Nonsmooth Optimization: Use of the Code DYNEPS

Lemarechal, C.

IIASA Working Paper
WP-80-036

March 1980

Lemarechal, C. (1980) Nonsmooth Optimization: Use of the Code DYNEPS. IIASA Working Paper. IIASA, Laxenburg, Austria, WP-80-036 Copyright © 1980 by the author(s). http://pure.iiasa.ac.at/1433/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

NONSMOOTH OPTIMIZATION:
 USE OF THE CODE DYNEPS

Claude Lemarechal

March 1980
WP-80-36

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations.

[^0]
FOREWORD

One of the aims of the Optimization Task of the system and Decision Sciences Area is to provide computer codes that help to solve certain numerical problems.

This paper describes the use of such a code which is being used successfully on a number of IIASA problems, in particular for the Food and Agriculture Program and Human Settlements and Services.

NONSMOOTH OPTIMIZATION:
USE OF THE CODE DYNEPS
Claude Lemarechal
INRIA-Rocquencourt, 78150 Le Chesnay, France

1. GENERALITIES

This code is a technical improvement of the code CONWOL, and its role is also to minimize a function $f(x)$ without constraints, i.e.,
find x^{*} in the n-dimensional space R^{n} such that $f\left(x^{*}\right) \leq f(x)$ for any x in R^{n}.

It is assumed that, given x, one can compute $f(x)$ and the gradient $g(x)$; however, $g(x)$ is not assumed to vary continuously when x varies. Thus, the possible applications for DYNEPS could be:
-- when f is known to be kinky
-- when the differentiability properties of f are not exactly known
-- when there are some constraints in the problem that are introduced in the objective function through a penalty term.

The code is only semiexperimental in the sense that dimensionments are static, printouts are schematic, etc. However,
it should be fairly reliable, and possible difficulties normally come from incorrect use of the code, rather than deficiencies of the code itself.

The method is iterative and constructs a sequence of "trial solutions" $\mathrm{x}_{\mathrm{k}}, \mathrm{k}=1,2, \ldots, \mathrm{~K}$, and returns some x_{K} which is hopefully a good approximation of x^{*}. More specifically, the algorithm aims at obtaining approximate optimality conditions of the type

$$
\begin{equation*}
\min f \geq f\left(x_{k}\right)-\varepsilon_{k} \tag{2}
\end{equation*}
$$

It starts with big ε_{1} (given by the user), reduces ε_{k} when an estimate such as (2) is obtained and stops when (2) is obtained with $\varepsilon_{k} \leq \varepsilon_{0}$, where ε_{0} is the final tolerance, also given by the user.

Note that an estimate such as (2) supposes that f is convex. However, even in this case it cannot be obtained and the algorithm strives to approximate it by:

$$
f(y) \geq f\left(x_{k}\right)-\varepsilon_{k}-\sqrt{n}\left\|y-x_{k}\right\|, \text { for any } y \text { in } R^{n},(3)
$$

where η is another tolerance given by the user; it plays the part of the squared norm of the gradient in the smooth case.

The computation of $\mathrm{x}_{\mathrm{k}+1}$ from x_{k} is called an iteration and is done in two successive steps:
-- first, compute a direction d_{k} in R^{n}; this is done in the subroutine GAUCHE. It is a rather complicated process, which involves g_{1}, \ldots, g_{k}, the gradients computed in iterations 1,..., k.
-- second, compute a stepsize $t_{k}>0$; this is done in the subroutine LIGNE.
Then two cases may occur. If LIGNE has found that $f\left(x_{k}+t_{k} d_{k}\right)$ is less than $f\left(x_{k}\right)$ by a definite amount, then x_{k} is normally updated to $x_{k+1}=x_{k}+t_{k} d_{k}$. Otherwise x_{k+1} is kept as x_{k}, and only a new gradient is used to compute $\mathrm{d}_{\mathrm{k}+1}$.

2. THE SUBROUTINE CALCUL

The first thing the user has to do when using DYNEPS is to provide a fortran subroutine to compute function and gradient values. This subroutine must have the following form:

SUBROUTINE CALCUL (X,G,F)

DIMENSION $\mathrm{X}(1), \mathrm{G}(1)$ •
X is the value of the vector of variables at which f and g must be computed, G is the value of the gradient at X, f is the value of the function.

