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RESUMEN

Limitar el calentamiento global para evitar un cambio climático peligroso requiere una drástica reducción 
de las emisiones de gases de efecto invernadero y la transformación hacia una sociedad hipocarbónica. 
Los modelos económicos energético y climático, que sustentan la toma de decisiones políticas en la ac-
tualidad en el camino hacia una sociedad de cero emisiones netas, se perciben con creciente escepticismo 
en cuanto a su capacidad para pronosticar la evolución de sistemas socio-ecológicos altamente complejos 
y no lineales. Presentamos un revisión sistemática de la literatura de los últimos avances de los enfoques 
de modelización, centrándonos en su capacidad y limitaciones para desarrollar y evaluar las trayecto-
rias hacia una sociedad hipocarbónica. Encontramos que los enfoques metodológicos existentes tienen 
algunas deficiencias fundamentales que limitan su potencial para entender las sutilezas de los procesos 
de descarbonización a largo plazo. Por tanto, un marco metodológico útil debe ir más allá de las actuales 
técnicas cumpliendo simultáneamente los siguientes requisitos: 1) representación de un análisis inheren-
temente dinámico, describiendo e investigando explícitamente las trayectorias entre los diferentes estados 
de las variables del sistema, 2) especificación de los detalles de la cascada energética, particularmente 
el papel central de las funcionalidades y servicios provistos por la interacción de flujos energéticos y las 
correspondientes variables de stock, 3) presentación de una clara distinción entre estructuras del sistema 
energético sociotécnico y los mecanismos socioeconómicos para desarrollarlo, y 4) capacidad para eva-
luar las trayectorias conjuntamente con criterios sociales. Para ello proponemos el desarrollo de un marco 
de modelización integrado versátil y multiobjetivo, partiendo de las fortalezas de los varios enfoques de 
modelización disponibles al mismo tiempo que excluyendo sus debilidades. Este estudio identifica las 
respectivas fortalezas y debilidades para guiar dicho desarrollo.

ABSTRACT

Limiting global warming to prevent dangerous climate change requires drastically reducing global greenhouse 
gases emissions and a transformation towards a low-carbon society. Existing energy- and climate-economic 
modeling approaches that are informing policy and decision makers in shaping the future net-zero emissions 
society are increasingly seen with skepticism regarding their ability to forecast the long-term evolution of 
highly complex, nonlinear social-ecological systems. We present a structured review of state-of-the-art 
modeling approaches, focusing on their ability and limitations to develop and assess pathways towards a 
low-carbon society. We find that existing methodological approaches have some fundamental deficiencies 
that limit their potential to understand the subtleties of long-term low-carbon transformation processes. We 
suggest that a useful methodological framework has to move beyond current state of the art techniques and 
has to simultaneously fulfill the following requirements: (1) representation of an inherent dynamic analysis, 
describing and investigating explicitly the path between different states of system variables, (2) specification 
of details in the energy cascade, in particular the central role of functionalities and services that are provided 
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by the interaction of energy flows and corresponding stock variables, (3) reliance on a clear distinction be-
tween structures of the sociotechnical energy system and socioeconomic mechanisms to develop it and (4) 
ability to evaluate pathways along societal criteria. To that end we propose the development of a versatile 
multi-purpose integrated modeling framework, building on the specific strengths of the various modeling 
approaches available while at the same time omitting their weaknesses. This paper identifies respective 
strengths and weaknesses to guide such development. 

Keywords: Low-carbon transformation, energy-economic modeling, climate-economic modeling, structured 
literature review.

1. Introduction
The 2015 Paris Agreement showcased that the global 
society is stepping up to tackle dangerous climate 
change by aiming at limiting global average tem-
perature increase to below 2 ºC, seeking 1.5 ºC (UN-
FCCC, 2015). The Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change (IPCC, 
2014) pointed out that to achieve this ambitious tar-
get with a likely chance, a transformation towards 
a net-zero carbon society has to be achieved by the 
end of the century, requiring large-scale changes in 
global as well as regional to local energy systems 
(IPCC, 2014). However, since global anthropogenic 
greenhouse gas (GHG) emissions have never been 
as high as today (Edenhofer et al., 2014), current 
incentive structures appear insufficient to catalyze 
such a transformation. Thus, additional policies are 
required to foster the necessary levels of investment 
into low-carbon technologies and behavioral change, 
and to stimulate technological as well as social in-
novation.

In developing these policies, climate- and en-
ergy-economic modeling is crucial for decision 
support. The number of such models has grown 
tremendously in recent years, fostered also by large 
and cheap computing capacities. At the same time 
existing energy- and climate-economic modeling 
approaches are being confronted with increasing 
skepticism with respect to their ability to forecast 
the long-term evolution of highly complex and 
nonlinear social-ecological systems such as the 
socioeconomic-climate-energy nexus considered in 
this paper, and to assess the transformation pathways 
leading to the desired low-carbon society (see e.g. 
Pindyck, 2013; Pindyck and Wang, 2013; Anderson, 
2015; Stern, 2016). In particular, there is increasing 
concern – at least since the publication of the Stern 
Review (Stern, 2007) – regarding the applicability 
of the traditional neoclassical economic paradigm in 

long-term transformation analyses, as some major 
principles and implicit modeling mechanisms are 
questioned: the concept of economic equilibrium, the 
supremacy of market mechanisms, the relevance of 
relative prices as main endogenous driver of techno-
logical change, the implicit behavioral assumptions 
(profit- and utility maximizing rational agents), the 
incremental dynamics of technologies (based on 
exogenous assumptions for total factor productivity 
improvements), the emphasis on flows (GDP and 
consumption levels) over stocks (built and natural 
environment), and the critical role of the discount 
rate (cf. Barker, 2008). Moreover, the question arises 
whether it is feasible at all to predict the future evo-
lution of social-ecological systems in the presence of 
deep or fundamental uncertainties (variations around 
expected system behavior that cannot be quantified) 
and (potentially non-stationary) catastrophic risks 
(Scrieciu et al., 2013). 

The existing models to assess different en-
ergy- and climate-economic research questions 
vary considerably and the question arises which 
model is most appropriate for a certain purpose or 
situation. Therefore, in the following we seek to 
answer: What kind of modeling framework is most 
suitable for assessing the long-term transformation 
processes needed to drastically reduce global GHG 
emissions? The aim of this paper is to provide a 
structured review of state-of-the-art national and 
international energy- and climate-economic mod-
eling approaches with respect to their ability and 
limitations to develop pathways for a low-carbon 
society (including its economy).

In a first step we suggest a set of relevant char-
acteristics for the evaluation of different modeling 
approaches regarding their suitability for long-term 
transformation analyses. In a second step we identify 
specific methodological approaches that have been 
used in analyses of climate and energy policies in 
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national and international contexts. In a third step, we 
evaluate these different climate- and energy-economic 
modeling approaches in terms of their strengths and 
weaknesses with respect to their ability of carrying 
out low-carbon transformation analyses and discuss 
their advantages and disadvantages to that end. The 
Appendix finally presents in more detail representative 
models and applications for each modeling approach.

2. Characteristics for the evaluation of climate- 
and energy-economic modeling approaches
A general characteristic all models share is that a 
model is a purposeful and simplified representation 
of aspects of reality (Starfield et al., 1990). Purposeful 
since a model is always developed in order to answer 
a specific research question. Simplified because 
first, the just identified concrete purpose of a model 
already paves the way for a simplified representation 
of this specific aspect of reality only, and second, real 
world constraints, such as limited time and financial 
resources, also require simplifications.

Besides this general characteristic there are many 
individual characteristics which differ substantially 
between modeling approaches. Hence, it seems rea-
sonable to assess existing climate- and energy-eco-
nomic modeling approaches in order to allow for an 
identification of the most appropriate approach for 
the problem setting at hand – out of the multitude 
of existing models out there. While there have been 
some attempts in the literature to classify existing 
energy models (Grubb et al., 1993; Hourcade et 
al., 1996; van Beeck, 1999; Herbst et al., 2012), no 
systematic assessment of energy-economic models 
serving the purpose of analyzing transformation 
pathways towards a low-carbon society has been 
carried out so far. Hence, by relying on the existing 
literature on energy model classification, we identify 
the eight most important characteristics to evaluate 
existing energy-economic modeling techniques. We 
put special emphasis on certain (sub)characteristics, 
mainly linked to the model structure and modeled 
mechanisms, which are crucial for the models’ suit-
ability for long-term transformation analyses. The 
eight characteristics include (cf. van Beeck, 1999):

1. The general purpose and intended use.
2. The analytical approach and conceptual frame-

work (top-down, bottom-up, integrated assess-
ment, hybrid energy-economy model).

3. The model structure and exogenous assumptions: 
modeled mechanisms and assumptions (implicit/
endogenous and explicit/exogenous mechanisms/
assumptions; technological details). How an ener-
gy-economic model treats the following elements 
is crucial for its ability to carry out long-term 
transformation analyses.
a. Energy system: (disruptive/nonlinear) techno-

logical change; technological detail; detailed 
representation of the energy cascade, in par-
ticular of functionalities, defined as energy 
services (related to thermal, mechanical and 
specific electric tasks) that are provided by the 
interaction of energy flows and corresponding 
stock variables (Schleicher et al., 2016).

b. Economic system: international (trade) rela-
tions; price & market mechanisms; economic 
feedbacks and rebound effects; non-market 
mechanisms (such as non-market damages 
and climate feedbacks); equilibrium vs. out of 
equilibrium situations; financing/investment 
(e.g. energy efficiency measures); stocks vs. 
flows; structures vs. mechanisms – how do 
mechanisms influence structures?

c. Social system: behavioral mechanisms; gov-
ernance and institutions; risk and uncertainty.

