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Abstract. Weight elicitation methods in multi-criteria decision analysis
(MCDA) are often cognitively demanding, require too much precision and too
much time and effort. Some of the issues may be remedied by connecting
elicitation methods to an inference engine facilitating a quick and easy method
for decision-makers to use weaker input statements, yet being able to utilize
these statements in a method for decision evaluation. One important class of
such methods ranks the criteria and converts the resulting ranking into numerical
so called surrogate weights. We analyse the relevance of these methods and
discuss how robust they are as candidates for modelling decision-makers and
analysing multi-criteria decision problems under the perspectives of several
stakeholders.

Keywords: Multi-criteria decision analysis � Criteria weights � Criteria
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1 Introduction

Regardless of the methods used for decision making, there exists a real problem in that
numerically precise information is seldom available, and when it comes to providing
reasonable weights in multi-criteria decision problems, there are severe difficulties due
to decision-makers not seeming to have neither precise information at hand nor the
required discrimination capacity. The same problem appears in group decision settings,
where there is a desire to rank or in other ways compare the views or values of different
participants or stakeholders and there are several approaches to this. For instance,
Fig. 1 shows an implementation of the multi-criteria multi-stakeholder approach for
using the CAR method from [4], based on rankings and imprecise information. It is
developed for group decisions for infrastructure policy making in Swedish
municipalities.

To somewhat circumvent these problems, some approaches utilise imprecise
importance information to determine criteria weights and sometimes values of
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alternatives.1 Such methods were mostly assessed using case studies until [2] intro-
duced a process utilising systematic simulations from criteria orderings. The basic idea
is to generate surrogate weights from a criteria ordering and investigate how well the
results of using these surrogates match the ordering provided by the decision-maker,
while trying to determine which the ‘true’ weights of the decision-makers are.

The methodology is of course vulnerable since the validation result is heavily
dependent on the model we have of the decision-maker’s mind set reflected in the
distribution used for generating the weight vectors. To use these surrogate numbers,
whichever way they are produced, they need to fulfil some robustness ideas, since we
cannot for certain claim that we know exactly what decision-makers have in mind when
stating such an ordering. This article discusses these robustness issues when translating
orderings into surrogate numbers.

2 Rank Ordering Methods

Common for most elicitation methods is the assumption that all elicitation is made
relative to a weight distribution held by the decision-maker.2 One initial idea is to just
skip the criteria elicitation and assign equal weights to every criterion. However, the
information loss is then very large and it is most often worthwhile to at least rank the
criteria, since rankings are (often) easier to provide than precise numbers. An ordering
of the criteria is then achieved which can be handled in various ways. One such is to
introduce so called surrogate weights, which are derived from the supposed ranking.

Fig. 1. The Group Decision tool Decision Wizard

1 In this paper the full features of the large variety of elicitation techniques will not be discussed. For
more exhaustive discussion refer to [6].

2 For various cognitive and methodological aspects of imprecision in decision making, see e.g., [3] and
others by the same authors.

2 M. Danielson and L. Ekenberg

A
u

th
o

r 
P

ro
o

f



This technique is utilised in [2] and many others. In these classes of methods, the
resulting ranking is converted into numerical weights by surrogate functions. Needless
to say, for practical decision making, surrogate weights can seem as a peculiar way of
motivating a method and the results of these kinds of methods should always be
interpreted in the light of this. Nevertheless, some kind of absolute validation in this
field is impossible and the surrogate methods are quite widely used and can be consider
as some of several ways of trying to motivate the various generation methods sug-
gested. The crucial issue then rather becomes how to set surrogate weights while losing
as little information as possible and preserving the “correctness” when assigning the
weights. In addition to surrogate weights (such as those discussed above), dominance
procedures and classical methods have been discussed in various contexts. Dominance
procedures are often versions of outranking, based on pairwise dominance. The clas-
sical methods consist of the well-known maximax, maximin, and minimax regret
decision rules. Categories of weights other than surrogate weights are not considered
any further in this paper because the discussed surrogate methods, as will be shown, are
very efficient.