Thus, other information essential for CALCUL (such as N, the number of variables) must be passed on through some COMMON block to be shared between the main program which calls DYNEPS and the (possibly many) subroutines which help characterize the problem to be solved.

3. THE CALLING SEQUENCE

CALL DYNEPS (X, F, EPS, EPSO, ETA, ZERO, FMIN, IMP, N, G, NMAX, ITMAX, NAPMAX)
where the parameters are:
X (Input-Output), a vector of dimension n.
Input: the initial values of the variables given by the user when calling DYNEPS.

Output: the final variables returned by DYNEPS.
F (I-O), a scalar. Same meaning but concerning function values. EPS (I-O), an initial guess to get (2). A fraction of $f\left(x_{1}\right)$ $\min f$ is a reasonable value. The choice of EPS affects only the first iteration. EPS is modified by DYNEPS.

EPSO (I), the final value wished by the user in the bound (3).
ETA (I), the tolerance in (3). It is homogenous to the square norm of the gradient, and a peculiarity of DYNEPS is
that very small values for ETA are acceptable. If $\triangle f$ and $\wedge x$ are of the same order of magnitude (i.e., gradients close to unity) it is not unreasonable to ask for ETA in the range 10^{-12} on PDP11.

ZERO (I). The machine precision; because the program is written in single precision, it is approximately 10^{-6} on PDP11.

FMIN (I). A safeguard to prevent unbounded solutions. The program stops if some X is found such that $F(x) \leq$ FMIN.
IMP (I). Controls the printouts. The amount of printouts is an increasing function of IMP. If IMP \leq
0 nothing is printed
1 something veryshort is printed at each iteration
2 some more information is printed at each iteration (mainly useful for the designer of the algorithm).
3 information is printed during executions of LIGNE; very useful to check the computation of the gradient (see Section 4).
IMP > 3 dumps the execution of GAUCHE and should never be used.
N (I), number of variables.
G (I-O), a vector of dimension n.
Input: the gradient of f at the initial value of x. Output: no meaning.

NMAX (I), controls the core requirement. Because GAUCHE uses $g_{i}, i=1, \ldots, k$ at iteration k, the amount of core required by the algorithm is theoretically infinite. Therefore, when the number of gradients is going to exceed NMAX, a cleaning up is made to keep a number of gradients no larger than NMAX. NMAX should be reasonably large (say at least 10).

ITMAX (I). Maximum number of iterations, i.e., DYNEPS stops when $k=$ ITMAX.

NAPMAX (I). Maximum number of calls to the subroutine CALCUL.

4. WARNINGS AND HINTS

Do not forget to call CALCUL before entering DYNEPS, in order to properly initialize F, G, and possibly EPS.

Check that the internal dimensions are sufficient. One must have:
in DYNEPS Dim. of $Q \geq \mathrm{N}^{*}($ NMAX - 1)
Dim. of $\mathrm{S} \geq \mathrm{N}$
Dims of EPSN, AL, JC \geq NMAX
in LIGNE Dim. of $x \geq N$
in GAUCHE Dim. of $R \geq$ (NMAX, NMAX)
Dims. of RR, $x, y, w 1, w 2, A, E, J C, I C \geq$ NMAX
In its present form, the program accepts $\mathrm{N} \leq 50$ and $\operatorname{NMAX} \leq 20$.
In case of difficulty, if the calling sequence is correct and if all the DIMENSION statements are large enough, then there is a 99\% probability that the gradient is badly computed in CALCUL. To check it, run with IMP = 3. Then, at each iteration, a line is printed at each call of CALCUL. The following notations are used:

FK is $f\left(x_{k}\right)$, the initial value, at o-stepsize, for the linesearch.
F is $f\left(x_{k}+t d_{k}\right)$, the objective function at the current stepsize t. The printed $F-F K$ gives the change in f when x is changed from x_{k} to $\mathrm{x}_{\mathrm{k}}+\mathrm{td}_{\mathrm{k}}$.
D is the direction d_{k}, and (D, G) is the derivative with respect to t of the one-dimensional function $f\left(x_{k}+t d_{k}\right)$.

Then, drawing the observed points of the graph of f and of its tangents should indicate if the derivative seems to agree with the function.