4. The time horizon.
5. The underlying methodology (Optimization, Sim-

ulation, Econometric, Equilibrium etc.; statistical 
estimation vs. calibration).

6. The treatment of path dynamics (Comparative 
Static vs. Dynamic (“path explicit”)) and the 
development of a baseline/reference scenario.

7. Geographical and sectoral coverage.
8. Data requirements.

The listing of these characteristics already fol-
lows an ordinal/hierarchical logic modelers could 
follow when setting out to identify the most ap-
propriate approach for their very specific research 
questions. Modelers first have to be clear about the 
general and more specific purpose of the model. 
Next the analytical approach has to be chosen, i.e. 
whether the model should rather take a top-down 
or bottom-up or hybrid perspective. Closely relat-
ed is the choice of the modeling structure which 
boils down to choosing what mechanisms should 
endogenously be determined within the model and 
what mechanisms should be based on exogenous 
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assumptions. Before choosing the specific under-
lying methodology of the model, a modeler should 
also reflect on the time horizon his model should 
be able to operate in. After deciding on all these 
characteristics and choosing a specific method, the 
question of whether one wants to be path explicit 
needs to be answered. Finally, the geographical and 
sectoral coverage has to be decided, and the data 
requirements have to be assessed.

2.1 Purpose and intended use 
Modeling is a general kind of activity that follows 
certain principles independent on what is modeled 
and what technique is used. As mentioned above, 
a model is always a purposeful and simplified rep-
resentation of an aspect of reality. Hence, models 
are usually developed to address specific research 
questions and are only applicable for the purpose they 
have been designed for. An application of a specific 
modeling technique for an inappropriate purpose may 
lead to significant misinterpretations of the problem 
at hand and eventually to misleading policy recom-
mendations affecting real world social-ecological 
systems negatively. In the following we distinguish 
between general and more specific purposes of an 
energy-economic model.

2.1.1 General purpose
Hourcade et al. (1996) define the general purpose 
of a model as the different ways how the future is 
addressed in a modeling framework and distinguish 
between three general purposes which are also appli-
cable in the case of energy-economic models:

1. Prediction or forecasting models. Many models 
are developed to try to “predict” the future and 
to estimate impacts of likely future events. This 
purpose imposes very strict methodological 
constraints on modelers as forecasting models 
require the establishment of a business as usual 
scenario against which future policy induced de-
viations from this best-guess future development 
can be assessed. This requires an endogenous 
representation of economic behavior and general 
growth patterns. Such models are based on the 
extrapolation of trends found in historical data 
and try to minimize the usage of exogenous pa-
rameters. Models built for a predictive purpose 
are most suitable for short term analyses, since 

a number of critical underlying parameters (such 
as elasticities of substitution) cannot reasonably 
be assumed to remain constant for longer time 
frames. Hence, this approach is mainly found 
in short term, econometrically driven economic 
analyses.

2. Explorative scenario analyses models. Due to the 
inherent difficulties associated with the extrap-
olation of past trends in the long run, modelers 
might set out to “explore” rather than “predict” 
the future. An explorative purpose can be served 
by employing a scenario analysis approach. 
This requires the definition of different coherent 
visions of the future, determined by different 
values for key assumptions about economic 
behavior, economic growth, population growth, 
(natural) resource endowments, productivity 
growth, technological progress etc. A reference 
or nonintervention scenario is developed and 
then contrasted to different policy or intervention 
scenarios. It is important to note that these alter-
native scenarios only make sense in relation to 
the reference scenario and should therefore not be 
analyzed in isolation from it or in absolute terms. 
Furthermore, sensitivity analyses are crucial to 
provide information on the effects of changes in 
underlying assumptions.

3. Backcasting models. The basic concept of back-
casting models is to look back from desired 
futures, which are developed e.g. in expert stake-
holder processes, to the present, and to develop 
pathways for actions that have to be taken in order 
to reach these desired futures. The backcasting 
methodology allows for the identification of major 
(technological) changes and discontinuities that 
might be required as well as institutional hurdles 
that need to be overcome to achieve a certain 
desirable state of the future.

2.1.2 Specific purpose
More specific purposes are linked to the aspects of 
the economy, energy system, or the environment a 
model focuses on. With respect to energy-economic 
models one could distinguish between models that 
serve the purpose of modeling energy demand, energy 
supply, economic or environmental impacts from 
energy supply or conducting project appraisals (van 
Beeck, 1999). Historically there has been a strong fo-
cus on single-purpose models, contemporary models 
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often pursue an integrated approach. Demand-supply 
matching models and impact-appraisal models are 
two examples of multi-purpose energy-economic 
model approaches.

2.2 Analytical approach and the conceptual frame-
work
Models for the analysis of a low-carbon energy 
transformation can also be classified according to 
their degree of detail. On the one end of the spectrum 
there are bottom-up techno-micro-economic mod-
els, which are built to describe economic sectors or 
sub-sectors (e.g. the electricity sector). These models 
are rich in (technological) detail and are well suited to 
simulate market penetration and related cost changes 
of new (energy) technologies, to present detailed 
pictures of plausible energy futures and to evaluate 
sector- or technology-specific policies. However, 
this technological detail comes at the cost of a lim-
ited representation of macroeconomic implications. 
Bottom-up models typically do not capture feedback 
effects with other parts of the social-ecological 
system (e.g. other economic sectors, broader macro-
economic relationships, users, the public sector, the 
environment, the climate system etc.).

On the other end of the spectrum there are “top-
down” economic models with only limited explicit 
representation of alternative technologies using elas-
ticities to implicitly reflect technological variability. 
They may even be more abstract and aggregated 
“integrated assessment models” (IAMs) or “hybrid 
energy-economic models”, which strive to close the 
loop between a specific economic activity and the sur-
rounding environment. Within the class of IAMs one 
can further distinguish between “hard-linked” models 
which are built as one set of consistent (differential) 
equations, working within one closed model system, 
and “soft-linked” models which couple separate mod-
els and solve them sequentially using input/output 
exchange routines. In general, IAMs allow capturing 
feedback effects between aspects of the system under 
consideration (economy, climate system, society, 
other environment). However, both types of IAMs 
have shortcomings: Hard-linked models usually work 
on a very coarse level of detail by using (e.g. dam-
age-) functions relating e.g. economic indices like a 
region’s GDP and global mean temperature changes. 
Such simplifications are problematic as effects within 
the economic system cannot be revealed and they can 

hardly be used to account for singular events, tipping 
points and catastrophic risks (Stern, 2016). Damage 
functions have often been calibrated based on limited 
expert judgment, which has implications for their va-
lidity (see the recent debate on Integrated Assessment 
Modeling and Social Costs of Carbon: e.g. Pindyck, 
2013; Pindyck and Wang, 2013). Moreover, when it 
comes to climate change mitigation, IAMs struggle 
to adequately represent nonlinear developments in 
low-carbon energy technologies and the potential 
knowledge spillover into the wider economy (Stern, 
2016). Soft- linked models on the other hand allow 
for more detail; however problems may arise in con-
vergence and consistency among the models used.

In general, the distinction between top-down and 
bottom-up models is of substantial importance, as 
both approaches tend to deliver different – sometimes 
even opposite – outcomes. The difference in model 
outcomes of top-down and bottom-up modeling 
approaches arises from the distinct ways how these 
models treat technological change, the adoption of 
new technologies, the decision making of agents and 
how markets and institutions operate (Hourcade et al., 
1996). Grubb et al. (1993) associates the top-down 
approach with a “pessimistic” economic paradigm 
and the bottom-up approach with a more “optimistic” 
engineering paradigm.

Purely economic top-down models and much 
more so IAMs often have no explicit representation of 
technologies. In many economic models technologies 
are regarded as a set of techniques by which a com-
bination of inputs can be used to produce useful out-
puts, typically represented by production functions. 
Elasticities of substitution between different inputs 
in an aggregate technology production function are 
employed to implicitly reflect technological variety 
and in combination with an exogenous assumption 
of so-called “autonomous energy efficiency improve-
ments” (i.e. efficiency improvements which happen 
w/o any explicitly modeled technological change) 
account for technological change in top-down eco-
nomic models.

Engineering studies, on the other hand, start 
with a description of technologies, including their 
performances and direct costs, to identify options for 
technological improvements. From an engineering 
standpoint, the most energy efficient technologies 
have not been adopted so far and therefore an “ef-
ficiency gap” prevails, which could be closed by 
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employing the most energy efficient technologies. 
The differences in outcomes eventually arise from 
the fact that the “optimistic” engineering bottom-up 
models tend to ignore existing constraints which hin-
der the actual adoption of most efficient technologies, 
such as hidden costs, transaction costs, implementa-
tion costs, market imperfections and macroeconomic 
relationships (Grubb et al., 1993).

A further distinction between bottom-up and top-
down models can be drawn along the lines of data 
used in the different model analyses. While top-down 
economic models use aggregated data to examine 
interactions of different economic sectors as well 
as macroeconomic performance metrics, bottom-up 
models usually focus on one specific sector exclusive-
ly (e.g. the energy sector) and therefore use highly 
disaggregated data to describe energy technologies 
and end-use behavior in greater detail. Hourcade et 
al. (1996) summarizes (in the context of mitigation 
cost studies) that existing bottom-up and top-down 
modeling approaches are primarily meaningful at 
the margin of a given development pathway. There-
fore their application is valid under the following 
conditions: (1) Top-down models are valid “as long 
as historical development patterns and relationships 
among key underlying variables hold constant for 
the projection period” (Hourcade et al., 1996) while 
(2) bottom-up models are valid “if there are no im-
portant feedbacks between the structural evolution 
of a particular sector in a mitigation strategy and the 
overall development pattern” (Hourcade et al., 1996).

