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Abstract  

Global measurements of the elemental composition of fine particulate matter across several 

urban locations by the Surface Particulate Matter Network reveal an enhanced fraction of 

anthropogenic dust compared to natural dust sources, especially over Asia. We develop a global 

simulation of anthropogenic fugitive, combustion, and industrial dust which, to our knowledge, is 

partially missing or strongly underrepresented in global models. We estimate 2-16 g/m
3
 increase in 

fine particulate mass concentration across East and South Asia by including anthropogenic fugitive, 

combustion, and industrial dust emissions. A simulation including anthropogenic fugitive, 

combustion, and industrial dust emissions increases the correlation from 0.06 to 0.66 of simulated fine 

dust in comparison with Surface Particulate Matter Network measurements at 13 globally dispersed 

locations, and reduces the low bias by 10% in total fine particulate mass in comparison with global in 

situ observations. Global population-weighted PM2.5 increases by 2.9 g/m
3
 (10%). Our assessment 

ascertains the urgent need of including this underrepresented fine anthropogenic dust source into 

global bottom-up emission inventories and global models.  

 

1. Introduction 

Outdoor PM2.5 (fine particulate matter with aerodynamic diameter less than 2.5 micrometers) 

is the fifth largest risk factor for premature mortality worldwide (Forouzanfar et al 2016). Global 

atmospheric models are widely used for assessments of exposure to outdoor PM2.5 (Anenberg et al 

2010, Giannadaki et al 2014, Lee et al 2015, Lelieveld et al 2015, Brauer et al 2016, West et al 2016). 

Total PM2.5 is mainly composed of a carbonaceous component, inorganic ions, and mineral dust. The 

latter includes three broad categories, mineral dust naturally windblown from arid desert regions 

(Prospero et al 2002), anthropogenic windblown dust from human disturbed soils due to changes in 

land use practices, deforestation and agriculture (Tegen et al 1996, 2004), and anthropogenic fugitive, 

combustion, and industrial dust (AFCID) from urban sources. Global models typically include natural 

mineral dust (Huneeus et al 2011, Astitha et al 2012) with recent developments to assess the relative 

contribution of anthropogenic windblown dust (Ginoux et al 2012, Huang et al 2015, Guan et al 
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2016). However, to our knowledge, AFCID is partially missing or strongly underrepresented from 

global models (Rind et al 2009) as evident from model descriptions published as part of several multi-

model inter-comparison studies (Schulz et al 2006, Myhre et al 2013, Pan et al 2015, Silva et al 2013, 

Huneeus et al 2011).  

Measurements of PM2.5 and its chemical composition over several urban locations by the 

Surface Particulate Matter Network (SPARTAN) offer information about PM2.5 sources (Snider et al 

2015, 2016). Snider et al (2016) found an enhanced fraction of AFCID compared to natural sources 

over several Asian cities, evidenced by a high zinc (mainly anthropogenic as evidenced by Councell 

et al 2004 and Harrison et al 2012) to aluminum (mainly natural) ratio in PM2.5 dust. Sources of 

anthropogenic fugitive, combustion, and industrial dust include elemental components from coal 

combustion (fly ash) and industrial processes (e.g. iron and steel production, cement production), 

resuspension from paved and unpaved roads, mining, quarrying, and agricultural operations, and road-

residential-commercial construction (McElroy et al 1982, Watson and Chow 2000, Guttikunda et al 

2014). Some evidence for the significance of these anthropogenic fugitive, combustion, and industrial 

sources to ambient PM2.5 dust is emerging through measurements and source apportionment studies 

(Yang et al 2011, Yu et al 2013, Zhang R et al 2013, Zhang et al 2015, Viana et al 2008, Mooibroek et 

al 2011). Despite the majority of these emissions being in the coarse mode there is a tail that 

contributes to PM2.5. AFCID includes several trace elements that are associated with adverse health 

effects, but not yet well understood (West et al 2016). 

The few global emission inventories that include anthropogenic primary emissions of total 

PM2.5 have limited distinction between estimates of fugitive, combustion and industrial dust, and 

rather incomplete representation of fugitive sources (e.g., Janssens-Maenhout et al 2015; Klimont et al 

in review). A few global simulations have included a portion of the AFCID inventory (Shindell et al 

2012, Anenberg et al 2012, Myhre et al in review). Some regional inventories explicitly provide some 

portion of PM2.5 AFCID as a separate source category (e.g., Pouliot et al 2015) enabling inclusion in 

regional chemical transport models and air quality models (e.g., Park et al 2010, Guttikunda and 

Jawahar 2012, Appel et al 2013, Zhang et al 2015). However, the contribution of AFCID sources to 

PM2.5 mass remains poorly quantified, especially at the global scale.  
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Several global and regional models tend to consistently underestimate aerosol loading 

(Moorthy et al 2013, Pan et al 2015, Lelieveld et al 2015, Brauer et al 2016). We hypothesize that 

inclusion of missing AFCID sources will reconcile some of the unexplained bias. Here, we develop a 

global simulation of anthropogenic fugitive, combustion, and industrial dust, and evaluate it with in 

situ measurements.  