The standard cause of failure is when a sequence of stepsizes is produced going to zero (from the right), with $F=F_{k}$ decreasing down to zero, whereas the derivative (D, G) is constantly negative. The user must then judge whether this is due to round off errors or to gross blunders in CALCUL.

5. AN ILLUSTRATIVE EXAMPLE

For demonstrative purposes, we will show the printout of a run where the function to be minimized is MAXQUAD, as described in "A set of nonsmooth optimization test-problems" (in "Nonsmooth optimization" Lemarechal and Mifflin, eds., IIASA Proceedings Series Volume 3, Pergamon Press).

The subroutine CALCUL contains a mistake that has been purposely introduced in the computation of the gradient. Instead of

$$
z=z+2 . * a\left(k_{0}, i, j\right)+x(j)
$$

we have written

$$
z=z+a\left(k_{0}, i, j\right)+x(j)
$$

The printout with IMP = 1 is given below.

1	1	$\mathrm{f}=$	0.5337068 e		eps=	0.100 e 02
2	2	$f=$	c. 1523051 e	03	eps=	C.10ge ¢2
3	5	$\mathrm{f}=$	9.9297475 e	02	eps $=$	0.100 C 2
4	6	$\mathrm{f}=$	0.4032729 e	92	eps=	C.10ce 02
5	9	$f=$	0.1132498 e	02	eps=	Q.lore 62
5	12	$f=$	9.5169246 e	01	eps =	a.100er2
7	16	$\mathrm{f}=$	$8.4694672 e$	01	eps=	0.134 e Cl
ε	17	$\mathrm{f}=$	0.4299792 e	01	eps=	0.949 e ag
9	20	$\mathrm{f}=$	0.1433475 e	01	eps=	0.316 e 01
10	23	$\mathrm{f}=$	C. 1433475 e	01	eps=	$\cdots .315 \mathrm{e} 01$
$f=$	43	58 e	01 ...fi	n	rmale	

It gives for each iteration: the number of iteration, the number of calls to CALCUL made so far, the current value of the objective function, and of the convergence parameter EPS (which is supposed to reduce down to EPSO).

Then we show the printout with IMP $=3$ ．At the tenth itera－ tion we see that，when the stepsize is close to the optimal step－ size，the derivative is frankly negative．This is enough to stop the algorithm．
$f=0.9297475 \mathrm{e} 2 \mathrm{eps}=0.100 \mathrm{e} 02$ $(\mathrm{d}, \mathrm{d})=0.929 \mathrm{e}=0$ extra cout＝0．00＠e ¢0
t initial 0．14928854e GE $f-f k=-0.525 \mathrm{e} 02 \quad(\mathrm{C}, \mathrm{g})=0.595 \mathrm{e} 03$ $t=0.149 \mathrm{e} 0 \quad \operatorname{logic}=3$

4
$6 \mathrm{f}=0.4032729 \mathrm{e} 02$ eps＝0．100e 0．2 $(\mathrm{d}, \mathrm{c})=0.351 \mathrm{e} 03$ extra cout＝0．979e 囚1

$$
-(c, g C)=0.149 e 03
$$

t initial 0．23454417e 00 f－fk＝0．162e 03（ $\mathrm{C}, \mathrm{g})=0.145 \mathrm{e}$ 月4
t diminue $0.36996784 \mathrm{e}-01 \quad \mathrm{f}-\mathrm{fk}=-0.245 \mathrm{e} 02 \quad(\mathrm{~d}, \mathrm{~g})=-0.258 \mathrm{e} 03$ interpol $0.56746125 \mathrm{e}-01 \quad \mathrm{f}-\mathrm{fk}=-0.20 \mathrm{Ce} 02 \quad(0, g)=0.197 \mathrm{e} 02$ $t=0.567 \mathrm{e}-01 \quad \operatorname{logic}=3$