While historically the distinction between bot-
tom-up and top-down energy-economic models has 
provided the framework for the contemporary mod-
eling debate, there have been first attempts to develop 
“hybrid” models, merging the benefits of both ana-
lytical approaches (Hourcade et al., 2006; Catenazzi, 
2009; Jochem et al., 2009; Schade et al., 2009). For 
example a more detailed representation of different 
electricity generation technologies has been integrated 
in top-down economic models (Steininger and Vora-
berger, 2003; Böhringer and Rutherford, 2008).

2.3 Model structure: endogenously modeled mecha-
nisms and exogenous assumptions 
Different research questions are addressed by dif-
ferent models, capturing only those mechanisms of 
the real world that are relevant to answer the stated 
question (i.e. to serve their purpose). Therefore 

another basis for the distinction of different model-
ing approaches is the nature of the model itself or, 
more precisely, the assumptions and mechanisms 
embedded in the mathematical structure of the model. 
Hourcarde et al. (1996) distinguish between four ma-
jor dimensions to characterize structural differences 
of existing energy-economic models.

The first structural characteristic relates to the 
degree of endogenization, the extent to which behav-
ioral assumptions and mechanisms are endogenized 
in the model equations so as to minimize the num-
ber of exogenous parameters. The more behavioral 
assumptions and mechanisms models endogenize, 
the better they are suited to predict actual outcomes. 
Those models that are treating most mechanisms as 
exogenous are, on the other hand, more suited to 
simulate the effects of changes in historical patterns 
(Hourcade et al., 1996).

The second structural characteristic describes the 
extent to which non-energy sector components of the 
economy or the environment are considered. The more 
detailed a model describes these mechanisms, the 
better it is suited for the analysis of wider economic 
effects of energy policy measures. A huge variety of 
models designed to serve different purposes can be 
found, which endogenize very different assumptions 
or mechanisms, such as economic, behavioral, en-
gineering, geophysics or earth science mechanisms. 
There are also models capturing not only one of these 
mechanisms but a portfolio of them. The question 
of modeled mechanisms closely relates to the choice of 
the analytical framework, as for example IAMs aim 
to include as many mechanisms as possible, and – at 
least in their current state – are, however, subject to 
severe drawbacks as well (e.g. highly uncertain damage 
functions, inability to reflect catastrophic risk, arbitrary 
functional forms and parameter choice; see e.g. Pindy-
ck, 2013, 2015; Pindyck and Wang, 2013; Stern, 2016).

Many state of the art economic models only 
capture a limited amount of economic and other 
mechanisms explicitly. In Computable General 
Equilibrium (CGE) models, for example, the sole 
mechanism that leads to the new equilibrium after 
an exogenous shock is the relative price mechanism. 
Many other mechanisms capturing behavioral, po-
litical, social, technological elements are neglected. 
Hence, the potential real world implications derived 
from results of such modeling exercises have to 
be critically reflected and complemented by other 
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modeling techniques to eventually derive a more 
comprehensive and holistic picture. With respect to 
the analysis of long run low-carbon transformation 
pathways, there is increasing concern regarding the 
applicability of traditional economic models root-
ed in neoclassical economic theory, as some main 
modeling characteristics and implicit mechanisms 
are questioned: the relevance of prices, the implicit 
behavioral assumptions, the dynamics of technolo-
gies, the emphasis on flows over stocks.

The third and fourth structural characteristics refer 
to the extent of description of energy end uses and 
energy supply technologies, respectively. Models that 
describe end uses in more detail are more suitable 
for the analysis of energy efficiency measures, while 
models that focus on endogenizing energy supply 
technologies are more suitable for the analysis of 
technological potentials (Hourcade et al., 1996).

Moreover, the various model specifications have 
to be checked whether they are able to separate the 
description of the structure – e.g. the elements of an 
energy system – from the mechanisms that are gen-
erating these structures. This is a major problem with 
neoclassical specifications since they intimately link 
structures and mechanisms. Similar problems might 
occur with system dynamic (SD) and agent based 
modeling (ABM) type specifications.

Every type of model is relying on exogenously 
given parameter values and assumptions regarding 
interdependencies within the scope of parameters and 
variables which are in turn triggering endogenous re-
sponses within the model. A crucial task in modeling 
is to decide whether a model element is determined 
endogenously or exogenously, depending on the un-
derlying question to be answered. In CGE models, for 
example, modelers have to choose between certain 
variants of economic model “closures” (savings-in-
vestment, government budget, external balance). 
Furthermore, while some economic models such as 
CGE or Input-Output (IO) models assume certain 
behavioral characteristics of agents (e.g. utility and 
profit maximization, representative agents) other 
approaches (ABM or SD) set out to endogenously 
derive behavioral details related to the emergence 
of complex phenomena.

2.4 Time horizon
Modelers have to be clear about the time horizon un-
derlying their analyses, as different economic, social 

and environmental processes may behave differently 
or become relevant at different time scales. Hence 
the time horizon eventually affects the choice of the 
specific modeling methodology (see the following 
section), as long run analyses may assume economic 
equilibrium in which all markets clear and all re-
sources are fully allocated, while short-run models 
need to incorporate transformation dynamics and 
situations of disequilibrium (at least in some markets 
e.g. unemployment). With respect to the definition 
of different time horizons, no standard procedure 
exists. However, in model-based energy economic 
assessments short term is often assumed to reflect 
periods of five years or less, the medium term to 
range between 3 and 15 years and the long term to 
start at 10 years and beyond.

2.5 Underlying methodology
For energy and climate change related socioeconomic 
analyses the following methodological approaches 
have been employed, and are thus discussed in detail 
in section 3 below:

• Econometric Models
• Macroeconomic (Post-Keynesian) Input-Output 

Models
• Neoclassical Economic Equilibrium Models
• System Dynamics and Simulation Models
• Backcasting Models
• Optimization Models
• Partial Equilibrium Models
• Multi agent or Agent Based Models (ABM)

2.5.1 Optimization versus simulation
One aspect relevant across the above method-
ological approaches is the issue of optimization 
versus simulation. Building a model aims to serve 
a general purpose (prediction, exploration, back-
casting) and to answer a more specific question 
of interest, all within a specific time horizon. The 
character of this stated question then determines 
the methodology eventually employed in the mod-
eling exercise. Basically there are two different 
kinds of questions which are commonly stated 
by economic modelers: The first one is about 
the right choice in certain situations of interest; 
this demands optimization models. The second 
question scientists often ask is “what if…?”; this 
demands simulation models.
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For example, CGE analysis is a mix of both: 
Mathematically, a CGE model solves an optimization 
problem; however, by changing input parameters 
the optimization routine gives different outcomes 
which can also be interpreted as simulations. Other 
types of models, such as ABM and SD models do 
not optimize target functions with respect to certain 
constraints but simulate in a dynamic way the actions 
and interactions of either multiple autonomous agents 
or more aggregated system elements in an attempt to 
re-create and/or predict the appearance of complex 
phenomena.

For our field of analysis, i.e. in the context of 
transformations and a very-long run perspective, 
however, optimization per se is highly questionable 
for many reasons, among them ethical concerns (e.g. 
regarding the discount rate), and uncertainty about 
catastrophic climate-related risks and technological 
developments.

2.6 Treatment of path dynamics
Analyzing the long-term transformation process 
to a low-carbon society can be based on different 
modeling frameworks that differ with respect to their 
treatment of time and their explicit representation 
of transformation paths. Comparative static models 
compare different states of system variables without 
taking into account the development between these 
states (for example GDP before and after policy in-
terventions). Many economic models, such as static 
Input-Output and static Computable General Equi-
librium (CGE) models are characterized like this. 
When developments over time are analyzed with this 
kind of models, modelers often interpolate between 
different points in time to generate a hypothetical 
development path, however whether the development 
really follows this interpolated trajectory is not at the 
core of interest of such modeling approaches.

The counterpart to comparative static analysis 
is dynamic analysis, describing and investigating 
explicitly the path between different states of system 
variables. In the context of models that are rooted in 
neoclassical theory, development over time can be 
analyzed either by discretely taking over values of 
system variables from one point in time to the next 
(e.g. “recursive dynamic” models, optimizing only 
within each period, but thereby implicitly also deter-
mining the intertemporal development), or by con-
tinuously (“fully dynamic”) optimizing intertemporal 

functions; for example maximizing discounted utility 
over the full time horizon at any point in time. Both 
versions of dynamic economic models have their 
drawbacks. Discrete dynamic models are nothing 
more than static models solved iteratively and their 
results dependent on exogenous assumptions (e.g. the 
discount rate), fully dynamic CGE models assume 
perfect foresight and perfectly informed decision 
makers – assumptions that are not readily comparable 
with real world behavior of economic agents. 

To take into account dynamic actions and inter-
actions of different autonomous agents and their 
emergent effects on the system as a whole in the 
context of a transformation to a low-carbon society, 
the employment of ABMs or SD models might be 
suitable. While ABMs focus on individual behavior, 
actions and interactions, SD models try to give an un-
derstanding of the behavior of complex systems over 
time at a more aggregate level (i.e. by not explicitly 
distinguishing between autonomous individuals). The 
merit and main difference of SD models from other 
models studying the dynamic behavior of complex 
systems over time is its use of internal feedback 
loops, the stocks and flows concept, and time delays 
that affect the behavior of the entire system. Further-
more, ABMs and SD models – as well as any other 
non-stochastic model specification – allow for the in-
troduction of randomness, uncertainty and emergent 
characteristics by e.g. using Monte Carlo Methods.

