
A Modular Control System for Warehouse Automation
- Algorithms and Simulations in USARSim

Damjan Miklić, Tamara Petrović, Mirko Čorić, Zvonimir Pišković, and Stjepan Bogdan

Abstract— In this paper, we present a control system for
a fully autonomous material handling facility. The scenario
we are considering is motivated by the 2011 IEEE Virtual
Manufacturing Automation Challenge (VMAC). It consists of
multiple autonomously guided vehicles (AGVs), transporting
pallets of various goods between several input and output loca-
tions, through an unstructured warehouse environment. Only
a map of the warehouse and a pallet delivery list are provided
a priori. Pallets must be delivered to the output locations in
the shortest time possible, while respecting the ordering of
different pallet types specified by the delivery list. The presented
control system handles all aspects of warehouse operation, from
individual vehicle control to high-level mission planning and
coordination. Delivery mission assignments are optimized using
dynamic programming and simulated annealing techniques.
Mission executions are coordinated using graph search methods
and a modified version of the Banker’s algorithm, to ensure
safe, collision and deadlock-free system operation. System
performance is evaluated on a virtual warehouse model, using
the high fidelity USARSim simulator.

I. INTRODUCTION

In recent years, Automated Guided Vehicles (AGVs) are
starting to impact material handling and logistics in the
same ways that robotic manipulators have been benefiting
manufacturing processes. Modern distribution centers, ports
and other large material handling facilities are reducing
costs and increasing throughput by employing fleets of
AGVs for transportation tasks. However, the existing large-
scale solutions require significant infrastructural investments
to ensure safe and reliable vehicle operation. Small and
medium manufacturers require even more flexible and power-
ful control systems, which would enable AGVs to operate in
unstructured environments with minimal interventions in the
infrastructure, and even share their workspace with human
workers [1]. Providing such levels of autonomy and safety to
a multi-AGV system represents an challenging and exciting
area of research.

Because of the significant complexity of modern man-
ufacturing process, and nontrivial interactions between the
discrete-event supervisory control and continuous-state con-
trol loops at the lower level, extensive testing must be
performed in order to verify safe and correct behavior of
an automated material handling system. Performing such
testing or experimenting with new control designs on a
real system is infeasible for economical and safety reasons.
Another important consideration in the design process is
the ability to measure and benchmark the performance of

All authors are with Faculty of Electrical Engineering
and Computing, University of Zagreb, 10000 Zagreb, Croatia
damjan.miklic@fer.hr

the control system. With these goals in mind, The National
Institute of Standards and Technology (NIST), together with
IEEE, is organizing the Virtual Manufacturing Automation
(VMA) Competition, an annual event aimed at promoting
scientific progress in the field of manufacturing automation.
The competition is based on USARSim [2], a high-fidelity
simulator of robots and environments built on top of the
Unreal Tournament game engine. Competition rules act as a
set of benchmarks for evaluating the performance of factory
automation systems.

In this paper, we present our warehouse automation solu-
tion that was demonstrated at the 2011 IEEE VMAC. This
solution builds on and extends our previous VMAC system,
described in [3]. In our new system, we rely on the previously
described algorithms for automated map processing, while all
other system components have been completely redesigned
and reimplemented. Instead of the monolithic architecture of
last years’ solution, the new system features a modular and
scalable design, which allows us to exchange and experiment
with different control and coordination algorithms. Low-level
path planning and waypoint navigation controllers now lever-
age the power and built-in algorithms of the Robot Operating
System (ROS) [4]. Delivery mission assignments are now
done on-line, and are optimized using dynamic programming
and simulated annealing techniques [5]. Mission executions
are coordinated using graph search methods and a modified
version of the Banker’s algorithm[6], to ensure safe, collision
and deadlock-free system operation. System evaluation is
performed on the newer version of the USARSim simulator,
featuring much more realistic physical models.

The paper is organized as follows. This year’s competition
scenario is described in Section II. An outline of the proposed
system architecture is given in Section III. Section IV,
Section V and Section VI provide details on the implemented
planning and scheduling algorithms. Performance evaluation
results are presented in Section VII, and Section VIII pro-
vides concluding remarks and directions for future work.