59 f＝0．ll32498e 02 eps＝C．l0fe＠2
$(\mathrm{d}, \mathrm{d})=0.835 \mathrm{e}$ の2 extra cout＝0．794e ©l

t dininue $0.35599217 \mathrm{e}-01 \mathrm{f}-£ \mathrm{k}=-\mathrm{a} .58 \mathrm{cecl} \quad(\mathrm{C}, \mathrm{a})=-6.158 \mathrm{e} 03$ interpol $0.67638516 \mathrm{e}-01 \quad \mathrm{f}-\mathrm{fk}=-0.615 \mathrm{e} \mathrm{al} \quad(\mathrm{d}, \mathrm{g})=\mathrm{C} .48 \mathrm{se} \mathrm{a}_{2}$ $t=0.675 \mathrm{e}-01 \quad \operatorname{logic}=3$
$612 \mathrm{f}=0.5169245 \mathrm{e} 01$ eps＝0．100e 92
$(d, d)=0.135 \mathrm{e} 02$ extra cout＝0．000e 00
$-(c, g C)=0.135 \mathrm{e}$（2
t initial 0．91076344e 0．$f-f k=0.132 e 03 \quad(\mathrm{Crg})=0.141 \mathrm{e} 03$
t diminue 0．91076344e－01 $f-f k=-0.547 e 00 \quad(\mathrm{C}, \mathrm{g})=-0.532 \mathrm{e}$ 01

 $t=6.993 \mathrm{e}-01 \quad \operatorname{logic}=3$

7 16 $f=0.4594672 \mathrm{e} 01$ eps＝0．134e 01
$(\mathrm{d}, \mathrm{d})=0.179 \mathrm{e} 02$ extra cout＝©．567e 01
$-(\mathrm{c}, \mathrm{gC})=0.255 \mathrm{e}$ ． 2
 $t=0.373 \mathrm{e}-\mathrm{cl} \quad \operatorname{logic}=3$
$\varepsilon \quad 17$
$\mathrm{f}=0.4299792 \mathrm{e} 01 \mathrm{eps}=0.949 \mathrm{e}$ ． 0
$(0, d)=0.273 \mathrm{e}$ © 2 extra cout $=0.978 \mathrm{e}$ ©
$-($（c，g0）$=0.3 r$ re 02
t initial 0．21601800e－0l f－fk＝－0．138e $01 \quad(\mathrm{C}, \mathrm{g})=-0.31 \mathrm{se} 02$
t grandit 0.43203500 ge 01
t grandit 0．85407200e－01
$f-f k=-0.229 e 01 \quad(\mathrm{C}, \mathrm{g})=-0.125 \mathrm{e}$ 〔2
$f-f k=-0.287 e$＠l $(\mathrm{C}, \mathrm{g})=-0.403 \mathrm{e}$（1） $\mathrm{t}=0.864 \mathrm{e}-01 \quad \operatorname{logic}=3$
eps＝0．316e 01
$(\mathrm{C}, \mathrm{c})=0.280 \mathrm{e} 00$ extra cout＝ 0.00 e 00

$$
-(c, g n)=r .28 r e g c
$$

t initial 0．20460793e 02
t diminue 0．20450794e 01 t diminue 0．20460795e 00
$f-f k=0.103 \mathrm{e} 04 \quad(\mathrm{C}, \mathrm{g})=0.497 \mathrm{e} 02$
$f-f k=0.117 e 02(\mathrm{Crg})=0.518 \mathrm{e} 01$
 $\mathrm{t}=0.205 \mathrm{e} 00 \quad \operatorname{logic}=2$

10
23
$f=0.1433475 \mathrm{e} 01$ eps＝0．316e 01
$(c, d)=0.179 \mathrm{e} 00$ extra cout＝冋．000e on

