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ABSTRACT

An algorithm is given that joins any pair of extreme
points of a dual transportation polyhedron by a path of at

most (m-1) (n-1) extreme edges.
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The distance between a pair of extreme points of a convex
polyhedron P is the number of extreme edges in the shortest path
that joins them. The dzameter of P is the greatest distance
between any pair of extreme points of P. The Hirsch conjecture
(see [5], pp. 160 and 168, [7]) is that the diameter of a convex
polyvhedron defined by g halfspaces in p-dimensional space is at
most g-p. In linear programming jargon it is that given r lin-
early independent equations in nonnegative variables it is
possible to go from one feasible basis to any other in at most

r pivots all the while staying feasible.

For unbounded polyhedra in dimension 4 or more the Hirsch
conjecture is false [7], so it is false in general. However, it
has been proven to be true for certain special cases: the poly-
topes arising from the shortest path problem [8], Leontief sub-
stitution systems [6], the assignment problem [U4], and certain
classes of transportation problems [1]. I will show it is true
for the unbounded polyhedra arising from dual transportation
problems. The approach will also establish a combinatorial char-

acterization of extreme points that has proven to be very useful.

The dual transportation polyhedron for the m by n matrix c

is



= s, Sec..,1i€ ] € =
Dm,n(g) {E,Y,ul+vj__clj,1 R,j €C,u, 0}
where |[R| = m and [C| = n. Setting u, = 0 is an arbitrary choice

that rules out lines of solutions (ui+6), (vj-s).

It is natural to study the extreme points of D in terms of
a bipartite graph model. Let the set of m nodes R stand for the
rows of ¢ and the set of n nodes C for the columns. The equations
u

0, u, + v, = c.. for (i,j)eT, i€R, jeC, form a maximal

1 i 3 iJ
linearly independent set if and only if T is a spanning tree.
The unique solution u, v to T is an extreme point of D if and

only if u, + vy sc for (i,j) ¢ T: I will say T %as the extreme

iJ
point u, v and for clarity will sometimes write T(g,y). Given a

spanning tree T the unique solution to

uq u2 us ug R: Row Nodes

vq vy vq Vg vg vg C: Column Nodes

Figure 1. Spanning tree. Signature (3,2,1,3)

its equations is immediate. 1In the sequel only spanning trees
that have extreme points u, v are considered: to any T there

corresponds exactly one extreme point.

To one extreme point, however, there can correspond many
trees T: this happens when u; + vy = G5 for (i,j) € T and is
called "degeneracy". In this case any spanning tree chosen from

{(i,j);ui+vj==cij} has the same extreme point.

The (row) signature of a tree T is the uniquely defined vector
of the degrees of its row nodes a = (a1,...,am), Zai = m+n-1, ai;j.

Lemma. Two different trees T, T1 with the same

signatures have one and the same extreme point.



Proof. Let the extreme points of T and T1 be u,v and 91,21.

I will show that u = u1, v = v1.

-~ -~ -~

T # T‘I means there is some node i1 €R, (i1,j1) €T but

.o 1
(l1lj1)¢T
with i2 # i1 be the edge on the unique path that joins j1 to i1,

(see Figure 2 for what follows). In ol let (iz,j1)

and consider node i2.
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Figure 2. Solid lines in T; dashed lines in T .

It must have degree at least 2 in T1 and so in T. Therefore
there exists an edge (i2,j2) ET, j2 # j1. Now, let (i3,j2) be
the edge on the unique path that joins j2 to i1 in T . Continue
to build this path until a node already on it is encountered
again, forming a cycle: (ih,jh), (Lppqrdp)reer (Agrdg)y (Aprdg).
Call the edges of type (ik,jk) of the cycle odd, and of type
(ik+1’jk) and (ih’jl) even. Then

u, + vj = cij for (i,j) odd, u, + vj < cij for (i,j) even
and
u1 + v1 < c for (i,j) odd u1 + v1 = c for (i,j) even
j = i3 ) ' SRS T & ) '
Summing,

_ ol 1 1
loda ®ij = lnluy +ij) < loven Sij = zh(uik+vj ) < loga i3

k k

implying equality holds throughout and so



u, + v, = c.. = ul + v; for all (i,j) in the cycle.

Transform T1 by taking from it all even edges and putting in it

all odd edges. The new T1 has the same signature and the same

51,V1 but more edges in common with T. Repeat until T = T1,

showing u = u1, v = V1. a

~

Given T(u,v), let (k,2) be one of its edges with k and %

1

both of degree at least 2. A pivot on (k,?) obtains T1(E1'Y )

as follows (see Figure 3): drop (k,%) from T to obtain two
connected components, Tk containing k and TZ containing 2.

Let € = min {cij - ug - vy ieTg,j eTk} >0 and1 (g,h])( belsome
edge at which this minimum is obtained. Set T = T UT U (g,h)

((g,h) is the "incoming" edge). If row node 1<ETk define

1 . 1 .
ui =u, +€, ie€eT, u; = ui otherwise ,

v; =v., -€¢, jeT, v; = Vj otherwise

-e

and if row node 1 E'Pl define

1 . k 1 .
ui = u; - e, 1€T, ui = u; otherwise ,
V1 = v, + ¢ jeTk V1 = v, otherwise

J J ! ! J J )

€ > 0 because u,v satisfies all inequalities. The choice of ¢

guarantees that u1,v1 satisfies them all as well and that it

belongs to T1.
k h
g I
T:a=(1,4,1,1,3) T T TV a'=(1,3,1,2,3)

e

Figure 3. Pivot from T to T1.



-5-

If ¢ = 0 then (u,v) = (51,31) and we have two different
trees having the same extreme point (degeneracy). If € > 0 then
u,v and u1,v1 are neighbors, connected by an extreme edge of D.

. . . , 1
In either case, if a is the signature of T then the signature a

1 . 1 _ 1 _

of T 1is the same except that ap = ap 1 and ag = ag + 1.
Theorem 1. The diameter of Dn n(c) s at most (m=1)(n-1).
————————————————————— i L]

This bound is the best possible,

Proof. I give a method that constructs a path of at most
(m=1) (n-1) extreme edges between any pair of extreme points.
The idea is to begin at one extreme point (the "initial" one)
and to pivot in order to obtain a tree T whose signature is equal
to that of the other extreme point (the "destination"): for then,

by the lemma, T has as its extreme point the desired one.

Let a be the signature of the current tree T (e.g., the
initial one), and g* the signature of the destination extreme
point. If a; < az, i is a defieit node. If there are d*deficit
nodes, m=d is the number of nondeficit nodes. 1If a; > ay, i is
a surplus node. The net defieit is {Z(a;-ai);a: >ai}. The method
has the property that the number of surplus nodes never increases

and within at most m-d pivots the net deficit must decrease by 1.

Choose some surplus node and designate it the source s and
some deficit node and designate it the target t. Pivot on the
edge (s,%) incident to the source s that is on the unique path
joining s to the target t (see Figure 4). Call Q the set of row
nodes of the component of T ~ (s,&) that contains t. s€Q. The
degree of some g&€Q increases by 1: either (i) it was not a

deficit node of T or (ii) it was.

Q
S g t
'
|

T:3=03.12212) Tl al=(2,2,2,2,1,2)

Figure 4.



(i) If not, name it the new source s1 and repeat: pivot on

(s1,21) the edge on the path joining s1 to t in T1. The set of

1,11) containing t belongs

row nodes Q1 of the component T1 ~ (s
to Q but must be smaller: s1e£Q1. Each time a nondeficit node's
degree goes up it is immediately brought down and cannot again
increase unless the target node is changed. Therefore, in at

most m-d pivots a case (ii) must occur.

(ii) The net deficit decreases by 1. If the net deficit is
zero, the desired tree is found. Otherwise, name new source and

target nodes and continue.

The net deficit can be at most n-1; the number of nondeficit
nodes at most m-1: this gives the upper bound (m-1) (n-1) on the
number of pivots and so on the distance.

The bound is best possible. Consider the polyhedron Dm n(c)

with cij = (m-1i) (j=1). Suppose i1 < i2 and j1 < j2: it is im—~
possible to have both (i1,j2) and (iz,j1) in a tree T(E'Y)' This
implies that the trees T of this Dm’n(s) are characterized as all
those that have "no crossings”" (see Figure I) =-- it being under-
stood that the row and column nodes are drawn in their natural
orders. In particular, this polyhedron admits no degeneracy.

In pivoting from one tree to a neighbor if node i's degree de-
creases by 1 then the degree of either node i+1 or node i-1 must
increase by 1. Therefore, to decrease the degree of node 1 by 1
and increase that of node m by 1 it takes m-1 steps. This shows
that to go from the extreme point with signature (n,1,...,1) to

that with (1,...,1,n) it takes (m~1) (n-1) steps. O

Figure 5. A tree with "no crossings".



An immediate result of the foregoing is:

Theorem 2. To every integer vector a, a; > 1, Zai = m+n-1
there corresponds an extreme point u,v.

*
Proof. Given any such vector a the method of the above

* .
proof finds an extreme point having a as its signature. 0O

So for nondegenerate polyhedra Dm,n(g) there is a one-to-one
correspondence between extreme points and signatures. This char-
acterization enables one to describe and count all faces of
Dm,n(g) [3]. It has also motivated a new algorithm for the as-
signment problem that is guided entirely by the signatures and
terminates in at most (n-1) (n-2)/2 pivots [2].
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