II. WAREHOUSE SCENARIO

The warehouse scenario that we are considering in this
work is based on the Mobility elemental test of the 2011
IEEE Virtual Manufacturing Automation Competition [7].
It aims to recreate some of the challenges faced by small-
and medium-sized manufacturers, when applying automation
to legacy manufacturing facilities [1]. The warehouse setup
features four Kiva-like AGVs, transporting pallets of goods
through an unstructured environment. The vehicles can pick
up pallets by driving underneath and engaging a vertical

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1405-3/12/$31.00 ©2012 IEEE 3449

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by FAMENA Repository

https://core.ac.uk/display/83640447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

actuator that lifts the pallet off the ground. The physical
dimensions of the AGVs are given in Table I.

TABLE I: AGV dimensions.

Length Width Height Weight Wheel
radius

Spin
speed

0.762m 0.635m 0.406m 150kg 0.1m 20rad/s

A sample warehouse layout, used at the 2011 VMAC,
is shown in Fig. 1. It features three loading stations,
where goods are ”produced” (spawned into the simulation).
Each loading station, labeled Loading-A through Loading-
C, produces a different type of goods. Goods need to be
delivered to unloading stations, labeled Truck-1 and Truck-
2, representing delivery truck trailors. At the beginning of
a simulation, the AGVs are spawned at the four docking
stations. The environment is unstructured in the sense that it
has no special markers, rails or similar objects to facilitate
vehicle localization and navigation. A warehouse floorplan
is provided a priori to the control software in the form of a
MapInfo Interchange File (MIF) with an accompanying MID
file.

Fig. 1: A sample warehouse environment.

In the envisioned VMAC scenario, the loaded trucks need
to make deliveries to several different locations. As every
location requires a specific quantity of each type of goods,
this places certain restrictions on the order in which goods
should be loaded onto trucks. These restrictions are specified
in XML-formatted Truck order files (one file per truck).
The overall goal of the control software is to complete all
the loading jobs in the shortest possible amount of time,
while respecting the required loading order. The competition
is carried out in several rounds, each round placing more
complex loading order restrictions.

III. THE CONTROL ARCHITECTURE

Implementing a system that is capable of ensuring com-
pletely autonomous operation of a warehouse is a complex
task. In order to manage this complexity, we have adopted
a modular and layered approach, breaking the system down
into several modules. Each module manages a well-defined
segment of system operation and communicates to other
modules through its interface. An interface consists of a
set of messages that the module can generate and receive.
This approach greatly facilitates the development, testing
and performance evaluation of the system because individual
modules can be developed and tested separately. Further-
more, any module can easily be replaced by a different
implementation, as long as it has the same interface. Finally,
this approach enables us to seamlessly transition between
simulators with different levels of realism, and to eventually
go from simulation to a real system, with only minor changes
in the controller code.

Fig. 2: Control architecture overview.

The overall architecture of our warehouse automation
system is depicted in Figure 2. The main components that
can be identified are Map processing, Mission planning, Task
scheduling, Vehicle motion control, Warehouse status and
simulation modules. Mission planning and task scheduling
represent the core of the control system, as they implement
all the high-level warehouse management logic, and are re-

3450

sponsible for safe and efficient system operation. The mission
planning module processes the XML-formatted Order file
and assigns pallet delivery missions to available vehicles. The
scheduling software allocates paths and ensures collision-free
vehicle motion by assigning priorities in case of conflict.
The scheduling module passes commands directly to mo-
tion controllers on-board the vehicles, through a message-
based interface over the TCP/IP network. The interface
consists of simple ”GoTo”-type motion commands, so the
scheduling software will work with any kind of vehicle, real
or simulated, that can interpret the commands an execute
these simple motions. Both the mission planning and task
scheduling modules work with a graph-based representation
of the warehouse environment. The warehouse graph is
generated by the map processing module from the .MIF and
.MID map files.

Motion controllers for individual vehicles are implemented
using localization and navigation algorithms provided by
ROS. In order to leverage the power of ROS, we have devel-
oped two software interface nodes. One node implements the
communication protocol with the high-level warehouse con-
trol system, accepting motion commands and passing them
on to the ROS navigation stack. The other node implements
the USARSim communication protocol, accepting sensor
data and passing motor velocity setpoints to the simulated
vehicles. With this design, the entire warehouse management
system could be transfered to real, physical robots, simply
by replacing the USARSim node with a node that can read
the sensors and pass setpoints to actual robotic hardware.

