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FOREWORD 

One of the aims of the Optimization Task of the System 
and Decision Sciences Area is to provide computer codes that 
help to solve certain numerical problems. 

This paper describes the use of such a code which is being 
used successfully on a number of IIASA problems, in particular 
for the Food and Agriculture Program and Human Settlements and 
Services. 



NONSMOOTH OPTIMIZATION: 
USE OF THE CODE DYNEPS 

Claude Lemarechal 
INRIA-Rocquencourt, 78150 Le Chesnay, France 

1. GENERALITIES 

This code is a technical improvement of the code CONWOL, 

and its role is also to minimize a function f (x) without con- 

straints, i. e. , 

* 
find x in the n-dimensional space Rn such that 

(1) 

f (x*) - < f (x) for any X in R" . 

It is assumed chat, given x, one can compute f(x) and the 

gradient g(x); however, g(x) is not assumed to vary continuously 

when x varies. Thus, the possible applications for DYNEPS could 

be : 

-- when f is known to be kinky 

-- when the differentiability properties of f are not 

exactly known 
-- when there are some constraints in the ~roblem that 

are introduced in the objective function through a 

penalty term. 

The code is only semiexperimental in the sense that dimen- 

sionments are static, printouts are schematic, etc. However, 



it shou ld  be f a i r l y  r e l i a b l e ,  and p o s s i b l e  d i f f i c u l t i e s  normal ly  

come from i n c o r r e c t  u s e  of t h e  code,  r a t h e r  t h a n  d e f i c i e n c i e s  

o f  t h e  code i t s e l f .  

The method i s  i t e r a t i v e  and c o n s t r u c t s  a  sequence o f  " t r i a l  

s o l u t i o n s "  xk ,  k  = 1 , 2 ,  ..., K ,  and r e t u r n s  some xK which i s  hope- * 
f u l l y  a  good approx ima t ion  o f  x  . More s p e c i f i c a l l y ,  t h e  a lgo -  

r i t h m  aims a t  o b t a i n i n g  approx imate  o p t i m a l i t y  c o n d i t i o n s  of  

t h e  t y p e  

min 

I t  s t a r t s  w i t h  b i g  E ,  ( g i v e n  by t h e  u s e r ) ,  r educes  E~ when an  

e s t i m a t e  such a s  ( 2 )  i s  o b t a i n e d  and s t o p s  when ( 2 )  i s  o b t a i n e d  

w i t h  E~ ( where c0  i s  t h e  f i n a l  t o l e r a n c e ,  a l s o  g i v e n  by 

t h e  u s e r .  

Note t h a t  an  e s t i m a t e  such a s  ( 2 )  supposes  t h a t  f  i s  convex. 

However, even i n  t h i s  c a s e  it canno t  be o b t a i n e d  and t h e  a l g o r i t h m  

s t r i v e s  t o  approx imate  it by: 

f ( Y )  2 f ( xk )  - ck - 611 y - x k  , f o r  any y  i n  R", ( 3 )  

where q i s  a n o t h e r  t o l e r a n c e  g i ven  by t h e  u s e r ;  it p l a y s  t h e  

p a r t  o f  t h e  squared  norm o f  t h e  g r a d i e n t  i n  t h e  smooth c a s e .  

The computa t ion  o f  x ~ + ~  from x  i s  c a l l e d  an  i t e r a t i o n  and 
k  

is  done i n  two s u c c e s s i v e  s t e p s :  

-- n  f i r s t ,  compute a  d i r e c t i o n  d  i n  R ; t h i s  i s  done i n  k  
t h e  s u b r o u t i n e  GAUCHE. I t  i s  a  r a t h e r  comp l i ca ted  

p r o c e s s ,  which i n v o l v e s  g l ,  ..., gk ,  t h e  g r a d i e n t s  com- 

pu ted  i n  i t e r a t i o n s  1 ,  ..., k .  
-- second,  compute a s t e p s i z e  tk > 0; t h i s  i s  done i n  t h e  

s u b r o u t i n e  LIGNE. 

Then two c a s e s  may occu r .  I f  LIGNE h a s  found t h a t  f ( x k + t k d k )  

i s  less t han  f ( x k )  by a  d e f i n i t e  amount, t h e n  xk i s  norma l l y  

updated t o  x  
k+ 1 = xk + t k d k .  O the rw ise  x ~ + ~  i s  k e p t  a s  xk ,  

and o n l y  a  new g r a d i e n t  i s  used t o  compute dk+ , .  



