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Abstract. We analyze the contribution of human water management to

the intensification and mitigation of hydrological drought over California us-

ing the PCR-GLOBWB hydrological model for the period 1979-2014. We demon-

strate that considering water management results in more accurate discharge

representation. During the severe 2014 drought, water management allevi-

ated the drought deficit by ∼50% in Southern California through reservoir

operation during low flow periods. However, human water consumption (mostly

irrigation) in the Central Valley increased drought duration and deficit by

50% and 50-100%, respectively. Return level analysis indicates that there is

more than 50% chance that the probability of occurrence of an extreme 2014-

magnitude drought event was at least doubled under the influence of human

activities compared to natural variability. This impact is most significant over

the San Joaquin Drainage basin with a 50% and 75% likelihood that the re-

turn period is more than 3.5 and 1.5 times larger, respectively, because of

human activities
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Keypoints:

• Human activities have increased the occurrence and intensity of hydro-

logical drought in California, especially in the Central Valley

• This study underscores the need to take human water management into

account for hydrological drought analysis

• Human activities have doubled the likelihood of the severe 2014 drought

event in California
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1. Introduction

California has endured severe drought since winter 2011 [Seager et al., 2015]. This per-

sistent drought has caused $2.2 billion in statewide losses in 2014 [Howitt et al., 2014]

and piqued wide public interest among the media, scientific communities, policy makers

and stakeholders. This is not only due to the reduced productivity of agriculture (with

crop revenue loss $810 million), but also due to the lack of water availability for irriga-

tion and hydropower, and the depletion of groundwater storage (with additional pumping

cost of $454 million), which has impacted food security [Howitt et al., 2014] and caused

land subsidence [Amos et al., 2014; Farr et al., 2015]. Furthermore, on-going urban water

restrictions have been made either mandatory or voluntary [Nagourney , 2015; Mann and

Gleick , 2015]. This long-lasting, multiyear drought has created extremely low soil mois-

ture conditions, further increasing the risk of drought induced natural hazards, including

landslides, flash floods and mid-winter wildfires [Vardon, 2015; Yoon et al., 2015].

California has a typical Mediterranean climate with hot dry summers and mild wet

winters. Most of its precipitation falls during the winter time (November to March). The

long-term record indicates that 2014 is the third driest year in history and 2012-2014 is the

driest consecutive three-year period [Mann and Gleick , 2015]. Associated with this dry

condition are the extremely high temperatures, with 2014 being the hottest year and 2012-

2014 being the hottest three years in history [Diffenbaugh et al., 2015; Mann and Gleick ,

2015]. Other significant droughts occurred during the periods 1929-1934, 1976-1977 and

1987-1992 [Cooley et al., 2015].
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Previous studies have primarily focused on meteorological drought (deficit in precipi-

tation, Diffenbaugh et al. [2015]; Mann and Gleick [2015]; Mao et al. [2015]; Kam and

Sheffield [2016]), agricultural drought (deficit in soil moisture, Griffin and Anchukaitis

[2014]; Williams et al. [2015]; Cook et al. [2015]) and how the recent severe drought has

impacted water resources such as snowpack conditions [Belmecheri et al., 2016; Mar-

gulis et al., 2016]. There has been a wide debate on the causes of the current California

drought. Some studies demonstrate that there is no clear evidence to discern the link

between the drought and storm tracks [Funk et al., 2014; Wang and Schubert , 2014; Sea-

ger et al., 2015]. Others hypothesize that climate change has strengthened and changed

atmospheric circulation patterns and therefore will increase the frequency and severity of

the future drought conditions [Swain et al., 2014]. Swain et al. [2014] pointed out the

unusual positive geopotential height (termed as “Ridiculously Resilient Ridge”) over the

northeastern Pacific Ocean shifted the position of the jet stream to the north and there-

fore reduced storm activity, which brought less precipitation to California and increased

precipitation to the Pacific Northwest. Diffenbaugh et al. [2015] concluded that anthro-

pogenic effects have already increased the risk of unprecedented drought in California

through their analysis of the joint probability of temperature and precipitation anoma-

lies. Other studies have focused on the teleconnection between precipitation and climate

phases, including ENSO [Cayan et al., 1999; Haston and Michaelsen, 1994; Mo and Hig-

gins , 1998; Woolhiser et al., 1993], PDO [Cayan et al., 1998; Fierro, 2014; McAfee, 2014]

and Madden-Julian oscillation [Jones , 2000].

However, no studies have investigated the direct influence of human water management

on long-term changes in the frequency and intensity of hydrological drought (lack of water
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in the hydrologic system) in California. There is still much to understand about how

human activities (e.g., water use, reservoir operations) intensify or mitigate hydrological

drought in California [AghaKouchak et al., 2015] and elsewhere. Therefore, the overarching

scientific questions in this study are: (1) what are the effects of human water use on

California drought?, (2) which regions within California are most heavily affected by

human water use?, and (3) how does the human water management alter hydrological

drought severity and duration in California?

This paper is organized as: Section 2 briefly introduces the study area, hydrological

model and the experimental design. This section also presents a risk assessment framework

to quantify the probability of occurrence for the 2014-magnitude drought event. Results

are given in Section 3. Section 4 summarizes the main findings and points out limitations

and further improvements. Methods used to define drought, and to calculate drought

characteristics (duration and deficit) are presented as supporting information.

2. Study Area, Model and Methods

2.1. Study Area

As the third largest state of the U.S., California has a variety of climate types and there-

fore can be further classified into seven climate divisions (CDs, Figure 1A). A strong pre-

cipitation gradient exists, with higher annual precipitation in Northern California (CD1,

CD2 and CD3) and lower precipitation in Southern California (CD6 and CD7). Coastal

and southern parts of California (CD1 and CD4) have a Mediterranean climate with dry

summers and wet winters. Although CD5 (termed as San Joaquin Drainage) is classified

as semi-arid desert, most of the state’s agriculture still grows in this region making the

Central Valley one of the most productive agricultural regions in the U.S., with benefits
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from statewide water transfer projects, including the Central Valley Project (CVP) and

State Water Project (SWP). Large dams associated with these two projects also provide

flood control during the spring snowmelt season and water supply during the dry sum-

mer and autumn. It is therefore necessary to investigate the different characteristics of

these 7 CDs as they have very different climate types, and distinctive water resources

management activities.

2.2. Model Description

The macro-scale hydrological and water resources model PCR-GLOBWB is utilized for

the simulation of the terrestrial water cycle over the period 1979-2014. PCR-GLOBWB

runs at a 0.5◦ spatial resolution at a daily temporal resolution [van Beek et al., 2011; Wada

et al., 2014]. The model was forced with the WFDEI meteorological dataset [Weedon

et al., 2014]. Reference evapotranspiration is calculated based on the Penman-Monteith

equation [Allen et al., 1998]. In PCR-GLOBWB, runoff (direct runoff and interflow) and

baseflow are routed using the kinematic wave approximation of the Saint-Venant equation

[Chow et al., 1988]. Reservoir operation is considered as four types (water supply, flood

control, hydropower generation and others) based on the reservoir data from the GLWD

(Global Lakes and Wetlands Database, Lehner and Döll [2004]). Reservoir release is

dynamically linked with the routing scheme to meet the local and downstream water

demand. Irrigation water demand is estimated based primarily on historical irrigated

areas, crop calendar, meteorological conditions, and livestock water demand is based on

livestock densities and their drinking water requirements (livestock feed has been included

in irrigation if not rain-fed agriculture). To better account for the response of irrigation

to model states/fluxes, irrigation water supply is dynamically updated at the daily time
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step based on the balance and deficit of surface water (for rice) and soil water (for non-

rice). Groundwater abstraction is estimated based on the country reported data from

the ICGRAC (International Groundwater Resources Assessment Centre) and downscaled

with total water demand and surface water availability. Major water transfer projects

in California have not been included in the model simulation due to the unavailable

conveyance capacity data and the complex operational and regulatory rules. More details

about the model structure and model configuration of human water use can be found in

Wada et al. [2014] and Wada et al. [2016a].

2.3. Experiments Design

To investigate how human water use affects drought characteristics, two scenarios are

simulated. The first scenario (natural experiment) is configured without any human water

management, while the second scenario (human experiment) is conducted taking into

account water resources management activities (except water transfers). Through the

comparison of these two scenarios, we quantify the relative attribution of human water

use in the drought assessment. We focus on hydrological drought, which is usually defined

based on negative anomalies of surface and subsurface discharge [Sheffield and Wood ,

2011; Van Loon et al., 2016]. The commonly used variable threshold level (VTL) method

[Hisdal and Tallaksen, 2003; Fleig et al., 2006; Wada et al., 2013; Wanders et al., 2015;

Wanders and Wada, 2015] is applied on the simulated daily discharge (Q) to derive

drought duration (how long the drought lasts) and deficit volume (how severe the drought

is) using Q90 (monthly 90-percentile flow) as the threshold. In order to quantify the

relative contribution of human water use, Q90 calculated from the natural scenario over

1979-2014 is used to calculate drought characteristics (duration and deficit volume) for
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the human scenario. The methodology for calculation of these drought characteristics can

be found in the supplementary material.

2.4. Return Level Analysis for Drought Risk Assessment

To quantify the probability of occurrence or return level for a 2014-magnitude drought

event, Extreme Value Theory (EVT) is applied [Swain et al., 2014; Singh et al., 2014;

Mastrandrea et al., 2011]. The drought magnitude is characterized based on the mean

January-December 2014 standardized drought deficit volume (StDef, see Equation (6) in

the supporting information for details) for the entire state and for each individual CD.

A parametric distribution is fitted to formulate the relationship between StDef and the

return period (Tr) over the period 1979-2014 for the two scenarios (natural and human).

Parameters of the distribution are estimated using the maximum log-likelihood estima-

tor or L-moments [Hosking , 1990]. Given only 36 years of record and the rarity of the

2014 drought event, standard bootstrapping techniques are applied 1000 times to fit the

distribution and estimate confidence intervals for the risk assessment.

3. Results

3.1. Comparison of Drought Severity between Observations and Model

Simulation

Figure 1 compares the basin-averaged observed and simulated drought deficit volume

under natural variability and influenced by human activities (see Figure S1-S5 for more

validation results in the supporting information). Results from small river basins are vari-

able compared to larger river basins and the addition of water management and consump-

tion does not improve the simulation over these basins. Improvement is more apparent

over larger river basins, where human activities and larger reservoirs play a more impor-
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tant role in intensifying/mitigating drought conditions (overestimating/underestimating

drought deficit volume). Overall, the simulated drought deficit volumes considering hu-

man activities yields smaller deviations and higher R2 value (0.68, p-value < 0.0001)

compared to natural conditions (R2 = 0.58, p-value < 0.0001), but the improvement of

R2 is not statistically significant at the basin scale according to the analysis of variance

(ANOVA), which is probably due to the limited number of data points. We therefore re-

peated the analysis for each drought event (Figure S6) instead of the basin average (Figure

1) to increase the number of data samples. Tests of line coincidence (F -test=29.23, p-

value < 0.0001) and parallelism (F -test=38.11, p-value < 0.0001) both indicate that the

improvement of R2 is statistically significant. This is consistent with earlier work by

Wada et al. [2013], which compared the observed and simulated drought deficit volume

based on a large number of drought events over 23 large river basins across the globe that

are affected by human water consumption. They found that the improvement of R2 is

statistically significant in the human scenario, which demonstrates that for an accurate

representation of the regional terrestrial water cycle, physical processes related to human

activities should be included in hydrological models.

3.2. Time Series of Area in Drought and Drought Deficit

The total area in drought (AID) and StDef have been calculated based on Q90 for

both scenarios over the whole California (see supporting information for details). The

temporal evolution of these two drought characteristics is given in Figure 2A and 2B

and notable drought events can be detected. For example, two periods, 1987-1992 and

2011-2014, have large values of AID as well as high StDef, indicating severe multi-year

droughts. Even though the 1987-1992 drought had a longer duration (5 years) compared
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to the 2011-2014 drought and the peak values of the drought characteristics (AID and

StDef) are comparable to the recent drought, drought intensity quickly decreases after

1991. While in the 2011-2014 drought event, a long period of high StDef and AID values

is found, indicating that the recent drought had a larger spatial extent and a prolonged

high impact on the hydrological system. According to the simulation, more than 50% of

the total area of California was under drought since late 2012. The temporal evolution

of AID under natural conditions (climate variability only) and under human impacts

demonstrates that reservoir regulation could reduce the drought area by about 10-20%

for normal years, which helped to reduce the impact of short duration drought. Overall, a

reduced drought impact is found as a result of reservoir buffering. In terms of StDef, there

is no significant difference between these two scenarios for normal years. However, at the

beginning of severe drought years (e.g., 1987-1992), human water consumption increases

the relative drought intensity. On the other hand, we see a reduced impact as soon as

drought recovery starts as a result of reservoir storage that can store excess water and

store it for later use in a drier period. Similar findings are found for the recent drought,

where the standardized drought deficit volume under human impacts is smaller than that

under natural variability.

3.3. Relative Contribution of Human Water Management to Drought

Duration and Intensity (During 2014 Drought)

Figure 3 shows the spatial pattern of the annual mean drought duration days and deficit

for 2014 under the two scenarios, as well as the relative change in drought severity due to

human impacts. For drought duration, the overall spatial distribution and the magnitude

look very similar under natural variability and with human water consumption. Most
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parts of California had drought duration greater than 25 days (per month) during this

severe drought year. However, the average duration in the eastern part of CD7 is less than

15 days. This is due to the fact that this region has a semi-arid climate and therefore the

threshold (Q90) calculated from the climatological streamflow to define drought events

is also low. Although the spatial pattern looks similar between the two scenarios, there

is clear evidence of human impacts on drought duration as indicated from the spatial

distribution of the relative increase/decrease. With human impacts, drought duration

increases by ∼50% for most parts of CD2 and CD3. This is primarily caused by irrigation

water consumption, as these two regions have large irrigated areas. The lengthening of

drought is also found in CD1, while its magnitude is much milder due to the reduced

irrigation water demand.

Similar to the results for drought duration, the intensification of drought deficit (lower

panel of Figure 3) due to human impacts is obvious in the Central Valley (CD2 and

CD5), but the magnitude of the relative increase is much higher (50%-100%) compared

to that for drought duration. Although the natural variability is the main driver of the

recent drought in this region, human water consumption (water abstraction for irrigation)

made the situation much worse by reducing local and downstream water availability. Over

the regions where irrigation does not dominate water consumption (CD6 and CD7) and

water demand is small, human impacts alleviated the hydrological drought by ∼50%. The

decreased streamflow due to the lack of precipitation could be buffered by the release of

reservoirs especially during low flow periods, which are supplies from snowpack.
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3.4. Return Level Analysis

In this section, the EVT is applied for the annual averaged StDef to estimate the return

level of the drought. The probability of a 2014 magnitude event and the associated

uncertainty in the likelihood estimation are quantified. Five parametric distributions

(LogNormal, GEV using L-moments, Pareto, Gamma and Weibull) are tested for the

most suitable fit of the statistical distribution. Figure 4A and 4B (as well as Table S2)

show that the LogNormal distribution best fits the data for both scenarios (only natural

variability and with human impacts). In addition, the LogNormal distribution has the

smallest root mean square error between the fitted and the empirical distributions among

the five types (see Table S2). Therefore, this distribution is utilized for the return level

analysis.