 

2. Materials and Methods 

We interpret Surface Particulate Matter Network (www.spartan-network.org) measurements 

of PM2.5 and trace metals collected from monitoring stations over geographically diverse global 

regions to evaluate our simulation of AFCID (Snider et al 2015, 2016). SPARTAN measurements 

include an AirPhoton SS4i automated air sampler to collect aerosol on PTFE filters for gravimetric 

assessment of PM2.5 mass, and Inductively Coupled Plasma - Mass Spectrometry to quantify PM2.5 

trace metals used to determine crustal PM2.5 (Snider et al 2016). Measurement sites are primarily in 

urban locations with site selection designed for spatial representativeness. SPARTAN measurements 

exhibit a high degree of consistency with independent measurements over Asia (Beijing, Bandung, 

Kanpur and Hanoi), the U.S. (Mammoth Cave and Atlanta) and elsewhere (Snider et al 2015, 2016).  

We obtain global monthly mean anthropogenic emissions of primary particulate matter 

(including fugitive, combustion, and industrial dust) in 2015 from the ECLIPSE dataset (version V5a; 

http://www.iiasa.ac.at/web/home/research/researchPrograms/air/Global_emissions.html). Klimont et 

al (in review) developed this inventory with the GAINS (Greenhouse gas - Air pollution INteractions 

and Synergies) model (Amann et al 2011) for the European Union funded project ECLIPSE 

(Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) (Stohl et al 2015, 

http://eclipse.nilu.no). AFCID is represented as the residual of anthropogenic primary emissions of 

PM2.5, after excluding particulate organic mass and black carbon. We overwrite this global inventory 

with two regional monthly mean emission inventories, over India with the AFCID emission inventory 

from the Indian Institute of Technology - Bombay (IIT-B) for 2013, and over China with the Multi-

resolution Emission Inventory for China (MEIC) inventory (Lei et al 2011, Zhang et al 2009, 

http://www.meicmodel.org) for 2012. We convert emission of organic carbon in MEIC inventory to 
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particulate organic mass following Philip et al (2014b). We treat primary emissions of sulfate as 3% 

of sulfur dioxide emissions (Chin et al 2000), and subtract it from the primary PM2.5 emissions. The 

resultant global annual AFCID inventory is 13.1 Tg/yr.  

The anthropogenic primary PM2.5 emission inventories are derived using a dynamic 

technology-based approach employing high source-activity-sector resolution at a country or even 

subnational level. For each of the emission sources, the models applied to calculate these inventories 

define activity rate, unabated emission factors, penetration and removal efficiency of applicable 

emission control technologies (Lei et al 2011, Klimont et al in review). The data and assumptions 

used in the inventories draw on international and national statistics, on an array of measurement 

studies representative for typical sources and applied technologies considering local circumstances 

and studies, and on information about the air quality legislation and efficiency of its enforcement 

allowing defining of the penetration of control measures. These inventories include a harmonized 

calculation of mass-based size distribution (PM2.5, PM10) and primary carbonaceous aerosols. The 

characteristics of sources vary strongly with respect to the contribution of carbonaceous particles and 

the underlying models capture these features by defining mass-based consistent emission factors and 

removal efficiencies for total PM2.5, black carbon, organic carbon and particulate organic mass. 

Compared to previous global work, ECLIPSE includes estimates for a number previously 

unaccounted or often underestimated PM sources, that is, gas flaring, kerosene lamps, diesel 

generators (Klimont et al in review).  

We conduct a simulation of anthropogenic fugitive, combustion, and industrial dust with the 

GEOS-Chem global 3-D chemical transport model (Bey et al 2001) version 11-01b (http://geos-

chem.org) driven with assimilated meteorological fields from the Goddard Earth Observing System 

(GEOS-FP) at the NASA Global Modeling Assimilation Office, with a horizontal resolution of 2
o
 x 