3 The RS, RR and ROC Methods

In the literature, various surrogate weight methods have been suggested. [8] discusses
rank sum (RS) weights and rank reciprocal (RR) weights, which are alternatives to the
quite popular ROC (rank order centroid) from [1]. The rank sum is based on the idea
that the rank order should be reflected directly in the weight. Assume a simplex Sw
generated by w1 > w2 > … > wN, Rwi = 1 and 0 � wi. We will, unless otherwise
stated, henceforth presume that decision problems are modelled as simplexes Sw.
Assign an ordinal number to each item ranked, starting with the highest ranked item as
number 1. Denote the ranking number i among N items to rank. Thus, a larger weight is
assigned to lower ranking numbers.

wRS
i ¼ Nþ 1�i

PN
j¼1 Nþ 1�jð Þ ð1Þ

Another idea discussed in [8] is rank reciprocal (RR) weights. They have a similar
origin as the RS weights, but are based on the reciprocals (inverted numbers) of the
rank order for each item ranked. These are obtained by assigning an ordinal number to
each item ranked, starting with the highest ranked item as number 1. Thus, a larger
weight is again assigned to lower ranking numbers.

wRR
i ¼ 1=i

PN
j¼1

1
j

; where i and j is as above: ð2Þ

ROC weights are the centroid components of the simplex Sw. That is, ROC is a
function based on the average of the corners in the polytope defined by the simplex
Sw = w1 > w2 > … > wN, Rwi = 1, and 0 � wi.
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wROC
i ¼ 1=N

XN

j¼i

1
j

ð3Þ

In this way, it resembles RR more than RS but is, particularly for lower dimensions,
more extreme than both in the sense of weight distribution, especially the largest and
smallest weights (Table 1).

Of the three methods above, ROC has often been considered to be a quite rea-
sonable candidate, despite that generated weights are sometimes perceived to be too
sharp or discriminative, meaning that too large emphasis is put on the larger weights,
i.e. on those criteria ranked highest up in the ranking order (Table 2).

When comparing the centroid weights of the ROC, RS, and RR, we can see that
there are significant differences. To begin with, ROC is compared to RR in Table 4. RR
shows a rather large similarity to ROC in terms of generating function. While it is true

Table 1. The RS weights up to ten dimensions

RS i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

N = 1 1.0000
N = 2 0.6667 0.3333
N = 3 0.5000 0.3333 0.1667
N = 4 0.4000 0.3000 0.2000 0.1000
N = 5 0.3333 0.2667 0.2000 0.1333 0.0667
N = 6 0.2857 0.2381 0.1905 0.1429 0.0952 0.0476
N = 7 0.2500 0.2143 0.1786 0.1429 0.1071 0.0714 0.0357
N = 8 0.2222 0.1944 0.1667 0.1389 0.1111 0.0833 0.0556 0.0278
N = 9 0.2000 0.1778 0.1556 0.1333 0.1111 0.0889 0.0667 0.0444 0.0222
N = 10 0.1818 0.1636 0.1455 0.1273 0.1091 0.0909 0.0727 0.0545 0.0364 0.0182

Table 2. The RR weights up to ten dimensions

RR i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

N = 1 1.0000
N = 2 0.6667 0.3333
N = 3 0.5455 0.2727 0.1818
N = 4 0.4800 0.2400 0.1600 0.1200
N = 5 0.4380 0.2190 0.1460 0.1095 0.0876
N = 6 0.4082 0.2041 0.1361 0.1020 0.0816 0.0680
N = 7 0.3857 0.1928 0.1286 0.0964 0.0771 0.0643 0.0551
N = 8 0.3679 0.1840 0.1226 0.0920 0.0736 0.0613 0.0526 0.0460
N = 9 0.3535 0.1767 0.1178 0.0884 0.0707 0.0589 0.0505 0.0442 0.0393
N = 10 0.3414 0.1707 0.1138 0.0854 0.0683 0.0569 0.0488 0.0427 0.0379 0.0341
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that ROC puts larger emphasis on the higher ranked criteria than the other methods for
lower N, RR quickly takes over as the most heavy emphasizer of the highest ranked
criterion from N = 6 upwards (Table 3).

RR also emphasizes the lowest ranked criteria, making it the weighing method that
puts the most emphasis on the end-points of the ranking. The differences in the table
(and in some of the subsequent ones) might not appear as too dramatic, but better
precision of a method, even if it by some smaller percentage, is a way of fine tuning
these originally quite rough methods based of a kind of statistical validity. Compar-
ing ROC to RS in Table 5, it is evident that ROC emphasizes the higher ranked criteria
at the expense of the middle and lower ranked ones. For the middle ranked criteria, this
is the opposite of the RR method when compared to ROC.