2. THE SUBROUTINE CALCUL 

The first thing the user has to do when using DYNEPS is to 

provide a fortran subroutine to compute function and gradient 

values. This subroutine must have the following form: 

SUBROUTINE CALCUL 

DIMENSION X(1), G(1) . 

X is the value of the vector of variables at which f and g 

must be computed, G is the value of the gradient at XI f is 

the value of the function. 

Thus, other information essential for CALCUL (such as N, 

the number of variables) must be passed on through some COMMON 

block to be shared between the main program which calls DYNEPS 

and the (possibly many) subroutines which help characterize the 

problem to be solved. 

3. THE CALLING SEQUENCE 

CALL DYNEPS (XI F I  EPS, EPSO, ETA, ZERO, FMIN, IMP, 

N, G I  NIdAX, ITMAX, NAPMAX) 

where the parameters are: 

X (Input-Output), a vector of dimension n. 

Input: the initial values of the variables given by the 

user when calling DYNEPS. 

Output: the final variables returned by DYNEPS. 

F (1-0) , a scalar. Same meaning but concerning function values. 

EPS (I-01, an initial guess to get (2). A fraction of f (xl) - 
min f is a reasonable value. The choice of EPS affects 

only the first iteration. EPS is modified by DYNEPS. 

EPSO (I), the final value wished by the user in the bound (3). 

ETA (I), the tolerance in (3). It is homogenous to the square 

norm of the gradient, and a peculiarity of DYNEPS is 



that very small values for ETA are acceptable. If Af and 

Ax are of the same order of magnitude (i-e., gradients close 

to unity) it is not unreasonable to ask for ETA in the 

range 10 -I2 on PDPII. 

ZERO (I). The machine precision; because the program is written 

in single precision, it is approximately on PDP11. 

FMIN (I). A safeguard to prevent unbounded solutions. The pro- 

gram stops if some X is found such that F(x) < FMIN. - 
IMP (I). Controls the printouts. The amount of printouts is an 

increasing function of IMP. If IMP < - 
0 nothing is printed 

1 something veryshort is printed at each iteration 

2 some more information is printed at each iteration 

(mainly useful for the designer of the algorithm). 

3 information is printed during executions of LIGNE; very 

useful to check the computation of the gradient (see 

Section 4). 

IMP > 3 dumps the execution of GAUCHE and should never 

be used. 

N (I) , number of variables. 

G (1-0) , a vector of dimension n. 
Input: the gradient of f at the initial value of x. 

Output: no meaning. 

NIWX (I), controls the core requirement. Because GAUCHE uses 

gi, i = 1, ..., k at iteration k, the amount of core required 
by the algorithm is theoretically infinite. Therefore, when 

the number of gradients is going to exceed N:4AX, a cleaning 

up is made to keep a number of gradients no larger than 

NMAX. NP4AX should be reasonably large (say at least 10). 

ITMAX (I). Maximum number of iterations, i.e., DYNEPS stops 

when k = ITMAX. 

NAPMAX (I). Maximum number of calls to the subroutine CALCUL. 



4. WARNINGS AND HINTS 

Do not forget to call CALCUL before entering DYNEPS, in or- 

der to properly initialize F, GI and possibly EPS. 

Check that the internal dimensions are sufficient. One 

must have: 

in DYNEPS Dim. of Q > N*(NMAX - 1) 
Dim. of S > N - 
Dims of EPSN, AL, JC - > NMAX 

in LIGNE Dim. of x > N - 

in GAUCHE Dim. of R - > (NMAX, NIWX) 

Dims. of RR, x, y, wl, w2, A, E, JC, IC - > NMAX 

In its present form, the program accepts N - < 50 and NMAX - < 20. 

In case of difficulty, if the calling sequence is correct 

and if all the DIMENSION statements are large enough, then there 

is a 99% probability that the gradient is badly computed in 

CALCUL. To check it, run with IMP = 3. Then, at each iteration, 

a line is printed at each call of CALCUL. The following no- 

tations are used: 

FK is f(xk), the initial value, at o-stepsize, for the line- 

search. 

F is f(xk+tdk), the objective function at the current stepsize 

t. The printed F - FK gives the change in f when x is 
changed from xk to xk + tdk. 

D is the direction dk, and (DIG) is the derivative with respect 

to t of the one-dimensional function f (xk + tdk). 

Then, drawing the observed points of the graph of f and of 

its tangents should indicate if the derivative seems to agree 

with the function. 