2.7 Regional and sectorial coverage, data require-
ments 
The regional/geographical and the sectorial coverage 
reflect the level of detail of the analysis. The level of 
detail is an important factor linked to the structure of 
the model, as it determines which economic mech-
anisms and elements are endogenized in the model 
and which are treated as exogenous assumptions. 
Models at a global scale set out to explicitly model 
the global economy characterized by explicit market 
relationships. Regional models, most often referring 
to international regions such as the European Union 
or Southeast Asia, and local models focusing on 
subnational regions (such as Styria in an Austrian 
context), treat world market conditions as exogenous 
assumptions.

Similar to the geographical scope of a modeling 
framework, energy-economic models differ with 
respect to the explicit representation of individual 
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economic sectors. Encompassing a high number of 
sectors within a country – or focusing on the most 
relevant, major economic sectors – allows for a com-
prehensive analysis of the most important cross-sec-
toral feedback effects and interrelations.

3. Methodological approaches
In this section we identify specific methodological 
approaches that have been used in analyses of climate 
and energy policies in various national and inter-
national contexts. While we keep the review here 
rather general and focused on the methodological 
approaches, the Appendix presents in more detail 
specific representative models and applications for 
each approach.

3.1 Econometric methods in energy modeling
Energy systems are undergoing fundamental changes, 
driven by disruptions in technologies, markets and 
policy designs. Econometric methods have a long 
tradition in accompanying modeling and analyses 
of energy systems (see for example the model by 
Cambridge Econometrics (2016) which is discussed 
in more detail in the Appendix). We evaluate econo-
metric practices with respect to their adequacy in 
dealing with long-term transformations of energy 
systems.

3.1.1 The method
Mainstream approaches to determining the demand for 
an energy flow e typically postulate the relationship

e = e(q, p, x, z) (1)

with the causal variables q for an economic activity, 
p for a (real) energy price, x for other variables (e.g. a 
weather variable) and z for an autonomous technical 
change.

Assuming a sample of time series, a general 
econometric specification of this relationship might 
be the following linear relationship

a(L)et = b(L)qt +c(L)pt + d(L)xt + zt +ut (2)

which exhibits lag distributions, a linear trend 
component and a stochastic error term ut. Typically 
the variables are transformed into logarithms, thus 
obtaining elasticities for the estimated parameters.

This modeling approach faces a number of limits. 

The number of parameters to be estimated, in particular 
those for the lag distributions, require a long sample 
range which in turn may violate the underlying model 
specification of an invariant structure. Furthermore this 
model specification is not able to deal with interfuel 
substitution, i.e. switching the energy mix.

These limits lead to extended model specifica-
tions which include on the one hand additional data 
by using also cross-section information (panel data) 
and on the other hand additional restrictions on the 
parameters of the general specification (2).

Dealing with inter-fuel substitution
Demand for energy obviously needs to be consid-
ered in the context of an energy mix which in turn 
stimulates research for explaining the causalities for 
the composition of the bundle of energy consumed 
by households or needed in the production of goods. 
For modeling this interfuel substitution basically two 
approaches have emerged.

The Almost Ideal Demand Systems (AIDS) results 
from a consumer demand model that partition total 
expenditures (i.e. for energy) for a bundle of goods 
(i.e. different fuels) according to the prices of the 
individual goods (i.e. fuel prices).

A production-based approach explains energy as 
the output of several factors (i.e. fuels). A further ex-
tension includes non-energy inputs, such as the capital, 
labor and materials in a KLEM model. In a so-called 
translog specification the main drivers for these models 
are relative energy and relative factor prices.

The econometric implementation of these mod-
eling approaches suffer most often from rather 
unreliable time series on factor prices and energy 
prices, a deficiency that is echoed in the rather weak 
significance of estimated direct and cross price 
elasticities.

Modeling integration, co-integration and Granger 
causality
A very different modeling paradigm has emerged 
over the last three decades in the context of non-sta-
tionary stochastic processes. Accordingly economic 
variables as GDP and energy are investigated with 
respect to their individual long-term behavior (typ-
ically exponential trends before the economic crisis 
that started in 2008) and thus classified by what is 
called the degree of integration. In a next step joint 
relationships of variables are investigated under the 
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heading of co-integration. Finally statements are 
made, if one variable improves the prediction of 
another variable and this is termed Granger causality.

It seems to be fair to say that these modeling ap-
proaches just reflect the application of econometric 
methodology that has become available to energy 
data without reflecting if this methodology is ade-
quate to the issue to be dealt with. The exponential 
trends of the past seem to be gone, a fixed long-term 
relationship, even of a stochastic type, is rather not 
desirable if we postulate this for an energy flow and 
an economic activity. Finally predictability should 
not be prematurely mixed with causality in the sense 
of cause and impact.

3.1.2 Some conclusions for long-term transforma-
tion analyses
In view of the usability of econometric models for 
obtaining a better understanding of the long-term 
transformation options in an energy system, the con-
clusions are rather sobering. Almost all econometric 
specifications include market driven behavioral as-
sumptions, visible in the role of energy prices in the 
model specifications. The specifications are therefore 
hardly able to deal with non-price determined mecha-
nisms that are representative in particular in the con-
text of innovation policies. The estimated elasticities 
for prices and activities have very limited credibility 
because of the inherent conflict between the required 
long time series from a statistical point of view and 
the accompanying structural changes that violate the 
statistical model assumption of structural invariance. 
Most econometric analyses of the energy system just 
ignore this issue by not reporting the sensitivity of 
their estimates with respect to variations in the sample 
size and in the specifications.

Other deficiencies are even more fundamental, as 
the almost complete absence of details in the energy 
cascade, in particular the central role of functional-
ities that are provided by the interaction of energy 
flows and corresponding stock variables. This ex-
tended view of an energy system emerges, however, 
as a prerequisite for understanding the subtleties of 
long-term transformation processes.

3.2 Dynamic new Keynesian input-output models
3.2.1 The method
New Keynesian models are developed in the tradition 
of general equilibrium models in the sense that their 

long run equilibrium results from market clearing 
prices (see for example the model by Kratena and 
Sommer (2014) which is discussed in more detail 
in the Appendix). As CGE models and many macro 
econometric models, New Keynesian Models build 
on an input output structure displaying the inter-link-
ages between sectors. In the short run, institutional 
rigidities and constraints, such as wage bargaining 
or liquidity constraints, imply a deviation from the 
long run equilibrium path.

New Keynesian models are inter alia applied 
to address the critical role of environmental and 
resource constraints for economic development 
(Jackson et al., 2014). The model structure and the 
underlying assumptions are suited to illustrate the 
impacts of the demand for goods and services on 
energy and resource use or on emissions.

Typical building blocks of a New Keynesian Model
The typical building blocks of a New Keynesian 
model comprise the household sector, the production 
sector, labor market and the government sector. In the 
short run the demand driven model shows deviations 
from the long run equilibrium stemming from liquidi-
ty constraints or other rigidities. The adjustment paths 
to the long run equilibrium solutions can be modeled 
in different level of detail for the different building 
blocks of the model. In the long run, adjustments in 
the wage rate determine the full employment equi-
librium in the labor market, which in turn determines 
household income and respectively consumption. 

Models that integrate environmental aspects typ-
ically treat energy demand as a separate category of 
non-durable commodities, differentiating between 
different fuel types. In the long run, demand for 
different fuel types is determined by (equilibrium) in-
come, autonomous technical change and fuel prices. 

3.2.2 Some conclusions for long-term transforma-
tion analyses
With respect to gaining insights into long-term 
transformation processes a number of fundamental 
uncertainties with respect to the development of eco-
nomic activities and prices and the convergence to 
an equilibrium solution remain. The model solutions 
depend strongly on the development of (relative) 
prices that drives changes in the economy.

As in most economic model classes, New Keynes-
ian Models implement long run development as an 
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extrapolation of trends observed in the past. Techno-
logical change is modeled as incremental technical 
change; radical technological change cannot be 
captured in such models. When used for policy evalu-
ation it is the underlying set of uncertain assumptions 
in the reference case that mainly determines the ef-
fects of policy shocks. The decisive role of prices for 
model solutions typically constrains the simulation 
of policy alternatives to price instruments like taxes.

3.3 Optimization models
3.3.1 The method
An optimization approach aims for the minimization 
(e.g. costs, CO2-emissions) or maximization (e.g. prof-
its) of an objective function (see for example the model 
by ETSAP (2016) which is discussed in more detail in 
the Appendix). The results of such models are solutions 
found by a solver algorithm which are considered as 
optimal (or close to the optimum) with respect to the 
objective (or target) function. Therefore optimization 
models are prescriptive rather than descriptive. This 
means that this approach can rather be used for “how 
to” instead of “what if” research questions. 

Optimization models usually comprise at least 
two parts: The first part is the modeling environment 
used for the model formulation and model building. 
Most optimization models are written in high-level, 
functional programming language in a declarative 
way. The computation is then done by evaluating 
the mathematical expressions. Commonly used 
optimization program languages are GAMS, MPL, 
AMPL, AIMMS or MOSL. In a subsequent step, the 
modeling environment translates the source code into 
an equation system. The solver software forms the 
second part of the model, which derives the solution 
by solving the equation system and thus by evaluating 
the optimality of solutions simultaneously. For sev-
eral widely applied (bottom-up) optimization models 
(e.g. MARKAL, TIMES, MESSAGE, OSeMOSYS) 
a third component, the model-builder-toolbox using a 
graphical user interface (GUI) exists (e.g. Excel-file 
in case of the OSeMOSYS). This has the advantage 
that model-building can be done more easily as the 
developer doesn’t need to write source-code. How-
ever it is also limited to the model capabilities as 
defined by the GUI.

Optimization approaches are used for top-down 
models (e.g. CGE [e.g. GEM-E3 model]) or partial 
equilibrium models (e.g. [MARKAL-] MACRO) as 

well as bottom-up (technology explicit) models (e.g. 
MARKAL, MESSAGE or TIMES model) (see the 
Appendix).