Table 3. the ROC weights up to 10 dimensions

ROC i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

N = 1 1.0000
N = 2 0.7500 0.2500
N = 3 0.6111 0.2778 0.1111
N = 4 0.5208 0.2708 0.1458 0.0625
N = 5 0.4567 0.2567 0.1567 0.0900 0.0400
N = 6 0.4083 0.2417 0.1583 0.1028 0.0611 0.0278
N = 7 0.3704 0.2276 0.1561 0.1085 0.0728 0.0442 0.0204
N = 8 0.3397 0.2147 0.1522 0.1106 0.0793 0.0543 0.0335 0.0156
N = 9 0.3143 0.2032 0.1477 0.1106 0.0828 0.0606 0.0421 0.0262 0.0123
N = 10 0.2929 0.1929 0.1429 0.1096 0.0846 0.0646 0.0479 0.0336 0.0211 0.0100

Table 4. ROC compared to RR

ROC−RR i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

N = 1 0.0000 

N = 2 0.0833 –0.0833 

N = 3 0.0657 0.0051 –0.0707 

N = 4 0.0408 0.0308 –0.0142 –0.0575 

N = 5 0.0187 0.0377 0.0107 –0.0195 –0.0476 

N = 6 0.0002 0.0376 0.0223 0.0007 –0.0205 –0.0402 

N = 7 –0.0153 0.0347 0.0276 0.0121 –0.0043 –0.0201 –0.0347 

N = 8 –0.0282 0.0308 0.0296 0.0186 0.0057 –0.0070 –0.0191 –0.0304 

N = 9 –0.0392 0.0265 0.0298 0.0223 0.0122 0.0017 –0.0084 –0.0180 –0.0269 

N = 10 –0.0485 0.0222 0.0291 0.0242 0.0163 0.0077 –0.0009 –0.0091 –0.0168 –0.0241 
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4 The SR Method

Not surprisingly, ROC, RS and RR perform well only for specific assumptions on
decision-maker assignments of criteria weight preferences and since these weight
models are in a sense opposites, it is interesting to see how extreme behaviours can be
reduced. A natural candidate for this could be a linear combination of RS and RR.
Since we have no reasons to expect anything else, we can, e.g., balance them equally in
an additive combination of the Sum and the Reciprocal weight function that we call the
SR weight method.

wSR
i ¼ 1=iþ Nþ 1�i

NPN
j¼1 1=jþ Nþ 1�j

N

� � ; i and j as above: ð4Þ

Of course, other combinations of these would be thinkable, but the important
observation is achieved by comparing SR with the others. The actual mix between the
methods would affect the result according to its proportions. The details there are not
crucial for our main point that all these results are a sensitive product of the underlying
assumptions regarding the mind-settings of decision-makers. If this nevertheless would
be important, the reasonably proportions must be elicited and fine-tuned with respect to
the individual in question. A reasonable meaning of such a procedure escapes us and is
in any case beyond the scope of this article, so the tables below show the equally
proportional SR weights and its behaviour in relation to ROC and RS. Table 6 shows
the weights wSR

i for different numbers of criteria up to N = 10.

Table 5. ROC compared to RS

ROC−RS i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

N = 1 0.0000 

N = 2 0.0833 –0.0833 

N = 3 0.1111 –0.0556 –0.0556 

N = 4 0.1208 –0.0292 –0.0542 –0.0375 

N = 5 0.1233 –0.0100 –0.0433 –0.0433 –0.0267 

N = 6 0.1226 0.0036 –0.0321 –0.0401 –0.0341 –0.0198 

N = 7 0.1204 0.0133 –0.0224 –0.0344 –0.0344 –0.0272 –0.0153 

N = 8 0.1175 0.0203 –0.0144 –0.0283 –0.0318 –0.0290 –0.0221 –0.0122 

N = 9 0.1143 0.0254 –0.0079 –0.0227 –0.0283 –0.0283 –0.0246 –0.0182 –0.0099 

N = 10 0.1111 0.0293 –0.0026 –0.0177 –0.0245 –0.0263 –0.0248 –0.0209 –0.0153 –0.0082 
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Table 7 demonstrates how the weights for this SR combination compare to ROC
weights (RR is similar to ROC in this respect). Similarly, Table 8 demonstrates how
the weights for this SR combination compare to RS weights. From Tables 7 and 8 we
can, as expected, see that SR does indeed constitute a compromise that tries to com-
pensate for shortcomings in the other methods but does not deviate too much from any
of them.