The standard cause of failure is when a sequence of step- 

sizes is produced going to zero (from the right), with F - Fk 
decreasing down to zero, whereas the derivative (DIG) is con- 

stantly negative. The user must then judge whether this is due 

to round off errors or to gross blunders in CALCUL. 



5. AN ILLUSTRATIVE EXAMPLE 

For demonstrative purposes, we will show the printout of a 

run where the function to be minimized is MAXQUAD, as described 

in "A set of nonsmooth optimization test-problems" (in "Non- 

smooth optimization" Lemarechal and Mifflin, eds., IIASA Pro- 

ceedings Series Volume 3, Pergamon Press). 

The subroutine CALCUL contains a mistake that has been pur- 

posely introduced in the computation of the gradient. Instead 

of 

we have written 

The printout with IMP = 1 is given below. 

10 2 3  f= E.1433475e 0 1  eps= f.315e 01 
f =  C.14330551e 01 ... fin anormale 

It gives for each iteration: the number of iteration, the 

number of calls to CALCUL made so far, the current value of 

the objective function, and of the convergence parameter EPS 

(which is supposed to reduce down to EPSO). 



T h e n  w e  show t h e  p r i n t o u t  w i t h  IMP = 3 .  A t  t h e  t e n t h  i t e ra -  

t i o n  w e  see t h a t ,  when t h e  s t e p s i z e  i s  close t o  t h e  o p t i m a l  s t e p -  

s i z e ,  t h e  d e r i v a t i v e  i s  f r a n k l y  n e g a t i v e .  T h i s  i s  e n o u g h  t o  

s t o p  t h e  a l g o r i t h m .  

1 1 f =  E . 5 3 3 7 0 6 8 e  64 e p s =  C . l E C e  C2 
( d , $ ) =  n . 1 6 4 e  09 e x t r a  c o u t =  B . f l O C e  PC 

- ( ? , g o ) =  E .154e  C9 
t i n i t i a l  C.788743G5e-04 f - f k = - 0 . 5 1 7 e  FA ( ? , q ) =  C.196e fl7 
t= 0.781e-f l4 l o g i c =  3  

2  2  f =  C .1623051e  r 3  e p s =  P . 1 R C e  C2 
( ? , d ) =  8 . 2 1 8 e  f15 e x t r a  c o u t =  f l . 2 3 l e  0 3  

-(?,gf)= 0 . 2 4 1 e  C5 
t i n i t i a l  f l . 42885983e  00 f - f k =  0 . 7 7 3 ~  C G  ( r ' , q ) =  0 .1P2e  07 
t d i n i n u e  E .42885985e-81  f - f k =  0 . 6 7 2 e  0 5  ( ? , c I ) =  f l .175e 07 
t c7iminue 8 .42885984e-02  f - f k= -C .693e  fl3. (c1,g) =-C1.1E6e 113 
t= C.429e-C2 l o g i c =  3  

3  5  f =  O .9297475e  fl2 e p s =  O . l n R e  C2 
( d , d ) =  B.929e 6 3  e x t r a  tout= fl.ClL3Oe P C  

- ( ? , g C ) =  @ . 9 2 9 e  C3 
t i n i t i a l  8 . 1 4 9 2 8 8 5 4 e  f lE  f - f k = - 0 . 5 2 6 e  02  ( ? , g ) =  8 . 5 9 S e  C3 
t= 8 . 1 4 9 e  E O  l o g i c =  3  

4 6 f =  0 . 4 8 3 2 7 2 9 e  0 2  e p s =  B . 1 G O e  C2 
( d , d ) =  O.351e 0 3  e x t r a  c o u t =  f l .97Se E l  

- (? ,cJ  C ) =  f l .449e E3 
t i n i t i a l  C .23454417e  OW f - f k =  f l . lG2e C3 (?,q)= C.145e 0 4  
t d i m i n u e  0 . 3 6 9 9 6 7 8 4 e - 0 1  f - f k = - 0 . 2 4 5 e  112 ( d , y ) = - 0 . 2 S l e  l i 3  

i n t e r p o l  D .56746125e-01  f - f k = - 0 . 2 9 C e  112 ( c ? , g ) =  f l .137e f12 
t=  8 . 5 6 7 e - 0 1  l o g i c = 3  

5  9 f =  0 . 1 1 3 2 4 9 8 e  02  e p s =  C . l D P e  f 2  
( d , d ) =  8 . 1 3 5 e  R2 e x t r a  c o u t =  0 . 7 9 ? e  G 1  

