̇(t) = µL(t), L(0) = L0 > 0, (33)

where µ ≥ 0 is a constant. Assume also, that the instantaneous utility function g : (0,∞) 7→
R1 is isoelastic (see [14, Chapter 2]). In this case

g(c) =

{
c1−σ−1

1−σ , σ > 0, σ 6= 1,

ln c, σ = 1,
(34)

where c > 0 is the per-capita consumption. Then introducing a new (capital-labor ratio)
variable x(t) = K(t)/L(t), t ≥ 0, in view of (31)-(34), and due to homogeneity of the
Cobb-Doulglas production function (31), we arrive to the following optimal control problem
(P2):

J(x(·), u(·)) =

∫ ∞
0

e−ρtg((1− u(t))Ax(t)α) dt→ max , (35)

ẋ(t) = u(t)Ax(t)α − δx(t), x(0) = x0 =
K0

L0

, (36)

u(t) ∈ [0, 1). (37)

Here ρ > 0 is a social discount rate, (1−u(t))Ax(t)α = C(t)/L(t) is the per capita consump-
tion at instant t ≥ 0, and δ = δ̃ + µ > 0 is the adjusted depreciation rate.

Set G = (0,∞). Then any measurable function u : [0,∞) 7→ [0, 1) is an admissible control
in problem (P2). Indeed, due to (36) the corresponding to u(·) trajectory x(·) is defined on
[0,∞) inG, and the integrand in (35), i.e. the function t 7→ e−ρtg((1−u(t))Ax(t)α)), is locally
integrable on [0,∞). Thus, the trajectory x(·) is admissible. Moreover, due to (34), (36)
and (37) the integrand in (35) is bounded from above by an exponentially declining function
(uniformly in all admissible pairs (x(·), u(·))). Hence, there is a decreasing nonnegative
function ω : [0,∞) 7→ R1, limt→∞ ω(t) = 0, such that for any 0 ≤ T < T ′ the following
inequality holds (see [5, Section 2, Assumption (A3)]):∫ T ′

T

e−ρtg((1− u(t))Ax(t)α) dt ≤ ω(T ).

This implies that for any admissible pair (x(·), u(·)) the improper integral in (35) either
converges to a finite number or diverges to −∞, and J(x(·), u(·)) ≤ ω(0) (see [5, Section 2]).
Hence, in the case of problem (P2) the concepts of strong optimality and weak overtaking
optimality coincide. So, everythere below in this example we understand optimality of an
admissible pair (x∗(·), u∗(·)) in the problem (P2) in the strong sense. In particular, if an
optimal admissible pair (x∗(·), u∗(·)) exists then J(x∗(·), u∗(·)) is a finite number.

Let us define an auxiliary state variable y(·) via the Bernoulli transformation: y(t) =
x(t)1−α, t ≥ 0. Then it can be easily seen, that in terms of the state variable y(·) the problem

(P2) takes the following equivalent form (P̃2):

J̃(y(·), u(·)) =

∫ ∞
0

e−ρtg((1− u(t))Ay(t)
α

1−α ) dt→ max ,

ẏ(t) = (1− α)Au(t)− (1− α)δy(t), y(0) = y0 = x1−α
0 , (38)
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u(t) ∈ [0, 1). (39)

For the problem (P̃2) we set again G = (0,∞). Since f(t, y, u) := (1−α)Au− (1−α)δy

and f 0(t, y, u) := e−ρtg((1 − u)Ay
α

1−α ), t ≥ 0, x ∈ G and u ∈ [0, 1) in (P̃2) Assumption
(A0) is fulfilled for these functions and the multivalued mapping U(·): U(t) ≡ [0, 1), t ≥ 0
(see Remark 2.1). Obviously, arbitrary measurable function u : [0,∞) 7→ R1 satisfying the

pointwise constraint (39) is an admissible control in (P̃2). Thus, (P̃2) is a particular case of
problem (P ).

Further, in (P̃2) for all t ≥ 0, y > 0 and u ∈ [0, 1) we have fy(t, y, u) ≡ −(1− α)δ, and

f 0
y (t, y, u) = e−ρt

d g((1− u)Ay
α

1−α )

d c

(1− u)Aαy
α

1−α−1

(1− α)

=
(1− u)Ae−ρtαy

α
1−α−1

(1− α)

[
(1− u)Ay

α
1−α

]−σ
=

αe−ρt

(1− α)y

[
(1− u)Ay

α
1−α

]1−σ

if σ > 0, σ 6= 1, and

f 0
y (t, y, u) =

αe−ρt

(1− α)y

if σ = 1.
Thus, for any σ > 0 and for all t ≥ 0, y > 0 and u ∈ [0, 1) we have

f 0
y (t, y, u) =

αe−ρt

(1− α)y

[
(1− u)Ay

α
1−α

]1−σ
. (40)

Hence, Assumption (A1) is satisfied for any admissible pair (y∗(·), u∗(·)) in (P̃2).

Notice, that the control system (38) is linear in problem (P̃2). Hence, for arbitrary
admissible control u∗(·) and any initial state y(0) = ζ > 0 the corresponding admissible
trajectory y(ζ, ·) is given by the Cauchy formula

y(ζ, t) = e−(1−α)δtζ + (1− α)Ae−(1−α)δt

∫ t

0

e(1−α)δsu∗(s) ds, t ≥ 0. (41)

Let us show that Assumption (A2) is also satisfied for any optimal admissible pair

(y∗(·), u∗(·)) in (P̃2) (if such exists).
Take an arbitrary admissible pair (y∗(·), u∗(·)) such that J̃(y∗(·), u∗(·)) > −∞, and set

β = y0/2. Then due to (40) and (41) for any ζ : |ζ − y0| < β and all t ≥ 0 we get

max y∈[y(ζ;t),y∗(t)]

∣∣∣f 0
y (t, y, u∗(t))(y(ζ; t)− y∗(t))

∣∣∣
=

α

1− α
max y∈[y(ζ;t),y∗(t)]

e−ρte−(1−α)δt|ζ − y0|
[
(1− u∗(t))Ay

α
1−α

]1−σ

y

≤ α|ζ − y0|
1− α

max y∈[y(ζ;t),y∗(t)]

e−ρt
[
(1− u∗(t))Ay

α
1−α

]1−σ

y0
2

+ (1− α)A
∫ t

0
e(1−α)δsu∗(s) ds

≤ 2α|ζ − y0|
y0(1− α)

max y∈[y(ζ;t),y∗(t)]

{
e−ρt

[
(1− u∗(t))Ay

α
1−α

]1−σ }
= |ζ − y0|λ(t),
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where

λ(t) =
2α

y0(1− α)
max y∈[y(ζ;t),y∗(t)]

{
e−ρt

[
(1− u∗(t))Ay

α
1−α

]1−σ }
. (42)

Notice that for all t ≥ 0 and ζ ∈ [y0 − β, y0 + β] formula (41) (where the integral term is
non-negative) implies the chain of inequalities

1

2
y∗(t) ≤ y

(
1

2
y0; t

)
≤ y(ζ; t) ≤ y

(
3

2
y0; t

)
≤ 3

2
y∗(t). (43)

Due to the choice of β we have ζ ∈ [1
2
y0,

3
2
y0]. The monotonicity of ζ 7→ y(ζ; t) implies

y(ζ; t) ∈ [y(1
2
y0; t), y(3

2
y0; t)] which together with (43) gives [y(ζ; t), y∗(t)] ⊂ [1

2
y∗(t),

3
2
y∗(t)].

Thus

λ(t) ≤ 2α

y0(1− α)
max y∈[ 1

2
y∗(t),

3
2
y∗(t)]

{
e−ρt

[
(1− u∗(t))Ay

α
1−α

]1−σ }
, t ≥ 0.

Due to the monotonicity with respect to y of the function in the braces (which is non-
increasing for σ ∈ (0, 1] and non-decreasing for σ ≥ 1) we obtain that

0 ≤ λ(t) ≤ 2α

y0(1− α)
e−ρt max

{(1

2

)α(1−σ)
1−α

,
(3

2

)α(1−σ)
1−α

}[
(1− u∗(t))Ay∗(t)

α
1−α

]1−σ
. (44)

Since J̃(y∗(·), u∗(·)) > −∞ the function t 7→ e−ρtg
(

(1 − u∗(t))Ay∗(t)
α

1−α

)
is integrable on

[0,∞). Then the function

t 7→ e−ρt
[
(1− u∗(t))Ay∗(t)

α
1−α

]1−σ
= e−ρt

[
1 + (1− σ)g

(
(1− u∗(t))Ay∗(t)

α
1−α

)]
is also integrable. Due to (44) this implies that the function λ(·) defined in (42) is integrable
on [0,∞). Thus, Assumption (A2) is satisfied for arbitrary σ > 0 and all admissible pairs
(y∗(·), u∗(·)) with J̃(y∗(·), u∗(·)) > −∞.