Table 6. The weights for SR

ROC−RS i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

N = 1 0.0000 

N = 2 0.0833 –0.0833 

N = 3 0.1111 –0.0556 –0.0556 

N = 4 0.1208 –0.0292 –0.0542 –0.0375 

N = 5 0.1233 –0.0100 –0.0433 –0.0433 –0.0267 

N = 6 0.1226 0.0036 –0.0321 –0.0401 –0.0341 –0.0198 

N = 7 0.1204 0.0133 –0.0224 –0.0344 –0.0344 –0.0272 –0.0153 

N = 8 0.1175 0.0203 –0.0144 –0.0283 –0.0318 –0.0290 –0.0221 –0.0122 

N = 9 0.1143 0.0254 –0.0079 –0.0227 –0.0283 –0.0283 –0.0246 –0.0182 –0.0099 

N = 10 0.1111 0.0293 –0.0026 –0.0177 –0.0245 –0.0263 –0.0248 –0.0209 –0.0153 –0.0082 

Table 7. SR compared to ROC weights

SR−ROC i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

N = 1 0.0000

N = 2 –0.0833 0.0833

N = 3 –0.0894 0.0266 0.0628

N = 4 –0.0845 0.0019 0.0360 0.0466

N = 5 –0.0781 –0.0106 0.0200 0.0330 0.0357

N = 6 –0.0722 –0.0176 0.0097 0.0233 0.0285 0.0282

N = 7 –0.0670 –0.0217 0.0028 0.0161 0.0226 0.0244 0.0229

N = 8 –0.0626 –0.0242 –0.0021 0.0107 0.0177 0.0207 0.0209 0.0190

N = 9 –0.0589 –0.0258 –0.0057 0.0065 0.0137 0.0174 0.0187 0.0181 0.0160

N = 10 –0.0556 –0.0268 –0.0084 0.0031 0.0103 0.0145 0.0165 0.0168 0.0158 0.0137
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5 The EW, SIMOS and RE Methods

In the 1970s, the quite naïve idea of equal weights (EW) gained some recognition. The
hope was that, given that elicitation is a hard problem, equal weights would perform as
well as any other set of weights. As a generalization to RS as previously discussed, a
rank exponent weight method was introduced by [8]. In the RS formula, introduce the
exponent z to yield the rank exponent (RE) weights as

wRE
i ¼ Nþ 1�ið Þz

PN
j¼1 N þ 1�jð Þz : ð5Þ

Thus, z mediates between equal weights and the RS weights and for z = 0, this
becomes equal weights and for z = 1 it becomes RS weights. Thus, for 0 < z < 1 it is
the exponential combination of equal and RS weights. Beyond z = 1 it becomes a more
extreme weighting scheme. This makes the z parameter of RE a bit hard to estimate and
potentially less suitable in real-life decisions.

Another type of method is the SIMOS method, which has gained some interest in
these contexts. It was proposed in [7] with the purpose of providing decision makers
with a simple method, not requiring any former familiarity with decision analytical
techniques and can easily express criteria hierarchies introducing some cardinality as
well, if needed. It has been applied in a multitude of contexts and seems to have been
comparatively well received by real-life decision-makers. The SIMOS method has,
however, been criticised for not being robust when the preferences are changed and it
has further some contra-intuitive features. [5] suggested a revised version, but intro-
duces the severely complicating factor to correctly estimate a reliable and robust
proportional factor z between the most and least important criteria. In this study, the

Table 8. SR compared to RS weights

SR−RS i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

N = 1 0.0000

N = 2 0.0000 0.0000

N = 3 0.0217 –0.0290 0.0072

N = 4 0.0364 –0.0273 –0.0182 0.0091

N = 5 0.0452 –0.0206 –0.0233 –0.0103 0.0090

N = 6 0.0504 –0.0140 –0.0224 –0.0168 –0.0056 0.0084

N = 7 0.0534 –0.0084 –0.0197 –0.0183 –0.0118 –0.0028 0.0076

N = 8 0.0549 –0.0039 –0.0166 –0.0177 –0.0141 –0.0083 –0.0011 0.0069

N = 9 0.0555 –0.0004 –0.0136 –0.0162 –0.0146 –0.0108 –0.0058 –0.0001 0.0062

N = 10 0.0555 0.0025 –0.0110 –0.0146 –0.0142 –0.0118 –0.0083 –0.0041 0.0005 0.0055
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Simos weights are used ordinally by not using the blank cards or equal weights. The
z factor is estimated at N + 1, with N being the number of criteria as usual.

