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Abstract

The opening of large archives of satellite data such as LANDSAT, MODIS and the
SENTINELs has given researchers unprecedented access to data, allowing them to better
quantify and understand local and global land change. The need to analyse such large data
sets has lead to the development of automated and semi-automated methods for satellite
image time series analysis. However, few of the proposed methods for remote sensing time
series analysis are available as open source software. In this paper we present the R package
dtwSat. This package provides an implementation of the Time-Weighted Dynamic Time
Warping method for land cover mapping using sequence of multi-band satellite images.
Methods based on dynamic time warping are flexible to handle irregular sampling and
out-of-phase time series, and they have achieved significant results in time series analysis.
dtwSat is available from the Comprehensive R Archive Network and contributes to making
methods for satellite time series analysis available to a larger audience. The package
supports the full cycle of land cover classification using image time series, ranging from
selecting temporal patterns to visualising and assessing the results.

Keywords: dynamic programming, MODIS time series, land cover changes, crop monitoring.

1. Introduction

Remote sensing images are the most widely used data source for measuring land use and land
cover change (LUCC). In many areas, remote sensing images are the only data available for
this purpose (Lambin and Linderman 2006; Fritz et al. 2013). Recently, the opening of large
archives of satellite data such as LANDSAT, MODIS and the SENTINELs has given researchers
unprecedented access to data, allowing them to better quantify and understand local and
global land change. The need to analyse such large data sets has lead to the development
of automated and semi-automated methods for satellite image time series analysis. These
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2 dtwSat: Time-Weighted Dynamic Time Warping

methods include multi-image compositing (Griffiths et al. 2013), detecting forest disturbance
and recovery (Kennedy et al. 2010; Zhu et al. 2012; DeVries et al. 2015), crop classification
(Xiao et al. 2005; Wardlow et al. 2007; Petitjean et al. 2012; Maus et al. 2016), planted
forest mapping (le Maire et al. 2014), crop expansion and intensification (Galford et al. 2008;
Sakamoto et al. 2009), detecting trend and seasonal changes (Lunetta et al. 2006; Verbesselt
et al. 2010a,b, 2012), and extracting seasonality metrics from satellite time series (Jönsson
and Eklundh 2002, 2004). Given the open availability of large image data sets, the Earth
Observation community would get much benefit from methods that are openly available,
reproducible and comparable. However, few of the proposed methods for remote sensing time
series analysis are available as open source software, the main exception being the BFAST and
BFAST-monitor algorithms for change detection (Verbesselt et al. 2010a,b). This paper is a
contribution to making methods for satellite time series analysis available to a larger audience.

In this paper we describe the dtwSat package, written in R (R Core Team 2016) and Fortran

programming languages, and available from the Comprehensive R Archive Network at http:
//CRAN.R-project.org/package=dtwSat. The package provides an implementation of Time-
Weighted Dynamic Time Warping (TWDTW) (Maus et al. 2016) for satellite image time
series analysis.

The TWDTW method is an adaptation of the well-known dynamic time warping (DTW)
method for time series analysis (Velichko and Zagoruyko 1970; Sakoe and Chiba 1971, 1978;
Rabiner and Juang 1993; Berndt and Clifford 1994; Keogh and Ratanamahatana 2005; Müller
2007) for land cover classification. The standard DTW compares a temporal signature of
a known event (e.g., a person’s speech) with an unknown time series. It finds all possible
alignments between two time series and provides a dissimilarity measure (Rabiner and Juang
1993). In contrast to standard DTW, the TWDTW method is sensitive to seasonal changes of
natural and cultivated vegetation types. It also considers inter-annual climatic and seasonal
variability. In a tropical forest area, the method has achieved a high accuracy for mapping
classes of single cropping, double cropping, forest, and pasture (Maus et al. 2016).

We chose R because it is an open source software that offers a large number of reliable packages.
The dtwSat package builds upon on a number of graphical and statistical tools in R: dtw
(Giorgino 2009), proxy (Meyer and Buchta 2015), zoo (Zeileis and Grothendieck 2005), mgcv

(Wood 2000, 2003, 2004, 2006, 2011), sp (Pebesma and Bivand 2005; Bivand et al. 2013), raster
(Hijmans 2015), caret (Kuhn et al. 2016), and ggplot2 (Wickham 2009). Other R packages
that are related and useful for remote sensing and land cover analysis include landsat (Goslee
2011), rgdal (Bivand and Lewin-Koh 2015), spacetime (Pebesma 2012; Bivand et al. 2013),
bfast (Verbesselt et al. 2010a,b), bfastmonitor (Verbesselt et al. 2011), bfastSpatial (Dutrieux
and DeVries 2014), MODISTools (Tuck et al. 2014), maptools (Bivand and Lewin-Koh 2015),
and lucc (Moulds et al. 2015). Using existing packages as building blocks, software developers
in R save a lot of time and can concentrate on their intended goals.

There is already an R package that implements the standard DTW method for time series
analysis: the dtw package (Giorgino 2009). In the dtwSat package, we focus on the specific
case of satellite image time series analysis. The analysis method implemented in dtwSat

package extends that of the dtw package; it adjusts the standard DTW method to account for
the seasonality of different types of land cover. Our aim is to support the full cycle of land
cover classification, from selecting sample patterns to visualising and assessing the final result.

This paper focuses on the motivation and guidance for using the TWDTW method for remote

http://CRAN.R-project.org/package=dtwSat
http://CRAN.R-project.org/package=dtwSat
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sensing applications. The full description of the method is available in a paper published by
the lead author (Maus et al. 2016). In what follows, the section 2 describes the application of
TWDTW (Maus et al. 2016) for satellite time series analysis. The section 3 gives an overview
of the dtwSat package. Then, section 4 focuses on the analysis of a single time series and
shows some visualisation methods. We then present an example of a complete land cover
change analysis for a study area in Mato Grosso, Brazil in section 5.