$$
\begin{aligned}
& -(c, g 0)=0.179 \mathrm{e} \text { बढ } \\
& f-f k=0.678 e-01 \quad(\mathrm{C}, \mathrm{~g})=-0.175 \mathrm{e} \text { 厄 } \\
& f-f k=-0.391 e-03 \quad(\mathrm{C}, \mathrm{~g})=-0.455 \mathrm{e} 00 \\
& f-f k=-0.151 e-03 \quad(\mathrm{C}, \mathrm{~g})=-0.483 \mathrm{e} \text { ¢! } \\
& \mathrm{f}-\mathrm{fk}=-0.306 \mathrm{e}-03 \quad(\mathrm{c}, \mathrm{~g})=-0.477 \mathrm{e} \text { 00 } \\
& \mathrm{f}-\mathrm{fk}=-0.385 \mathrm{e}-63 \quad(\mathrm{C}, \mathrm{~g})=-\mathrm{c} .472 \mathrm{e} \text { त } 0 \\
& \text { f-fk=-0.422e-ก3 } \\
& f-f k=-0.439 e-03 \\
& f-f k=-0.143 e-03 \\
& (\mathrm{c}, \mathrm{~g})=-0.469 \mathrm{e} \text { त } \\
& (\mathrm{d}, \mathrm{~g})=-0.4 \text { 万he } 9 \mathrm{~m} \\
& (c, g)=-0.064 \mathrm{e} \text { a. } 0 \\
& (\mathrm{c}, \mathrm{~g})=-0.452 \mathrm{e} 00 \\
& (c, g)=-C .45, l e \text { ar } \\
& (\mathrm{c}, \mathrm{~g})=- \text { - } .4 \text { б斤e ar } \\
& (\mathrm{d}, \mathrm{~g})=-0.45 \mathrm{~g} \text { e กด } \\
& (\mathrm{c}, \mathrm{~g})=-\mathrm{C} .459 \text { e } 00 \\
& (\mathrm{C}, \mathrm{~g})=-8.459 \mathrm{e} \text { (10 } \\
& (\mathrm{c}, \mathrm{~g})=-0.459 \mathrm{e} \text { an } \\
& (\mathrm{C}, \mathrm{~g})=-0.459 \mathrm{e} 0 \varrho \\
& (\mathrm{c}, \mathrm{~g})=-0.459 \mathrm{e} \text { 0 } 0 \\
& (\mathrm{C}, \mathrm{~g})=-0.459 \mathrm{e} 0 \\
& \text { (} \mathrm{C}, \mathrm{~g} \text {) }=-0.459 \text { e } 0 \\
& (\mathrm{~d}, \mathrm{~g})=-\mathrm{C} .459 \mathrm{e} \text { CC } \\
& (\mathrm{c}, \mathrm{a})=-\mathrm{C} .459 \mathrm{e} \mathrm{fe} \\
& (\mathrm{c}, \mathrm{~g})=-6.459 \mathrm{e} \text { dr } \\
& (\mathrm{c}, \mathrm{~g})=-0.459 \mathrm{e} \mathrm{ac} \\
& (\mathrm{~d}, \mathrm{~g})=-6.459 \mathrm{e} \text { のก }
\end{aligned}
$$

t initial 0．256ll925e 00
t diminue 0．25611925e－01
t diminue 0．3568679le－02 interpol 6．84861079e－02 interpol 0．12222219e－01 interpol 0．15094112e－ 01 interpol ©．17321056e－61 interpol 0．19058085e－01 interpol $0.20420330 \mathrm{e}-61$ interpol 0．21493299e－81 interpol 0．22340419e－01 interpol 0．23010075e－01 interpol 0．23541436e－01 interpol 0．23119440e－01 interpol 0．23206325e－01 interpol $0.23275629 \mathrm{e}-01$ interpol 0．23330217e－01 interpol $0.23373697 e-01$ interpol ©．23407992e－61 interpol 0．23435395e－01 interpol $0.23457082 \mathrm{e}-01$ interpol 0．23439452e－61 interpol $0.23442416 e-\mathbb{C l}$ interpol 0．23445072e－61 $\mathrm{t}=$ Q．234e－01 $\quad \operatorname{logic=1}$

Finally we show the printout with IMP $=1$, when the mistake in CALCUL is removed.


```
    25 95 f= -0.8413543e 0n eps=f.156e-03
    27 07 f= -0.8413853e 90 eps= &.10ne-03
    28 100 f= -0.8413895e 00 eps=0.100e-03
    29 101 f= -0.8413895e 00 eps= 8.100e-03
    30 102 f= -6.8413895e go eps= 0.100e-8,3
    31 103 f= -0.8413895e 00 eps= 0.160e-03
    32 104 f=-0.8413895e 00 eps= 0.100e-03
error from gauche. at entry, the old solution is optimal
f=-@.&4138054e 00 ...fin anormale
```

Now some trouble appears in the computation of the direction. Because the subprogram that computes this direction is fairly reliable, the trouble must be due to rounding off. This is confirmed by the fact that we have used ETA $=10^{-10}$, whereas the squared norm of the gradient in the neighborhood of the solution is in the range 10^{4}.

[^0]: INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria

