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Abstract

It has been shown recently that a specific class of path-dependent stochastic processes, which reduce
their sample space as they unfold, lead to exact scaling laws in frequency and rank distributions. Such
sample space reducing processes offer an alternative new mechanism to understand the emergence of
scaling in countless processes. The corresponding power law exponents were shown to be related to
noise levels in the process. Here we show that the emergence of scaling is not limited to the simplest
SSRPs, but holds for a huge domain of stochastic processes that are characterised by non-uniform
prior distributions. We demonstrate mathematically that in the absence of noise the scaling exponents
converge to —1 (Zipf’s law) for almost all prior distributions. As a consequence it becomes possible to
fully understand targeted diffusion on weighted directed networks and its associated scaling laws in
node visit distributions. The presence of cycles can be properly interpreted as playing the same role as
noise in SSRPs and, accordingly, determine the scaling exponents. The result that Zipf’s law emerges
as a generic feature of diffusion on networks, regardless of its details, and that the exponent of visiting
times is related to the amount of cycles in a network could be relevant for a series of applications in
traffic-, transport- and supply chain management.

1. Introduction

Many stochastic processes, natural or man-made, are explicitly path-dependent. Famous examples include
biological evolution [1-3] or technological innovation [4, 5]. Formally, path-dependence means that the
probabilities to reach certain states of the system (or the transition rates from one state to another) at a given time
depend on the history of the process up to this time. This statistical time-dependence can induce dramatic
deformations of phase-space, in the sense that certain regions will hardly be revisited again, while others will be
visited much more frequently. This makes a large number of path-dependent complex systems, and processes
that are associated with them, non-ergodic. They are typically mathematically intractable with a few famous
exceptions, including the Pitman—Yor or ‘Chinese Restaurant’ process [6, 7], recurrent random sequences
proposed by Ulam and Kac [8—10], Pélya urns [7, 11, 12], and the recently introduced sample space reducing
processes (SSRPs) [13].

SSRPs are processes that reduce their sample space as they progress over time. In their simplest form they can
be depicted by the following process. Imagine a staircase like the one shown in figure 1(a). Each state i of the
system corresponds to one particular stair. A ball is initially (t = 0) placed at the topmost stair N, and can jump
randomly to any of the N — 1lower stairs in the next timestep with a probability 1 /(N — 1). Assume that at
time ¢ = 1 the balllanded at stair 7. Since it can only jump to stairs i’ that are below 7, the probability to jump to
stair i’ < iis1/(i — 1). The process continues until eventually stair 1 is reached; it then halts.

Remarkably, the statistics over a large number of repetitions of SSRPs yields an exact Zipf’s law in the rank-
frequency distribution of the visits of states [ 13], a fact that links path-dependence with scaling phenomena in an

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Pictorial view of a SSRP with uniform priors. A ball bounces downwards only with random step sizes. After many
iterations of the process, the visiting probabilities of states i approach ~i~' (Zipf's law). (b) Random process where a ball bounces
random distances to the left or right over equally sized boxes (uniform priors). Visiting probabilities p(i) are uniform. (c) Random
process as in (b) but with non-uniform prior probabilities of states (width of boxes). The visiting probabilities follow the prior
probabilities. (d) SSRP with non-uniform prior probabilities. Visiting distributions follow the attractor to a Zipf's distribution. This is
true for a wide class of prior probabilities. (e) SSRP realised by a diffusion process on a directed acyclic network towards a target node

(orange). The visiting probability of nodes follows a Zipf’s distribution, independent of the network topology.

intuitive way. SSRPs add an alternative and independent route to understand the origin of scaling (Zipf’s law in
particular) to the well known classical ways [14, 15], criticality [16], self-organised criticality [17, 18],
multiplicative processes with constraints [19-21], and preferential attachment models [22, 23]. Beyond their
transparent mathematical tractability, SSRPs seem to have a wide applicability, including diffusion on complete
directed acyclical graphs [13], quantitative linguistics [24], record statistics [25, 26], and fragmentation
processes [27].

SSRPs can be seen as very specific non-standard sampling processes, with a directional bias or a symmetry
breaking mechanism. In the same pictorial view as above a standard sampling processes can be depicted as a ball
bouncing randomly to the left and to the right (without a directional bias as in the SSRP) over a set of states, see
figure 1(b). The ball samples the states with a uniform prior probability, meaning that all states are sampled with
equal probability. A situation with non-uniform priors is shown in figure 1(c) where the different widths of
boxes represent the probability to hit a particular state. In a standard sampling process exactly this non-uniform
prior distribution will be recovered.

So far, SSRPs have been studied for the simplest case only, where the potential outcomes or states are
sampled from an underlying uniform prior distribution [13]. In this paper we demonstrate that a much wider
class of SSRPs leads to exact scaling laws. In particular we will show that SSRPs lead to Zipf’s law irrespective of
the underlying prior distributions. This is schematically shown in figure 1(d), where the prior distribution is
non-uniform, and states are sampled with a SSRP. The resulting distribution function will no longer follow the
prior distribution as in figure 1(c), but produces Zipf’s law. We show in detail how SSRPs depend on their prior
distributions. Zipf's law turns out to be an attractor distribution that holds for practically any SSRP, irrespective
of the details of the stochastic system at hand, i.e. irrespective of their prior distributions. This extreme
robustness with respect to details of transition rates between states within a system offers a simple understanding
of the ubiquity of Zipf’s law. Phenomena that show a high robustness of Zipf’s law with respect to changes on the
detailed properties of the system have been reported before [25, 26, 28].

As an important example we demonstrate these mathematical facts in the context of diffusion processes on
directed acyclic graphs (DAGs). Here Zipf’s distributions of node visiting frequencies appear generically,
regardless of the weight- or degree distribution of the network. We call diffusion processes on DAG structures
targeted diffusion, since, in this type network, diffusion is targeted towards a set of target or sink nodes, see
figure 1(e). The targeted diffusion results we present here are in line with recent findings reported in [29].

2. SSRPs with arbitrary priors

We start the formal study of the statistics of SSRPs for the noiseless case which implies—in the staircase picture
—that upward jumps are not allowed (sampling with a bias). We then study how the statistics of SSRPs behaves
when noise is introduced. In this case the probability of upward jumps is no longer zero.

2.1. Noiseless SSRPs
Think of the N possible states of a given system as stairs with different widths and imagine a ball bouncing
downstairs with random step sizes. The probability of the downward bouncing ball to hit stair i is proportional
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to its width q(i), see figure 1(d). Given these prior probabilities g(i), the transition probability from stair j to stair i
is

q (@) ifi<i

pllj =qsi-n "7 )
0 otherwise,

withg(j — 1) = Yr<id (£). Prior probabilities are normalised, >~; 4 (i) = 1. We denote such a SSRP by 7).

One can safely assume the existence of a stationary visiting distribution, p, arising from many repetitions of

process v and satisfying the following relation:

pG)y = > pGlpp(h. )

i<j<N
Using equation (1), and forming the difference
pGE+1) _ii):_p(iJrl)
q@+1)  q0@) g@@)

and by re-arranging terms we find that

3

pi+DgG+1) _ p@)gh)

g+ q0)
where we use the fact that g (5) + q(i + 1) = g(i + 1). Note that thisis true for all values of i, and in particular
pg@ _ pMg) _

4

> 5
q (i) q(1) P ©
since g (1) = q(1). We arrive at the final result
. q9@) . q(j)
= 1 th = 6
PO=L@? ™ p(l) ) ©

p(i) is the probability that we observe the ball ball bouncing downwards at stair i. Equation (6) shows that the
path- dependence of the SSRP 1) deforms the prior probabilities of the states of a given system,
q(@) — p@i) = We can now discuss various concrete prior distributions. Note that equation (6) is exact and
does not dependent on system size.
Polynomial priors and the ubiquity of Zipf s law: Given power law priors, q (i) ~ i®with « > —1, one can
compute g up to a normalisation constant

jatl
gi) =) "= + 01", %)
i<i a+1
which, when used in equation (6), asymptotically gives
. 1
pii ~ 22, ®)

i.e., Zipf's law. More generally, this result is true for polynomial priors, q (j) ~ .., aij @, where the degree of
the polynomial o (m) = max{« (i) } is larger than —1, in the limit of large systems. Numerical simulations show
perfect agreement with the theoretical prediction for various values of a, see figure 2(a) (circles, triangles, red
squares).