Thus, for arbitrary σ > 0 and any optimal admissible pair (y∗(·), u∗(·)) in (P̃2) all
assumptions of Theorem 3.2 are satisfied. Hence, for any optimal admissible pair (y∗(·), u∗(·))
in (P̃2) the core conditions (15) and (16) of the normal form maximum principle hold with
adjoint variable ψ(·) specified by formula (12) (see (40) and (41)):

ψ(t) =
αe(1−α)δt

1− α

∫ ∞
t

e−(1−α)δse−ρs
[
(1− u∗(s))Ay∗(s)

α
1−α

]1−σ

y∗(s)
ds

=
αe(1−α)δt

1− α

∫ ∞
t

e−ρs
[
(1− u∗(s))Ay∗(s)

α
1−α

]1−σ

y0 + (1− α)A
∫ s

0
e(1−α)δτu∗(τ) dτ

ds, t ≥ 0.

Replacing
∫ s

0
in the right-hand side with

∫ t
0

(which is not larger) and using (41), we
obtain the following relations:

0 < ψ(t)y∗(t) ≤
α

(1− α)

∫ ∞
t

e−ρs
[
(1− u∗(s))Ay∗(s)

α
1−α

]1−σ
ds

=
α

(1− α)

∫ ∞
t

e−ρs
[
1 + (1− σ)g

(
(1− u∗(s))Ay∗(s)

α
1−α

)]
ds

=
αe−ρt

(1− α)ρ
+
α(1− σ)

1− α

∫ ∞
t

e−ρsg
(

(1− u∗(s))Ay∗(s)
α

1−α

)
ds. (45)
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Notice, that condition (45) is a stronger fact than the asymptotic condition (8).
Now, introducing the current value adjoint variable p(·), p(t) = eρtψ(t), t ≥ 0 we arrive

at the current value adjoint system (see point (i) in Theorem 3.2 and (40))

ṗ(t) = ((1− α)δ + ρ) p(t)− α

(1− α)y(t)

[
(1− u∗(t))Ay(t)

α
1−α

]1−σ
, (46)

and the current value maximum condition (see (ii))

(1− α)Au∗(t)p(t) + g
(

(1− u∗(t))Ay∗(t)
α

1−α

)
a.e.
= max u∈[0,1)

{
(1− α)Aup(t) + g

(
(1− u)Ay∗(t)

α
1−α

)}
. (47)

Since for any σ > 0 the isoelastic function g(·) is strictly concave (see (34)) the current
value maximum condition (47) implies that u∗(t)

a.e.
= u∗(y∗(t), p(t)) where for any y > 0 and

p > 0 the feedback u∗(y, p) is defined via the unique solution of the equation

(1− α)Ap+
d

du
g
(

(1− u)Ay
α

1−α

)
= (1− α)Ap−

(
Ay

α
1−α

)1−σ

(1− u)σ
= 0,

i.e.

u∗(y, p) =


1− y

α(1−σ)
σ(1−α)

A(1− α)
1
σ p

1
σ

, if p >
1

A(1− α)
y
α(1−σ)
1−α ,

0, if p ≤ 1

A(1− α)
y
α(1−σ)
1−α .

(48)

Substituting u∗(y(t), p(t)) defined in (48) in the control system (38) and in the adjoint
system (46) instead of u∗(t) we arrive at the following normal form current value Hamiltonian
system of the maximum principle:

ẏ(t) = (1− α)Au∗(y(t), p(t))− (1− α)δy(t), (49)

ṗ(t) = ((1− α)δ + ρ) p(t)− α

(1− α)y(t)

[
(1− u∗(y(t), p(t)))Ay(t)

α
1−α

]1−σ
. (50)

Due to Theorem 3.2 an optimal admissible trajectory y∗(·) (if any) together with the
corresponding current value adjoint variable p(·) must satisfy to the system (49), (50), as
well as the initial condition y(0) = y0 = x1−α

0 , and the estimate (45).
Due to the linearity of equation (38) and the concavity of the isoelastic function g(·) for

any σ > 0 (see (34)), the Hamiltonian in problem (P̃2) is a concave function of the state
variable y > 0. This fact together with estimate (45) imply that all conditions of Arrow’s
sufficient conditions of optimality (see [37, Theorem 10]) are satisfied. Thus, any solution
(y∗(·), p(·)) of the system (49), (50) on [0,∞) which satisfies the initial condition y(0) =
y0 = x1−α

0 , and the estimate (45), corresponds to the optimal admissible pair (y∗(·), u∗(·)),
where u∗(t) = u∗(y∗(t), p(t)), t ≥ 0. Thus, the assertion of Theorem 3.2 is a necessary and

sufficient condition (a criterion) of optimality of an admissible pair (y∗(·), u∗(·)) in (P̃2).
The direct analysis (which we omit here) shows that for any σ > 0 and arbitrary initial

state y0 > 0 there is a unique solution (y∗(·), p(·)) of the system (49), (50) which satisfies
both the initial condition y(0) = y0 and the estimate (45). Hence, for any initial state y0 > 0

19



there is a unique optimal admissible pair (y∗(·), u∗(·)) in (P̃2). It can also be shown, that the
solution (y∗(·), p(·)) approaches asymptotically the unique equilibrium (ŷ, p̂) (of saddle type)
of system (49), (50). Since p(t) → p̂ and y∗(t) → ŷ with t → ∞ obviously both standard
asymptotic conditions (7) and (8) hold in this example.

Finally, returning to the initial state variable x∗(t) = y∗(t)
1

1−α , t ≥ 0, we get a unique
optimal admissible pair (x∗(·), u∗(·)) in problem (P2).

Example 3 (Model of optimal extraction of a non-renewable resource). In this
example we apply Theorem 3.2 to a basic model of optimal extraction of a non-renewable
resource. Notice, that the issue of optimal use of an exhaustible resource was raised first by
Hotelling in 1931 [28]. Then a model involving both the man-made capital and an exhaustible
resource was developed in a series of papers now commonly referred to as the Dasgupta-Heal-
Solow-Stiglitz (DHSS) model (see [22, 40, 41]). A complete analysis of the DHSS model
in the case of constant return to scale and no capital depreciation was presented in [16].
Application of Theorem 3.2 to the DHSS model with logarithmic instantaneous utility, any
return to scale and capital depreciation can be found in [6]. Here, we consider the case of a
non-renewable (not necessarily completely extractable) resource. For the sake of simplicity
we do not involve any man-made capital into consideration.

Consider the following problem (P3):

J(x(·), u(·)) =

∫ ∞
0

e−ρtg(u(t)(x(t)− a)) dt→ max , (51)

ẋ(t) = −u(t)(x(t)− a), x(0) = x0 > a, (52)

u(t) ∈ (0,∞). (53)

Here x(t) is the stock of a non-renewable resource at instant t ≥ 0 and a ≥ 0 is the
non-extractable part of the stock. In the case a = 0 the resource can be asymptotically
exhausted, while in the case a > 0, due to technological (or some other) reasons, it can
be depleted only up to the given minimal level a > 0. Further, u(t) is the (non-vanishing)
rate of extraction of the available for exploitation part x(t) − a of the total stock x(t) of
the resource at instant t ≥ 0. All the extracted amount u(t)(x(t) − a) of the resource is
consumed at each instant t ≥ 0. Thus, c(t) = u(t)(x(t) − a), t ≥ 0, is the corresponding
consumption. As in Example 2, we assume that ρ > 0 is a social discount rate and the
instantaneous utility function g(·) is isoelastic (see (34)).

Set G = (a,∞). Obviously Assumption (A0) holds for the corresponding functions
f(·, ·, ·) and f 0(·, ·, ·)): f(t, x, u) = −u(x − a) and f 0(t, x, u) = e−ρtg(u(x − a)), t ≥ 0,
x > a, u ∈ (0,∞), and the multivalued mapping U(·): U(t) ≡ (0,∞), t ≥ 0, in (P3) (see
Remark 2.1). Thus, (P3) is a particular case of problem (P ).

Due to (52), for any locally integrable function u : [0,∞) 7→ (0,∞) and arbitrary initial
state ζ > a the corresponding solution x(ζ, ·) of the Cauchy problem (52) is defined by the
formula

x(ζ, t) = (ζ − a)e−
∫ t
0 u(s) ds + a, t ≥ 0. (54)

Hence, any locally integrable function u(·) satisfying the pointwise constraint (53) is an
admissible control in (P3).

Since, for any σ > 0 and all t ≥ 0, x > a, u ∈ (0,∞) in (P3) we have

fx(t, x, u) ≡ −u, f 0
x(t, x, u) = e−ρtu1−σ(x− a)−σ,
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Assumption (A1) is also satisfied in (P3) for any admissible pair (x∗(·), u∗(·)).
Let (u(·), x(·)) be an arbitrary admissible pair. In the case σ = 1 due to (52) we have

g(u(t)(x(t)− a)) = ln(−ẋ(t)) ≤ −ẋ(t) for a.e. t ≥ 0, hence, for every 0 ≤ T < T ′∫ T ′

T

e−ρt ln(u(t)(x(t)− a)) dt ≤ −
∫ T ′

T

e−ρtẋ(t) dt ≤ (x0 − a)e−ρT . (55)

In the case σ < 1 we have

g(c) =
c1−σ − 1

1− σ
≤ c

1− σ
, c > 0,

hence, for every 0 ≤ T < T ′∫ T ′

T

e−ρt
(u(t)(x(t)− a)1−σ − 1

1− σ
≤
∫ T ′

T

e−ρt
−ẋ(t)

1− σ
dt ≤ x0 − a

1− σ
e−ρT . (56)

In the case σ > 1 we have g(u(t)(x(t) − a)) ≤ 1/(σ − 1) for a.e. t ≥ 0, hence, for every
0 ≤ T < T ′ ∫ T ′

T

e−ρt
(u(t)(x(t)− a)1−σ − 1

1− σ
≤ 1

σ − 1
e−ρT . (57)

Due to (55), (56) and (57) for any σ > 0 there is a decreasing nonnegative function
ω : [0,∞) 7→ R1, limt→∞ ω(t) = 0, such that for arbitrary admissible pair (x(·), u(·)) the
following estimate holds:∫ T ′

T

e−ρtg(u(t)x(t)) dt ≤ ω(T ), 0 ≤ T < T ′. (58)

As in Example 2 above, the estimate (58) implies that for any admissible pair (x(·), u(·))
the improper integral in (51) either converges to a finite number or diverges to −∞, and
J(x(·), u(·)) ≤ ω(0). Hence, in problem (P3) for any σ > 0 the concepts of strong optimality
and weak overtaking optimality coincide. So, everythere below in this example we understand
optimality of an admissible pair (x∗(·), u∗(·)) in the problem (P3) in the strong sense. In
particular, if an optimal admissible pair (x∗(·), u∗(·)) exists then J(x∗(·), u∗(·)) is a finite
number. This fact will be used later.

Below we focus our analysis on the case σ 6= 1, since the case of logarithmic instantaneous
utility (σ = 1) was considered in [4, Example 3] and [6, Section 5].

Let us fix an optimal admissible pair (x∗(·), u∗(·)) in (P3) (if such exists). We shall show
that Assumption (A2) is satisfied for this pair. Let us set β = (x0 − a)/2. Taking into
account that the function ζ 7→ x(ζ; t) is monotone increasing and x 7→ (x−a)−σ is monotone
decreasing, we obtain that for ζ ∈ [x0 − β, x0 + β] = [(x0 + a)/2, (3x0 − a)/2]

max x∈[x(ζ;t),x∗(t)]

∣∣∣f 0
x(t, x, u∗(t))(x(ζ; t)− x∗(t))

∣∣∣
≤ |ζ − x0|e−

∫ t
0 u∗(s) dse−ρtu∗(t)

1−σmax x∈[x(ζ;t),x∗(t)](x− a)−σ

≤ |ζ − x0|e−
∫ t
0 u∗(s) dse−ρtu∗(t)

1−σ(x((x0 + a)/2; t)− a)−σ

= |ζ − x0|
(x0 + a

2

)−σ
e−ρt

[
u∗(t)e

−
∫ t
0 u∗(s) ds

]1−σ

≤ |ζ − x0|
(x0 + a

2

)−σ
e−ρt

(
−ẋ∗(t)
x0 − a

)1−σ

= |ζ − x0|λ(t), t ≥ 0,
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where

λ(t) =
(x0 + a

2

)−σ
e−ρt

(
−ẋ∗(t)
x0 − a

)1−σ

, t ≥ 0,

is integrable on [0,∞) due to the integrability of the function

t 7→ e−ρt(−ẋ∗(t))1−σ = e−ρt(1 + (1− σ)g(u∗(t)(x∗(t)− a)).

Thus Assumption (A2) is fulfilled with β = (x0 − a)/2 and above defined function λ(·).
Then, due to Theorem 3.2 for an optimal admissible pair (x∗(·), u∗(·)) (if any) the core

conditions (15) and (16) of the normal form maximum principle holds with adjoint variable
ψ(·) such that

ψ(t) = e
∫ t
0 u∗(s) ds

∫ ∞
t

e−ρsu∗(s)
1−σ(x0 − a)−σe−(1−σ)

∫ s
0 u∗(ξ) dξ ds. (59)

If an optimal control u∗(·) does exist then according to (16) we have
Hu(t, x∗(t), u∗(t), ψ(t))

a.e.
= 0 on [0,∞), where the Hamilton-Pontryagin function has the

form

H(t, x, u, ψ) =
e−ρt(u1−σ(x− a)1−σ − 1)

1− σ
− ψ u (x− a), t ≥ 0, x > a, u > 0.

Differentiating in u we obtain that the following equality holds:

e−ρtu∗(t)
−σ(x∗(t)− a)−σ − ψ(t)

a.e.
= 0, t ≥ 0.

Substituting the expressions (54) (with ζ = x0) and (59) for x∗(t) and ψ(t), we obtain that

u∗(t)
−σ a.e.

= eρte(1−σ)
∫ t
0 u∗(s) ds

∫ ∞
t

e−ρsu∗(s)
1−σe−(1−σ)

∫ s
0 u∗(ξ) dξ ds. (60)

Due to the absolute convergence of the above integral, the last expression implies that u∗(·)
is (equivalent to) a locally absolutely continuous function on [0,∞).

Further, due to (54) equality (60) implies

u∗(t)
−σ =

eρte(1−σ)
∫ t
0 u∗(s) ds

(x0 − a)1−σ

∫ ∞
t

e−ρs(u∗(s)(x∗(s)− a))1−σ ds

=
eρt

(x∗(t)− a)1−σ

∫ ∞
t

e−ρs(u∗(s)(x∗(s)− a))1−σ ds t ≥ 0.

Hence,

u∗(t) =
e−ρt(u∗(t)(x∗(s)− a))1−σ∫∞

t
e−ρs(u∗(s)(x∗(s)− a))1−σ ds

= −ż(t), t ≥ 0, (61)

where the locally absolutely continuous function z(·) is defined by equality

z(t) = ln

∫ ∞
t

e−ρs (u∗(s)(x∗(s)− a))1−σ ds, t ≥ 0.
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Integrating equality (61) on arbitrary time interval [0, T ], T > 0, we get∫ T

0

u∗(s) ds = ln

∫ ∞
0

e−ρs (u∗(s)(x∗(s)− a))1−σ ds

− ln

∫ ∞
T

e−ρs (u∗(s)(x∗(s)− a))1−σ ds.

Since (x∗(·), u∗(·)) is an optimal admissible pair, the first term in the right-hand side is finite,
while the second term converges to −∞. Thus, we obtain that

∫∞
0
u∗(s) ds =∞.

Differentiating (60) in t and utilizing the same expression for u∗(t) we conclude that for
a.e. t ≥ 0 the function u∗(·) satisfies the equality

−σu∗(t)−σ−1u̇∗(t) = ρu∗(t)
−σ − u∗(t)1−σ + u∗(t)(1− σ)u∗(t).

Dividing by −σu∗(t)−σ−1 we obtain that u∗(·) is a locally absolutely continuous solution of
the following differential equation:

u̇(t) = u(t)2 − ρ

σ
u(t).

The general solution of this simple Riccati equation is

u∗(t) =
e−

ρ
σ
t

c− σ
ρ

(
1− e− ρσ t

) ,
where c is a constant (equal to u∗(0)−1).

Since u∗(·) takes only positive values this expression for u∗(·) implies c ≥ σ/ρ, and due
to equality

∫∞
0
u∗(s) ds = ∞ we finally get c = σ/ρ. Thus, we conclude that application

of Theorem 3.2 determines a unique admissible pair (x∗(·), u∗(·)) which is suspectable for
optimality in problem (P3) (see (54)):

x∗(t) = (x0 − a)e−
ρ
σ
t + a, u∗(t) ≡

ρ

σ
, t ≥ 0. (62)

Notice, that the explicit formula (59) for the corresponding adjoint variable ψ(·) gives

ψ(t) ≡
(
ρ(x0 − a)

σ

)−σ
. (63)

Let us show that the admissible pair (x∗(·), u∗(·)) defined in (62) is indeed optimal in
(P3). For this consider the function Φ: [0,∞)× (0,∞) 7→ R1 defined as follows:

Φ(t, y) = e−ρtg(y)− ψ(t)y, t ≥ 0, y > 0,

where ψ(·) is defined by (63). It is easy to see that for any t ≥ 0 due to the strict concavity
of the isoelastic function g(·) (see (34)) there is a unique point y∗(t) of global maximum of
function Φ(t, ·) on (0,∞). For any t ≥ 0 the point y∗(t) is a unique solution of the equation
e−ρtgy(y) = ψ(t). Since gy(y) = y−σ, y > 0, (see (34)) solving this equation we obtain that
(see (63))

y∗(t) =
(
eρtψ(t)

)− 1
σ =

ρ(x0 − a)e−
ρ
σ
t

σ
, t ≥ 0.
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However, due to (62) we get

(x∗(t)− a)u∗(t) =
ρ(x0 − a)e−

ρ
σ
t

σ
= y∗(t), t ≥ 0.

Thus, we have proved that the following global inequality takes place:

e−ρtg(u∗(t)(x∗(t)− a))− ψ(t)u∗(t)(x∗(t)− a)

≥ e−ρtg(u(x− a))− ψ(t)u(x− a), t ≥ 0, x > 0, u > 0. (64)

Now, let (x(·), u(·)) be an arbitrary other admissible pair. Then due to (64) we have
(see (63))

e−ρtg(u∗(t)(x∗(t)− a))− e−ρtg(u(t)(x(t)− a))

≥
(
ρ(x0 − a)

σ

)−σ
[u∗(t)(x∗(t)− a)− u(t)(x(t)− a)] , t ≥ 0.

Integrating the last inequality on an arbitrary time interval [0, T ], T > 0, we get∫ T

0

e−ρtg(u∗(t)(x∗(t)− a)) dt−
∫ T

0

e−ρtg(u(t)(x(t)− a)) dt

≥
(
ρ(x0 − a)

σ

)−σ ∫ T

0

[u∗(t)(x∗(t)− a)− u(t)(x(t)− a)] dt

=

(
ρ(x0 − a)

σ

)−σ
(x(T )− x∗(T )) , T ≥ 0.

Passing to the limit as T → ∞, and taking into account that limT→∞ x∗(T ) = a and
x(T ) ≥ a, we obtain that∫ ∞

0

e−ρtg(u∗(t)(x∗(t)− a)) dt ≥ lim sup
T→∞

∫ T

0

e−ρtg(u(t)(x(t)− a)) dt.

Hence, (x∗(·), u∗(·)) is indeed (the unique) optimal admissible pair in problem (P3).
Thus, we conclude, that for any σ > 0, σ 6= 1 due to (62) and (63) the asymptotic

condition (7) always fails in this example. Moreover, since x∗(t) → a as t → ∞ (see (62))
the asymptotic condition (8) also fails if a > 0, while it holds if a = 0. Therefore, if
0 < σ < 1 and a > 0 then the explicit formula (12) plays a role of an alternative to
asymptotic conditions (7) and (8) which are both inconsistent with the core conditions (15)
and (16) of the maximum principle. The same phenomenon, i.e. the simultaneous violation
of both the standard asymptotic conditions (7) and (8) can be observed also in the case σ = 1
and ρ > 0 (see [4, Example 3] and [6, Section 5]). In the last case the optimal extraction rate
u∗(·) coincides with the classical Hotelling rule (see [28]), i.e. u∗(t) ≡ ρ, t ≥ 0. In the case
σ > 0, σ 6= 1, considered above, the optimal extraction rate u∗(·) represents the adjusted
Hotelling rule (according with the value of σ), i.e. u∗(t) ≡ ρ/σ, t ≥ 0 (see (62)).
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SUPPLEMENT TO “Another View of the Maximum Principle
for Infinite-Horizon Optimal Control Problems in Economics”

Sergey M. Aseev and Vladimir M. Veliov

This supplement provides additional material to accompany the main paper. Appendix A presents

an example clarifying the role of the growth Assumption (A2). Appendix B contains specification of the

main result (Theorem 3.2) in terms of the growth rates of functions involved. Appendix C provides a brief

bibliographical survey.

A Example 4

As it has been indicated in Section 3.2, if for a reference admissible pair (x∗(·), u∗(·)) the
integral

I∗(t) =

∫ ∞
t

Z−1
∗ (s)f 0

x(s, x∗(s), u∗(s)) ds, t ≥ 0, (65)

converges then the function µ∗(·) (see (24)) is defined, and µ∗(·) has the economic meaning of
integrated intertemporal prices function. If, moreover, the pair (x∗(·), u∗(·)) is weakly over-
taking optimal and the stronger condition (A2) (see Lemma 3.1) holds then all assumptions
of Theorem 3.2 are satisfied, and the adjoint variable ψ(·), that appears in the statement of
Theorem 3.2, coincides with the corresponding integrated intertemporal prices function µ∗(·)
(see (12) and (24)). This fact reveals the economic meaning of the conditions in Theorem 3.2.

Since the convergence of the integral (65) is sufficient for defining the integrated intertem-
poral prices function µ∗(·) it is natural to ask whether Assumption (A2) in Theorem 3.2 could
not be relaxed to condition of converges of the improper integral (65)?

The analysis of the problem below shows that the convergence of the integral (65) (to-
gether with (A1)) is not enough for validity of Theorem 3.2, although the function ψ(·), de-
fined by formula (12), is locally absolutely continuous and satisfies the adjoint equation (15)
in this case.

Consider the following problem (P4):

J(x(·), u(·)) =

∫ ∞
0

e−t
[
u(t)− 5x(t)2

]
dt→ max ,

ẋ(t) =
[
u(t) + x(t)

]
φ(x(t)), x(0) = 0,

u(t) ∈ [0, 1].

Here φ : R1 7→ [0, 1] is a C∞(R1) function such that

φ(x) =

{
1 if |x| ≤ 1,

0 if |x| ≥ 2.

Set G = (−∞,∞). Obviously, (P4) is a particular case of problem (P ), and condition
(A1) holds for any admissible pair (x∗(·), u∗(·)) in (P4) (see Remark 2.4).

Let us show, that (x∗(·), u∗(·)), x∗(t) ≡ 0, u∗(t)
a.e.
= 0, t ≥ 0, is a unique optimal pair in

(P4). Indeed, due to [47, Theorem 3.6.] there is an optimal admissible pair (x∗(·), u∗(·))
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in (P4). Assume that u∗(·) is non-vanishing on a set of positive measure. Then for the
corresponding optimal trajectory x∗(·) there is a unique instant τ > 0 such that x∗(τ) = 1.

Consider the following auxiliary problem (P4τ ):

Jτ (x(·), u(·)) =

∫ τ

0

e−t
[
u(t)− 5x(t)2

]
dt→ max ,

ẋ(t) =
[
u(t) + x(t)

]
φ(x(t)), x(0) = 0, x(τ) = 1,

u(t) ∈ [0, 1].

Here all data in (P4τ ) are the same as in (P4), and the only difference is that (P4τ ) is
considered on the fixed time interval [0, τ ] with the terminal condition x(τ) = 1.

As it can be easily seen, the optimal in (P4) pair (x∗(·), u∗(·)) is also optimal in problem
(P4τ ). Hence, according to the classical Pontryagin maximum principle [34] for problems
on finite time intervals with fixed endpoints there are non-vanishing simultaneously adjoint
variables ψ0 ≥ 0 and ψ(·) such that the absolutely continuous function ψ(·) is a solution on
[0, τ ] of the adjoint system

ψ̇(t) = 10ψ0e−tx∗(t)− ψ(t), (66)

and for a.e. t ∈ [0, τ ] the maximum condition takes place:

u∗(t)
(
ψ0e−t + ψ(t)

)
= max {0, ψ0e−t + ψ(t)}. (67)

Here we employed the fact that x∗(t) < 1 for all t < τ and, hence, φx(x∗(t)) ≡ 0 for all
t ∈ [0, τ ].

If ψ0 = 0, then due to (66) we have ψ(t) = ψ(0)e−t, t ≥ 0. Due to the maximum
condition (67) this implies either u∗(t)

a.e.
= 0 (if ψ(0) < 0) or u∗(t)

a.e.
= 1 (if ψ(0) > 0). By

assumption u∗(·) is non-vanishing on a set of positive measure. Hence, u∗(t)
a.e.
= 1, t ∈ [0, τ ].

Substituting u∗(t)
a.e.
= 1 in the control system we get x∗(t) = et−1, t ∈ [0, τ ]. This implies

τ = ln 2. Further, by the direct calculation we get

Jτ (x∗(·), u∗(·)) =

∫ ln 2

0

e−t
[
1− 5(e2t − 2et + 1)

]
dt

= −4

∫ ln 2

0

e−t dt− 5

∫ ln 2

0

et dt+ 10

∫ ln 2

0

dt = 10 ln 2− 7 < 0. (68)

Since x∗(ln 2) = 1 and x∗(t) ≥ 1 for t ≥ ln 2, we get∫ ∞
ln 2

e−t
[
u∗(t)− 5x∗(t)

2
]
dt < 0.

Hence,
J(x∗(·), u∗(·)) < Jτ (x∗(·), u∗(·)) < 0,

which contradicts the optimality of the pair (x∗(·), u∗(·)) in problem (P4). Thus, either
ψ0 > 0 or u∗(t)

a.e.
= 0, t ≥ 0.

Consider the case ψ0 > 0. In this case without loss of generality we can assume ψ0 = 1/10.
Due to (66) in this case we get

ψ(t) = e−t
[
ψ(0) +

∫ t

0

x∗(s) ds

]
, t ∈ [0, τ ].
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This implies

ψ0e−t + ψ(t) = e−t
[

1

10
+ ψ(0) +

∫ t

0

x∗(s) ds

]
, t ∈ [0, τ ].

If ψ(0) > −1/10, then due to the maximum condition (67) we obtain that u∗(t)
a.e.
= 1,

t ∈ [0, τ ]. But, as it is shown above, J(x∗(·), u∗(·)) < 0 in this case, which contradicts the
optimality of the pair (x∗(·), u∗(·)).

If ψ(0) ≤ −1/10, then due to the maximum condition (67) we obtain that the control
u∗(·) is vanishing on some interval [0, τ1], τ1 < τ , and then u∗(t) = 1 for a.e. t ∈ [τ1, τ ].
In this case, x∗(t) ≡ 0 on time interval [0, τ1] and x∗(t) = et−τ1 − 1 for all t ∈ [τ1, τ ]. This
implies, τ = τ1 + ln 2. Hence, in this case we obtain that (see (68))

Jτ (x∗(·), u∗(·)) =

∫ τ1+ln 2

τ1

e−t
[
1− 5(e2(t−τ1) − 2et−τ1 + 1)

]
dt

= e−τ1
∫ ln 2

0

e−t
[
1− 5(e2t − 2et + 1)

]
dt < 0.

But this inequality again contradicts the optimality of pair (x∗(·), u∗(·)) in problem (P4).
Thus, we have proved that (x∗(·), u∗(·)), x∗(t) ≡ 0, u∗(t)

a.e.
= 0, t ≥ 0, is the unique

strongly optimal pair in (P4).
Along the pair (x∗(·), u∗(·)) we have f 0

x(t, x∗(t), u∗(t)) = −10x∗(t)e
−t ≡ 0, t ≥ 0. Thus,

for any t ≥ 0 the integral (65) converges absolutely, I∗(t) ≡ 0, t ≥ 0, and the adjoint function
ψ(·) defined by equality (12) is also vanishing: ψ(t) ≡ 0, t ≥ 0. Thus ψ0 6= 0, and one can
take ψ0 = 1. However, the maximum condition (16) (that is, (67) with ψ0 = 1 in the present
example) does not hold for u∗(t) ≡ 0, t ≥ 0, with the adjoint variable ψ(t) ≡ 0, t ≥ 0.
Thus, the assertion of Theorem 3.2 fails in the case of problem (P4). The reason of this
phenomenon is the violation of the growth condition (A2) for the pair x∗(t) ≡ 0, u∗(t)

a.e.
= 0,

t ≥ 0.
However, all assumptions of the general maximum principle [26, Theorem 4.2] are satisfied

for problem (P4). In particular, the strongly optimal in (P4) pair (x∗(·), u∗(·)), x∗(t) ≡ 0,
u∗(t)

a.e.
= 0, t ≥ 0, satisfies conditions (15) and (16) of the general maximum principle with

adjoint variables ψ0 = 1 and ψ(t) = −e−t, t ≥ 0. Thus the normal form of the maximum
principle holds for this example, although the correct adjoint function is not presented by
the formula (12). The explanation is, that Assumption (A2) is not only used to ensure
convergence of the integral in (65), but is also essential in the proof of Theorem 3.2.

B Problems with Dominating Discount

A convenient way to ensure that Assumption (A2) is satisfied is to explore the growth rates
of the functions involved. In addition to (A1) (see also Remark 2.4) we pose the following
assumptions.

Assumption (B1). There exist numbers µ ≥ 0, r ≥ 0, κ ≥ 0, β > 0, ρ ∈ R1, ν ∈ R1,
and c ≥ 0 such that for every t ≥ 0

(i) ‖x∗(t)‖ ≤ c eµt;
(ii) for every ζ ∈ G with ‖ζ−x0‖ < β equation (2) with u(·) = u∗(·) and initial condition

x(0) = ζ (instead of x(0) = x0) has a solution x(ζ; ·) in G on [0,∞), and it holds that

‖x(ζ; t)− x∗(t)‖ ≤ c‖ζ − x0‖ eνt, t ≥ 0 (69)
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and

‖f 0
x(t, y, u∗(t))‖ ≤ c (1 + ‖y‖r) e−ρt for every t ≥ 0 and y ∈ [x(ζ; t), x∗(t)].

Some comments about the above assumptions follow. The fist inequality in Assumption
(B1)(ii) specifies the known fact of Lipschitz dependence of the solution of an ODE on the
initial condition, requiring additionally that the Lipschitz constant depends exponentially
(with rate ν) on the time horizon. Notice that the number ν can be negative. The multiplier
e−ρt in the second inequality of Assumption (B1)(ii) indicates that the objective integrand
may contain a “discount” factor with a rate ρ (possibly negative). Assumption (B1)(i)
requires a priory information about the exponential growth rate of the optimal trajectory,
which can often be obtained in economic contexts.

While Assumption (B1) is needed, essentially, to define the constants ρ, r, µ and ν, the
next one imposes a certain relation between them, called dominating discount condition [5,
7, 8, 9, 10, 13].

Assumption (B2):
ρ > ν + rmax {µ, ν}.

In [11, Lemma 5.1] it is proved that Assumptions (B1), (B2) imply (A2). Thus, the
following corollary of Theorem 3.2 holds.

Corollary B.1. The claims of Theorem 3.2 are valid on Assumptions (A1), (B1) and (B2).

We mention that although the dominating discount condition (B2) may be easier to
check than (A2), its fulfillment depends on the time scale (see [54] or [11, Part 3, Section
5]). In contrast, Assumption (A2) is invariant with respect to any diffeomorphic change of
the time variable. Indeed, if the time variable is changed as t = ξ(s), s ≥ 0 (where ξ maps
diffeomorphically [0,∞) to [0,∞)), it could be directly checked that in the resulting problem
Assumption (A2) is fulfilled with λ̃(s) = λ(ξ(s))ξ̇(s), s ≥ 0, which is integrable if and only
if λ(·) is.

Bellow we consider two more specific classes of problems where the dominating discount
condition can be verified in a more convenient way: problems for one-sided Lipschitz systems
and problems for systems with regular linearization.

B.1 Problems with one-sided Lipschitz dynamics

Assumption (B1), hence also (A2), can be verified in a more convenient way for systems
with one-sided Lipschitz right-hand sides. The result below considerably extends the one
previously obtained in [10, Section 4], therefore we present it in some more details. First,
we recall the following definition.

Definition B.2. A function f(·, ·, ·), with f(t, x, u) defined for x ∈ G and (t, u) ∈ graphU(·)
with values in Rn, is called one-sided Lipschitz with respect to x (uniformly in (t, u) ∈
graphU(·)) if there exists a number ν ∈ R1 such that

〈f(t, x, u)− f(t, y, u), x− y〉 ≤ ν‖x− y‖2 for all x, y ∈ G and (t, u) ∈ graphU(·).

Notice that the constant ν can be negative.
The following is an important well-known property of the one-sided Lipschitz systems.
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Lemma B.3. For any control u(·) and any two solutions x1(·) and x2(·) of the equation
ẋ(t) = f(t, x(t), u(t)) that exists in G on an interval [τ, T ] it holds that

‖x1(t)− x2(t)‖ ≤ eν(t−τ)‖x1(τ)− x2(τ)‖ for every t ∈ [τ, T ].

This property allows to prove the following lemma.

Lemma B.4. If f(·, ·, ·) is one-sided Lipschitz, then∥∥Z∗(τ) [Z∗(s)]
−1
∥∥ ≤ √n eν(s−τ) for every τ, s ∈ [0,+∞), τ ≤ s.

Proof. Let us fix an arbitrary τ and s as in the formulation of the lemma. Let xi(·) be the
solution of the equation ẋ(t) = f(t, x(t), u∗(t)) with xi(τ) = x∗(τ) + αei where ei is the i-th
canonical unit vector in Rn and α is a positive scalar. Clearly, xi(·) exists in G on [τ, s] for
all sufficient small α > 0.

It is a known (see e.g. [2, Chapter 2.5.6]) that on our standing assumptions

xi(t) = x∗(t) + αyi(t) + o(α, t), t ∈ [τ, s],

where ‖o(α, t)‖/α → 0 with α, uniformly in t ∈ [τ, s], and yi(·) is the solution of the
equation ẏ(t) = fx(t, x∗(t), u∗(t))y(t) with y(τ) = ei. This solution, however, has the form
yi(t) = [Z∗(τ)∗]−1 Z∗(t)

∗ei. That is, yi(t)
∗ is the i-th row of the matrix Z∗(τ) [Z∗(t)]

−1.
Hence,

‖Z∗(τ) [Z∗(s)]
−1 ‖ =

(
n∑
i=1

‖yi(s)‖2

)1/2

=

(
n∑
i=1

(‖xi(s)− x∗(s)− o(α, t)‖/α)2

)1/2

.

Using Lemma B.3 and passing to the limit with α→ 0 we obtain the desired inequality.

Using this lemma and Assumption (B2) we may estimate the norm of the adjoint vector
ψ(t), t ≥ 0, defined by (12) as follows:

‖ψ(t)‖ ≤
∫ ∞
t

‖Z∗(t) [Z∗(s)]
−1 ‖ ‖f 0

x(s, x∗(s), u∗(s))‖ ds

≤
∫ ∞
t

√
n eν(s−t)κ(1 + cr1e

µrs)e−ρs ds ≤ c3e
−(ρ−rµ)t, (70)

where c3 ≥ 0 is an appropriate constant. This estimation leads to the next corollary of
Theorem 3.2. In the formulation we use the weighted space L∞(eγt; [0,∞)), consisting of all
measurable functions ψ : [0,∞) 7→ Rn for which the norm

‖ψ(·)‖∞,γ := ess sup
t∈[0,+∞)

eγt‖ψ(t)‖

is finite.
Lemma B.3 allows to simplify Assumption (B1) in the following way.

Corollary B.5. Assume that the function f(·, ·, ·) is one-sided Lipschitz in the sense of
Definition B.2. Let (x∗(·), u∗(·)) be a weakly overtaking optimal pair in problem (P ), and
let Assumptions (A1) and (B1) without the requirement that (69) be fulfilled for this pair.
Assume, in addition, that (B2) is fulfilled with the number ν in Definition B.2. Then the
function ψ : [0,∞) 7→ Rn defined by (12) is locally absolutely continuous and conditions (15)
and (16) in Theorem 3.2 are satisfied. Moreover, the function ψ(·) is the unique solution of
the adjoint equation (15) belonging to the weighted space L∞(e(ρ−rµ)t; [0,∞)).
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Proof. The inequality in Lemma B.3 applied with x1(·) = x∗(·) and x2(·) = x(ζ; ·) and
τ = 0 implies inequality (69) in (B1). Then according to Corollary B.1, Assumption (A2) is
satisfied. Thus the first part of the corollary follows from Theorem 3.2.