The mathematical approach for solving 
Van Beeck’s (2009) fifth dimension, the mathemat-
ical approach, defines how optimization models 
solve the problem. Most energy-related bottom-up 
optimization models use common mathematical 
methods such as Mixed Integer Linear Programming 
(MILP), partly Multi-Objective Linear Program-
ming (MOLP). If the model optimizes the path from 
an existing system towards the optimal system state, 
also Dynamic Programming (DP) methods are to 
derive their solutions. Top-down optimization mod-
els and some (bottom-up) energy models use more 
advanced methods such as Nonlinear Programming 
(NLP), Mixed Integer Nonlinear Programming 
(MINLP), and (Multi-Objective) Fuzzy (Linear) 
Programming ((MO)F(L)P). The fuzzy logic ap-
proach (or Fuzzy Programming, FP) constitutes 
an improvement with respect to penny switching 
behavior. Similar (in a non-mathematical definition) 
to the logit model and other probability approaches 
commonly used in discrete choice analysis, Fuzzy 
logic allows that a variable is “partly true” and 
defines “how much” a variable is a member of a 
set. Thus, fuzzy logic approaches are more suitable 
to find realistic solutions for decentralised optimi-
zation problems with a medium or high degree of 
uncertainty than conventional approaches (Jana and 
Chattopadhyay, 2004). 

3.3.2 Some conclusions for long-term transforma-
tion analyses
The main strength of optimization models is their 
ability to identify a unique optimal solution (accord-
ing to the objective function’s output variable e.g. 
minimal costs) while at the same time ruling out less 
preferable solutions. This capability is of great value 
for solving tactical and operational microeconomic 
questions in situations where strong constraints (e.g. 
budget) apply.

For transformation analysis in nonlinear complex 
systems however, optimization models face severe 
methodological difficulties in capturing real-world 
behavior. The solver-software, responsible for find-
ing the (close-to-)optimal solutions needs to evaluate 
a large number of system states with respect to the 
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objective function and the model constraints. 
Therefore such models are limited to a restricted 
complexity and/or simplifications have to be made 
in order to find a (close-to-)optimal solution within 
a reasonable time. With respect to complexity and 
simplifications, linear models (linear programming) 
define one end of the spectrum. Modern computers 
are easily able to solve systems with millions of 
equations, however the restriction to linear systems 
makes this kind of model formulation basically 
unusable for real-life research questions. A less re-
stricted formulation are MILPs that allow variables 
not just to be an element of rational numbers but also 
of a restricted set of integers. Again such models can 
be solved for a very large number of equations and 
variables within a reasonable time if the model is 
defined carefully. Yet, integrating e.g. load behavior 
into such a structure already requires substantial 
modeling efforts in order to keep the model (easily) 
solvable. Most bottom-up energy-system models 
apply the MILP approach. On the other end of the 
spectrum range NLPs, MINLPs are much harder to 
solve. This is especially the case for models with 
positive feedback loops (concave models). NLP or 
MINLP therefore require that the defined model has 
a low degree of complexity.

Another disadvantage of (commonly solved) 
optimization models is their behavior with respect 
to inferior technologies. Usually the degree to which 
a given technology is part of the solution depends 
only on superior technologies and their restrictions 
as well as their own restrictions, while it is inde-
pendent from inferior technologies (penny switch-
ing behavior). This is probably the main reason 
for the commonly held position that conventional 
optimization techniques are not particularly suited 
to analyze systems where many individual deci-
sion-makers decide on many rather small subjects. 
This “penny switching behavior” is not necessarily 
given and could be avoided in principal – at the cost 
of increased computational time. Yet most applied 
energy systems optimization models accept such 
a behavior in order to keep the model reasonably 
solvable.

Optimization models are well suited and widely 
applied to describe solutions for a “technological-op-
timal” hypothetical target system in a distant future 
as well as the “technologically optimal” pathway 
towards such a system. They are however less suited 

to evaluate realistic forecasts for system stages which 
are far from the optimal solution, as defined by the 
objective function, which is usually the case for 
real-life systems. They are furthermore not partic-
ularly apt to evaluate the real-life effects of policy 
measures or other framework conditions of complex 
energy-economic systems.

3.4 Neoclassical computable general equilibrium 
(CGE) models (top-down optimization)
3.4.1 The method
Typically, a CGE model depicts the economy as a 
closed system of monetary flows across production 
sectors and demand agents on a yearly basis. These 
flows are based on real-world national input output 
tables as well as additional accounting data and are 
combined with the general equilibrium structure 
developed by Arrow and Debreu. Accordingly, CGE 
models solve numerically to find a combination of 
supply and demand quantities as well as (relative) 
prices in order to clear all of the specified commod-
ity and factor markets simultaneously (Walras’ law) 
(see for example the model by Capros et al. (2013a) 
which is discussed in more detail in the Appendix).

The basic underlying mechanisms are that pro-
ducers minimize their production costs (or maximize 
profits) subject to technological constraints (produc-
tion functions), whereas consumers maximize their 
consumption (or “welfare”) subject to given resource 
and budget constraints (factor endowments and con-
sumption functions). 

Once the model is calibrated to a “benchmark” 
equilibrium of a certain base year it is shocked ex-
ogenously, triggering adjustments in supplied and 
demanded quantities and thus relative prices until 
all markets are in equilibrium again. The emerging 
new equilibrium depicts the state of the economy 
after the shock (i.e. shows how the economy would 
look like, if a certain policy had been introduced) 
and is compared to the benchmark equilibrium to 
analyze changes in endogenous variables such as 
activity levels of sectors and consumption, relative 
prices or welfare.

Mathematically CGE models are optimization 
problems since producers and consumers maximize/
minimize their objective functions; however the use 
of CGE models is more of simulation character, as 
typically different counterfactuals are used in eco-
nomic impact analysis, leading to different solutions 
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of the models’ optimizations routine, which then 
are interpreted as different results of simulation 
scenarios. 

3.4.2 Some conclusions for long-term transforma-
tion analyses
The main advantage of CGE models is their ability 
to capture interlinkages across all economic sectors 
and agents. This means that “indirect” or “knock-
on” effects of e.g. the introduction of an energy tax 
can be quantified, giving a broader picture than an 
isolated sectoral analysis. Since the effects to the 
whole economy are captured by CGE models, the 
effects on typical macro indicators, such as GDP, 
national consumption or welfare and tax income, 
can be analyzed.

Next to these strengths of the CGE approach 
there are also limitations and weaknesses1. A first 
conclusion to be drawn for long-term transformation 
analysis using CGE models is that the underlying 
fundamental mechanism of optimization of produc-
ers and consumers – assuming perfect information 
and rational behavior solely based on prices – is 
unrealistic, leading to unrealistic results. Many other 
factors than just prices determine the actual behav-
ior of agents, hence in that regard CGE models are 
too short sighted. Moreover, only annual monetary 
flows are modeled explicitly. Capital stocks, such as 
buildings or power plants, are not captured, despite 
their importance in energy-transformation modeling.

Another potential drawback of CGE models is that 
they can be too aggregate and coarse with respect to 
technological detail. Many CGE models use sector 
aggregates such as the energy sector, which includes 
generation and distribution of all kinds of energy. 
The supply side of these aggregates is typically 
modeled as constant elasticity of substitution (CES) 
production functions, which combines different 
production inputs such as primary factors (capital, 
labor, resources) and intermediate inputs (material 
and services) to generate output. Since the different 
inputs are partly allowed to substitute each other, 
elasticities of substitution are necessary. These elas-
ticities usually stem from regression analysis based 

on historical time series, leading to the problem that 
there is no guarantee that they will not change in the 
future (Grubb et al., 2002).

With regard to climate change mitigation, the 
basic emission reduction mechanisms in CGE models 
are the following (cf. Capros et al., 2014): (i) substitu-
tion processes between fossil fuel inputs and non-fos-
sil inputs, (ii) emission reductions due to a decline 
in economic (sectoral) activity and (iii) purchasing 
abatement equipment. However, CGE models do not 
allow for radical endogenous changes in the energy 
system (bifurcation points) which are necessary for 
deep decarbonization. Even if different technologies 
are modeled separately in CGE models (such as in 
top-down bottom-up hybrid models as in Fortes et al., 
2014) the problem remains that no radical changes 
are possible endogenously within the model frame-
work since the production functions are determined 
ex-ante and do not change over time. Technological 
change thus only happens at the margin via price 
induced factor substitution (endogenously), pro-
ductivity growth and autonomous energy efficiency 
improvements (both exogenously) (cf. Böhringer and 
Löschel, 2004). Radical changes or the emergence 
of fundamentally new technologies are not possible. 

Next to supply side issues, there are also weak-
nesses regarding the demand side. More precisely, 
substitution possibilities in final and intermediate 
demand are of crucial importance, requiring again 
elasticities of substitution. Analogous to production 
functions, also consumption functions in CGE mod-
els are determined ex-ante and do not change over 
time, thus limiting the representation of transforma-
tional behavioral changes of consumers.

Despite these drawbacks CGE modeling may of-
fer also opportunities to capture the indirect effects of 
certain policy interventions or technological change 
can be provided to shock the model exogenously (on 
the premises of having enough data on possible future 
developments regarding energy technologies and 
energy demand available). These indirect effects are 
of crucial importance, as sectoral models which do 
not take into account a macro-economic embedding 
may under- or overestimate effects.