2. The Time-Weighted Dynamic Time Warping method

In this section, we describe the Time-Weighted Dynamic Time Warping (TWDTW) algorithm
in general terms. For a detailed technical explanation, refer to Maus et al. (2016). TWDTW
is time-constrained version of the Dynamic Time Warping (DTW) algorithm. Although the
standard DTW method is good for shape matching (Keogh and Ratanamahatana 2005), it is
not suited per se for satellite image time series analysis, since it disregards the temporal range
when finding the best matches between two time series (Maus et al. 2016). When using image
time series for land cover classification, one needs to balance between shape matching and
temporal alignment, since each land cover class has a distinct phenological cycle associated
with the vegetation (Reed et al. 1994, Zhang et al. (2003)). For example, soybeans and maize
cycles range from 90 to 120 days, whereas sugar-cane has a 360 to 720 days cycle. A time
series with cycle larger than 180 days is unlikely to come from soybeans or maize. For this
reason, Maus et al. (2016) include a time constraint in DTW to account for seasonality. The
resulting method is capable of distinguishing different land cover classes.

The inputs to TWDTW are: (a) a set of time series of known temporal patterns (e.g.,
phenological cycles of land cover classes); (b) an unclassified long-term satellite image time
series. For each temporal pattern, the algorithm finds all matching subintervals in the long-term
time series, providing a dissimilarity measure (cf. Figure 1). The result of the algorithm is a
set of subintervals, each associated with a pattern and with a dissimilarity measure. We then
break the unclassified time series in periods according to our needs (e.g., yearly, seasonality,
monthly). For each period, we consider all matching subintervals that intersect with it, and
classify them based on the land cover class of the best matching subinterval. In this way, the
long-term satellite time series is divided in periods, and each period is assigned a land cover
class.

To use TWDTW for land cover classification, we need the following data sets:

• A set of remote sensing time series for the study area. For example, a tile of a MODIS
MOD13Q1 image consists of 4800 x 4800 pixels, covering an area of 10 degrees x 10
degrees at the Equator (Friedl et al. 2010). A 15-year (2000-2015) MODIS MOD13Q1
set time series has 23 images per year, with a total of 23 million time series, each with
346 samples.

• A set of time series with land cover information, called temporal patterns. Typically, each
time series is short and covers one phenological cycle of one land cover type. Examples
would be a time series of a soybean crop, or one that describes a mature tropical forest.
These temporal patterns can be extracted from the remote sensing image data, if the
user knows their spatial and temporal location.
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Figure 1: Matches of the known temporal pattern to subintervals of the long-term time series.
The solid black line is the long-term time series, the colored lines are the different matches of
the same pattern ordered by TWDTW dissimilarity measure, and the gray dashed lines are
the matching points.

• A set of ground truth points, with spatial and temporal information and land cover
classification. These ground truth points are used for validation and accuracy assessment.

Based on the information provided by the user about the images to be analysed, our method
maps them to a three-dimensional (3-D) array in space-time (Figure 2). This array can have
multiple attributes, such as the satellite bands (e.g., “red”, “nir”, and “blue”), and derived
indices (e.g., “NDVI”, “EVI”, and “EVI2”). This way, each pixel location is associated to a
sequence of measurements, building a satellite image time series. Figure 2 shows an example
of “EVI” time series for a location in the Brazilian Amazon from 2000 to 2008. In the first two
years, the area was covered by forest that was cut in 2002. The area was then used for cattle
raising (pasture) for three years, and then for crop production from 2006 to 2008. Satellite
image time series are thus useful to describe the dynamics of the landscape and the land use
trajectories.

3. dtwSat package overview

dtwSat provides a set of functions for land cover change analysis using satellite image time
series. This includes functions to build temporal patterns for land cover types, apply the
TWDTW analysis using different weighting functions, visualise the results in a graphical
interface, produce land cover maps, and create spatiotemporal plots for land changes. Therefore,
dtwSat gives an end-to-end solution for satellite time series analysis, which users can make a
complete land change analysis.

For the dtwSat package, the user should provide the following inputs:

• A set of time ordered satellite images, all with the same spatial extent. The user should
also inform the date of each image. In R the images should use the RasterBrick or
RasterStack class of the raster package.
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Figure 2: A 3-dimensional array of satellite images (left), an enhanced vegetation index (EVI)
time series at the pixel location (x, y) (right). The arrows indicate gaps in the time series.
Adapted from Maus et al. (2016).

• A list of temporal patterns, each associated to a time series in zoo format.

• A list of known ground truth points, each with spatial and temporal information, in a
format readable in R, such as CSV or shapefile.

The dtwSat package organizes the data in three S4 classes of objects: twdtwTimeSeries,
twdtwMatches, and twdtwRaster. To store time series we use the class twdtwTimeSeries.
The objects of class twdtwTimeSeries have two slots; the slot called timeseries has a list
of zoo objects; and the slot called labels stores the labels of the time series. The class
twdtwMatches has 3 slots to store inputs and results of the TWDTW analysis. The slots called
timeseries and patterns are objects of the class twdtwTimeSeries with the unclassified long-
term time series and the temporal patterns, respectively. A third slot called alignments has
a list with detailed information about the matches between the patterns and the unclassified
long-term time series. The classes twdtwTimeSeries and twdtwMatches are used to analyse
lists of time series.

The class twdtwRaster is used for satellite image time series. This class can store either
unclassified raster time series with the satellite raw data, the results of the TWDTW analyis,
or a classified raster time series. In both cases, the objects of class twdtwRaster have five slots.
The slot called timeseries is a list of RasterBrick or RasterStack objects with time ordered
satellite images (all with the same temporal and spatial extents); the slot called timeline is a
vector of class Date with dates of the satellite images; the slot called layers has the names
of satellite bands; the slot called levels has levels for the raster values; and the slot called
labels has labels for the raster values. This class builds upon the R package raster to build a
multi-attribute 3-D raster in space-time, allowing for multi-band satellite image time series
analysis.