Fast decaying priors: The situation changes drastically for exponents o« < — 1. For sufficiently fast decaying
priors we have

g(z’)~fll g@)dx ~ g(1) = q(1). ©)

The fast decay makes the contribution to g from large i’s negligible. Under these circumstances equation (6) can
be approximated for sufficientlylarge i’s, as p (i) ~ q(i). We encounter the remarkable situation that for fast
decaying priors the SSRP, even though it is history dependent, follows the prior distribution. In this case the
SSRP resembles a standard sampling process.

Exponential priors: For exponential priors, g (i) ~ e, with 3 > 0, we find according to equation (6) that
p(@i) = 1/N,i.e.,auniform distribution. To see this note that, up to a normalisation constant, g(i) is a geometric
series

—1
ef—1°

g() = Zle = eﬂ

j=1
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Figure 2. Probability distributions arising from numerical realisations of SSRPs over 10* states without noise (a), and with a noise level
of A = 0.5, (b). Colours correspond to various prior probabilities: polynomial, q (i) ~ i, with & = —0.5 (blue circles), o = 1 (red
circles)and o = 2 (green circles) in both panels. The exponential case, q (i) ~ e' (grey squares) is shown in panel (a) only. Dashed
black lines show the theoretical results without noise from equation (6) (a), and with noise from equation (17) (b). Clearly, Zipf’s law
(p (i) ~ i~!) emerges for the different polynomial prior probabilities, whereas for the exponential prior probability the expected
uniform distribution is obtained (a). All simulations were done with 107 repetitions (a) and 10° repetitions (b).

Substituting it into equation (6), one finds the exact relation
_3

. 1 —et
=p(l)———, 10
P®) = p()—— (10)
which can be safely approximated, for i > 1, by
. 1
p() Hp(l)(l - —ﬂ)- (11)
e

We observe that this is a constant independent of i. Accordingly, after normalisation, we will have p (i) ~ 1/N.
Note that exponential priors describe a somewhat pathological situation. Given that a state i is occupied at time £,
the probability to visit state i — 1is huge compared to all the other remaining states, so that practically all states
will be sampled in a descending sequence: i — i — 1 — i — 2 — i — 3 — ---1, which obviouslyleadstoa
uniform p. Again, numerical simulations show perfect agreement with the prediction, as shown in figure 2(a)
(grey squares). Switching from polynomial to exponential priors, we switch the attractor from the Zipf’s regime
to the uniform distribution.

2.2.Noisy SSRPs

Noisy SSRPs are mixtures of a SSRP 1) and stochastic transitions between states that are not history-dependent.
Following the previous scheme of the staircase picture, the noisy variant of the SSRP, denoted by 1), starts at N
and jumps to any stair i < N, according to the prior probabilities (7). At i the process now has two options: (i)
with probability A the process continues the SSRP and jumps to any j < i, or, (ii) with probability 1 — A jumps
toany point j < N, following a standard process of sampling without memory. 1 — A is the noise strength. The
process stops when stair 1 is hit. The transition probabilities for ¢, read

q(i) N .
- 1I—A f
pilj) =4 - TN A< (12)
(1 — A)q (i) otherwise.

Note that the noise allows moves from jto 7, evenif i > j. Proceeding exactly as before we get

PG+ 1)(1 VI, 1)] _ a0
q(i+ 1) g () q (i)

13)
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Table 1. Distribution functions p(i) of SSRPs for the various prior distribu-
tions q(7). SSRP distributions with a noise level of (1 — \) are indicated

by p, (0.
Prior (sub-) logarithmic Polynomial Exponential
q(i) i (< —1) i (> —1) e
. . - 1
p@) i© i 5
pA (1) noise o l'a(l—)\)—)\ e(l—A)ﬁi

where p, (i) depicts the probability to visit state i in a noisy SSRP with parameter . As a consequence we obtain:
. N\l
. i
Pt = (L T [1 ¥ A%] . (14)
Q(l) 1<j<i g(] )
The product term can be safely approximated by

[T ¢ l'=exp|— > log[l + )\M”