1In general the underlying neoclassical theory of general equilibrium is subject to heavy critique. However, the aim of 
the underlying paper is to analyze the ability of different methodological approaches in the specific context of ener-
gy-transition, hence we do not further address this very general discussion of general equilibrium theory.
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3.5 Partial equilibrium models (bottom-up optimi-
zation
3.5.1 The method
The basic concept of equilibrium models is to deter-
mine the state where demand and supply of differ-
ent commodities are equal (equilibrium price) and 
thus market clearance is achieved (see for example 
the model by E3MLab and ICCS (2014) which is 
discussed in more detail in the Appendix). Partial 
equilibrium models only consider a specific market or 
sector where the economic equilibrium is determined 
independently from prices, supply and demand from 
other markets. Therefore other markets and sectors 
are considered to be fixed, not considering possible 
interrelations. Thus all parameters not incorporated 
directly within the model have to be provided ex-
ogenously.

The advantage of partial equilibrium modes is that 
they are capable of describing specific markets more 
detailed and disaggregated. This is also beneficial for 
analysing the effects of different policies. 

3.5.2 Some conclusions for long-term transforma-
tion analyses
Some models like PRIMES have been extensively 
used to describe long-term transformations (Capros et 
al., 2013b). A possible drawback is that those models 
rely on exogenous parameters (e.g. world market 
prices for fossil fuels, CO2 permit prices) and neither 
provide direct feedback nor consider interrelationship 
to the sectors and markets exogenously provided. 
This may have considerable drawbacks on the long 
run, as e.g. significant changes in energy markets may 
have a considerable impact on the overall economy.

3.6 System dynamics and simulation models
3.6.1 The method
The concepts of system dynamics was developed by 
Jay W. Forrester in the late fifties with the aim to asses 
and improve industrial processes. System dynamics 
models allow in a very intuitive way to model, simu-
late and analyze complex dynamic problems. Hence, 
SD models, in contrast to optimization models, are 
well equipped to answer ‘what if’ research questions. 

The basis of a system dynamics model is a system 
of differential equations which are numerically solved 
in a sequence of time steps. Characteristic to system 
dynamics is the incorporation of complex feedback 
structures within the different system variables. Thus 
they are simulation but not optimization models (see 
for example the model by Teufel et al. (2013) which 
is discussed in more detail in the Appendix).

The two central concepts of system dynamics are 
the interrelation of stocks and flows and the resulting 
complex feedback loops, which result either in re-
inforcement or in balancing (Dykes, 2010). Besides 
the possibility to simulate the effects of the different 
interrelationships within the model, SD models also 
provide a convenient way to analyze the driving forc-
es within the system. In addition to the capability to 
describe dynamic and complex problems, SD models 
are increasingly combined with other methods like 
generic algorithms, iterative algorithms and game 
theoretical approaches. Also stochastic approaches, 
like Monte Carlo simulation, may be implemented 
in SD frameworks (Teufel et al., 2013).

3.6.2 Some conclusions for long-term transforma-
tion analyses
Given their capability of representing stock-flow 
relationships and complex feedback processes, SD 
models hold a great potential for adequately describ-
ing real-world behavior of energy-economic sys-
tems, including long-term transformation processes. 
However, as this approach is a simulation and not an 
optimization method, SD modeling may be appro-
priate to simulate complex problems but it lacks the 
possibility to find techno-economic optimal pathways 
(e.g. least costs) for the transformation. Regarding 
this aspect the combination with other methods (e.g. 
optimization) could be a possible approach.

3.7 Backcasting models
3.7.1 The method
The backcasting2 approach was developed in the 
1970s by Amory Lovins for the analysis of energy 
systems. Backcasting is seen as an alternative to 
conventional energy forecasting approaches that 

2The term ‘backcasting’ was introduced by Robinson (1982), while Lovins initially used the term ‘backwards-looking 
analysis’ (Quist, 2007). 
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estimate a continuous and substantial increase in 
energy demand. Since the 1970s the approach has 
been frequently applied in energy studies as well as 
in studies dealing with sustainable development in 
general.

In contrast to forecasting models that are usually 
based on past trends, backcasting approaches start 
from a normative vision for a desirable future, such as 
a low-carbon society with a reduction of GHG emis-
sions by 80-90% by mid-century compared to 1990. 
From that vision of the future, a development path 
is traced back to the current situation. Backcasting is 
hence well suited for modeling complex issues such 
as a transformation towards sustainable consumption 
and production patterns. Furthermore, the approach 
allows for modeling structural breaks that cannot be 
captured with traditional forecasting approaches. This 
is a valuable feature for modeling the very long-run, 
as a mere continuation of past trends over the next 
decades is very unlikely (see for example the model 
by Köppl and Schleicher (2014) which is discussed 
in more detail in the Appendix).

Backcasting is frequently used for (more or less) 
qualitative descriptions of the future (see e.g. Wächter 
et al., 2012 for Austria). In their energy perspectives 
for Austria, Köppl and Schleicher (2014) use the 
quantitative backcasting model sGAIN for analyzing 
low-carbon energy structures in Austria for 2030 
and 2050. 

3.7.2 Some conclusions for long-term transforma-
tion analyses
Relevant for long run transformations is the ability to 
capture structural breaks that are necessary for a fun-
damental transformation of existing energy systems. 
This applies also to a clearer depiction of specific 
technologies and thus comes closer to include more 
radical technological change. Backcasting requires 
the definition of explicit target values that need to be 
thoroughly chosen and argued. The same holds true 
for modeling of the paths between the future vision 
and the current situation.

3.8 Multi agent or agent based models (ABM)
3.8.1 The method
The ABM approach a very general one as it can be 
used to model nearly any system in dependency 
of the purpose of the model (see for example the 
model by Richstein et al. (2014) which is discussed 

in more detail in the Appendix). The variety of 
application ranges from physical over biological to 
social systems, while the approach is often seen in 
contrast to Equation Based Modeling (EBM) or SD, 
which have a similar general applicability. In a strict 
technical perspective, there is no difference between 
ABM and EBM as any ABM can be also expressed 
by an explicit set of mathematical formulas used by 
EBM (Epstein, 2006). However, in practice this set 
of formulas would be of hardly manageable size and 
complexity. The specifics of ABM, constituting a 
manageable modeling framework and distinguishing 
them from other modeling approaches, refer to three 
crucial points. 

1. The subjects of modeling are the system’s individ-
ual components and their behavior. The behavior 
of the modeled agents depends on the local inter-
action with other system elements and individual 
optimization based on each agent’s particular 
characteristic (as e.g. endowment, location or 
size).

2. The possibility of (geographical) spatial repre-
sentation of system elements. Agents do usually 
not interact with all possible system elements but 
only with those in their neighborhood. This spec-
ification can capture particularities for interaction 
including topological circumstance, transfer of 
information and network structures.

3. The stochastic process of simulation. Other than 
deterministic approaches, in which the outcome 
of a model is fully determined by the parameter 
setting and the initial conditions, stochastic ap-
proaches as ABM bear an inherent randomness. 
Therefore one individual model simulation with 
a specific parameter setting and initial conditions 
can show only one possible outcome out of a well 
defined function space, but not a general solution 
(Epstein, 2006, p.29).

As an implication of the first specific, a system 
behavior may arise, which cannot be predicted from 
the behavior of the individual agents, as it emerges 
from the adaptive interaction between the agents and 
their environment. In that way ABMs are a bottom-up 
approach in which the autonomous behavior of the 
agents determines the state of the system instead 
of a top-down approach (like in System Dynamics 
or CGE models) in which the state of the system is 
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described only by variables. Further, an analysis of an 
ABM can be made not only on the aggregate system 
output but also on the agent level. However, an em-
pirical ABM approach usually needs not only other/
unconventional sources of data but also relies more 
heavily on more comprehensive data, specifying the 
multiple agents’ particular characteristics.

Concerning the second specific, a large range of 
modeling possibilities becomes relative easily accessi-
ble. Models of social or economic systems in an agent 
based framework are only seldom restricted to homo 
economicus decision rules and can relax certain strin-
gent conditions from neoclassical models, like perfect 
information, location or size of agents, while still 
yielding a fruitful analysis (cf. Epstein, 2006, p.xvif).

The third specific of a stochastic simulation is 
closer to processes in the natural world because 
of its inherent randomness. However, this has the 
price of stark increasing complexity of the model, 
demanding a comprehensive way of simulating and 
analyzing the model. On the other hand, stochastics 
determine discrete decisions of agents and simulation 
in discrete time steps.

3.8.2 Some conclusions for long-term transforma-
tion analyses
With ABMs questions of emergence can be treated 
as the systems behavior results of the interaction of 
its components. ABMs can merge the micro with the 
macro perspective in that sense that well studied indi-
vidual behavior (as e.g. of plants, animals, people…) 
can be modeled in one framework with changing sys-
tem conditions – the state of system changes because 
of the individual behavior and at the same time the 
individuals adapt their behavior to the changes of the 
system. Within the approach of ABM uncertainties 
can be addressed because of the stochastic modeling 
character. ABMs can also handle “non-equilibrium 
dynamics” – if equilibrium exists but is not attainable 
(e.g. on acceptable time scale) (cf. Epstein, 2006).

Additionally to mathematical and statistical 
modeling abilities, as necessary in other approaches 
(e.g. econometrics), also further modeling as well as 
programming and simulation skills are needed. This 
contains on the one hand the inclusion of different 
concepts as adaptive behavior, interaction and emer-
gence. And on the other hand, stochastics affords 
an iterative way for testing and analyzing models. 
As already mentioned, data mining for empirical 

modeling with ABMs in social sciences is a big issue, 
as mostly micro data on an individual base for a large 
number of agents would be often required.

The explicit consideration of interrelations be-
tween individual actors brought together in the socio-
economic-climate-energy nexus may be an advantage 
for describing long run transformation processes. In 
combination with a stochastic modeling approach the 
bottom-up nature of ABMs is more closely reflecting 
the emergent behavior and inherent randomness of 
real world circumstances. Moreover, the explicit 
spatial representation of system elements allows for 
a more realistic representation of social-ecological 
interactions, including topological circumstance, 
transfer of information, and network structures. De-
spite these potential strengths of the ABM modeling 
approach, the highly detailed model structure comes 
at the price of substantial empirical data requirements 
in order to properly characterize the different agents’ 
particular characteristics and behaviors. 