The high-level planning an scheduling software is the
most complex part of the whole warehouse management
system. It takes a lot of simulation iterations and test-debug-
modify cycles to achieve error-free operation and optimize
performance. For running a high number of simulations and
evaluating only the performance of the planning and schedul-
ing modules, it is unnecessary and cumbersome to use a high-
fidelity simulator modeling physical interactions between the
vehicles and the environment. Therefore, our system also
features a lightweight discrete-event-based simulator called
WAREHOUSim, for testing and evaluating the planning
and scheduling logic. Because the simulator conforms to
the communication protocol of the scheduling module, we
can seamlessly transfer the tested and verified planning and
scheduling algorithms to the USARSim system.

IV. SUPERVISORY CONTROL SYSTEM

Supervisory control is the highest level of warehouse
control that processes pallet delivery demands on one hand
and communicates with low level vehicle control on the
other.

The supervisory control system consists of two modules:
mission planning and task scheduling. Mission planning is
the highest level algorithm that directly processes pallet
delivery demands in form of .xml files, and afterwards
dispatches missions (tasks) to vehicles in order to meet the
given requirements. The task scheduling module is started
after dispatching is done, and its role is to control execution

of the assigned missions over time. This includes i) routing
- deciding which of the possible alternative routes vehicle
is going to take and ii) scheduling - coordination of move-
ment for a group of vehicles by designing specific priority
assignment policy.

Situations that the scheduling algorithm needs to predict
and avoid are collisions and deadlocks. The goal of the super-
visor is to ensure safe and accurate system functioning, while
optimizing system performance in terms of total time and
energy spent (distance traveled) for meeting pallet delivery
demands.

In the text that follows we will introduce some basic
terms that will be used throughout the paper. We start with
modeling of a warehouse system using an undirected graph,
which is the basis of our warehouse management system.
In such a graph representation of a warehouse (Fig.3) arcs
correspond to lanes along which vehicles move, whereas
nodes correspond to lane intersections, input and output
locations (sometimes referred to as loading and unloading
stations), and vehicle parking stations. Each lane has a
limited capacity and can hold only a limited number of
vehicles at a time.

Fig. 3: Graph representation of a warehouse

We include input location nodes in set I = {i1, i2, . . . , ip},
and output location nodes in set O = {o1, o2, . . . , oq}. We
assume that a certain type of pallets is produced at each input
location. For the system in Fig.3, the set of input stations
(or pallet types) is I = {A,B,C}, and output stations are
O = {O1, O2}. We denote the set of idle vehicles at time
t as Vi = {vi1, vi2, ..., vij} and set of all vehicles as V =
{v1, v2, . . . , vl}. Each vehicle vi has its own parking station
(arc) that we denote with p(vi).

V. MISSION PLANNING

We define a mission as an ordered pair mk = (ii, oj),
where ii ∈ I corresponds to the input station that is a source
of the pallet that needs to be transported to the output station
oj ∈ O.

For each output location, a pallet delivery list is provided
that specifies the number of different pallets that need to be

3451

transported to it. With all such delivery lists defined, mission
planning algorithm determines the set of missions that need
to be done, and we denote this set as M = {m1,m2, ...,mn}.

For example if the pallet delivery list for warehouse
in Fig. 3 is provided only for station O2 and is given
as {A,B,B,C,C}, the set of missions is then M =
{(A,O2), (B,O2), (B,O2), (C,O2), (C,O2)}.

The procedure for mission assignment is started at time
t if there is an idle vehicle, which does not perform any
mission (Vi 6= ∅) and there is at least one non-assigned
mission (M 6= ∅).

Using an algorithm for vehicle dispatching, we need to
determine a mapping of the set of idle vehicles Vi on the
(part of) the active missions set M , in order to minimize the
time needed to execute all active missions using the given
resources (vehicles).

While developing the described solution for 2011 VMAC,
we evaluated several mission assignment algorithms, includ-
ing simple cyclic selection of input and output station for a
vehicle, selection of an input/output location with the high-
est number of requested pallets etc. The best performance
was achieved using the Munkres algorithm combined with
simulated annealing. These algorithms are described in the
text that follows.

A. Munkres algorithm

The first step towards solving the mission assignment
problem is to calculate the performance cost of each mission
in M by each vehicle in V . The cost ct(i, k) is calculated
as the shortest distance that the vehicle vi needs to cross,
starting from its current position at time t, over the input
location, to the output location of the corresponding active
mission mk. If the vehicle at time t executes a mission and
is not idle, we take into account the path it needs to cross
to finish its current mission.

The cost function that needs to be minimized in this
optimization problem is given as:

Ct(x) =
∑
vi∈V

∑
mj∈M

ct(i, j)xvimj , (1)

where:

xvimj =

{
1 if vehicle vi is assigned to mission mj

0 otherwise
(2)

A solution can be obtained using Munkres algorithm, one
of most known combinatorial optimization algorithms for
linear assignment problems in polynomial time [8]. Since
our problem is not quadratic, we use the Munkres algorithm
modified for rectangular problems [9].

The output from the algorithm is an optimal assignment
strategy X = {{vi,mj} : vi ∈ V,mj ∈ M}, such that in
optimal case mission mi is assigned to vehicle vj .

Having determined the strategy X , we calculate decision
function Xt ⊂ X , which includes only those pairs {vi,mj}
where a mission is going to be assigned to a vehicle at time
t. The decision function is such that a mission is assigned
only to currently idle vehicles.

A special case of the assignment problem that was given
in 2011 VMAC is a situation where a truck needs to deliver
sets of pallets at several different stops. To simplify pallet
unloading, one defines the order in which pallets need to
be loaded onto the truck. Missions corresponding to the
output location (truck) ok can in that case be written as:
(Mk1,Mk2, ...,Mkg) where all missions in set Mk1 must
deliver pallets before missions in set Mk2, etc.

In this case, the algorithm first adds the set Mk1 to
the active mission set M (which is to be assigned during
the optimization procedure). After all missions in set Mk1

deliver pallets, set Mk2 is added to M etc. Having the active
mission set M determined, the procedure is the same as for
single stop demand.

B. Simulated annealing

The objective of Munkres algorithm (1) is to minimize
the total distance traveled by the vehicles. However, shorter
traveled distance does not necessary mean shorter time since
vehicles, in order to avoid collisions, must in many cases
stop and let other vehicles pass. More vehicles sharing
common route parts means more waiting, and eventually
a shorter route might become less favorable. Since it is
infeasible to predict possible collision situations, to get a
more accurate assignment strategy, we modify optimization
problem to penalize route overlapping. As the optimization
method, we use simulated annealing [5]. The starting point
for the simulated annealing is the solution of the Munkres
algorithm.

A new cost matrix, Coverlap, is then calculated so that
the cost of a route increases for the total length of its
overlap with other routes. In each step of the algorithm, a
new neighborhood solution is chosen by: i) assigning of a
different task to a single vehicle or ii) swapping of tasks of
two vehicles. If the cost of the neighboring solution is lower
than the current cost, the neighbor is accepted as the new best
solution. If it is of higher cost, it is accepted with certain
probability, which depends on variable T (temperature),
and decreases as the algorithm evolves depending on the
value of α cooling constant. Algorithm terminates after a
given number of iterations (Imax).

We will clarify the mission assignment procedure for
the situation given in Fig. 3 and active missions M =
{(A,O2), (B,O2), (B,O2), (C,O2), (C,O2)}. All vehicles
are idle, that is, V = Vi = {b, r, g, y}. Since all vehicles
are idle, cost is the shortest distance needed to execute a
mission. The cost matrix is given as:

C0 =

m1 m2 m3 m4 m5

b 7806 7663 7663 5796 5796
r 7805 7662 7662 5795 5795
g 7407 5825 5825 5797 5797
y 7410 5827 5827 5800 5800

The output from the Munkres algorithm is the following

mapping: X = {{b,m3}, {r,m4}, {g,m1}, {y,m2}}. In the
next part, this solution is forwarded to the simulated anneal-
ing procedure with parameters: T = 5800, α = 0.6, Imax =

3452

10. Simulated annealing redispatches missions to penalize
path overlapping. The result is the modified assignment:
X = {{b,m2}, {r,m1}, {g,m4}, {y,m3}}.

VI. TASK SCHEDULING

Having assigned missions to vehicles, the routing algo-
rithm determines which route the vehicle is going to travel to
successfully finish the given mission. Routing can in general
be static (route does not change during mission execution)
and dynamic (route is allowed to change). Our approach
combines the properties of both approaches.

The basic idea behind the route assignment is that a vehicle
can be given a certain route if and only if it is safe, that is, if
all other missions can afterwards be finished without colli-
sions and deadlocks. A trivial example for a non-safe route is
one where a vehicle is blocking another vehicle, preventing
it from finalizing its own mission. Route interactions can be
very complex even for medium-scale systems, which makes
avoidance of similar situations difficult.