It is clear to find that 2014 has the largest return period for both scenarios followed by

the drought events occurred in the 1990s (Figure 4A and 4B). The 95% confidence interval

of the return period estimated from the bootstrapping method based on the LogNormal

distribution indicates that the 2014 drought is between about a 1-in-3 year and 1-in-71

year event under the natural scenario. However, the human scenario has a relatively

larger 95% confidence interval of 3-295 years. To better quantify how human activities

change the drought risk, we further calculated the likelihood ratio for the return period

(TNatural/THuman). As shown in Figure 4C, for the whole of California, there is a 50%

likelihood that the probability of the 2014 drought event has at least doubled with human

impacts. All the 7 CDs demonstrate that there is >50% likelihood that the 2014 drought

event has higher probability under the influence of human water consumption. The most

significant impact is found in CD5 (San Joaquin river basin), where there is a 50% chance
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that the return period is more than 3.5 times larger with human influence than that under

natural variability alone. There is even higher confidence (>75%) that the return period

becomes 1.5 times larger. This further demonstrates the role of irrigation in the alteration

of the hydrological drought. Compared to CD5, which has the largest uncertainty in the

estimation of the return period ratio, CD7 (Southeast Desert Basin) has the smallest

uncertainty, with the least difference between the natural variability and anthropogenic

impacts. These results are consistent with the spatial distribution of the relative increase

of the drought characteristics as shown in Figure 3.

4. Discussion and Conclusions

Few studies have tried to quantify the direct impact of human activities on the recent

California drought, and hydrological drought in general. Most studies have focused on

quantifying the likelihood that climate change has impacted meteorological droughts, ei-

ther through changes in large-scale circulation and teleconnections [e.g., Shukla et al.,

2015a; Hoell et al., 2016; Kam and Sheffield , 2016], or local scale thermodynamic forcing

and feedbacks via temperature [e.g., Seager et al., 2015]. A few studies have looked at

the full hydrological cycle based on long-term hydrological simulations [e.g., Mao et al.,

2015; Shukla et al., 2015b] but have not examined how human water management has

contributed to enhancing or mitigating drought, mainly due to the lack of human repre-

sentation in modeling frameworks. We show that human activities play an increasingly

important role in hydrological drought in California, altering the natural occurrence of

hydrological drought as driven by precipitation anomalies, through local scale water use

and management that influences the propagation of drought through the hydrological

cycle and into changes in streamflow.
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Uncertainties in this study are caused by the relatively short period of the model sim-

ulation for the risk analysis, but also suffer from the uncertainty in representing human

management effects [Wada et al., 2016b]. For instance, some human water management

modules in the current modeling framework are still configured in a simplistic form or not

explicitly considered, such as regulation rules for water use policy, energy production and

information on aqueducts or water diversions. This may affect the results in the Central

Valley in particular, where large uncertainties may exist in the simulated water availabil-

ity. Improved estimates of the human impacts could be obtained by a higher resolution

representation of reservoir operation, groundwater pumping, irrigation activities as well

as more detailed river networks, and particularly specific accounting for water transfers

through artificial diversion networks, which in reality can contribute to the supply of irri-

gation water requirement and may alleviate drought conditions to some extent, especially

in the Central Valley. However, we believe that this work provides an appropriate first

estimate of the human impact on the 2014 drought. Future research should focus on

extending the simulation to 2015/2016 to examine the impact of the 2016 strong El Niño

winter [Wanders et al., 2016]. Future work could also focus on a more detailed study

of the relative attribution of different types of human activities (groundwater pumping,

reservoir operation and irrigation) on changes in drought risk.

This study demonstrates that without considering human water use, the impact of hy-

drological droughts in California is underestimated. This is especially the case in regions

like the Central Valley (Sacramento Drainage and San Joaquin Drainage), where irriga-

tion is the main driver of water consumption. We find that elsewhere in the state water

resources management through reservoir operation reduces drought duration and severity.
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Our extreme value analysis implies that there is high confidence that human water man-

agement significantly increases hydrological drought risk over the Central Valley or other

areas with a high irrigation water demand. Although this study focuses on the historical

perspective, our findings have important policy implications for drought mitigation and

management in the context of future climate change. Given that human activities have

already worsened the recent drought (as discussed above) and the uncertainty of drought

recovery in the near term, water infrastructure in California may face a greater chal-

lenge for drought adaptation due to increased water demand [Wada et al., 2013], reduced

groundwater storage [Famiglietti , 2014] and declining snowpack [Belmecheri et al., 2016;

Margulis et al., 2016].
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CD1: North Coast Drainage 
CD2: Sacramento Drainage 
CD3: Northeast Interior Basins 
CD4: Central Coast Drainage 
CD5: San Joaquin Drainage 
CD6: South Coast Drainage 
CD7: Southeast Desert Basin
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Figure 1. (A) Climatic divisions in California and the USGS stations used for validation and

comparison. Size of the dots indicates the relative size of the observed drainage area. (B, C)

Comparison between the observed and simulated basin-averaged drought event deficit volume

(logarithmic scale) calculated respectively from 22 USGS stations located in major river basins

and the collocated grid cells extracted from PCR-GLOBWB under (B) natural variability and

(C) including human activities. The points are scaled based on the actual drainage area. See

Figure S7 in the supporting information for the correction of the simulated drainage area.
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Figure 2. Time series of (A) AID and (B) StDef over California from 1979 to 2014 under

natural variability (green line) and with human activities (red line). The horizontal dashed line in

(A) indicates that 50% of total area in California is under drought.

197

198

199

CD7 is less than 15 days. This is due to the fact that this region has a semi-arid climate208

and therefore the threshold (Q90) calculated from the climatological streamflow to de-209

fine drought events is also low. Although the spatial pattern looks similar between the210

two scenarios, there is clear evidence of human impacts on drought duration as indicated211

from the spatial distribution of the relative increase/decrease. With human impacts, drought212

duration increases by ∼50% for most parts of CD2 and CD3. This is primarily caused213

by irrigation water consumption, as these two regions have large irrigated areas. The length-214

ening of drought is also found in CD1, while its magnitude is much milder due to the215

reduced irrigation water demand.216

Similar to the results for drought duration, the intensification of drought deficit (lower217

panel of Figure 3) due to human impacts is obvious in the Central Valley (CD2 and CD5),218

–9–

Figure 2. Time series of (A) AID and (B) StDef over California from 1979 to 2014 under

natural variability (green line), with human activities (red line) and their difference (black line,

Human minus Natural). The horizontal dashed line in (A) indicates that 50% of total area in

California is under drought.
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Figure 3. Comparison of drought duration (upper panel, unit: days) and standardized

drought deficit volume (lower panel) over California in 2014 under natural variability (left) and

with human activities (middle) and the relative contribution (right) due to human activities.
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Figure 4. Return level curves fitted by five parametric distributions under (A) natural

variability and (B) with human impacts for the entire state over the period of 1979-2014. (C) Box

plot showing the distribution of the return period ratio (TNatural/THuman) using the bootstrapping

method for the entire state and each individual CD. The rectangle spans the 25th and 75th

percentile and the vertical segment inside the rectangle shows the median. Values larger than

1.5×interquartile above the 75th percentile are considered as outliers. Colors of the box plot are

corresponding to the seven climatic divisions as shown in Figure 1A. Return period for the 2014

magnitude drought event is calculated based on the LogNormal distribution.
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