4. Discussion and conclusions
Existing energy- and climate-economic modeling 
approaches are increasingly seen with skepticism 
regarding their ability to forecast the long-term 
evolution of social-ecological systems. The socio-
economic-climate-energy nexus is a highly complex 
nonlinear social-ecological system, its subtleties so 
far most often only poorly dealt with when develop-
ing and assessing transformation pathways leading to 
a societally desirable low-carbon future. This paper 
reports a structured review of state-of-the-art national 
and international climate- and energy-economic 
modeling approaches, focusing on their respective 
abilities and limitations to develop and assess path-
ways towards a low-carbon society.

We find that existing methodological approaches 
have some fundamental deficiencies that limit their 
potential to understand the subtleties of long-term 
low-carbon transformation processes. Table I depicts 
a qualitative scoreboard for different methodological 
approaches’ capability of representing real-world 
aspects relevant for long-term energy transformation 
analysis. It is important to note here that this score-
board is only a first qualitative mapping based on a 
systematic review of relevant literature. Most mod-
eling approaches that were analyzed (specifically 
econometrics, CGE, and New Keynesian approaches) 
are characterized by an almost complete absence of 
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details of the energy cascade. In particular they lack 
to model the central role of functionalities or services 
that are provided by the interaction of energy flows 
and corresponding stock variables. Further they are 
not well equipped for analyzing radical technological 
changes. Model results often depend on only a sin-
gle mechanism depicted by the respective modeling 
approach e.g. for CGE models, partial equilibrium 
models or New Keynesian models (relative) price 
changes are the key drivers. Reversely, top-down 
integrated assessment models aim to include as many 
mechanisms as possible and are hence capable of cap-
turing feedback effects between sub-elements (econ-
omy, climate system, society, other environment) of 
the social-ecological system under consideration, 
but this comes at the cost of either (a) working on 
a very coarse level of detail, with e.g. only limited 
explicit representation of alternative technologies and 
using highly uncertain functions for relating system 
variables to each other (hard-linked IAMs) or (b) ex-
periencing problems in convergence and consistency 
among the models used (soft-linked IAMs). 

Bottom-up, partial equilibrium optimization 
models investigating energy systems are capable of 
depicting a rich technological detail and of identifying 
techno-economically optimal solutions (as defined by 
an objective function), while ruling out inferior solu-
tions. However, due to high computing requirements 
these models are limited to restricted complexity (e.g. 
convexity and missing macroeconomic feedbacks) and 
are therefore less well suited to evaluate realistic fore-
casts of energy-economic system states which are far 
from the optimal solution as defined by the objective 
function, which is usually the case for real-life systems. 
Moreover, partial equilibrium optimization models are 
only able to capture certain techno-economic aspects 
of the overall social-ecological system and thus cannot 
track important feedback effects with e.g. the climate 
or social system.

Comparatively novel methodological approach-
es such as SD models or ABMs do allow for rep-
resenting stock-flow relationships and dynamic, 
disruptive transformation processes as well as 
system emergence but lack the possibility to find 
techno-economic optimal pathways (e.g. least cost, 
minimizing energy demand, minimizing emissions) 
and tend to be highly resource intensive regarding 
empirical data input, which is, however, critical for 
deriving real-world relevant results. Moreover for 
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SD models and ABMs, just as for more traditional 
approaches such as CGE approaches, problems might 
occur regarding the separation of the structure – e.g. 
the elements of an energy system – from the mech-
anisms that are generating these structures. What is 
true for all modeling techniques mentioned so far 
is that the respective results are heavily driven by 
exogenous input (parameter) assumptions (e.g. price 
elasticities, perfect information, rational behavior of 
agents, model closures) which are in turn triggering 
endogenous responses within the model.

Based on this review we suggest that a method-
ological framework for analyzing long-run low-car-
bon energy transformations has to move beyond 
current state of the art techniques and simultaneously 
fulfill the following requirements: (1) representation 
of an inherent dynamic analysis, describing and 
investigating explicitly the path between different 
states of system variables, (2) specification of details 
in the energy cascade, in particular the central role of 
functionalities and services that are provided by the 
interaction of energy flows and corresponding stock 
variables, (3) reliance on a clear distinction between 
structures of the sociotechnical energy system and 
socioeconomic mechanisms to develop it and (4) abil-
ity to evaluate pathways along societal criteria (e.g. 
least cost, minimizing GHG emissions, minimizing 
local air pollution). Furthermore, a crucial task in 
modeling is to specify explicitly whether a model 
element is determined endogenously or exogenously, 
ideally governed by the demands of the underlying 
question to be answered.

Given the specific strengths and weaknesses of 
all energy-economic modeling approaches avail-
able we propose the development of a versatile 
multi-purpose integrated modeling framework for 
moving forward the meaningful analysis of a trans-
formation towards a low-carbon society. A model 
constructed as a modular package would allow for 
the selection of the most promising building blocks 
from different existing modeling frameworks to 
serve the more general purpose and enable the user 
to select only those (sub)modules that are relevant 
for answering specific questions. This paper iden-
tified respective strengths and weaknesses to guide 
such development. Further research is necessary to 
first establish conceptual frameworks of modular 
modeling packages and then to foster their opera-
tionalization in the context of long-term low-carbon 

transformation analysis. A first conceptual attempt 
how this could be done is indicated in Schleicher et 
al. (2016), where within the approach of deepened 
structural modeling the functionalities of an energy 
system are determined via (a) the corresponding 
energy flows but also (b) the relevant application 
and transformation technologies, with feedbacks on 
the socioeconomic system. 
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A.1 Representative models for the different method-
ological approaches 
For each of the model classes distinguished in section 
3 by their underlying methodology, in the following 
we select representative “prototypical” models for 
further investigation. As a “prototypical” model we 
define a model which is prominently used in the 
analyses of energy-economic research questions ei-
ther by the research community or by policy makers 
(such as the EU).

A.2 Representative econometric models for the en-
ergy system of an economy
A typical representative model with a global coverage 
is E3ME, a macro-econometric E3 (Energy-Environ-
ment-Economy) model. Models like E3ME claim as 
a distinctive feature their treatment of resource use, 
including energy, and the related greenhouse gas 
emissions embedded into sectoral economic frame-
work (Cambridge Econometrics, 2016).

Despite the merits of such an integration many 
deficiencies as to the treatment of energy remain 
that are crucial for obtaining a better understanding 
of long-run transformation processes. These short-
comings concern the rather simplistic treatment of 
technological progress, the overstated role of prices 
as drivers for structural changes, and the limited treat-
ment of the cascade structure of the energy system.

A.3 Representative new-Keynesian model - the 
WIFO DYNK model
The DYNK model by WIFO (Kratena and Som-
mer, 2014) treats energy use in a detailed way. In 
the household sector, an innovative approach for 
modeling energy demand is used: Starting point is 
energy service demand which is the result of the 
energy efficiency of the capital stock and final en-
ergy demand by fuel type. This approach explicitly 
illustrates the role of stock-flow interactions in the 
provision and demand of energy services. Household 
energy service demand is determined by the energy 
service price, as a function of the energy price and 
the energy efficiency parameter. In the short run, 
liquidity constraints and a fixed capital stock – re-
flected in a given efficiency parameter – imply that 
energy service demand is determined by changes in 

the energy price. In the long run, changes in energy 
prices induce adjustments of the capital stock that can 
result in changes in the energy efficiency parameter 
and thereby affect the energy service price.

In the production sector, the input factors capital 
(K), labor (L), energy (E), imported non-energy ma-
terials (Mm) and domestic non-energy materials (Md) 
are differentiated. The shares of the different input 
factors in production are determined using a translog 
specification based on factor prices. In a second step, 
the shares of the different fuel types are estimated, 
also based on a translog function. Technological 
change is modeled via autonomous technological 
change, for the different input factors as well as in 
form of total factor productivity.

The merit of the WIFO DYNK model is that it 
illustrates the interaction of stocks and flows for 
energy services. What drives the demand for energy 
services, however, is exclusively driven by prices. 

A.4 Representative optimization models for the en-
ergy system of an economy
The MARKAL (MARKet ALlocation) model, its 
successor the TIMES (Model) model, the MESSAGE 
model (Model), and the OSeMOSYS (Model) are 
well-known and widely applied energy system opti-
mization models.

MARKAL and TIMES are dynamic (path depen-
dent) bottom-up optimization modeling toolboxes 
developed by the International Energy Agency (IEA) 
within the Energy Technology Systems Analysis 
Programme (ETSAP). MARKAL was developed 
in the mid-90s, TIMES in the early to mid-2000s. 
According to the MARKAL homepage it is now 
applied by more than 70 institutions in more than 35 
countries (ETSAP, 2016). 

MARKAL focuses on the energy sector only, 
the main purpose of MARKAL models is to iden-
tify and evaluate “target-oriented integrated energy 
analysis and planning” using a least cost approach. 
The MARKAL toolbox has been superseded by the 
TIMES (ModeltoolboxmodelThe main advantage of 
TIMES compared to MARKAL is its flexibility. It 
allows several interacting regions and to sub-divide 
the year into several user-defined time periods. Both 
toolboxes contain a partially equilibrium models for 
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the energy sector (considering supply curves of and 
demand curves for energy carriers and the subse-
quently derived energy prices).

One of the main advantages of MARKAL and 
TIMES is that they are widely used in the energy 
system planning community and easy-to-use model 
building (less steep learning curve). A disadvantage 
is the still rather rigid structure. Furthermore, they 
do not optimize the electricity supply for medi-
um- to long-term energy system planning, energy 
policy analysis, and scenario development with 
a large share of intermittent energy sources (e.g. 
wind and PV).

The Greenhouse gas Air pollution Interaction and 
Synergies (GAINS) model is an integrated assess-
ment model which is based on a technology specific 
bottom-up approach. It derives on the basis of emis-
sion factors and abatement effects the anthropogenic 
emissions, the resulting atmospheric pollution and 
impacts on human health and environment (Amann, 
2012).

The GAINS model can be operated in a ‘sce-
nario analysis’ and an ‘optimisation’ mode. In the 
‘scenario analysis’ mode it analyses the pathway 
from the emitting source to the impact and allows 
therefore to assess the costs and benefits of different 
emission abatement strategies. In the ‘optimisa-
tion’ mode it derives the techno-economic optimal 
combination of different abatement and mitigation 
options which achieve the best overall benefit at 
minimum costs.

To be able to calculate the emissions of different 
pollutants on the basis of activity data the GAINS 
model incorporates around 1000 types of emission 
sources which are specific regarding economic sector 
and country (Capros et al., 2013a). 

In order to describe the different mitigation op-
tions and pathways GAINS considers around 1,500 
end-of-pipe measures to assess the abatement of 
a wide range of different air pollutants including 
greenhouse gases. The different mitigation effects 
are derived on country and sector specific imple-
mentation costs. This allows a detailed assessment 
of the environmental impact of different policies and 
measures (Amann, 2012).

Since the different activity levels are exogenous 
the different costs of the abatement measures gener-
ate no feedback regarding the underlying economic 
models.

A.5 Representative CGE models for the energy sys-
tem of an economy
Typical CGE models which focus on energy-econo-
my-environment interaction are the GEME3 model 
(General Equilibrium Model for Energy-Econo-
my-Environment interactions) for the European 
Union (Capros et al, 2013b) and PACE (Policy 
Analysis based on Computable Equilibrium; Löschel, 
2015). 

GEM-E3 focuses on the European Union and is of 
recursive dynamic type, solving in 5-year steps until 
2050. It is mainly used to assess climate and envi-
ronmental policy, hence including primary energy 
sources and energy technologies. PACE is a similar 
model, however static comparative.

The GEM-E3 model (General Equilibrium Model 
for Energy-Economy-Environment interactions) for 
the European Union has been applied for various 
climate and energy policy simulations to support 
decision makers within the European Commission. 
The main features are as follows (c.f. Capros et al, 
2013b): (i) the model is of multi-country type with 
specific representation of all EU-15 member states, 
which are linked through endogenous bilateral trade, 
(ii) in every country multiple sectors and agents 
exist, allowing to analyze distributional effects and 
(iii) GEM-E3 is of recursive dynamic type, solving 
for general equilibrium in a specific year and then 
passing data on to the next year, for which a new equi-
librium is solved. Furthermore the model includes 
taxes, subsidies and public spending (including 
deficit financing). 

GEM-E3 is mainly used to assess climate and 
environmental policy (e.g. by Jansen and Klaassen, 
2000; Pan, 2005; Mayeres and van Regemorter, 2008; 
Saveyn et al., 2011) and therefore special focus lies on 
the competition between the main power generation 
technologies (coal, oil, gas, nuclear, wind, biomass, 
solar, hydro, CCS coal and CCS gas) with the re-
spective greenhouse gas emissions (see Capros et al., 
2014 for more details). Recently, the model was also 
deployed to analyze macroeconomic climate change 
impacts (e.g. by Ciscar et al., 2012).

Regarding low-carbon transformation and path-
way analysis GEM-E3 was linked to various bot-
tom-up optimization model such as TIMES (e.g. by 
Fortes et al., 2013, 2014) to overcome the caveat of 
poor technological detail of the CGE model, but be-
ing able to quantify the macroeconomic implications 
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of low-carbon (policy) scenarios. Similar modeling 
practice was carried out by Koopmans and te Velde 
(2001), Kumbaroglu and Madlener (2003), Messner 
and Schrattenholzer (2000), Scaramucci et al. (2006) 
and Wing (2006). Such studies (integrating bot-
tom-up and top-down models) may serve as a good 
starting point for a holistic integrated assessment of 
energy-economic low-carbon transformation analysis 
for Austria.

A.6 Representative partial equilibrium models
Since partial equilibrium models are only capable of 
a single (or limited amount) market or sector they 
consider specific problems. Prominent examples 
for partial equilibrium models are PRIMES and 
CAPRI. PRIMES is an energy model to calculate 
developments on the energy market (E3MLab and 
ICCS, 2014). CAPRI is a model for the agricultural 
sector used for the assessment of agricultural and 
trade policies with a focus on the EU (CAPRI, 2015). 
Both models are extensively used be the European 
Commission.

The Model (PRIMES) is an energy system model 
to calculate projections of energy markets for the 
analysis of energy and climate policies in Europe. 
The model simulates the development of energy 
demand, energy supply and technology on the basis 
of market equilibrium (E3MLab and ICCS, 2014). 
Hence, PRIMES is a partial equilibrium model for 
the European energy system. Furthermore the model 
aims to represent agent behavior within the multiple 
markets. This is achieved by a modular approach 
where each module represents a specific agent, either 
a demander or supplier of energy. The behavior of the 
agents is modeled through a microeconomic foun-
dation which maximizes the benefit (profit, utility, 
etc.) of each representative agent. To combine the 
sub-models equilibrium prices in different markets 
and equilibrium volumes considering balancing and 
constraints are determined.

PRIMES provides detailed energy balances in line 
with Eurostat statistics including sectoral demand by 
fuel as well as the structure of the power system and 
other fuel supplies. Moreover, energy prices and costs 
can be obtained such as costs per sector, investment 
costs, overall costs and consumer prices.

Since the economic development is modeled 
outside PRIMES there is no feedback generated by 
developments in the energy market. For the power 

system, daily and seasonal variations are modeled 
at an hourly resolution taking into account typical 
intra-day power load, wind velocity and solar irra-
diance. Despite this and detailed coverage of inter-
connecting capacities of electricity and gas flows, 
the model lacks information and representation at 
below-country levels such as retail infrastructure. 
This may be a particular concern if more volatile 
and decentralised production of electricity exceeds 
local grid capacities at short. Nevertheless, PRIMES 
should be well capable of simulating long-term en-
ergy system transformation and restructuring up to 
2050, both in the demand and the supply sides.

A.7 Representative SD models
Regarding the energy market a number of system 
dynamics models have been developed and suc-
cessfully applied (Teufel et al., 2013). An example 
would be the model Kraftsim (Vogstad 2004) used 
for investigating the Nordic electricity market and 
simulating the effects on greenhouse gases caused by 
different policies. A more comprehensive overview 
can be found in Teufel et al. (2013).

The POLES (Prospective Outlook on Long-term 
Energy Systems) model is a global energy supply, 
energy demand and energy prices forecasting model, 
developed within the VENSIM system-dynamics 
software package (Enerdata, 2016). It has been de-
veloped by Enerdata and the CNRS National Center 
for Scientific Research. 

It simulates the energy supply and demand (en-
ergy balances) of 15 economic sectors and of more 
than 57 countries and world regions within a partial 
equilibrium framework and explicitly considers about 
50 energy supply technologies. The demand is mod-
eled taking “into account the combination of price 
and revenue effects, techno-economic constraints and 
technological trends.” The simulation is done on a 
yearly basis (Enerdata, 2016).

POLES is a proprietary model, analyses with this 
model are rather provided as service by Enerdata; it 
is not (off-the-shelf) foreseen to hand-out the model 
to customers. Furthermore the included technologies 
are fixed and cannot be altered (by customers).

A.8 Representative backcasting model – The WIFO 
sGAIN modeling framework
sGAIN by WIFO represents a detailed bottom up 
model of the energy system. In Köppl and Schleicher 
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(2014) the model is used for backcasting, using the 
EU 2050 Roadmap as normative vision for 2050. 
The modeling framework puts energy services into 
the center of the analysis of energy structures that 
are compatible with long-term low-carbon targets. 
Data for energy services are typically not available. 
Information from useful energy balances are used to 
demonstrate quantity and quality of energy used for 
the provision of energy services. The model structure 
details useful energy categories by sector and energy 
source and puts a strong emphasis on innovation and 
energy productivity at all levels of the energy chain 
including the supply side. Various combinations of 
changes in the demand for energy services and energy 
productivity that achieve the same output in terms of 
energy flows and emissions are displayed.

A.9 Representative agent based model – EM-
Lab-Generation
The EMLab-Generation model (Richstein et al., 
2014) mimics the behavior of electricity generation 
companies (i.e. the agents) which aim to optimize 
their profits by deciding upon short-term bidding, the 
procurement of fuels and CO2 as well as investments. 
The agents are heterogeneous and interact with each 
other, but act under incomplete knowledge regard-
ing the future. More precisely each agent takes into 
account it’s surrounding and estimates future market 
developments (e.g. the expected merit order and the 
resulting electricity and CO2-prices) based on its 
current state and developments from the past. The 
outcome of the model is an endogenously determined 
development of the electricity mix over time. Since 
the agents act under incomplete information the out-
come is sub-optimal as expectations and reality do 
not perfectly match; a characteristic which we can 
observe in reality very often. By introducing different 
energy and climate policies, the model can be used to 
derive the long-term effects of policies on the electric-
ity mix and the corresponding emissions, CO2-price 
but also security of supply and affordability. One 
application of the model can be found in Richstein 
et al. (2014) where the authors analyze the effects of 
CO2 price floors and ceilings on investors’ decisions.
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