In (70) we have established the inclusion ψ(·) ∈ L∞(e(ρ−rµ)t; [0,∞)). Assume that ψ̃(·) is
another solution of (15) which belongs to L∞(e(ρ−rµ)t; [0,∞)). Then for any t ≥ 0 we have

ψ(0)− ψ̃(0) = [Z∗(t)]
−1 (ψ(t)− ψ̃(t)).

Hence,

‖ψ(0)− ψ̃(0)‖ ≤ ‖ [Z∗(t)]
−1 ‖ (‖ψ(t)‖+ ‖ψ̃(t)‖)

≤
√
n eνte−(ρ−rµ)t

(
‖ψ(·)‖∞,ρ−rµ + ‖ψ̃(·)‖∞,ρ−rµ

)
≤ c4e

−(ρ−ν−rµ)t, t ≥ 0.

for an appropriate constant c4 ≥ 0 (which may depend on ψ̃(·)). Since the right-hand side
converges to zero as t → +∞, we obtain that ‖ψ(0) − ψ̃(0)‖ = 0 which completes the
proof.

The next corollary links the membership ψ(·) ∈ L∞(e(ρ−rµ)t; [0,∞)) provided by Corol-
lary B.5 with the asymptotic conditions (7) and (8).

Corollary B.6. If the assumptions of Corollary B.5 hold and, in addition, ρ > rµ then
the asymptotic condition (7) is valid. Moreover, if in addition to the assumptions of Corol-
lary B.5 the stronger inequality ρ > (r + 1)µ holds then both asymptotic conditions (7)
and (8) are valid.

Proof. Note first, that since µ ≥ 0 and r ≥ 0 (see (B1)) both inequalities ρ > rµ and ρ > (r+
1)µ imply ρ > 0. On the assumptions of Corollary B.5 we have ψ(·) ∈ L∞(e(ρ−rµ)t; [0,∞)).
This means that there is a constant c3 ≥ 0 such that the inequality (70) takes place. Hence,
inequality ρ > rµ implies the validity of the asymptotic condition (7) in this case. Further,
due to condition (i) in (B1) we have ‖x∗(t)‖ ≤ ceµt, t ≥ 0. Hence, the stronger inequality
ρ > (r + 1)µ implies the validity of both asymptotic conditions (7) and (8) in this case.

B.2 Systems with regular linearization

Here we consider another special case in which Assumption (B1) takes a more explicit form.
First we recall a few facts from the stability theory of linear systems (see e.g. [51, 52] for

more details). Consider a linear differential system

ẏ(t) = A(t)y(t), (71)

where t ∈ [0,∞), y ∈ Rn, and all components of the real n × n matrix function A(·) are
bounded measurable functions.

Let y(·) be a nonzero solution of system (71). Then, the number

λ̃ = lim sup
t→∞

1

t
ln ‖y(t)‖

is called characteristic Lyapunov exponent or, briefly, characteristic exponent of the solu-
tion y(·). The characteristic exponent λ̃ of any nonzero solution y(·) of system (71) is finite.
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The set of characteristic exponents corresponding to all nonzero solutions of system (71) is
called spectrum of system (71). The spectrum always consists of at most n different numbers.

The solutions of the system (71) form a finite-dimensional linear space of dimension n.
Any basis of this space, i.e., any set of n linearly independent solutions y1(·), . . . , yn(·), is
called fundamental system of solutions of system (71). A fundamental system of solutions
y1(·), . . . , yn(·) is said to be normal if the sum of the characteristic exponents of these solu-
tions y1(·), . . . , yn(·) is minimal among all fundamental systems of solutions of (71).

It turns out that a normal fundamental system of solutions of (71) always exists. If
y1(·), . . . , yn(·) is a normal fundamental system of solutions, then the characteristic expo-
nents of the solutions y1(·), . . . , yn(·) cover the entire spectrum of system (71). This means
that for any number λ̃ in the spectrum λ̃1, . . . , λ̃l of system (71), there exists a solution
from the set y1(·), . . . , yn(·) that has this number as its characteristic exponent. Note, that
different members yj(·) and yk(·) of the fundamental system y1(·), . . . , yn(·) may have the
same characteristic exponent. Denote by ns the multiplicity of the characteristic exponent
λ̃s, s = 1, . . . , l, belonging to the spectrum of (71). Any normal fundamental system contains
the same number ns of solutions of (71) with characteristic number λ̃s, 1 ≤ s ≤ l, from the
Lyapunov spectrum of (71).

Denote

σ =
l∑

s=1

nsλ̃s.

The linear system (71) is said to be regular if

σ = lim inf
t→∞

1

t

∫ t

0

traceA(s) ds,

where traceA(s) is the sum of all elements of A(s) that lie on the principal diagonal.
Note that differential system (71) with constant matrix A(t) ≡ A, t ≥ 0, is always regular.

In this case the maximal element λ̄ of the spectrum of (71) equals the maximal real part
of the eigenvalues of the matrix A. Another important class of regular differential systems
consists of systems (71) with periodic components (with the same period) in matrices A(·).

It is known (see, for example, [52]), that if the system (71) is regular, then for any ε > 0
the following inequality holds:∥∥Z∗(τ) [Z∗(s)]

−1
∥∥ ≤ c(ε) eλ̄(s−τ)+εs for every τ, s ∈ [0,+∞), τ ≤ s. (72)

where λ̄ is the maximal element of the spectrum and the constant c(ε) ≥ 0 depends only on
ε.

The inequality (72) is similar to the inequality that appears in the assertion of Lemma B.4
above. Analogously to Lemma B.4 the inequality (72) leads to the following corollary of
Theorem 3.2.

Corollary B.7. Let (x∗(·), u∗(·)) be a weakly overtaking optimal pair in problem (P ), and
let Assumptions (A1) and (B1) without the requirement that (69) be fulfilled for this pair.
Let the linearized system

ẏ(t) = fx(t, x∗(t), u∗(t)) y (73)

be regular. Assume, in addition, that (B2) is fulfilled with the number ν taken equal to
(or larger than) the maximal element λ̄ of the spectrum of system (73). Then the function
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ψ : [0,∞) 7→ Rn defined by (12) is locally absolutely continuous and conditions (15) and
(16) in Theorem 3.2 are satisfied. Moreover, the function ψ(·) is the unique solution of the
adjoint equation (15) belonging to the weighted space L∞(e(ρ−rµ)t; [0,∞)).

Essentially the proof repeats the argument in proof of Lemma B.4 above (see also [8,
Section 5] and [10, Corollary 2]).

Analogously to Corollary B.6 the following result links the membership ψ(·) ∈
L∞(e(ρ−rµ)t; [0,∞)) provided by Corollary B.7 with asymptotic conditions (7) and (8).

Corollary B.8. If the assumptions of Corollary B.7 hold and, in addition, ρ > rµ then
the asymptotic condition (7) is valid. Moreover, if in addition to the assumptions of Corol-
lary B.7 the stronger inequality ρ > (r + 1)µ holds then both asymptotic conditions (7)
and (8) are valid.

C Bibliographical comments

To the best of our knowledge, an optimal control problem with infinite time horizon was
considered first in the seminal monograph [34, Chapter 4]. The problem considered in [34] is
completely autonomous, involves no discounting, satisfies the usual regularity assumptions
(see Remark 2.4), and involves additional asymptotic terminal condition limt→∞ x(t) = x1,
where x1 is a given asymptotic terminal state in Rn. Potentially, the approach suggested
in [34] is applicable to a broad scope of infinite-horizon optimal control problems, in partic-
ular to problem (P ) with free terminal state that is in the focus of the present paper. This
approach is based on the construction of a “initial cone” Kt0 at the initial time t0 instead
of the “limiting cone” at the terminal time t1 (which does not exist in the infinite-horizon
case). The initial cone Kt0 is constructed in the same way as the limiting cone Kt1 at the
terminal time t1 in the case of a finite-horizon problem on the time interval [t0, t1], t0 < t1.
This construction is based on the classical needle variations technique (see [34]). The only
difference with the finite-horizon case is that the increment of the principal linear part of the
varied trajectory is transmitted (by solving a system of variational equations) to the initial
moment t0 rather than to the terminal time t1 (which does not exist). All other points of this
construction are essentially the same as in the finite-horizon case. When the initial cone Kt0

is constructed, the subsequent application of a topological result and the separation theorem
provide a corresponding version of the maximum principle (see [34] for details). Notice, that
this construction employees only the property of finite optimality of the reference optimal
control u∗(·). Therefore, when applied to problem (P ), this construction leads to exactly
the same result as the general version of the maximum principle for problem (P ) that was
developed later by Halkin (see [26]).

The paper [26] by Halkin considers problem (P ) with free terminal state at infinity under
the usual regularity assumptions (see Remark 2.4). The integral functional (1) is not assumed
to be finite in [26]. The approach employed in [26] is based on the consideration of the family
of auxiliary optimal control problems (PT ) on finite time intervals [0, T ], T > 0, appearing
in Definition 2.3. The finite optimality of the admissible pair (x∗(·), u∗(·)) in problem (P )
implies that on any finite time interval [0, T ], T > 0, the core conditions of the Pontryagin
maximum principle for the pair (x∗(·), u∗(·)) hold with a corresponding non-vanishing pair
of adjoint variables ψ0

T ≥ 0, ψT (·). This implies the validity of the core conditions of the
infinite-horizon maximum principle after taking a limit in the conditions of the maximum
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principle for these auxiliary problems (PT ) as T →∞ (see details in [18, 26]). No additional
characterizations of the adjoint variables ψ0 and ψ(·) such as normality of the problem
and/or some boundary conditions at infinity are provided in [18]. Moreover, the paper [26]
suggests two counterexamples demonstrating possible pathologies in the relations of the
general version of the maximum principle for problem (P ), namely possible abnormality
of problem (P ) (ψ0 = 0 in this case) and possible violation of the standard asymptotic
conditions (7) and (8).

Apparently, [39] and [26] were the first papers in which the authors demonstrated by
means of counterexamples that abnormality is possible, and the “natural” asymptotic con-
ditions (7) and (8) may be violated in the case of infinite-horizon problems with free terminal
state at infinity. Since the discount rate ρ is equal to zero in these examples, the doubts
that such pathologies are attributed only to problems without time discounting were rather
common in economic literature for a along time (see for example [14, Section A.3.9] and [50,
Chapter 9]). However, many “pathological” examples with positive discount rate are known
nowadays (see for example [9, Chapter 1, Section 6] and [32, Section 2]), including models
developed quite recently and having clear economic interpretations (see [12, Section 4], [4,
Example 3], [6, Section 2.2] and Example 3 in Section 4).

After the publication of paper [26] many authors attempted to develop normal versions of
the maximum principle for problem (P ) and characterize, on various additional assumptions,
the asymptotic behavior of the adjoint variable for which the maximum condition (4) is
fulfilled. The first positive results in this direction were obtained in [13] and [15].

In [13], a particular case of problem (P ) is investigated, where the control system is linear
and autonomous:

ẋ(t) = Fx(t) + u(t), x(0) = x0,

The constraining set U ⊂ Rn is convex and compact, the instantaneous utility function has
the form f 0(t, x, u) = e−ρtg(x, t), t ≥ 0, x ∈ Rn, u ∈ U , with a positive discount rate ρ
and a locally Lipschitz with respect to both variables x and u function g(·, ·).3 The authors
assume that the following dominating discount condition holds:

ρ > (r + 1)λF . (74)

Here, λF is the maximal real part of the eigenvalues of the n × n matrix F and r is a
nonnegative number that characterizes the growth of the function g(·, ·) in terms of its
generalized gradient ∂g(·, ·) (in the sense of Clarke [20]; see [13] for more detail):

‖ζ‖ ≤ κ(1 + ‖(x, u)‖r) for any ζ ∈ ∂g(x, u), x ∈ G, u ∈ U.

Note, that the generalized gradient is taken here with respect to both variables x and u.
Since ρ > 0 it is easy to see that condition (74) guarantees convergence of the functional

J(x(·), u(·)) for any admissible pair (x(·), u(·)). Accordingly, the concept of strong optimality
is employed in [13].

In the case of r > 0, the authors of [13] proposed a version of the Pontryagin maximum
principle in the normal form; this version contains a characterization of the behavior of the
adjoint variable ψ(·) in terms of the convergence of the improper integral∫ ∞

0

e(q−1)ρt‖ψ(t)‖q dt <∞. (75)

3Here and below for the reasons of unification we use notations sometimes slightly different from the ones
used in the original papers under discussion.
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Here, the constant q > 1 is defined by the equality 1/q + 1/(r + 1) = 1. As pointed out
in [13], condition (75) implies that the asymptotic conditions (7) holds.

Later the result obtained in [13] was generalized and strengthened by different methods
(which differ also from the method employed in [13]) in the series of papers [5, 7, 8, 9,
10, 17]. In these papers a few different (not equivalent) extensions of the condition (74)
to the case of nonlinear problems (P ) were suggested and various normal form versions of
the maximum principle with adjoint variable ψ(·) specified explicitly by formula (12) were
developed. Here we mention only that in the linear case (considered in [13]) the dominating
discount condition (74) implies validity of Assumption (B2) in Appendix B and, hence,
(A2). In this case due to Theorem 3.2 the core conditions (15) and (16) of the normal form
maximum principle hold with adjoint variable ψ(·) specified by formula (12) which directly
implies the estimate (75) (see [9, Section 16] and [45]). Moreover, since ρ > 0, formula (12)
implies validity of both asymptotic conditions (7) and (8) in this case (see [9, Section 12]
and Corollary B.8).

In [15] a version of first-order necessary optimality conditions that contains the asymp-
totic condition at infinity (8) was developed for the infinite-horizon dynamic optimization
problem of the form

J(x(·)) =

∫ ∞
0

f 0(t, x(t), ẋ(t)) dt→ max , (76)

(x(t), ẋ(t)) ∈ K, x(0) = x0. (77)

Here the set K ⊂ R2n is assumed to be convex, closed with a nonempty interior; the function
f 0 : [0,∞)×K 7→ R1 is jointly concave in the variables x, ẋ for any t ≥ 0, and the optimal
trajectory x∗(·) is assumed to lie in the interior of the set domV (·, t) for any t ≥ 0, where

domV (t, ·) =
{
x0 ∈ Rn : V (t, x0) <∞

}
is the effective set of the optimal value function V (·, ·):

V (t, x0) = sup

{∫ ∞
t

f 0(s, x(s), ẋ(s)) ds : (x(s), ẋ(s)) ∈ K for s ≥ t; x(t) = x0

}
.

Under the assumptions made, the problem (76), (77) is “completely convex.” In particular,
the optimal value function V (·, ·) is concave in the variable x0 for any t ≥ 0, and the set of
all admissible trajectories is convex in the space C([0, T ],Rn) for any T > 0.

The main result of [15] states that there exists an adjoint variable ψ(·) corresponding to
the optimal trajectory x∗(·) such that

ψ(t) ∈ ∂xV (t, x∗(t)), t ≥ 0. (78)

Here, ∂xV (t, x∗(t)) is the partial subdifferential (in the sense of convex analysis) of the
concave function V (t, ·) at the point x∗(t) for fixed t. Next, a certain generalized Euler
equation and the asymptotic condition (8) were derived from the inclusion (78) in [15]
under some additional assumptions. In particular, it was assumed that the phase vector x
is nonnegative and the function f 0(·, ·, ·) is monotone in the variable ẋ (see [15] for more
detail).

The question of whether asymptotic conditions of the form (8) hold for the prob-
lem (76), (77) was considered in [30] without the convexity assumptions in the situation
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when the optimal trajectory x∗(·) is regular and interior, and the control system satisfies a
homogeneity condition.

The next step in developing of complementary necessary conditions characterizing the
asymptotic behavior of the adjoint variable ψ(·) has been done by Michel in 1982 (see [32]).
In the special case when the problem (P ) is autonomous with exponential discounting (i.e.
f(t, x, u) ≡ f(x, u), f 0(t, x, u) ≡ e−ρtg(x, u) and U(t) ≡ U , where ρ ∈ R1 is not necessarily
positive) and under the assumption that the optimal value J(x∗(·), u∗(·)) is finite, the author
established validity of the asymptotic condition (9) along any strongly optimal admissible
path x∗(·). This asymptotic condition is analogous to the transversality condition with
respect to time in problems with free final time [34]. Since the standard regularity conditions
are employed (see Remark 2.4), in this case condition (9) is equivalent to the stationarity
condition

H(t, x∗(t), ψ
0, ψ(t)) = ψ0ρ

∫ ∞
t

e−ρsg(x∗(s), u∗(s)) ds, t ≥ 0. (79)

Notice, that the adjoint variable ψ0 can be equal to zero here, and an example of an au-
tonomous problem (P ) with positive discounting (ρ > 0) in which the equality ψ0 = 0
necessarily holds is presented in [32, Section 2]. The complementary character of condi-
tion (9) is demonstrated in [9, Example 6.6]. A generalization of Michel’s result to the
case when the instantaneous utility f 0(·, ·, ·) depends on the variable t in more general way
was developed in [58], using a slightly modified argument. A normal form version of the
maximum principle with adjoint variable ψ(·) having all positive components which involves
condition (25) was developed also in [46] under some monotonicity type assumptions.

In some cases, in particular, in the situation when the function g(·, ·) is nonnegative
and there exists a neighborhood V of 0 in Rn such that V ⊂ f(x∗(t), U) for all large enough
instants t, the asymptotic condition (9) implies condition (7). Nevertheless, being one dimen-
sional, condition (9) (as well as (79)) cannot provide a full set of complementary conditions
for the adjoint variable ψ(·) in the general multidimensional case.

The relationship between the explicit formula (12) and the asymptotic condition (9) is
discussed in Corollary 3.4 (see also [4, 43]).

In [42], Ye obtained the stationarity condition (79) in the case of a nonsmooth problem
(P ) with discounting (provided that the autonomous functions f(·, ·) and g(·, ·) are Lipschitz
in the phase variable x uniformly in u and Borel measurable in u, and the function g(·, ·) is
bounded).

The main result in [42] provided a version of the maximum principle with the asymptotic
conditions (7) and (9) under the additional assumption

ρ > max

{
0, sup

x,y∈G, u∈U

〈x− y, f(x, u)− f(y, u)〉
‖x− y‖2

}
. (80)

This assumption means that ρ is positive and ρ > ν, where ν is the one-sided Lipschitz
constant of the vector function f(·, ·) with respect to the phase variable x (see Definition B.2).
It is easy to see that if the functions f(·, ·), fx(·, ·), g(·, ·), gx(·, ·) are continuous in the variable
x, the function g(·, ·) is Lipschitz in variable x uniformly in u (this implies r = 0 in (B1))
and condition (80) holds then due to Theorem 3.2 the core conditions (15) and (16) of
the normal form maximum principle hold together with the adjoint variable ψ(·) specified
via formula (12) (see Lemma B.5). In this case the formula (12) implies validity of the
asymptotic condition (7).
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In [60], Smirnov characterized the asymptotic behavior of the adjoint variable ψ(·) in
terms of the Lyapunov exponents (see [51] and Appendix B for the relevant definitions of
stability theory). The main assumption of [60] is that the system of variational equations
considered along a reference optimal pair (x∗(·), u∗(·)) is regular. In this case, under some
additional assumptions,4 it is proved in [60] that the characteristic Lyapunov exponent of
the adjoint variable ψ(·) corresponding to the reference optimal pair (x∗(·), u∗(·)) is nonpos-
itive (see [60, Theorem 3.1]). However, this result does not guarantee either normality of
the optimal control problem under consideration or fulfillment of asymptotic conditions (7)
or (8). As pointed out in [60] by means of a counterexample, regularity of the system of
variational equations plays an important role here.

In [36], Seierstad considered an infinite-horizon optimal control problem (as a minimum
problem) that is more general than (P ). The statement of this problem includes a nonau-
tonomous nonsmooth control system

ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U,

an initial condition x(0) = x0 ∈ Rn, and equality- and inequality-type terminal boundary
constraints at infinity that are imposed on some of the phase coordinates xi(∞), i = 1, . . . ,m
(it is assumed that x(t) ∈ Rn, m < n, and the corresponding limits xi(∞) = limt→∞ x

i(t),
i = 1, . . . ,m, exist). The problem considered in [36] consists in the minimization of a
terminal functional of the form

J(πx(∞)) =
m∑
i=1

νix
i(∞).

Here, π is the m×n matrix of the operator of projection onto the subspace of the first m co-
ordinates in Rn and νi, i = 1, . . . ,m, are real numbers.

In [36], a version of the maximum principle that contains a full set of asymptotic con-
ditions at infinity is developed, however, under rather restrictive growth and some other
assumptions. In application to problem (P ) with free right endpoint, this result implies
normality of the maximum principle and validity of the asymptotic condition (7). For a
discussion of the growth conditions employed in [36] see [9, Section 16].

Notice also, that a version of the maximum principle that contains a full set of asymptotic
conditions at infinity is recently developed in [57] for a smooth infinite-horizon optimal
control problem with unilateral state constraints and with terminal conditions on the states
at infinity by employing the needle variation technique. However, the growth conditions
employed in [57] are rather demanding.

The approach based on approximations of the problem (P ) by a specially constructed
sequence of finite-horizon problems {(Pk)}∞k=1 on time intervals [0, Tk], Tk > 0, limk→∞ Tk =
∞, was developed in [7, 8, 9, 46] in the case of autonomous problems (P ) with discounting. In
this case, on any finite interval [0, T ], T > 0, the sequence of optimal controls {uk(·)} (which
exist) in the approximating problems (Pk), k = 1, 2, . . . , converges weakly in L1([0, T ],Rm)
(or in other appropriate sense) to the reference optimal control u∗(·) in problem (P ). The
necessary optimality conditions for problem (P ) are obtained by passing to the limit as
k →∞ in the relations of the Pontryagin maximum principle for the approximating problems

4Note that in [60] an important condition that is used in the proof is missing in the formulation of the
main result. Namely, the gradient of the integrand must be bounded: ‖b(t)‖ ≤ K for a.e. t ≥ 0 (see [60,
Theorem 3.1]). Example 10.4 in [36] shows that this condition is essential.
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(Pk). It was proved in [7, 8, 9] that the maximum principle holds in normal form with the
adjoint variable ψ(·) specified by the formula (12) under some dominating discount type
conditions. Similar characterization of the adjoint variable ψ(·) was obtained also in the so
called “monotone case” (see [46] and [9] for details). Recently, the main constructions and
results in [7, 8, 9] were extended in [5, 17].

Although the finite-horizon approximation based approach enables one to develop dif-
ferent normal form versions of the maximum principle that contain full sets of necessary
conditions for problem (P ), there are inherent limits for the applicability of this approach.
In particular, application of this approximation technique assumes validity of the conditions
guaranteeing existence of solutions in the corresponding finite-horizon approximate prob-
lems. Moreover, some uniformity of convergence of the improper integral utility functional
(1) for all admissible controls (see e.g. condition (A3) in [9]) is employed. In many cases
of interest assumptions of this type either fail or cannot be verified a priory. For instance,
in problems without discounting and in models of endogenous economic growth (especially
with declining discount rates) the corresponding integral utility functionals may diverge to
infinity.

The approach for derivation of first order necessary optimality conditions for infinite-
horizon optimal control problems, which is based on the methods of general theory of ex-
tremal problems (see [53]), was developed recently by Pickenhein in [54, 55] (in the linear-
quadratic case) and Tauchnitz [61] (in the general nonlinear case). The key idea of this
approach is to introduce weighted Sobolev spaces as state spaces and weighted Lebesgue
spaces as control spaces into the problem setting. The value of the functional is assumed to
be bounded and the optimality of an admissible control u∗(·) ∈ L∞ ([0,∞),Rm) is under-
stood in the strong sense. The developed by this approach general version of the maximum
principle (see [61, Theorem 4.1])) is not necessarily normal (the case ψ0 = 0 is not excluded).
It involves the adjoint variable ψ(·) belonging to an appropriate weighted functional space
(i.e., satisfying a certain exponential growth condition). In this sense this result extends [13].
The membership of the adjoint variable ψ(·) to the appropriate weighted functional space
implies validity of both asymptotic conditions (7) and (8). However, it does not necessarily
identify an adjoint function for which the maximum condition in the maximum principle is
satisfied.

In the linear-quadratic case the corresponding maximum principle holds in the normal
form (see [55, Theorem 5]. The normal form version of the maximum principle with ad-
joint variable specified by Cauchy type formula (12) is obtained in [61, Theorem 6.1] under
additional “stability” type condition (see condition (A3) in [61].) It is also shown in [61,
Example 6.2] that all assumptions of the last result can be satisfied for an optimal admissi-
ble pair (x∗(·), u∗(·)) in this example while the assumptions of Theorem 3.3 fail. However,
the employed weighted Sobolev and Lebesgue spaces are constructed making use of a priory
known optimal pair (x∗(·), u∗(·)) in this case.

We should mentioned also that the methods of general theory of extremal problems were
employed to develop a variant of the maximum principle for an infinite-horizon problem
with terminal and mixed control-state constraints in the earlier paper by Brodskii [48]. The
result is obtained on restrictive growth assumptions, and it does not imply normality of the
problem. In the case of a free terminal state at infinity, the result involves the asymptotic
condition (7).

The relationship between the maximum principle with infinite-horizon and the dynamic
programming was studied in [49, 56]. In the case when the optimal value function V (·, ·)
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is locally Lipschitz in the state variable x, some normal versions of the maximum principle
together with sensitivity relations involving generalized gradients of V (·, ·) were developed.

The normal form version of the Pontryagin maximum for problem (P ) with adjoint
variable specified by the Cauchy type formula (12) that presented in the present paper
(see Theorem 3.2) was developed recently by the authors in [10, 11, 12]. The approach
employed in these papers is based on the classical needle variations technique and usage
of the Yankov-von Neumann-Aumann selection theorem [29, Theorem 2.14]. The main
results obtained by this approach are presented in the present paper, including economic
interpretations (Section 3.2) and applications (Section 4). The advantage of this approach is
that it can be applied under less restrictive regularity and growth assumptions than the ones
akin to the approximations based technique and the methods of general theory of extremal
problems. In particular, this approach can justify the Cauchy type formula (12) as a part
of the Pontryagin necessary optimality condition even in the case when the optimal value is
infinite. The notion of weakly overtaking optimality (see [18]) can be employed in this case.

Notice, that the importance of the Cauchy type formula (12) is justified by the fact that
in some cases it can imply the standard asymptotic conditions (7), (8) and (9), or provide
even more complete information about the adjoint variable ψ(·). In other cases, when the
asymptotic conditions (7), (8) are inconsistent with the core conditions (15) and (16) of the
maximum principle, the formula (12) can serve as their alternative. As it is shown in [43, 4]
and Section 3.2, the formula (12) also provides a possibility to treat the adjoint variable ψ(·)
as the integrated intertemporal price function.

We mention that the same approach also proved to be productive for distributed control
systems, as shown in [59] for a class of age-structured optimal control problems, and for
discrete-time problems with infinite horizons, as shown in [44].
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