A new route is assigned to a vehicle in two specific
situations: i) a new missions is assigned to a vehicle ii)
a vehicle has picked up a pallet at the input station i. The
assigned route consists of two parts:

1) path from the current position to the next (input/output)
station

2) path from the next station to the parking station
When a new mission is assigned to a vehicle (v), the
route that is assigned first is the shortest possible. If this
assignment is not verified to be safe, the algorithm tries to
find a longer, but safe route. If there is not a single safe
route, the vehicle remains in its idle node (if no route has
been previously assigned to it), or continues to move along
its (safe) route to the parking station, continuously checking
whether a safe route to the given input station i exists. In
the worst case, a route will be assigned in its parking station
[10].

The scheduling algorithm, which acts as a centralized
supervisor, is called each time some vehicle arrives in front
of a node, which can correspond to a crossroad or a station.
The algorithm knows the positions and routes for all vehicles
and its role is to allow or deny vehicle transfer to the next
arc on its route.

As we have said before, scheduling should verify that
the system is always in a safe state, where there exist
at least one scenario of vehicles movements such that all
missions can be safely executed. All other states are either
deadlock or are going to inevitably end up in a deadlock.
The vehicle transfer should be denied if and only if it will
lead the system into a deadlock. Unfortunately, the problem
of state safety verification is in general NP-complete [11], so
various polynomial algorithms that identify only necessary
conditions for system safety are used today in practical
applications.

Our approach, which is thoroughly described in [10], is
based on Banker’s algorithm [6]. According to the Banker’s
algorithm, a state is safe if missions can finish sequentially,
one by one. Since this is a rather conservative strategy, we

modified it to check not only if the requested transition is
safe, but also if a vehicle can, by advancing on its route, get
to a Banker’s safe state. This modification results in increase
in vehicle utilization for certain types of layouts.

VII. PERFORMANCE EVALUATION IN USARSIM

The developed warehouse management solution is evalu-
ated in both WAREHOUSim simulator and USARSim sim-
ulation environment. System functionality and performance
were analyzed for the warehouse layout shown in Fig.
1 for three different scenarios (S1, S2 and S3) given in
Table II. Simulation included four Kiva-like vehicles. For
each scenario, one pallet delivery list is provided for every
truck (T1, T2). All scenarios have the same total number
of packages, with a different number of stops that truck
is required to make to deliver the packages to their final
destinations. For example, in S2, truck T2 first needs to load
one A package for Stop 3, then one A and two C packages
(in any order) for Stop 2, and one A and one B package for
Stop 1.

TABLE II: Delivery mission scenarios.

Stop1 Stop2 Stop3 WHSim USARSim
T1 2A,3B,C - - AABBCB AABBCB S1
T2 3A,B,2C - - CBCACA CBCAAC
T1 2A,3B,C - - AACBBB AACBBB S2
T2 A,B A,2C A BA-CCA-A BA-CCA-A
T1 A,B,C A,B B ACB-AB-B ACB-AB-B S3
T2 A,B A,2C A ABC-CA-A BAC-AC-A

TABLE III: Algorithm performance metrics.

Distance Time Pallets Idle Waiting
S1 818m 6:51 12 0% 11.64%
S2 793m 7:56 12 1.78% 14.74% WHSim
S3 814m 7:33 12 3.43% 15.33%
S1 814m 20:40 12 0% 20.64%
S2 801m 21:35 12 3.18% 21.3% USARSim
S3 788m 18:12 12 4.6% 14.08%

Performance results are shown in Table III. For each
scenario we logged the total distance traveled, total time
needed to fulfill the order, total number of pallets that are
delivered, the average time all vehicles spent idle in their
parking station and the average time each vehicle spent
waiting due to the scheduling policy restrictions.

Simulation results in both simulators show that the average
idle time increases with scenario complexity (number of
truck stops). That is due to the properties of mission planning
algorithm, which ensures that any missions corresponding
to a certain truck stop can not be started before missions
for all subsequent stops are done. The total time needed
to finalize the order is lowest for scenario with one stop,
that is, no order requirements. An interesting observation
is that for the third scenario, S3, the USARSim simulation
achieved the best performance in comparison with other two,
which is an unexpected result. This is partially due to the fact
that for real vehicles, like the ones simulated in USARSim,
the time required to complete a delivery depends not only

3453

(a) Three autonomous vehicles, waiting for priority assignment by the
scheduling algorithm.

(b) Pallet delivery at the unloading station (truck cargo area)

Fig. 4: Snapshots from simulation runs at VMAC 2011. The left side of each subfigure shows the warehouse floorplan with
current robot positions and motion plans visualized in the rviz tool from ROS. The right side shows the USARSim world.

on route length but also on its structural characteristics,
such as arc curvature, and vehicle’s physical properties.
As shown through the presented experiments, these effects
are not observed in a discrete-event-based simulation, but
they significantly impact the results of the high-fidelity
simulation. This highlights the value of realistic, physics-
based simulation for evaluating the performance of control
algorithms.

Snapshots from an USARSim simulation run are shown in
Fig. 4, and an edited video showing our software in action
at IEEE VMAC 2011 is available for online viewing [7].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a control architecture
for autonomous warehouse management. The warehouse
scenario has been motivated by the 2011 IEEE Virtual Man-
ufacturing Automation Mobility Challenge. The described
architecture incorporates all levels of autonomous warehouse
management, from individual robot control to facility-wide
planning and scheduling. The modular design approach fa-
cilitates system testing and reconfiguration. The performance
of the control system has been evaluated in a discrete event-
based simulator and in the high-fidelity USARSim simu-
lator. Experiments have demonstrated the system’s ability
to enforce safe and correct multi-vehicle operation, pre-
venting collisions and deadlocks and ensuring correct pallet
deliveries throughout the warehouse environment. Experi-
ments conducted in USARSim have also brought up some
shortcomings of the implemented conservative scheduling
strategy, which were not obvious in purely discrete event-
based simulation. These results highlight the importance of
a realistic simulation environment which models physical
interactions.

In future research, we will investigate more efficient
scheduling algorithms and integrate them more tightly with
mission planning. Furthermore, we are planning to replace
the current simulator with the new version of USARSim,
based on the freely available Unreal Development Kit, which
should provide a more stable simulation environment. Fi-
nally, we expect to further improve our warehouse manage-
ment system trough more advanced scenarios and competi-
tion with other teams in future VMA Mobility Challenges.

ACKNOWLEDGMENTS

The work of S. Bogdan, T. Petrović and D. Miklić is sup-
ported by The Croatian Ministry of Science, Education and
Sports, through grant #036-0363078-3016 (Task Planning &
Scheduling in Robotic and Autonomous Systems). We would
like to thank LARICS students Antonio Krnjak, Ivo Petković,
Tonko Visković and Hrvoje Vugrinec for implementing the
map processing algorithms, the WAREHOUSim application
and ROS interface nodes used to perfom the described
research.

REFERENCES

[1] S. Balakirsky, R. Madhavan, and C. Scrapper, “NIST/IEEE Virtual
Manufacturing Automation Competition: from earliest beginnings to
future directions,” in Proceedings of the 8th Workshop on Performance
Metrics for Intelligent Systems. ACM, 2008, pp. 214–219.

[2] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper,
“USARSim: a robot simulator for research and education,” in 2007
IEEE International Conference on Robotics and Automation, 2007,
pp. 1400–1405.

[3] D. Miklic, , S. Bogdan, and L. Kalinovcic, “A control architecture
for warehouse automation - Performance evaluation in USARSim,” in
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, May 2011, pp. 109 –114.

[4] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot
Operating System,” in Open-Source Software workshop of the IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
May 2009.

[5] D. Kreher and D. Stinson, Combinatorial Algorithms: Generation,
Enumeration and Search. CRC Press, 1999.

[6] E. Dijkstra, “The mathematics behind the Banker’s algorithm,” Se-
lected Writings on Computing: A Personal Perspective, pp. 308–312,
1977.

[7] M. Coric, A. Krnjak, I. Petkovic, Z. Piskovic, T. A. Viskovic,
H. Vugrinec, T. Petrovic, D. Miklic, and S. Bogdan, “Virtual
Warehouse Management (IEEE VMAC 2011),” Online, June 2011,
http://www.youtube.com/user/LaricsLab.

[8] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” SIAM Journal of Applied Mathematics, vol. 5, pp. 32–38, 1957.

[9] F. Bourgeois and J.-C. Lassalle, “An extension of the munkres algo-
rithm for the assignment problem to rectangular matrices,” Commun.
ACM, vol. 14, pp. 802–804, December 1971.

[10] K. L., P. T., B. V., and B. S., “Modified Banker’s ALgorithm for
Scheduling in Multi-AGV Systems,” in 2011 IEEE Conference on
AUtomation Science and Engineering, 2007, Trieste, Italy.

[11] S. Reveliotis and E. Roszkowska, “On the complexity of maximally
permissive deadlock avoidance in multi-vehicle traffic systems,” Auto-
matic Control, IEEE Transactions on, vol. 55, no. 7, pp. 1646 –1651,
july 2010.

3454