- ( ? , g P ) =  P . l G 3 e  C 3  
t i n i t i a l  C .35599217e  C O  f - f k =  0 . 1 7 2 e  0 3  (c7 ,q )=  ff.li7Se fl3 
t d i n i n u e  f l . 35599217e -01  f - f k = - f l . 5 8 $ e  C 1  (c7 ,? )=-6 .158e P3 

i n t e r p o l  E .67638516e-C1 f - f k=- f l .G lSe C 1  ( + , g ) =  C.4C5e 8 2  
t= @.67Ge-01  l o g i c =  3  

G 1 2  f =  0 . 5 1 6 3 2 4 6 e  0 1  e F s =  fl.lOOe P2 
( d , d ) =  f l . 135e  fl2 e x t r a  c o u t =  C.OClle O C  

- ( ? , g C ) =  f l .135e P2 
t i n i t i a l  0 . 9 1 f l 7 6 3 4 4 e  D O  f - f k =  f l .132e 03  ( ? , g ) =  fi.141e C3 
t Giminue  0 . 9 1 0 7 6 3 4 4 e - 0 1  f - f k = - 0 . 5 4 7 e  C f l  ( d , q ) = - Q . 5 3 2 e  111 

i n t e r p o l  f l . 17304587e  O C  f - f k =  P . 4 6 7 e  fi1 ( ? , g ) =  E.4G9e 02 
i n t e r p o l  0 . 3 9 2 7 3 2 2 8 e - 0 1  f - f k = - 0 . 4 7 5 e  CSO ( ? , g ) =  0.1119e P 2  
t=  C.993e -01  l o g i c =  3  

7  1 6  f =  0 . 4 5 9 4 6 7 2 e  0 1  e p s =  0 . 1 3 4 e  fll 
( ? , d ) =  E . 1 7 9 e  02  e x t r a  c o u t =  0 . 5 5 7 e  0 1  

- ( ? , g f i ) =  f l .255e f?2 
t i n i t i a l  C .37278481e-01  f - f k = - f l . 3 9 5 e  E O  ( d , g ) =  8 .25Ce  C2 
t= n.373e-C1 l o g i c =  3  



E 1 7  f =  0 . 4 2 9 9 7 9 2 e  0 1  e p s =  0 .949~2  f l C  
( d , d ) =  Q . 2 7 3 e  @ 2  e x t r a  c o u t =  C .978e  C 1  

- ( ? , y o ) =  f ' .3qb5e 0 2  
t i n i t i a l  0 .21G01800e-01  f - f k = - 0 . 1 3 8 e  fl1 ( ? , g ) = - P . 3 1 5 e  R2 
t q r a n d i t  0 .432035BOe-01 f - f k= - f l . 229e  0 1  ( ? , g ) = - 1 " . 1 2 5 e  P2 
t g r a n $ i t  0 . 8 6 4 0 7 2 0 0 e - 0 1  f - f k = - P . 2 8 7 e  fll (c l ,q )=-C.dE3e fll 
t= O.EG4e-El l o g i c =  3  

9 2W f =  0 . 1 4 3 3 4 7 5 e  0 1  e p s =  C.316e 0 1  
( d , d ) =  Q . 2 8 0 e  0 8  e x t r a  c o u t =  O.CQiJe fl0 

- (r7,qf l)  = P.28 ( ' e  l l P  
t i n i t i a l  f l . 2 0 4 6 0 7 9 3 ~  112 f - f k =  L3.103e 04 ( r a , g ) =  G1.437e F2 
t d i r n i n u e  0.204SC1794e 0 1  f - f k =  P .117e  02  ( $ , q ) =  3 . 5 1 8 ~  D l  
t d i r n i n u e  0 . 2 0 4 6 0 7 9 5 e  E0 f - f k =  0 . 1 4 5 e  (?C ( ? , g ) =  C.l lOe CG! 
t=  L7.2fl5e flu l o g i c =  2  

1 8  2 3  f =  f l . 1433475e  0 1  e p s =  E.316e fl1 
( d , d ) =  G1.179e 00 e x t r a  c o u t =  O.PC7fle O C  

-(d,yC)= f l .173e OF 
t i n i t i a l  0 . 2 5 6 1 1 9 2 5 e  00 f - f k =  0.678e-C1 ( d , g ) = - 0 . 1 7 G e  P C  
t d i n i n u e  0 . 2 5 6 1 1 9 2 5 e - E l  f - f k= -B .391e -03  ( c l , g )= -C .456e  81? 
t c l im inue  Q .35686791e-E2  f - f k = - P . 1 5 1 ~ - P 3  ( d , q ) = - f i . d 3 3 e  Ff l  

i n t e r p o l  0.84861C179e-82 f - f k=- f l .306e-03  ( ? , g ) = - 0 . 4 7 7 e  fl@ 
i n t e r p o l  0 . 1 2 2 2 2 2 1 9 e - E l  f - f k = - 0 . 3 8 5 e - 0 3  ( c l , g ) = - F . J 7 2 e  ff 
i n t e r p o l  61.15C94112e-01 f-fk=-(1.422e-C13 ( ? , g ) = - ( 1 . 4 6 S e  PIP 
i n t e r p o l  E .17321056e-01  f - f k = - 0 . 4 3 9 e - 0 3  ( d , g ) = - E . 4 6 6 e  8F 
i n t e r p o l  8 .19051C86e-01  f - f k= -0 .443e -C3  (r!,g) = - C . * G d e  P C  
i n t e r p o l  0.2LJ420330e-01 f- fk=-B.A4Ce-03 ($ ,q )= -@.L? ' i 2e  00 
i n t e r p o l  0 . 2 1 4 9 3 2 9 9 e - 0 1  f - f k=-0 .435e-G3 ( ? , q ) = - C . * G l e  C?C 
i n t e r p o l  0 .2234C419e-B1 f - f k = - 0 . 4 3 0 e - F 3  (? ,g )=-CI .?6Ce Pl' 
i n t e r p o l  0 .23010f l75e-C1 f - f k=-Q.d23e- f l3  ( d , q ) = - C . 4 5 S e  ClC 
i n t e r p o l  0 . 2 3 5 4 1 4 3 6 e - 0 1  f- fk=-0.413e-113 ( ? , g ) = - C . 4 5 9 e  
i n t e r p o l  0 .2311944De-01  f - f k = - 0 . 4 2 2 e - 0 3  ( d , q ) = - B . 4 5 3 e  I?C 
i n t e r p o l  0 . 2 3 2 0 6 3 2 5 e - 0 1  f - f k = - 0 . 4 2 1 e - 0 3  ( ? , q ) = - 0 . 4 5 3 e  flCI 
i n t e r p o l  0.23275629e-Cl1 f - f k= -0 .421e - f l 3  ( c ' , g ) = - P . n 5 9 e  OE 
i n t e r p o l  0 . 2 3 3 3 0 2 1 7 e - 8 1  f-fk=-0.42Me-CJ3 ( d l ? )  =-0.45cle C f l  
i n t e r p o l  0 . 2 3 3 7 3 6 9 7 e - 0 1  f - f k= -0 .42Pe-P3  ( ? , g ) = - G . 4 5 f ) e  Els 
i n t e r p o l  e . 2 3 4 0 7 3 9 2 e - 0 1  f - fk=-O.42Ge-03 ( d , g ) = - 1 ; . 4 5 0 e  C O  
i n t e r p o l  0 . 2 3 4 3 5 3 9 5 e - 0 1  f - fk=-B.d2f le-C3 (c' ,g)=-11.453e llf 
i n t e r p o l  11.23457082e-01 f - f k = - P . d l 9 e - f l 3  ( ? , a ) = - C . 4 5 9 e  rl? 
i n t e r p o l  0 .23439452e-G1 f - f k = - 0 . d 2 0 e - 8 3  ( ? , g ) = - U . 4 5 9 e  P F  
i n t e r p o l  1 1 . 2 3 4 4 2 4 1 6 ~ - E l  f - f k = - 0 . 4 2 0 e - g 3  ( c ' , q ) = - r . 4 5 9 e  (11: 
i n t e r p o l  0 . 2 3 4 4 5 0 7 2 e - 8 1  f - f k= -Q .419e -C3  (c3,7)=-G;.453e F @  
t=  E.234e-01 l o g i c =  1 

f =  0 . 1 4 3 3 0 5 5 8 e  0 1  ... f i n  a n o r n a l e  



Finally we show the printout with IMP = 1 ,  when the mis- 

take in CALCUL is removed. 



32 1 8 4  f= -k?.8413895e BQ eps= P.100e-C3 
error from gauche. at entry, the 016 solution is optical 
f=-LI.84133954e 0 0  ... fin anormale 

Now some trouble appears in the computation of the direction. 

Because the subprogram that computes this direction is fairly 

reliable, the trouble must be due to rounding off. This is 

confirmed by the fact that we have used ETA = 10-I O, whereas 

the squared norm of the gradient in the neighborhood of the 
4 solution is in the range 10 . 