4. Classifying a time series

This section describes how to classify one time series, using examples that come with the
dtwSat package. We will show how to match three temporal patterns (“soybean”, “cotton”,
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and “maize”) to subintervals of a long-term satellite image time series. These time series have
been extracted from a set of MODIS MOD13Q1 (Friedl et al. 2010) images and include the
vegetation indices “ndvi”, “evi”, and the original bands “nir”, “red”, “blue”, and “mir”. In this
example, the classification of crop types for the long-term time series is known.

4.1. Input data

The inputs for the next examples are time series in zoo format. The first is an object of class
zoo with a long-term time series, referred to as MOD13Q1.ts, and the second is a list of time
series of class zoo with the temporal patterns of “soybean”, “cotton”, and “maize”, referred to
as MOD13Q1.patterns.list.

From zoo objects we construct time series of class twdtwTimeSeries, for which we have a set
of visualization and analysis methods implemented in the dtwSat package. The code below
builds two objects of class twdtwTimeSeries. The first has the long-term time series and
second has the temporal patterns. We use the plot method types timeseries and patterns

to shown the objects ts in Figure 3 and MOD13Q1.ts in Figure 4, respectively. This plot
method uses ggplot syntax.

library(dtwSat)

names(MOD13Q1.patterns.list)

[1] "Soybean" "Cotton" "Maize"

head(MOD13Q1.ts, n = 2)

ndvi evi red nir blue mir

2009-08-05 0.3169 0.1687 0.1167 0.2250 0.0427 0.2193

2009-08-28 0.2609 0.1385 0.1168 0.1993 0.0548 0.2657

ts = twdtwTimeSeries(MOD13Q1.ts, labels="Time series")

patterns_ts = twdtwTimeSeries(MOD13Q1.patterns.list)

patterns_ts

An object of class "twdtwTimeSeries"

Slot "timeseries" length: 3

Slot "labels": [1] "Soybean" "Cotton" "Maize"

plot(ts, type = "timeseries") +

annotate(geom = "text", x = MOD13Q1.ts.labels$from+90, y = 0.98,

label = MOD13Q1.ts.labels$label, size = 2)

plot(patterns_ts, type = "patterns")

TWDTW uses both amplitude and phase information to classify the phenological cycles in
the long-term time series. The differences in the amplitude and phase of the cycles are more
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Figure 3: Example of time series based on MODIS product MOD13Q1 (Friedl et al. 2010).
The labels of the phenological cycle are shown in the plot.
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Figure 4: Temporal patterns of soybean, cotton, and maize based on MODIS product MOD13Q1
(Friedl et al. 2010).

clear when we observe the EVI signal in Figures 3 and 4. The EVI peak of the “soybean” time
series has a similar amplitude as that of “cotton”. However, the “soybean” series peaks in late
December while the “cotton” series peaks in early April. The EVI peak of the “maize” time
series is at the same period as the peak of “cotton”. However, the “maize” time series has
smaller amplitude than the “cotton” one. Therefore, combining shape and time information
we can improve the time series classification.

4.2. Detection of time series patterns with TWDTW

Each subinterval of the long-term time series in ts has a known phenological cycle. We will
now compare the known information with the result of the TWDTW algorithm. We use the
function twdtwApply that returns an R object of class twdtwMatches with all matches of each
temporal pattern in the time series.
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log_weight = logisticWeight(alpha = -0.1, beta = 100)

matches =

twdtwApply(x = ts, y = patterns_ts, weight.fun = log_weight, keep=TRUE)

slotNames(matches)

[1] "timeseries" "patterns" "alignments"

show(matches)

An object of class "twdtwMatches"

Number of time series: 1

Number of Alignments: 27

Patterns labels: Soybean Cotton Maize

To retrieve the complete information of the matches we set keep=TRUE. We need this information
for the plot methods of the class twdtwMatches. The argument weight.fun defines the time-
weight to the dynamic time warping analysis (Maus et al. 2016). By default the time-weight
is zero, meaning that the function will run a standard dynamic time warping analysis. The
arguments x and y are objects of class twdtwTimeSeries with the unclassified long-term
time series and the temporal patterns, respectively. To perform the alignment between the
time series the default TWDTW recursion has a symmetric step (for more details and other
recursion options see ?stepPattern). Giorgino (2009) provides a detaild discussion on the
recursion steps and other step patterns. For further details and other arguments of the
TWDTW analysis see ?twdtwApply.

In our example we use a logistic weight function for the temporal constraint of the TWDTW
algorithm. This function is defined by logisticWeight. The dtwSat package provides two
in-built functions: linearWeight and logisticWeight. The linearWeight function with
slope a and intercept b is given by

ω = a · g(t1, t2) + b,

and the logisticWeight with midpoint beta, and steepness alpha, given by

ω =
1

1 + e−α(g(t1,t2)−β)
.

The function g is the absolute difference in days between two dates, t1 and t2. The aim of
these functions is to control the time warp, e.g. a “large time warp” is needed to match a
point of the temporal pattern whose original date is January 1 to a point of the long-term
time series whose date is July 1, on the other hand to match January 1 to December 15 has a
“small time warp”. If there is a large seasonal difference between the pattern and its matching
point in time series, an extra cost is added to the DTW distance measure. This constraint
controls the time warping and makes the time series alignment dependent on the seasons.
This is especially useful for detecting temporary crops and for distinguishing pasture from
agriculture. The linear function creates a strong time constraint even for small time differences,
including small time warps. The logistic function has a low weight for small time warps and
significant costs for bigger time warps, cf. Figure 5. In our previous studies (Maus et al. 2016)
the logistic-weight had better results than the linear-weight for land cover classification. Users
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Figure 5: Logistic time-weight function logisticWeight with steepness alpha=-0.1 and
midpoint beta=100. The x axis shows the absolute difference between two dates in days and
the y axis shows the time-weight (Maus et al. 2016).

can define different weight functions as temporal constraints in the argument weight.fun of
the function twdtwApply.

4.3. Visualising the result of the TWDTW algorithm

dtwSat provides five ways to visualise objects of class twdtwMatches through the plot types:
matches, alignments, classification, path, and cost. The plot type matches shows the
matching points of the patterns in the long-term time series; the plot type alignments shows
the alignments and dissimilarity measures; the plot type path shows the low cost paths in the
TWDTW cost matrix; and the plot type cost allows the visualisation of the cost matrices
(local cost, accumulated cost, and time cost); and the plot type classification shows the
classification of the long-term time series based on the TWDTW analysis. The plot methods
for class twdtwMatches return a ggplot object, so that users can further manipulate the result
using the ggplot2 package. For more details on visualisation functions, please refer to the
dtwSat documentation in the CRAN (Maus 2015).

We now describe the plot types matches and alignments. The code bellow shows how to
visualise the matching points of the four best matches of “soybean” pattern in the long-term
time series, cf. Figure 6.

plot(matches, type="matches", patterns.labels="Soybean", k=4)

The next example uses the plot type alignments to show the alignments of the temporal
patterns (see Figure 7). We set the threshold for the dissimilarity measure to be lower than 3.0.
This plot displays the different subintervals of the long-term time series that have alignments
whose dissimilarity is less than the specified threshold.

plot(matches, type="alignments", attr = "evi", threshold = 3.0)

Figure 7 shows the alignments of each pattern over the long-term time series, note that we
can rank the alignments by their TWDTW dissimilarity, i.e. alignments overlapping the same
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Figure 6: The four best matches of the ”soybean” pattern in the time series using a logistic
time-weight. The solid black line is the long-term time series; the coloured lines are the
temporal patterns; and the grey dashed lines are the respective matching points.
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”maize” to the subintervals of the long-term time series using a logistic time-weight. The solid
black line is the EVI time series, and the coloured lines are the alignments of the patterns
that have dissimilarity measure lower than three.

period usually have distinct dissimilarity, which can be used to rank them. In the figure we
can see that maize (blue lines) and cotton (green lines) overlap approximately the same time
periods, however, they have distinct dissimilarity measures, and therefore, can be ranked.
Observing the time period from January 2010 to July 2010, both soybean, maize, and cotton
have at least one overlapping alignment, however in this case the cotton pattern matches
better to the interval because its dissimilarity is lower than the others.



Con
di

tio
na

lly
ac

ce
pt

ed

Journal of Statistical Software 11

4.4. Classifying the long-term time series

Using the matches and their associated dissimilarity measures, we can classify the subintervals
of the long-term time series using twdtwClassify. To do this, we need to define a period for
classification and the minimum overlap between the period and the alignments that intersect
with it. For each interval, twdtwClassify will select the alignment that has the lowest
TWDTW dissimilarity taking into account the minimum overlap condition. For example,
in Figure 7 the interval from 1 September 1012 to 28 February 2013 has three overlapping
alignments, maize in blue, cotton in green, and soybean in red. Without a minimum overlap the
function twdtwClassify would classify this interval as maize, which has the lowest dissimilarity
in the period. However, if we set a minimum overlap of 50%, the function twdtwClassify

classifies the interval as soybean, which is the only class whose alignment overlaps the interval
during more than 50% of the time. The interval of classification are usually defined according
to the phenological cycles or the agricultural calendar of the region. The classification interval
can also be irregular, for details see the argument breaks in ?twdtwClassify

In the example bellow we classify each period of 6 months from September 2009 to September
2013; we set a minimum overlap of 50% between the alignment and the classification period.
This means that at least 50% of the alignment has to be contained inside of the classification
period. We also use the plot type classification to show the classified subintervals of the
long-term time series.

ts_classification = twdtwClassify(x = matches,

from = as.Date("2009-09-01"), to = as.Date("2013-09-01"),

by = "6 month", overlap = 0.5)

plot(ts_classification, type="classification")
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Figure 8: Classification of each 6 months periods of the time series using results of the
TWDTW analysis with logistic time-weight. The solid lines are the attributes of the time
series, the background colours indicate the classification of the periods.

By comparing the results of the classified time series in Figure 8 with the crop cycles in
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Figure 3 we see that the algorithm has classified correctly all the eight subintervals from
2009 to 2013, which are, respectively: “Soybean”, “Cotton”, “Soybean”, “Cotton”, “Soybean”,
“Maize”, “Soybean”, “Maize”.

5. Producing a land cover map

In this section we present an application of TWDTW for land cover change analysis using
satellite image time series. Our input is a set of images, each covering the same geographical
area at different times. Each pixel location is then associated to an unclassified satellite image
time series. We assume to have done field work in the area; for some pixel locations and
time periods, we know what is the land cover. We then will show how to obtain a set of
template patterns, based on the field samples and how to apply these patterns to land cover
classification of the set of images. In the end of this section we show how to perform land
cover change analysis and accuracy assessment.

As an example we classify approximately 5300 km2 in a tropical forest region in Mato Grosso,
Brazil (Figure 9). This is a sequence of 160 images with 999 pixels each for 6 years, from 2007
to 2013. We also have a set of 603 ground truth samples of the following classes: “Forest”,
“Cotton-fallow”,“Soybean-cotton”, “Soybean-maize”, and“Soybean-millet”. The satellite images
and the field samples used in the examples come with dtwSat package.

Brazil
Study area

Mato Grosso

Figure 9: Study area in Mato Grosso, Brazil, shown in a © Google Earth image. The area
was originally covered by tropical forest that has been removed for agricultural use.

5.1. Input data

The inputs are: a) the satellite images for a given geographical area, organised as a set of
georeferenced raster files in GeoTIFF format, each containing all time steps of a spectral band
or index; and b) a set of ground truth samples. The satellite images are extracted from the
MODIS product MOD13Q1 collection 5 (Friedl et al. 2010) and include vegetation indices
“ndvi”, “evi”, and original bands “nir”, “red”, “blue”, and “mir”. This product has 250 x 250
m spatial resolution and a 16 day maximum-value composite (MVC) for each pixel location
(Friedl et al. 2010), meaning that one image can have measurements from different dates. For
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this reason, MOD13Q1 also includes the “day of the year” (doy) of each pixel as a layer, which
we use to keep the time series consistent with the measurements.

The data files for the examples that follow are in the dtwSat installation folder lucc MT/data/.
The tif files include the time series of “blue”, “red”, “nir”, “mir”, “evi”, “ndvi”, and “doy” (day of
the year); the text file timeline has the dates of the satellite images; the CSV file samples.csv
has the longitude, latitude, from, to, and label for each field sample; and the text file
samples projection contains information about the cartographic projection of the samples, in
the format of coordinate reference system used by sp::CRS.

data_folder = system.file("lucc_MT/data", package = "dtwSat")

dir(data_folder)

[1] "blue.tif" "doy.tif" "evi.tif"

[4] "mir.tif" "ndvi.tif" "nir.tif"

[7] "red.tif" "samples_projection" "samples.csv"

[10] "timeline"

We have stored all the time series for each band in one single file. In this way, we can use
the function raster::brick to read the satellite images. The algorithm also works when
the time steps for each band are split in many files. In this case, the user should call the
function raster::stack with the appropriate parameters. Because of processing performance,
we suggest that interested users group their images in bricks and follow the procedures given
below.

blue = brick(paste(data_folder,"blue.tif", sep = "/"))

red = brick(paste(data_folder,"red.tif", sep = "/"))

nir = brick(paste(data_folder,"nir.tif", sep = "/"))

mir = brick(paste(data_folder,"mir.tif", sep = "/"))

evi = brick(paste(data_folder,"evi.tif", sep = "/"))

ndvi = brick(paste(data_folder,"ndvi.tif", sep = "/"))

day_of_year = brick(paste(data_folder,"doy.tif", sep = "/"))

dates = scan(paste(data_folder,"timeline", sep = "/"), what = "dates")

We use these data-sets to create a multiple raster time series, which is used in the next
sections for the TWDTW analysis. dtwSat provides the constructor twdtwRaster that builds
a multi-band satellite image time series. The inputs of this function are RasterBrick objects
with the same temporal and spatial extents, and a vector (timeline) with the acquisition dates
of the images in the format "YYYY-MM-DD". The argument doy is combined with timeline to
get the real date of each pixel, independently from each other. If doy is not provided then the
dates of the pixels are given by timeline, i.e. all pixels in one image will have the same date.
Products from other sensors, such as the Sentinels and Landsat, usually have all pixels with
same date, therefore the argument doy is not needed. This function produces an object of
class twdtwRaster with the time series of multiple satellite bands.

raster_timeseries = twdtwRaster(blue, red, nir, mir, evi, ndvi,

timeline = dates, doy = day_of_year)
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Our second input is a set of ground truth samples in the CSV file samples.csv, which has a total
of 603 samples divided in five classes: 68 “cotton-fallow”, 138 “forest”, 79 “soybean-cotton”,
134 “soybean-maize”, and 184 “soybean-millet”. Reading this CSV file, we get a data.frame

object, with the spatial location (latitude and longitude), starting and ending dates (from
and to), and the label for each sample.

field_samples = read.csv(paste(data_folder,"samples.csv", sep = "/"))

head(field_samples, 5)

longitude latitude from to label

1 -55.98819 -12.03646 2011-09-01 2012-09-01 Cotton-fallow

2 -55.99118 -12.04062 2011-09-01 2012-09-01 Cotton-fallow

3 -55.98606 -12.03646 2011-09-01 2012-09-01 Cotton-fallow

4 -55.98562 -12.03437 2011-09-01 2012-09-01 Cotton-fallow

5 -55.98475 -12.03021 2011-09-01 2012-09-01 Cotton-fallow

table(field_samples[["label"]])

Cotton-fallow Forest Soybean-cotton Soybean-maize Soybean-millet

68 138 79 134 184

proj_str = scan(paste(data_folder,"samples_projection", sep = "/"),

what = "character")

proj_str

[1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

5.2. Assessing the separability of temporal patterns

The classification is highly dependent on the quality of the temporal patterns. Therefore, it is
useful to perform an analysis to assess the separability of the temporal pattern. Ideally, one
would need patterns that, when applied to the set of unknown time series, produce consistent
results (see the guidelines for single time series analysis in section 4). For this reason, before
performing the land cover mapping, we perform a cross validation step. In this way, the users
would assess the separability of their patterns before classifying a large data set.

In the next example we use the function getTimeSeries to extract the time series of each
field sample from our raster time series. The arguments of the function are a set of raster time
series, a data.frame with spatial and temporal information about the fields samples (as in the
object field_samples given above), and a proj4string with the projection information. The
projection should follow the sp::CRS format. The result is an object of class twdtwTimeSeries
with one time series for each field sample.

field_samples_ts = getTimeSeries(raster_timeseries,

y = field_samples, proj4string = proj_str)

field_samples_ts
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An object of class "twdtwTimeSeries"

Slot "timeseries" length: 603

Slot "labels": [1] "Cotton-fallow" "Cotton-fallow" "Cotton-fallow"

To perform the cross-validation we use the function twdtwCrossValidate. This function splits
the sample time series into training and validation sets using stratified sampling with a simple
random sampling within each stratum, for details see ?caret::createDataPartition. The
function uses the training samples to create the temporal patterns and then classifies the
remaining validation samples using twdtwApply. The results of the classification are used in
the accuracy calculation.

A Generalized Additive Model (GAM) [Hastie:1986,Wood:2011] generates the smoothed
temporal patterns based on the training samples. We use the GAM because of its flexibility
for non-parametric fits, with less rigorous assumptions on the relationship between response
and predictor. This potentially provides better fit to satellite data than purely parametric
models, due to the data’s inter- and intra-annual variability.

In the next example we set the arguments times=100 and p=0.1, which creates 100 different
data partitions, each with 10% of the samples for training and 90% for validation. The other
arguments of this function are: the logistic weight function with steepness -0.1 and midpoint
50 to weight.fun; the frequency of the temporal patterns to 8 days freq=8, and GAM
smoothing formula to formula = y ~ s(x), where function s sets up a spline model, with x

the time and y a satellite band (for details see ?mgcv::gam and ?mgcv::s). The output is an
object of class twdtwCrossValidation which includes the accuracy for each data partition.
The object has two slots, the first called partitions has the index of the samples used for
training, the second called accuracy has overall accuracy, user’s accuracy, producer’s accuracy,
error matrix, and the data used in the calculation, i.e. reference classes, predicted classes, and
TWDTW distance measure.

set.seed(1)

log_fun = logisticWeight(alpha=-0.1, beta=50)

cross_validation = twdtwCrossValidate(field_samples_ts, times=100, p=0.1,

freq = 8, formula = y ~ s(x, bs="cc"), weight.fun = log_fun)

Figure 10 and Table 1 show the 95% confidence interval of the mean for user’s and producer’s
accuracy derived from the hundred-fold cross-validation analysis. The user’s accuracy gives
the confidence and the producer’s accuracy gives the sensitivity of the method for each class.
In our analysis all classes had high user’s and producer’s accuracy, meaning that TWDTW has
high confidence and sensitivity for the classes included in the analysis. The cross-validation
results show that if we randomly select 10% of our sampels to create temporal patterns we
can get an overall accuracy of at least 97% in the classification of the remaining samples with
95% confidence level.

5.3. Creating temporal patterns

In the last section we observed that the land cover classes based on our samples are separable
using the TWDTW algorithm with high confidence level. Now we randomly select 10% of
our samples for training and keep the remaining 90% for validation. The first set of samples
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Figure 10: User’s and producer’s accuracy of the TWDTW cross-validation using 100
resampling-with-replacement. The plot shows the 95% confidence interval of the mean.

User’s Producer’s Overall
Class µ σ ci* µ σ ci* µ σ ci*

Cotton-fallow 0.96 (0.01) [0.96-0.96] 1.00 (0.00) [1.00-1.00] 0.98 (0.02) [0.97-0.98]
Forest 1.00 (0.00) [1.00-1.00] 1.00 (0.00) [1.00-1.00]

Soybean-cotton 0.99 (0.03) [0.98-1.00] 0.89 (0.02) [0.89-0.89]
Soybean-maize 0.94 (0.05) [0.93-0.95] 1.00 (0.01) [1.00-1.00]
Soybean-millet 1.00 (0.01) [1.00-1.00] 0.98 (0.05) [0.97-0.99]

* 95% confidence interval.

Table 1: User’s and producer’s accuracy of the TWDTW cross-validation using 100 resampling-
with-replacement. The table shows the standard deviation (σ) and the 95% confidence interval
(ci) of the mean (µ).’

are used to create temporal patterns and classify the raster time series, and the second set of
samples to assess the final maps. Ideally we would need a second independent set of samples
to assess the map, but it would be very difficult to identify different crops without field work.
Therefore, we use the same samples used in the cross-validation (subsection 5.2).

library(caret)

set.seed(1)

I = unlist(createDataPartition(field_samples[,"label"], p = 0.1))

training_ts = subset(field_samples_ts, I)

validation_samples = field_samples[-I,]

We use the function createPatterns to produce the temporal patterns based on the training
samples. For that, we need to set the desired temporal frequency of the patterns and the
smoothing function for the GAM model. In the example below, we set freq=8 to get temporal
patterns with a frequency of 8 days, and the GAM smoothing formula formula = y ~ s(x),
such as in subsection 5.2).
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temporal_patterns =

createPatterns(training_ts, freq = 8, formula = y ~ s(x))

The result of the function createPatterns is an object of the class twdtwTimeSeries. We use
the plot method type="patterns" to show the results of the createPatterns in Figure 11.

plot(temporal_patterns, type = "patterns") +

theme(legend.position = c(.8,.25))
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Figure 11: Temporal patterns of Forest, Cotton-fallow, Soybean-cotton, Soybean-maize, and
Soybean-millet based on the ground truth samples.

Our method is not restricted to cases where the temporal patterns are obtained from the set
of images, such as in the example above. Once can also use patterns from a different set of
images or defined in other studies, as long as these temporal patterns stand for the study area
and their bands match the bands in the unclassified images.

5.4. Classifying the image time series

After obtaining a consistent set of temporal patterns, we use the function twdtwApply to
run the TWDTW analysis for each pixel location in the raster time series. The input raster
time series in the object twdtwRaster should be longer or have approximatly the same length
as the temporal patterns. This function retrieves an object of class twdtwRaster with the
TWDTW dissimilarity measure of the temporal patterns for each time period. The arguments
overwrite and format are passed to raster::writeRaster. The arguments weight.fun

and overlap are described in section 4. Here we set the parameters of the time weight (logistic
function) base on our the experience about the phenological cycle of the vegetation in the
study area. In the next example, we classify the raster time series using the temporal patterns
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in temporal_patterns obtained as described above. The result is a twdtwRaster with five
layers; each layer contains the TWDTW dissimilarity measure for one temporal pattern over
time. We use the plot type distance to illustrate the TWDTW dissimilarity for each temporal
pattern in 2008, cf. Figure 12.

log_fun = logisticWeight(alpha=-0.1, beta=50)

twdtw_dist = twdtwApply(x = raster_timeseries, y = temporal_patterns,

overlap = 0.5, weight.fun = log_fun, overwrite=TRUE, format="GTiff")

[1] "Procesing chunk 1/1"

plot(x = twdtw_dist, type="distance")

Soybean−maize Soybean−millet

Cotton−fallow Forest Soybean−cotton

2 4 6 8 10

TWDTW distance

2008

Figure 12: Illustration of the TWDTW dissimilarity from each temporal pattern in 2008. The
blue areas are more similar to the pattern and the red areas are less similar to the pattern.

The results of the example above can be used to create categorical land cover maps. The
function twdtwClassify selects the most similar pattern for each time period and retrieves a
twdtwRaster object with the time series of land cover maps. The resulting object includes
two layers, the first has the classified categorical maps and the second has the TWDTW
dissimilarity measure.

land_cover_maps = twdtwClassify(twdtw_dist, format="GTiff", overwrite=TRUE)

5.5. Looking at the classification results

The classification results can be visualised using the plot methods of the class twdtwRaster,
which supports four plot types: “maps”, “area”, “changes”, and “distance”. The type="maps"
shows the land cover classification maps for each period, cf. Figure 13.
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plot(x = land_cover_maps, type = "maps")

2011 2012 2013

2008 2009 2010

Legend Cotton−fallow Forest Soybean−cotton Soybean−maize Soybean−millet

Figure 13: Land cover maps for each year from 2008 to 2013.

The next example shows the accumulated area for each class over time, using type="area",
cf. Figure 14.

plot(x = land_cover_maps, type = "area")

Users can also view the land cover transition for each time period, by setting type="changes".
For each land cover class and each period, the plot shows gains and losses in area from the
other classes. This is the visual equivalent of a land transition matrix, cf. Figure 15.

plot(x = land_cover_maps, type = "changes")

We can also look at the dissimilarity of each classified pixel setting type="distance". This
plot can give a measure of the uncertainty of the classification of each pixel for each time
period, cf. Figure 16.

plot(x = land_cover_maps, type="distance")

5.6. Assessing classification accuracy

In this section we show how to assess the classification. dtwSat provides a function called
twdtwAssess, which computes a set of accuracy metrics, and adjusted area such as proposed by
Olofsson et al. (2013) and Olofsson et al. (2014). The inputs of this function are the classified
map (an object of class twdtwRaster), and a set of samples for validation (an object of class
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Figure 14: Percentage of area for each land cover class from 2008 to 2013.
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Figure 15: Gains and losses in area from the other classes. The y axis shows the actual class;
the positive direction of x axis shows the gains and the negative direction of x axis shows the
losses of the classes indicated in y. The colors indicate from/to which classes the gains/losses
belong.

data.frame or sp::SpatialPointsDataFrame). Besides coordinates, the samples should also
have starting dates, ending dates, and lables compatible with the labels in the map (for details
see subsection 4.1). The output of twdtwAssess is an object of class twdtwAssessment, which
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Figure 16: TWDTW dissimilarity measure for each pixel over each classified period. The blue
areas have high confidence and the red areas have low confidence in the classification.

includes four slots: 1) accuracyByPeriod is a list of metrics for each time period, including
overall accuracy, user’s accuracy, produce’s accuracy, error matrix (confusion matrix), and
adjusted area; 2) accuracySummary has the accuracy and adjusted area accumulated over
all time periods; 3) data is a SpatialPointsDataFrame with sample ID, period ID, starting
date, ending date, reference label, predicted label, and TWDTW distance; and 4) map is a
twdtwRaster with the raster maps. The next example uses twdtwAssess to compute the
accuracy of the maps (land_cover_maps) using the validation samples (validation_samples)
with a 95% confidence level.

maps_assessment = twdtwAssess(land_cover_maps, y = validation_samples,

proj4string = proj_str, conf.int=.95)

The results of the assessment in Table 2, 3, and 4 are accumulated over the whole time period,
i.e. the total mapped area is equal to the surface area times the number of maps. It is possible
to assess and visualise each period independently from each other. However, our samples are
irregularly distributed over time and some classes do not have samples in all time period,
which limits the analysis of each time period independently from each other.

As we can see in Table 2 only nine samples were misclassified, all of them from the reference
class “Soybean-cotton”. From these samples six were classified as “Soybean-maize”, and
three as “Cotton-fallow”. As we see in Table 3 the only class with producer’s accuracy
lower than 100% was “Soybean-cotton”, reaching 72% with high uncertainty (±13%). The
user’s accuracy for all classes was higer than 95%, with maximun uncertainty of ±5%. To
visualise the misclassified samples on top of the maps we can use the plot type="map"

for objects of class twdtwAssessment, such that plot(x = maps_assessment, type="map",

samples="incorrect"). The user can also set the argument samples to see correctly classified
samples samples="correct", or to see all samples samples="all".
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Total Area w

Cotton-fallow 61 0 3 0 0 64 47600561 0.148
Forest 0 124 0 0 0 124 74754883 0.232

Soybean-cotton 0 0 62 0 0 62 18782634 0.058
Soybean-maize 0 0 6 120 0 126 110173564 0.343
Soybean-millet 0 0 0 0 165 165 70354380 0.219

Total 61 124 71 120 165 541 321666022 1.000

Table 2: Error matrix of the map classification based on TWDTW analysis. The area is in
the map unit, in this case m2. w is the proportion of area mapped for each class.

The Figure 17 shows that the misclassified samples are all in the map from 2012. The six
samples of “Soybean-cotton” classified as “Soybean-maize” are within a big area of “Soybean-
maize” and the three samples of “Soybean-cotton” classified as “Cotton-fallow” are near the
border between this two classes. This errors might be related to the mixture of different classes
in the same pixel.

●
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2008 2009 2010

Legend Cotton−fallow Forest Soybean−cotton Soybean−maize Soybean−millet

Figure 17: Incorrect classified samples.

In Table 4 we can see the mapped and the adjusted area. This is the accumulated area over the
whole period, i.e. the sum of all maps from 2008 to 2013. As the “Forest” and “Soybean-millet”
did not have omission (100% producer’s accuracy) or comission (100% user’s accuracy) erros,
we immediately see that their mapped area is equal to their adjusted area (Table 4). To
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Total User’s* Producers’s* Overall*

Cotton-fallow 0.14 0.00 0.00 0.00 0.00 0.14 0.95±0.05 1.00±0.00 0.98±0.01
Forest 0.00 0.23 0.00 0.00 0.00 0.23 1.00±0.00 1.00±0.00

Soybean-cotton 0.01 0.00 0.06 0.02 0.00 0.08 1.00±0.00 0.72±0.13
Soybean-maize 0.00 0.00 0.00 0.33 0.00 0.33 0.95±0.04 1.00±0.00
Soybean-millet 0.00 0.00 0.00 0.00 0.22 0.22 1.00±0.00 1.00±0.00

Total 0.15 0.23 0.06 0.34 0.22 1.00

* 95% confidence interval.

Table 3: Accuracy and error matrix in proportion of area of the classified map.

help the analysis of the other classes we use the plot type="area" for class twdtwAssessment,
such that plot(x = maps_assessment, type="area", perc=FALSE). Figure 18 shows the
accumulated area mapped and adjusted for all classes. In this figure we see that our method
overestimated the area of “Soybean-maize”, i.e. the mapped area (110173564 m2) is bigger
than the adjusted area (104927204 m2) plus the confidence interval 4113071 m2. Meanwhile
we underestimated the area of “Soybean-cotton”, i.e. its mapped area (18782634 m2) is smaller
than the adjusted area (26260270 m2) plus the confidence interval (4805205 m2). The mapped
area of “Cotton-fallow” (47600561 m2) is within the confidence interval of the adjusted area
(45369285± 2484480 m2). To improve the accuracy assessment and area estimations the field
samples should be better distributed over time, which would also allow for better land cover
changes assessment.

Class Mapped area Adjusted area Margin of error*

Cotton-fallow 47600561 45369285 ±2484480
Forest 74754883 74754883 ±0

Soybean-cotton 18782634 26260270 ±4805205
Soybean-maize 110173564 104927204 ±4113071
Soybean-millet 70354380 70354380 ±0

* 95% confidence interval.

Table 4: Mapped and adjusted, accumulated over the whole period, i.e. the sum from the sum
of the maps from 2008 to 2013. The area is in the map unit, in this case m2.

6. Conclusions and Discussion

The overall accuracy of the classification with a 95% confidence level is within 97% and 99%.
With same confidence level, user’s and producer’s accuracy are between 90% and 100% for all
classes, except for “Soybean-cotton”, which has wide confidence interval for user’s accuracy,
between 59% and 85%. A small sample size will likely have large confidence intervals (Foody
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Figure 18: Mapped and adjusted, accumulated over the whole period, i.e. the sum from the
sum of the maps from 2008 to 2013. The area is in the map unit, in this case m2.

2009), therefore, this analysis could be improved by increasing the number of “Soybean-cotton”
samples. In addition, our access to field information is limited to a set of samples irregularly
distributed over time, which are not enough to assess each mapped period independently from
each other. Nevertheless, the results of the accuracy assessment show that the TWDTW has
great potential to classify different crop types.

DTW based approaches have achieved good results for land cover classification (Petitjean
et al. 2012; Maus et al. 2016), however, a reduced number of points in the time series will
negatively impact the accuracy. Remotely sensed images often present noise and poor coverage
due to clouds, aerosol load, surface directional effects, and sensor problems. This leads to large
amount of gaps in satellite image time series. Therefore, methods that deal with irregular
temporal sampling, i.e. irregular sampling intervals, have great potential to fully exploit the
available satellite images archive. DTW is known to be one of the most robust methods
for irregular time series (Keogh and Ratanamahatana 2005; Tormene et al. 2009). It was
successfully applied for satellite time series clustering using FORMOSAT-2 (Petitjean et al.
2012) and using MODIS (Maus et al. 2016). Petitjean et al. (2012), for example, showed that
clustering based on DTW is consistent even when there are several images missing per year
because of cloud cover. However, the effect of a reduced number of samples in the time needs
to be better evaluated in order to point out the limiting gap size for satellite image time series
analysis using DTW based methods.

The DTW approaches will search for the matches of a temporal pattern, therefore the number
of points in the time series should represent the phenological cycles of different land cover
types. The number of available observations might be a limitation for sensors with lower
temporal resolution, such as Landsat. We believe that this limitation could be addressed, for
example, by combining TWDTW analysis with pixel-based compositing techniques (Griffiths
et al. 2013; White et al. 2014). These approaches have become more popular with the opening
of the USGS Landsat archive and could be used to increase the availability of gap-free time
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series (Gómez et al. 2016).

dtwSat provides a dissimilarity measure in the n-dimensional space, allowing multispectral
satellite image time series analysis. Our experience using MODIS data sets has shown that
n-dimensional analysis, i.e. using RED, NIR, NDVI, EVI, and NDVI, increases the separability
among classes when compared to single band analysis, for example using only EVI or NDVI.
Further studies on multispectral data using TWDTW analysis will help to optimize the
selection of bands.

The main goal of dtwSat package is to make TWDTW accessible for researchers. The package
supports the full cycle of land cover classification using image time series, ranging from selecting
temporal patterns to visualising and assessing the results. The current version of the dtwSat

package provides a pixel-based time series classification method. We envisage that future
versions of the package could include local neighborhoods to reduce border effects and improve
classification homogeneity.

The dtwSat package provides two in-built functions for linear and logistic time weight. In the
current version of the package the parameters of the weight functions are set manually to the
same value for all land cover classes. Future versions could include methods to search for the
best parameters for each land cover class using field data.

Nowadays, there are large open archives of Earth Observation data, but few open source
methods for analysing them. With this motivation, this paper provides guidance on how
to use the Time-Weighed Dynamic Time Warping (TWDTW) method for remote sensing
applications. As we have discussed in a companion paper (Maus et al. 2016), the TWDTW
method is well suited for land cover change analysis of satellite image time series.

The TWDTW algorithm is computationally intensive and for large areas one should consider
parallel processing. The algorithm is pixel time series based, i.e. each time series is processed
independently from each other, and therefore, it can be easily parallelized. To aim for maximum
usage by the scientific community, the dtwSat package described in this paper works with
well-known R data classes such as provided by raster, which offers the option to work with
raster data sets stored on disk that are too large to be loaded into memory (RAM) at once
(Hijmans 2015). We are planning improvements, so that dtwSat can also be combined with
array databases, such as SciDB (Stonebraker et al. 2013). We believe that combining array
databases with image time series analysis software such as presented here is one way forward
to scaling the process of information extracting from very large Earth Observation data.
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