2.5
o
. GEOS-Chem includes a detailed simulation of oxidant-aerosol chemistry (Bey et al 2001, Park et 

al 2004) with secondary inorganic aerosols (Park et al 2004), black carbon and organic carbon (Park 

et al 2003), secondary organic aerosol (SOA) (Pye et al 2010), and sea salt (Jaegle et al 2011). The 

mineral dust simulation in GEOS-Chem follows the Dust Entrainment and Deposition (DEAD) 

mobilization scheme (Zender et al 2003) with a topographic source function (Ginoux et al 2001, Chin 
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et al 2004) implemented by Fairlie et al (2007), and an optimized dust particle size distribution 

implemented by Zhang L et al (2013). For computational convenience, we treat AFCID as part of the 

finest GEOS-Chem dust bin (with diameter less than 2 m). GEOS-Chem simulations have been 

extensively applied to natural mineral dust (Fairlie et al 2007, 2010, Ridley et al 2012, Johnson et al 

2012, Wang et al 2012, Zhang L et al 2013), PM2.5, (van Donkelaar et al 2010, Tai et al 2012, Xu et al 

2015, Ford and Heald 2016, Koplitz et al 2016), and chemical components of PM2.5 (Park et al 2004, 

Philip et al 2014a, Kim et al 2015).  

We use the HEMCO module (Keller et al 2014) to implement the AFCID emission inventory 

into GEOS-Chem. We conduct simulations from January 1, 2014 to December 31, 2015 following a 

one month spin-up. We use operator durations of 10 min for transport and 20 min for chemistry for 

optimized computational speed and accuracy (Philip et al 2016). We calculate ground-level PM2.5 at 

35% relative humidity to follow common measurement protocols. We convert organic carbon to 

particulate organic mass following Philip et al (2014b). We evaluate simulated PM2.5 with annual 

mean direct PM2.5 in situ measurements collected for the GBD-2013 study (van Donkelaar et al 2015, 

Brauer et al 2016), and SPARTAN measurements of campaign-mean (2013-2015) PM2.5 composition 

(Snider et al 2016). We use population for the year 2015 from the National Aeronautics and Space 

Administration Socioeconomic Data and Applications Center (CIESIN 2016) to estimate population-

weighted PM2.5. 

 

3. Results and Discussion 

The top panel of Figure 1 shows filled concentric circles of campaign-mean PM2.5 dust (inner 

circles) measured by the SPARTAN network over 13 globally dispersed locations, for the years 2013-

2015 (Snider et al 2016). SPARTAN dust mass (and % of total PM2.5) varies from ~1 g/m
3
 (~10%) 

over North America, ~5 g/m
3
 (5-15%) over South and South East Asian cities (Kanpur, Dhaka, 

Hanoi) to ~14 g/m
3
 (~25%) over Beijing (Snider et al 2015, 2016). Enhanced Zn:Al ratios measured 

over these sites provide evidence of an anthropogenic source (Snider et al 2016). The middle panel of 

Figure 1 shows the GEOS-Chem simulated natural mineral dust. Natural mineral dust concentrations 
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are enhanced over regions with accumulated alluvial sediments, predominantly over arid and semi-

arid regions of North Africa, the Middle East and Central Asia (Zender et al 2003, Fairlie et al 2007, 

Huneeus et al 2011). It is evident that the pronounced dust concentrations measured over East and 

South Asia cannot be explained by natural mineral dust alone (Lei et al 2011, Zhang et al 2015). 

The bottom panel of Figure 1 shows the simulation of anthropogenic fugitive, combustion, 

and industrial dust. AFCID increases PM2.5 dust concentrations by 2-16 g/m
3
 over much of East and 

South Asia. The concentration of simulated AFCID is comparable to that of natural mineral dust over 

parts of Europe and Eastern North America. Other regional studies (Appel et al 2013, Park et al 2010) 

offer additional evidence of AFCID sources.  

The top panel of Figure 1 shows that GEOS-Chem simulated AFCID in addition to default 

natural mineral dust reduces the bias in total dust mass measured at SPARTAN sites over Asia. A 

high AFCID over Beijing reveals the significance of regional fugitive sources (Yu et al 2013, Zhang 

R et al 2013, Zhang et al 2015).  Zhang et al (2015) use the adjoint of GEOS-Chem together with the 

MEIC inventory to attribute 27% of wintertime PM2.5 over Beijing from emissions of AFCID from 

North China.  

Table 1 contains statistics describing the comparison of GEOS-Chem simulated 

concentrations versus in situ observations.  The inclusion of AFCID increases the correlation versus 

PM2.5 dust mass concentration from 0.06 to 0.66 over all SPARTAN sites compared to campaign-

mean data. A test case study that excludes two arid sites (Ilorin, Nigeria and Rehovot, Israel) 

dominated by large simulated natural mineral dust loading also reveals an improved consistency from 

slope = 0.29 (r = 0.77) to slope = 1.29 (r = 0.91) further demonstrating the importance of AFCID at 

the global scale.  

Figure 2 shows the in situ and simulated concentration of total PM2.5. The top panel shows 

enhanced PM2.5 concentrations in the in situ measurements over rapidly developing Asia. The bottom 

panel shows that the simulation with AFCID largely reproduces these enhancements. We find that 

simulated AFCID comprises 5-15% of total PM2.5 across large parts of East and South Asia.  

Table 1 quantifies the comparison of GEOS-Chem simulated PM2.5 concentrations versus 

long-term annual mean in situ measurements compiled by Brauer et al (2016) for the Global Burden 
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of Disease Study. Site locations span a diversity of environments including routine monitoring 

networks in both densely populated and remote areas. The additional PM2.5 source from AFCID 

increases the slope of the best fit line from 0.83 to 0.93. This analysis reveals that neglect of AFCID 

in PM2.5 can underestimate ambient PM2.5 concentrations by 5-10% globally, and by up to 15% in 

East and South Asia. Global population-weighted PM2.5 concentrations increase by 2.9 g/m
3
 (10%) 

with implications for future assessments of PM2.5 health effects. 

 

4. Conclusions 

PM2.5 health impact assessments require a complete description of PM2.5 sources. We interpret 

global crustal PM2.5 observations from the SPARTAN network and find evidence for anthropogenic 

fugitive, combustion, and industrial dust. A collection of emission inventories (ECLIPSE, IIT-B and 

MEIC) was used to estimate AFCID emissions for inclusion into a GEOS-Chem simulation. Inclusion 

of AFCID increased total PM2.5 mass by 2-16 g/m
3
 over anthropogenic polluted regions across East 

and South Asia, reducing the observed bias from 17% to 7% in comparison with the global PM2.5 in 

situ observations, and increasing the correlation from 0.06 to 0.66 of PM2.5 dust concentration 

compared to SPARTAN in situ observations. Global population-weighted PM2.5 concentrations 

increase by 2.9 g/m
3 

(10%). The noteworthy contribution of this underrepresented AFCID source to 

PM2.5 mass as evaluated with observations, motivate further development and incorporation of 

AFCID emission into global models. To our knowledge, this is the first global assessment of the 

importance of anthropogenic fugitive, combustion, and industrial dust. Nonetheless some portion of 

this anthropogenic dust source might not be captured well in our inventories, with potential 

uncertainty in our estimates. Future work should assess the implications of coarse mode AFCID that 

may be associated with the PM2.5 examined here. Although we focus on the ground-level PM2.5 owing 

to its importance in human health impact studies, estimating AFCID and understanding its optical and 

transport properties could benefit studies of climate forcing (Rind et al 2009) and visibility. 
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Table 1. Comparison of GEOS-Chem simulated concentrations (2014-2015) versus measured in situ 

observations of long-term annual mean PM2.5 mass compiled by Brauer et al (2016), and of campaign-

mean (2013-2015) crustal PM2.5 by the SPARTAN network (Snider et al 2016). AFCID denotes 

anthropogenic fugitive, combustion, and industrial dust. Reduced major axis regression is used to 

calculate correlation statistics.  

 

  

  

PM2.5  

 

Data from Brauer et al (2016) 

 

  

PM2.5 Dust 

 

SPARTAN (All sites) 

 

  

PM2.5 Dust  

 

SPARTAN (Except arid sites) a 

 

 
r Slope 

Offset 

(g/m3) 
N 

 
r Slope 

Offset 

(g/m3) 
N 

 
r Slope 

Offset 

(g/m3) 
N 

 

 

GEOS-Chem 

Default 

 

0.82 0.83 -1.17 441 

 

0.06 1.06 -1.75 13 

 

0.77 0.29 -0.30 11 

GEOS-Chem 

with AFCID 

 

0.83 0.93 -2.01 441 

 

0.66 1.55 -1.00 13 

 

0.91 1.29 -1.53 11 

 

a 
Excluding sites in North Africa (Ilorine, Nigeria) and Middle East (Rehovot, Israel) where natural 

mineral dust dominates. 
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Figure 1. Annual mean (2014-2015) concentration of PM2.5 total dust (top panel), natural mineral dust 

(middle panel), and anthropogenic fugitive, combustion, and industrial dust (bottom panel) simulated 

with the GEOS-Chem model. Colored concentric circles in the top panel denote SPARTAN-measured 

campaign-mean (2013-2015) PM2.5 dust concentration (inner circle) and the coincident simulated 

value (outer circle).  
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Figure 2. Long-term annual mean measured in situ PM2.5 observations compiled by Brauer et al 

(2016) regridded to model horizontal resolution (top panel). Annual mean (2014-2015) PM2.5 

concentration simulated with the GEOS-Chem model incorporating anthropogenic fugitive, 

combustion, and industrial dust (bottom panel).  
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