6 Assessing Models for Surrogate Weights

Simulation studies have become a kind of de facto standard for comparing
multi-criteria weights. The assumption is that there exist a set of ‘true’ weights in the
decision-maker’s mind which are inaccessible in its pure form by any elicitation
method. The modelling assumptions regarding decision-makers’ mind-sets above are
then inherent in the generation of decision problem vectors by a random generator.
When following an N–1 DoF model, a vector is generated in which the components
sum to 100%. This simulation is based on a homogenous N-variate Dirichlet distri-
bution generator. When following an N DoF model, a vector is generated without an
initial joint restriction, only keeping components within [0%, 100%] implying N de-
grees of freedom, where these components subsequently are normalised so that their
sum is 100%. We call the N–1 DoF model type of generator an N−1-generator and the
N DoF model type an N-generator. Depending on how we model the decision-maker’s
weight assessments, the results then become very different: ROC weights in N di-
mensions coincide with the mass point for the vectors of the N−1-generator over the
polytope Sw. Similarly, RS weights are very close to the mass point of an N-generator
over a polytope. In reality, though, we cannot know whether a specific decision-maker
(or decision-makers in general) adhere more to N−1 or N DoF representations of their
knowledge. Both as individuals and as a group, they might use either or be anywhere in
between. A, in a reasonable sense, robust rank ordering mechanism must employ a
surrogate weight function that at least handles both types of conceptualisation and
anything in between.

The simulations were carried out with a varying number of criteria and alternatives.
There were four numbers of criteria N = {3, 6, 9, 12} and five numbers of alternatives
M = {3, 6, 9, 12, 15} creating a total of 20 simulation scenarios. Each scenario was
run 10 times, each time with 10,000 trials, yielding a total of 2,000,000 decision
situations generated. For this simulation, an N-variate joint Dirichlet distribution was
employed to generate the random weight vectors for the N–1 DoF simulations and a
standard round-robin normalised random weight generator for the N DoF simulations.
Unscaled value vectors were generated uniformly, and no significant differences were
observed with other value distributions.

The results of the simulations are shown in the tables below, where we show a
subset of the results with chosen pairs (N, M). There were three measures of success.3

The first is the hit ratio as in the previous studies (“winner”), the number of times the
highest evaluated alternative using a particular method coincides with the true highest
alternative. The second is the matching of the three highest ranked alternatives
(“podium”), the number of times the three highest evaluated alternatives using a

3 Kendall’s tau was also computed and it does not deviate from the other findings in the tables. Thus, it
is not shown in the tables.
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particular method all coincide with the true three highest alternatives. This means that
the internal order between these three alternatives is uninteresting. A third set generated
is the matching of all ranked alternatives (“overall”), the number of times all evaluated
alternatives using a particular method coincide with the true ranking of the alternatives.
All three sets correlated strongly with each other and the latter two are not shown in this
paper. The tables show the winner frequency for the six methods ROC, RE, RR,
SIMOS, SR, and EW utilising the simulation methods N–1 DoF, N DoF and a 50%
combination of N–1 DoF and N DoF. All hit ratios in all tables are given in per cent and
are mean values of the 10 scenario runs. The standard deviations between sets of 10
runs were around 0.2–0.3 per cent. In Table 9, using an N−1-generator, it can be seen
that ROC not surprisingly outperforms the others, when looking at the winner, but with
SR close behind. EW, likewise not surprisingly, is performing much worse than all the
others.

In Table 10 the frequencies have changed according to expectation since we
employ a model with N degrees of freedom. Now the SIMOS model behaves very
similar to RE and, as expected, outperforms the others, in particular when it comes to a
larger number of criteria and alternatives. In Table 11, the N and N−1 DoF models are
combined with equal emphasis on both. Now, we can see that in total RE and SR
perform the best.

Table 9. Using an N–1-generator, it can be seen that ROC outperforms the others

N–1 DoF ROC RE RR Simos SR EW

3 criteria 3 alternatives 90.2 88.9 89.5 88.1 89.3 72.9
3 criteria 15 alternatives 79.1 77.2 76.5 76.2 76.9 56.5
6 criteria 6 alternatives 84.8 80.6 82.7 79.6 83.1 57.5
6 criteria 12 alternatives 81.3 76.9 78.2 75.5 78.9 50.0
9 criteria 9 alternatives 83.5 77.6 79.5 76.2 81.2 50.1
12 criteria 6 alternatives 86.4 78.5 80.8 77.1 84.1 54.2
12 criteria 12 alternatives 83.4 74.2 76.8 72.5 80.2 45.7

Table 10. For N degrees of freedom, RE and Simos are top of the form

N DoF ROC RE RR Simos SR EW

3 criteria 3 alternatives 87.3 89.3 88.3 89.2 89.1 78.3
3 criteria 15 alternatives 77.9 81.3 79.1 81.4 80.6 65.6
6 criteria 6 alternatives 80.1 87.3 78.1 87.4 85.1 67.4
6 criteria 12 alternatives 76.4 84.2 74.3 84.3 82.0 60.9
9 criteria 9 alternatives 76.3 87.0 69.8 87.2 83.0 62.3
12 criteria 6 alternatives 77.5 90.0 67.8 90.2 84.6 66.4
12 criteria 12 alternatives 73.4 87.4 63.1 87.7 81.7 58.7
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Since we are looking for a surrogate model with both precision and robustness, we
turn our attention to the spread between the methods’ results under the two varying
decision-maker assumptions regarding degrees of freedom when producing weights.
Table 12 shows the spread as the absolute value of the difference between the fre-
quencies (hit ratios) under the N−1 DoF model and the N DoF model.

7 Concluding Remarks

The aim of this study has been to find reasonably robust multi-criteria weights that are
able to cover a broad set of decision situations, but at the same time have a reasonably
simple semantic regarding how they are generated. In this paper, we have considered
N = {3, 6, 9, 12, 15} and M = {3, 6, 9, 12} and to summarise the analysis, we look at
the average hit rate in per cent (“mean correct”) over all the pairs (N, M) that we have
reported in the tables above. Table 13 shows the conclusion of the performances. RE
heads the table with SR not far behind. Further in Table 13, we can see the mean square
spread between the different DoF. RE and SR are the best candidates when it comes to
the mean value, followed by Simos. However, the robustness in the sense of mean
square variation is significant. In that respect SR is clearly the most superior, rendering
it the top ranked position. Since we appreciate both precision and robustness, the final
score determining the most suitable surrogate weight method is the difference between
the mean value of the “winners” and the mean value of the squared spread.

Table 11. Winners when considering both DoF models

Combined ROC RE RR Simos SR EW

3 criteria 3 alternatives 88.8 89.1 88.9 88.7 89.2 75.6
3 criteria 15 alternatives 78.5 79.3 77.8 78.8 78.8 61.1
6 criteria 6 alternatives 82.5 84.0 80.4 83.5 84.1 62.5
6 criteria 12 alternatives 78.9 80.6 76.3 79.9 80.5 55.5
9 criteria 9 alternatives 79.9 82.3 74.7 81.7 82.1 56.2
12 criteria 6 alternatives 82.0 84.3 74.3 83.7 84.4 60.3
12 criteria 12 alternatives 78.4 80.8 70.0 80.1 81.0 52.2

Table 12. Spread as the absolute value of the difference between the frequencies (hit ratios)
under the N–1 DoF model and the N DoF model for winners

Spread ROC RE RR Simos SR EW

3 criteria 3 alternatives 2.9 0.4 1.2 1.1 0.2 5.4
3 criteria 15 alternatives 1.2 4.1 2.6 5.2 3.7 9.1
6 criteria 6 alternatives 4.7 6.7 4.6 7.8 2.0 9.9
6 criteria 12 alternatives 4.9 7.3 3.9 8.8 3.1 10.9
9 criteria 9 alternatives 7.2 9.4 9.7 11.0 1.8 12.2
12 criteria 6 alternatives 8.9 11.5 13.0 13.1 0.5 12.2
12 criteria 12 alternatives 10.0 13.2 13.7 15.2 1.5 13.0
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It is clear that SR is the preferred surrogate method of those investigated. In a
further study, it would be interesting to study the RE method with a varying set of
exponents to see if primarily the stability can be improved, in that case making it a
candidate for real-life decision making tools.
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Table 13. Performance averages and mean square for the six methods

Conclusion ROC RE RR Simos SR EW
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6.4 8.5 8.4 9.9 2.2 10.7
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Rank from final score 2 3 5 4 1 6
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