1<j<i | 1< g(i—1

_ 40)
~ exp| — A——""—
1?‘@‘ g(j— 1)]

[ g (i)
~ N 2
exp_ Og(q(l))]

W\ A
g
===, 15

(q(l)) (1

where weused () ~ dg/dx|jand log(1 + x) ~ x for small x, assuming that x = )\% < 1. Finally, we

.
py iy~ 22D (q(’) J (16)

get

g g

where p, (1)/q(1)'~ A acts as the normalisation constant. A plays the role of a scaling exponent. For A — 1(no
noise), p recovers the standard SSRP ¢ of equation (1). For A = 0, we recover the case of standard random
sampling, p — q. Itis worth noting that continuous SSRP display the same scaling behaviour (see appendix A).
The particular case of g (i) = 1/N that was studied in [13], shows that ) turns out to be the scaling exponent of
the distribution p, (i) ~ 1/i*. Note that these are not frequency- but rank distributions. They are related,
however. The range of exponents A € (0, 1]inrank, represents the respective range of exponents o € [2, 00) in
frequency, see e.g. [14] and appendix B. For polynomial priors, q (i) ~ i® (o« > —1), one finds

p/\(l) ~ in,(lf)\)f)\. (17)

The excellent agreement of these predictions with numerical experiments is shown in figure 2(b). Finally, for
exponential priors q (i) ~ e’ (8 > 0) the visiting probability of for the noisy SSRP ¢/, becomes

p (i) ~ el =MA seetable 1. Clearly, the presence of noise recovers the prior probabilities in a fuzzy way,
depending on the noise levels. The following table sumarizes the various scenarios for the distribution functions
p(i) for the different prior distributions (i) and noise levels.

3. Diffusion on weighted acyclic graphs

The above results have immediate and remarkable consequences for the diffusion on DAGs [30] or, more
generally, on networks with target-, sink- or absorbing nodes. We call this process targeted diffusion. In
particular, the results derived above allow us to understand the origin of Zipf’s law of node visiting times for
practically all weighted DAGs, regardless of their degree- and weight distributions. We first demonstrate this fact
with simulation experiments on weighted DAGs and then, in section 3.2 we analytically derive the
corresponding equations of targeted diffusion for the large class of sparse random DAGs, that explain that Zipf’s
law must occur in node visiting frequencies. In appendix B proofs are given for the cases of exponential and scale
free networks.

We start with the observation that SSRPs with uniform priors can be seen as a diffusion processes on a fully
connected DAG, where nodes correspond one-to-one to the stairs of the above examples. This results in a Zipf’s

5
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(a)

Figure 3. Building a DAG. (a) Start with any undirected, connected graph. (b) Place a unique label 1,..., N on each node of the graph.
(c)drawanarrow fromitoj,if i > j,orfromjtoi,if i < j.Thestrict orderinginduced by the labelling prevents the emergence of
cycles [30, 31]. Such a graph will have at least, one target or a sink node, in the depicted case thisisnode i = 1. A diffusion process of
this graph, where random walkers are randomly placed on the graph and follow the arrows at every timestep, is called targeted diffusion
with targetnodei = 1.

law of node visiting frequencies [13]. However, such fully connected networks are extremely unlikely to occur in
reality. To create much more realistic structures, we generate arbitrary random DAGs following e.g. references
[30, 31]. Start with any undirected connected graph G(V, E), with V'the set of nodes, E the set of edges, and P(k )
the degree distribution, see figure 3(a). Next, label each node in any desired way that allows an ordering, for
example with numbers 1,..., N, see figure 3(b). The labelling induces an order that determines the directionality
oflinks in the graph: if nodes i and j are connected, we draw an arrow from i to 7, if i > j,or fromjtoi,ifi < j,as
seen in figure 3(c). We denote the resulting DAG by GP(V, EP). The order induced by the labelling mimics the
order (or symmetry breaking) that underlies any SSRPs. By definition, there exists, at least, one target node, ‘1.

Noise can be introduced to this DAG construction as follows: if node iand jare connectedin G and i > j one
can assign an arrow from i to j (as before) with probability A, or place the arrow in a random direction with
probability 1 — A. This will create cycles that play the role of noise in the targeted diffusion process. This
network is no longer a pure DAG since it contains cycles.

3.1. Targeted diffusion on specific networks
A diffusion process on GP is now carried out by placing random walkers on the nodes randomly, and letting
them take steps following the arrows in the network. They diffuse according to the weights in the network until
they hit a target node and are then removed. We record the number of visits to all nodes and sort them according
to the number of visits, obtaining a rank distribution of visits’. We show the results from numerical experiments
of 10” random walkers on various DAGs in figure 4. In figures 4(a) and (b) we plot the rank distribution of visits
to nodes for weighted Erd6s—Rényi (ER) DAG networks. A weight w;; is randomly assigned to each link e, € E
from a given weight distribution p(w). Weights either follow a Poisson distribution, figure 4(a), or a power-law
distribution, figure 4(b). In both cases Zipf’s law is obtained in the rank distribution of node visits. For the same
network we introduce noise with A = 0.5 and carry out the same diffusion experiment. The observed slope
corresponds nicely with the predicted value of A, as shown in figure 4(a) (red squares) for the Poisson weights.
We computed rank distributions of node visits from diffusion on more general network topologies. In
figure 4(c) we show the rank distribution of node visits where the substrate network is the citation network of
high energy physics in the arXiv repository [33, 34], and the order is induced by the degree of nodes. Figure 4(d)
shows the rank distribution of node visits from diffusion on an exponential DAG, that is generated by non-
preferential attachment [35], where the order of nodes is again induced according to the degree. Both networks
show Zipf’s law in the rank distribution of node visits. This is remarkable since both networks are drastically
different in topological terms.

3.2. Analytical results for targeted diffusion on random DAGs
For diffusion on random DAGs it is possible to obtain analytic results that are identical to equation (1), showing
that Zipf’s law is generally present in targeted diffusion.

We first focus on the definition of the prior probabilities in the context of diffusion on undirected networks.
As stated above, q(3) is the probability that state i is visited in a random sampling process, see figures 1(b) and (c).

Rank ordering is not necessary whatsoever to see the clear agreement with the theoretical predictions. Almost identical results are seen
when we order nodes according to their numerical ordering.
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Figure 4. Node visiting rank distributions from diffusion on weighted DAGs, built over Erd6s—Rényi graphs (see DAG construction)
with p = 1/2,and N = 100 nodes (a) and (b). The weight distribution w; follows (a) a Poisson distribution with average ;1 = 6,and
(b)apower-law p(w) oc w~!* thatis shown in the inset. In both cases the predicted Zipf’s law is present (black dashed line), even
though the networks are small. In (a) the DAG condition is violated (red squares) by assigning random directions to a fraction of

1 — Alinks. This allows for the presence of cycles, which play the role of noise in a SSRP. A power law with the exponent ) is observed
in the corresponding rank distribution, perfectly in line with the theoretical predictions (dashed black lines). (c) A targeted diffusion
experiment on a DAG that is based on the citation network of HEP arXiv repository, containing 10* nodes belonging to the 10* most
cited papers. (d) The results of the same experiment on an exponential network of the same size is given. The inset shows the respective
degree distributions. Despite the huge topological difference between these two graphs, the rank distribution of visits to nodes is
clearly of Zipf’s type for almost four decades in both cases.

10

In the network context this corresponds to the probability that node i is visited by a random walker. Assume that
we have an undirected random graph G(V, E) and that the Nnodes are labelled 1 ,... N. The probability thata
random walker arrives at node i from a randomly chosen link of E, the network-prior probability of node 7, is
easily identified as

= ki
160 = 30 (18)

where |E| is the number of links in the graph; the factor 2 appears because a link contains 2 endpoints. If

06 = {ki ,..., ky} denotes the undirected degree sequence g, is a simple rescaling of g, i.e., 4; = ﬁac. Using

the same notation as before, the cumulative network-prior probability distribution is g (i) = 3=, ;45 (¢).
From equation (18) and by assuming that in sparse graphs the probability of self-loops vanishes, i.e.,

p(eij) — 0,onecan compute the probability that alink e;; exists in G, [32]

k(@)k(j)

i €E) = —/————
p(ej € E) Zzgwk(f)

= 2|Elqg ()45 () (19)

where the second step is possible since 3~ k (¢) = 2|E|. With this result, the out-degree of node labelled i in
the graph GP can be approximated by
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k™t = "p(ej € E)
j<i
= 2IED 45 (D46 ()
j<i
= 2[Elag ()Y 46 ()
j<i

= 2|E|lq; () g (i — 1). (20)
Note that to compute k" we only need take into account the (undirected) links which connect i to nodes with a
lower label j < i, according to the labelling used for the DAG construction outlined above.

We can now compute the probability that a random walker jumps from node i to node j on the DAG GP,

Y- ili, e;i € E)p(e;; € E) ifi>j
poGili) = {p(JI j € E)p(ei € E) j @
0 otherwise.
This is the network analogue of equation (1). Here p(jli, e;; € E) is the probability that the random walker
jumps from i to jgiven that i > j and thelink e;; exists in G. Clearly, this probability is
. 1
p(jli, e € E) = o
= (2|Elqs (g (i — 1)1, (22)
Using equations (19) and (22) in (21) we get
2:(j) . ifi>i
pG(]ll) — gG(ifl)’ 11 ) (23)

0 otherwise,

which has the same form as equation (1). Note that this expression only depends on g, i.e. the degrees of nodes
in the undirected (!) graph G. The solution of equation (23) is obtained in exactly the same way as before for
equation (1), and the node visiting probability of targeted diffusion on random DAGs is

qg (1)

; 24
8 (1) @9

p (i)
which is the network analog of equation (6).

We finally show the results for a DAG that is based on an ER graph. For an ER graph, by definition, the
probability for alink to existisa constant r € (0, 1],and p(e;; € E) = r. Again welabel allnodesby1,..., N and
build a DAG G%; as described above. It is not difficult to see that the out-degree of node iis k°* (i) = (i — 1)r,
and, using this directly in equation (21), we get

1 . . .
pe i) = {1 ifi>] 25)

0 otherwise,

which is the standard equation for a SSRP with uniform prior probabilities g, [ 13]. This means that for the ER
graph g¢(i) isa constantand g (i) ~ i. Using this in equation (24), we find that the node visiting probability is
exactly Zipf’s law, with respect to the ordering used to build the DAG

p @) ocil (26)
Note that this result is independent of r and, therefore, of the average degree of the graph.

4. Discussion

We have shown that if a system, whose states are characterised by prior probabilities g, is sampled through a
SSRP, the corresponding sampling space gets deformed, in a way that Zipf’s law emerges as a dominant attractor.
This is true for a huge class of reasonable prior probabilities, and might be the fundamental origin of the
ubiquitous presence of Zipf’s law in nature. On the theoretical side we provide a direct link between non-
ergodicity as it typically occurs in path-dependent processes and power laws in corresponding statistics.
Formally, SSRPs define a microscopic dynamics that results in a deformation of the phase space. It has been
pointed out that the emergence of non-extensive properties may be related to generic deformations of the phase
space [36-38]. Consequently, SSRPs offer a entirely new playground to connect microscopic and macroscopic
dynamics in non-equilibrium systems. Our results could help to understand the astonishing resilience of some
scaling patterns which are associated with Zipf’s law, such as the recent universality in body-mass scaling found
in ecosystems [39].
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We discussed one fascinating direct application of this process: the origin of scaling laws in node visit
frequencies in targeted diffusion on networks. We demonstrated both theoretically and by simulations that the
immense robustness of these scaling laws in targeted diffusion—and Zipf’s law in particular—arises generically,
regardless of its topological details, or weight distributions. The corresponding exponents are related to the
amount of cycles in a network. This finding should be relevant for a series of applications of targeted diffusion on
networks where a target has to be found and reached, such as in traffic-, transport- or supply chain management.
We conjecture that these findings and variations will apply for search processes in general.
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Appendix A. Continuous SSRPs

Consider the interval {2 = (0, N]. The prior probability density g is defined from a differentiable function
f:Q — Rfas

20 = {f(x) if x € [1, NJ AD

f (1) otherwise.

Since this represents a probability density

j;N qx)dx = 1.

The region (0, 1) where q(x) = f (1) acts as a trapping region of finite measure. As we shall see, the particular
choice of the length of such trapping region has no consequences for the global statistical patters, aslong as it is
finite. We will refer to this trapping region as (2. In addition, for any x € Q\ €2, we define the interval

Q. = (0, x), which is the sampling space from point x. These sampling spaces are now continuous but still can
be ordered by inclusion, meaning thatif x, y € 2 and x > y,then Q, C (1,.

A.1.Noiseless continuous SSRPs

With the example of the staircase in mind, we can describe a SSRP 1) over a continuous sampling space, see figure
Al .Westartin the extreme of the interval, x = N, and we choose any point of €2 following the probability
density g. Suppose weland in x < N.Then, at time ¢t = 1 we choose at random some point x" € Q, followinga
probability density proportional to g. We run the process until a point z € €2, isreached. Then the process stops.
The SSRP 1) can be described by the transition probabilities between the elements of x, y € {2 suchthat y > 1las
follows

pmw:{ﬂm@q)ﬁx<y a2
0 otherwise,

where g(y) is the cumulative density distribution evaluated at point y,
y
g = [ adr= [ g@dc+ ). (A3)
Q, 1

We are interested in the probability density p which governs the frequency of visits along €2 after the
sampling process . To this end, we start with the following self-consistent relation for p,

N
P = [ pGlnp()dy. (Ad)

N
Recall that the integration limits L represent the fact that a particular state x can only be reached from a state
y > x. By differentiating this integral equation we obtain:

dp dfpN
o 3( f P(xly)p(y)dy)- (A.5)
In agreement to equation (A.2), p(x|y) = q(x)/g(y)if y > land y > x.Equation (A.5) can be expanded
using the Leibniz rule:
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x

0 1 N

Figure Al. Continuous SSRPs: a ball bouncing fo the left on a continuous interval 2 = [0, N]. Ateach time step itlands at a given
point of {2 according to a prior probability density g (x) dx. The process stops when the ball falls into a region of finite measure,
represented here as the interval [0, 1].

a®

dp (x) N dp(xly)
e A e AP dy —
il I IO A
1 dg(x) N q(x) q(x)
= p(ydy — —px)
qx) dx Jx g(y) g(x)
1 dq(®) q(x)
——px) — p(x). (A.6)
q() dx g(x )
This leads to a differential equation governing the dynamics of SSRPs under arbitrary prior probabilities g,
dp) _ [ 1 dg() () ] ). (A7)
dx q(x) dx g(x)
The above equation can be easily integrated in the interval (1, N]. Observing that equation (A.7) can be rewritten
as
P _1d log(—q (x)) dx. (A.8)
p(x) dx “\gx)
One finds:
logp(x) = log[ q(x )) + K, (A.9)
§(x)

k being an integration constant to be determined by normalisation. The above equation has as a general solution
for points x € (1, N]

1 q(x)
x) = ——, A.10
p(x) Z () (A.10)
where Zis the normalisation constant
_ q(y) (A1l)
0 g(y)

This demonstrates how the prior probabilities g are deformed when sampled through the SSRP 1/ in the region
x € (1, N]. This is the analogous to equation (6) of the main text.

A.2. Continuous SSRPs with noise

Suppose the interval 2 = (0, N]and let us define a probability density g on €2 as in equation (A.1). The noisy
SSRP ), startsatx = Nand jumps to any pointin x’ € §2, according to the prior probabilities . From x' the
system has two options: (i) with probability A the process jumps to any x” € €, i.e., 1) continues the SSRP we
described above or, (ii) with probability I — A, ¥, jumps to any point x” € (), following a standard sampling
process. The process stops when it jumps to a member of the sink set, namelytoa x < 1. The transition
probabilities now read (Vy > 1),

10
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(A.12)

(xly) = A (x)/g(y) + (1 — Nqx) iffx <y
py) = (1 — Mg (x) otherwise,

Note that the noise enables the process to move from y to x, in spite x > y. As we did in equation (A.4), we can
find a consistency relation for the probability density p, of visiting a given point of €2 along a noisy SSRP

N
) =X [ pGlyp(Ndy + (1 = V). (A13)
If we take the derivative
o, d (N dg(x)
A= *a(fx p<x|y>pA<y>dy) +a-ndE

_AM&)NJMﬂd_Aﬁ?AW%HI_MM@)

de g

ajzx %%m()"ﬂiyﬁ)+u—xﬂ$0
zﬁdg@( P& — (1= M) — A%M 9+ (1 — /\)d(zlix)
:E%;zg)“)_Aq?;“@’

where the fourth step is performed taking the definition of p, (x) given in equation (A.13). We therefore have the
following differential equation for p, (x),

dpy ) :[ 1 dge) a0

> A.14
dx 10 dx 700 ]P)\ () ( )

which can be rewritten as

n@  dx g

Integrating it overall x € (1, N, we obtain

e _d (qm )dx

1 4q9x) ALS
px) = 200 (A.15)
which again demonstrates how the noisy SSRP deforms the underlying prior probabilities g, Z, being the
normalisation constant. Interestingly, if A\ < 1, i.e., if we consider a noisy SSRP, A has the role of a scaling
exponent. We observe that we recover the standard SSRP 1) described above in equation (A.2)if A\ — 1(no
noise) and the Bernouilli process following the prior probabilities g if we have total noise, as expected. The
results for the continuous SSRPs are similar to the discrete case; compare equation (A.15) and equation (16).

Appendix B. Targeted diffusion on networks with different topologies

In the following we find the mapping between the degree distribution P(k ) and the undirected ordered degree
sequence. Once we know the degree sequence, we can compute the network prior probabilities g thanks to
equation (18). Then, we apply directly equation (24), which gives us the general form of statistics of node visits
for targeted diffusion.

Without any loss of generality we assume that there is a labelling of the nodes of the graph G, such that the
undirected degree sequence o, given by

06 = ki o k), (B.1)

is ordered, meaning that
>k > ky (B.2)

In the following we will assume that the degree distribution P(k ) is known and that we want to infer the
formal shape of g, if any. In general, a formal mapping from P(k ) to o is hard or even impossible to find.
However, it can be approximated. Let us assume that there exists a function f (i) = k; that gives the degree of the
i-th node of the ordered degree sequence of the undirected graph G. Suppose, for the sake of notational
simplicity, that k; = k. Clearly, f~!(k) = i. From this we infer that there are approximately i — 1 nodes whose
degree is higher than k. The probability of finding a randomly chosen node whose degree is higher than k, P-(k),
is P(k) = >~ P (K"). The number of nodes with degree larger than k will thus be approached by NE(k).

11
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Under the assumption that the number of nodes is large one can argue that
Fl k) ~ N fk P(K)dK.. (B.3)

The identification of ffrom the knowledge of P(k ) provides the functional shape of the ordered degree sequence
and, consequently, the network-prior probability distribution.
Exponential networks: Exponential networks have a degree distribution given by

P (k) < exp(—xk), (B.4)
with x > 0. The direct application of equation (B.3) reads
f71(k) ~ N exp(—xk), (B.5)
leading to
) N
f@) ~x"! IOg(T)- (B.6)

Since we assumed that k; = f (i), and knowing, from equation (18), that q (i) = k;/2|E|, the network-prior
probabilities for exponential networks, geyp,, are given by

Dexp (i) ilog(?). (B.7)

For large graphs we can approximate g5(i) by

860 = Yo ) ~ [ tog( )

e<i
. N
Nzlog(—, + 1) + O(logN), (B.8)
i
and equation (24) asymptotically becomes
' log (I:l) 1
pG) X ———— — —. (B.9)

ilog(lj—. + 1) !

Targeted diffusion on exponential DAG networks therefore leads to Zipf’s law in node visiting frequencies.
Scale-free networks: Scale-free networks have a degree distribution P (k) ~ k~*.For @ > 2, which s the
most common case, one has

f71(k) ~ Nk =, (B.10)
which implies
fG) ~i b, (B.11)
with — 3 = (1 — a)~L. Therefore, the network-prior probabilities for scale-free networks, gsg, are given by
gep (i) o< i (B.12)
As a consequence the cumulative network-prior distribution, gs, is (approximating the sum with an integral)
g (i) ~ i PFL (B.13)
Using equation (24), this leads to
ih 1
p (@) ~ i — - (B.14)

Again Zipf’s law appears in the node visiting probabilities.
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